US3061009A - Method of recovery from fossil fuel bearing strata - Google Patents

Method of recovery from fossil fuel bearing strata Download PDF

Info

Publication number
US3061009A
US3061009A US709679A US70967958A US3061009A US 3061009 A US3061009 A US 3061009A US 709679 A US709679 A US 709679A US 70967958 A US70967958 A US 70967958A US 3061009 A US3061009 A US 3061009A
Authority
US
United States
Prior art keywords
oil
strata
heating
borehole
tar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US709679A
Inventor
William J Shirley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Svenska Skifferolje AB
Original Assignee
Svenska Skifferolje AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Svenska Skifferolje AB filed Critical Svenska Skifferolje AB
Priority to US709679A priority Critical patent/US3061009A/en
Application granted granted Critical
Publication of US3061009A publication Critical patent/US3061009A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection

Definitions

  • the dispersion may be carried all the way through the collection lines to the condensing equipment, where the dispersion, together with condensed hydrocarbons, originating from other parts of the operating field unit and being in a later stage of heating, results in a mixture, which is difiicult to separate.
  • the present invention is particularly directed to a method of preventing clogging by tar or other products that deposit in product outlets and product lines in methods of recovering valuable products such as oils from fossil fuel containing strata by heating in situ or underground to produce products which are obtained from later portions of the recovery system and through product outlets.
  • the method consists essentially in the injection as by pumping into each gas outlet before the heating starts, of a certain amount of a liquid such as a relatively light oil, for instance oil recovered in the same operation from another portion of the operating field unit.
  • the primary action of the injected liquid such as oil is to displace the water, which generally flows into the bore hole, after it is drilled and may fill the annular space between the easing tube of the heater and the wall of the bore hole, and part of which water may be in the pores of the tar sand adjacent to the bore hole.
  • the introduction of the oil thereby forces the water into the formation and thus suppresses the formation of water vapor when heat is supplied. Also some of the supplied heat from the heater is saved because of the lower heat of vaporization of the liquid such as light oil than of water, and can be made useful for the pyrolysis of the tar sand.
  • the liquid such as light oil also to some limited extent may act as a dissolving and viscosity-reducing agent on the tar in the same way as the condensed vapors, resulting from the distillation and pyrolysis of, for example, the tar sand in later stages of heating as described in a copending application, Serial No. 357,042, now Patent No. 2,914,309; granted November 24, 1959- to G. J. W. Salomonsson, assigned to the assignees of the present specification.
  • the effect of the injected oil may also, to some degree, be due to a change in surface-tensions in the liquid tarliquid Water-steam system.
  • the stability of the tar-steam dispersion is thereby changed.
  • the effect of the oil injection is improved by adding small amounts (a few parts per million) of a commercially available an-tifoarn agent, for instance, a silicone compound, to the oil before the injection.
  • the method may be applied in the treatment of any fossil fuel containing strata where during heat treatment, deposition of products such as tars, etc., may take place to produce clogging.
  • strata include oil shales and tar sands. But the difliculties are particularly pronounced in the treatment of tar sands in situ.
  • the light oil or other liquid injected maybe introduced prior to any initial heating of the deposit, or simultaneously therewith, or after the heating has started.
  • Theliquid employed may include any liquid which at least partially volatilizes at the temperatures of heating and which exhibits solvent properties on the products such as tar formed during heating in starting up operations.
  • Such liquids include hydrocarbons, particularly hydrocarbon products produced from such strata, and are specifically illustrated by petroleum distillates relatively light oils, other hydrocarbon distillates etc.
  • the liquid employed will generally be an oil, mainly consisting of hydrocarbons within a boiling range of l50-600 F. and with a range of specific gravity from 0.70 to 0.97.
  • the oil may be a paraffin-base, naphthenebase or asphalt-base type oil. It may be crude petroleum or an oil, recovered from the process itself or a distilled and/or refined product or fraction obtained from any of these stated sources.
  • the heat input per hour is generally the same while the injected oil is exhausted, as it is later.
  • the temperatures in the adjacent parts of the formation rise gradually from the moment the heating starts to the moment the heating ends.
  • the formation temperatures are fairly low, while oil is present in the Well and the formation. No substantial part of the formation reaches temperatures above 600 F. while the oil is still present in the well and the formation.
  • Any type of equipment may be used, which creates the necessary pressure to inject the oil, for instance a pump, or an open tank, with a liquid level, high enough to create a static pressure, or a closed tank connected to a compressed air line.
  • the drawing shows in a vertical view an illustrative installation wherein 1 represents the tar sand layer, carrying overburden 2.
  • Casing tube 3 for heater 4 is placed within the borehole having wall 5.
  • Gas outlet pipe 6 is sealed in position in the borehole by packer 7 above which cement 8 is placed.
  • Valve 9 is provided on gas outlet .pipe 6.
  • Annular space 10 between casing tube 3 and wall of the borehole contains water up to level 11.
  • an oil line from a tank or pump (not shown) is desirably connected to gas outlet 6.
  • a valve in the line is shut off.
  • the pressure in the line dissipates down to atmospheric pressure.
  • the connection between the gas outlet and the oil line is then broken and gas outlet 6 is connected to a gas line (not shown).
  • the heating is then started as in the following example.
  • the diameter of the bore hole through the strata of tar sand may be 5 inches and the depth may be 70feet from the ground surface.
  • the outer diameter of the casing tube of the heater in the same bore hole may be 2%".
  • 0.887) recovered from another part of the same operation where the heat treatment is in a later stage may be injected by means of compressed air with a pressure between 20 and 50 p.s.i. into the hole. .Due to the dissolving and displacing action, another 5 to gallons of oil may be injected, making the total volume of light oil 29 to 34 gallons. The injection desirably takes place immediately before heating starts. If the heat input is 30,000 B.t.u./ hour per heater, the injected oil will generally be vaporized within a few hours, if all heat be used for this purpose.
  • the time for complete vaporization of the oil may be several days, such as 5-20 days. During all of this time there will be enough oil vapors mixed with the outgoing products to prevent clogging in the outlets and in the lines. If necessary, a further injection of oil may be made some days e.g. ten days after the heating started.
  • a method for prevention of tar clogging in product outlets and product lines in recovery of oil from fuelcontaining strata by heating in a borehole in situ in said strata which borehole contains water collected from the formation, which consists essentially in introducing hydrocarbon oil liquid under pressure into the borehole sufficient to replace the water in the borehole with hydrocarbon oil liquid introduced, and to drive the water back into the formation, heating the strata through the borehole up to distillation temperature in the presence of vapors of said replacement oil liquid replacing water in the borehole to produce distillation hydrocarbon containing products from the strata, and recovering distillation products.
  • a method for prevention of tar clogging in product outlets and product lines in recovery of oil from fuelcontaining strata by heating in a borehole in situ in said strata which borehole contains water collected from the formation, which consists essentially in introducing hydrocarbon oil liquid under pressure into the borehole sufficient to replace the water in the borehole with bydrocarbon oil liquid introduced, and to drive the water back into the formation, heating the strata up to pyrolysis temperature in the presence of vapors of said replacement oil liquid to produce pyrolyzed hydrocarbons from the strata and recovering pyrolytic products.

Description

Oct. 30, 1962 w. J. SHIRLEY 3,061,009
METHOD OF RECOVERY FROM FOSSIL FUEL BEARING STRATA Filed Jan. 17, 1958 INVENTOR WILLIAM F SHIRLEY ATTORNEY 3,061,009 METHQD F RECOVERY FROM FOSSIL FUEL BEARING STRATA William J. Shirley, Santa Cruz, Califi, assignor, by mesne assignments, of one-half to Svenska Skifferolje Aktlebolaget, Urebro, Sweden, a corporation of Sweden Filed Jan. 17, 1958, Ser. No. 709,679 16 Claims. (Cl. 16639) This invention relates to methods used in connection with underground heating of fossil fuel bearing strata to recover valuable products therefrom and particularly from such strata as tar sands and oil shales.
One of the methods heretofore used for oil recovery through heating resulting in pyrolysis and/ or distillation of fossils fuels, such as oil shales and tar sands, of which the Athabasca tar sands of Alberta, Canada, are a well known example, consists in underground heating of the fuel-containing strata, as described in a number of patents. In the application of this method to deposits such as tar sands, it has been found that as the temperature gradually rises, before the tar is actually undergoing decomposition, the water, originally filling the pores and cavities of the strata, is vaporized and the water vapor thus formed tends to melt part of the tar and to carry the molten tar in a dispersed form through the pores of the strata to the gas outlets. In some instances these gas outlets may become plugged by the tar-steam dispersion. In other instances, the dispersion may be carried all the way through the collection lines to the condensing equipment, where the dispersion, together with condensed hydrocarbons, originating from other parts of the operating field unit and being in a later stage of heating, results in a mixture, which is difiicult to separate.
Among the objects of the present invention is a method of eliminating these difficulties.
Other and further objects and advantages will appear from the more detailed description given below, it being understood that such more detailed description is given by way of illustration and explanation and not as limiting since various changes therein may be made by those skilled in the art without departing from the scopeand spirit of the present invention.
In accordance with that more detailed description, there is shown illustratively in the drawing, a vertical section through an installation utilized for carrying out the present invention.
The present invention is particularly directed to a method of preventing clogging by tar or other products that deposit in product outlets and product lines in methods of recovering valuable products such as oils from fossil fuel containing strata by heating in situ or underground to produce products which are obtained from later portions of the recovery system and through product outlets. The method consists essentially in the injection as by pumping into each gas outlet before the heating starts, of a certain amount of a liquid such as a relatively light oil, for instance oil recovered in the same operation from another portion of the operating field unit. The primary action of the injected liquid such as oil, is to displace the water, which generally flows into the bore hole, after it is drilled and may fill the annular space between the easing tube of the heater and the wall of the bore hole, and part of which water may be in the pores of the tar sand adjacent to the bore hole. The introduction of the oil thereby forces the water into the formation and thus suppresses the formation of water vapor when heat is supplied. Also some of the supplied heat from the heater is saved because of the lower heat of vaporization of the liquid such as light oil than of water, and can be made useful for the pyrolysis of the tar sand.
3,061,009 Patented Oct. 30., 1962 ice Besides this primary action, the liquid such as light oil also to some limited extent may act as a dissolving and viscosity-reducing agent on the tar in the same way as the condensed vapors, resulting from the distillation and pyrolysis of, for example, the tar sand in later stages of heating as described in a copending application, Serial No. 357,042, now Patent No. 2,914,309; granted November 24, 1959- to G. J. W. Salomonsson, assigned to the assignees of the present specification.
Different actions or functions or effects obtained by the injected liquid, are, as listed in order of importance or degree:
(a) The oil displaces water and thus reduces steam formation (thereby also saving heat).
b) The oil vapors dissolve tar particles in outlets and lines.
(0) The oil dissolves tar in the adjacent parts of the formation creating a low-viscosity solution, which im proves heat transfer from the heater by convection.
The effect of the injected oil may also, to some degree, be due to a change in surface-tensions in the liquid tarliquid Water-steam system. The stability of the tar-steam dispersion is thereby changed. Actually it has been observed that the effect of the oil injection is improved by adding small amounts (a few parts per million) of a commercially available an-tifoarn agent, for instance, a silicone compound, to the oil before the injection.
The method may be applied in the treatment of any fossil fuel containing strata where during heat treatment, deposition of products such as tars, etc., may take place to produce clogging. Such strata include oil shales and tar sands. But the difliculties are particularly pronounced in the treatment of tar sands in situ. The light oil or other liquid injected, maybe introduced prior to any initial heating of the deposit, or simultaneously therewith, or after the heating has started.
Theliquid employed may include any liquid which at least partially volatilizes at the temperatures of heating and which exhibits solvent properties on the products such as tar formed during heating in starting up operations. Such liquids include hydrocarbons, particularly hydrocarbon products produced from such strata, and are specifically illustrated by petroleum distillates relatively light oils, other hydrocarbon distillates etc.
The liquid employed will generally be an oil, mainly consisting of hydrocarbons within a boiling range of l50-600 F. and with a range of specific gravity from 0.70 to 0.97. The oil may be a paraffin-base, naphthenebase or asphalt-base type oil. It may be crude petroleum or an oil, recovered from the process itself or a distilled and/or refined product or fraction obtained from any of these stated sources.
The heat input per hour is generally the same while the injected oil is exhausted, as it is later. The temperatures in the adjacent parts of the formation rise gradually from the moment the heating starts to the moment the heating ends. As the oil is injected before the heating starts, the formation temperatures are fairly low, while oil is present in the Well and the formation. No substantial part of the formation reaches temperatures above 600 F. while the oil is still present in the well and the formation.
Any type of equipment may be used, which creates the necessary pressure to inject the oil, for instance a pump, or an open tank, with a liquid level, high enough to create a static pressure, or a closed tank connected to a compressed air line.
The drawing shows in a vertical view an illustrative installation wherein 1 represents the tar sand layer, carrying overburden 2. Casing tube 3 for heater 4 is placed within the borehole having wall 5. Gas outlet pipe 6 is sealed in position in the borehole by packer 7 above which cement 8 is placed. Valve 9 is provided on gas outlet .pipe 6. Annular space 10 between casing tube 3 and wall of the borehole contains water up to level 11.
In starting an operation, an oil line from a tank or pump (not shown) is desirably connected to gas outlet 6. After the desired amount of oil has been injected a valve in the line is shut off. Gradually, as the oil displaces the water, the pressure in the line dissipates down to atmospheric pressure. The connection between the gas outlet and the oil line is then broken and gas outlet 6 is connected to a gas line (not shown). The heating is then started as in the following example.
In a tar sand heating operation where the tar content of U116 tar sand is 8% by weight and the thickness of the tar sand layer is 50 feet, the diameter of the bore hole through the strata of tar sand may be 5 inches and the depth may be 70feet from the ground surface. The outer diameter of the casing tube of the heater in the same bore hole may be 2%". In order to fill the annular space between the casing tube and the Wall of the bore hole up to a level, for instance 20 feet below the ground surface a total amount of 24 gallons of oil (sp. 'gr. 0.887) recovered from another part of the same operation where the heat treatment is in a later stage may be injected by means of compressed air with a pressure between 20 and 50 p.s.i. into the hole. .Due to the dissolving and displacing action, another 5 to gallons of oil may be injected, making the total volume of light oil 29 to 34 gallons. The injection desirably takes place immediately before heating starts. If the heat input is 30,000 B.t.u./ hour per heater, the injected oil will generally be vaporized within a few hours, if all heat be used for this purpose. Because of the-heat consumption in the surrounding tar sand and the movement of the oil into the strata, the time for complete vaporization of the oil may be several days, such as 5-20 days. During all of this time there will be enough oil vapors mixed with the outgoing products to prevent clogging in the outlets and in the lines. If necessary, a further injection of oil may be made some days e.g. ten days after the heating started.
'Having thus set forth my invention, I claim:
1. A method for prevention of tar clogging in product outlets and product lines in recovery of oil from fuelcontaining strata by heating in a borehole in situ in said strata which borehole contains water collected from the formation, which consists essentially in introducing hydrocarbon oil liquid under pressure into the borehole sufficient to replace the water in the borehole with hydrocarbon oil liquid introduced, and to drive the water back into the formation, heating the strata through the borehole up to distillation temperature in the presence of vapors of said replacement oil liquid replacing water in the borehole to produce distillation hydrocarbon containing products from the strata, and recovering distillation products.
2. The method of claim 1 wherein the injection takes place before heating has started.
3. The method of claim 2 wherein the strata contain tar sands.
4. The method of claim 2 wherein the strata contain oil shale.
5. The method of claim 1 wherein the injection takes place after heating has started.
6. The method of claim 5 wherein the strata contain tar sands.
7. The method of claim 5 wherein the strata contain oil shale.
8. The method of claim 1 wherein the strata contain tar sands.
9. The method of claim 1 wherein the strata contain oil shale.
10. A method for prevention of tar clogging in product outlets and product lines in recovery of oil from fuelcontaining strata by heating in a borehole in situ in said strata which borehole contains water collected from the formation, which consists essentially in introducing hydrocarbon oil liquid under pressure into the borehole sufficient to replace the water in the borehole with bydrocarbon oil liquid introduced, and to drive the water back into the formation, heating the strata up to pyrolysis temperature in the presence of vapors of said replacement oil liquid to produce pyrolyzed hydrocarbons from the strata and recovering pyrolytic products.
11. The method of claim 10 wherein the injection takes place before heating has started.
12. The method of claim 11 wherein the strata contain tar sands.
13. The method of claim 11 wherein the strata contain oil shale.
14. The method of claim 10 wherein the injection takes place after heating has started.
15. The method of claim 14 wherein the strata contain tar sands.
16. The method of claim 14 wherein the strata contain oil shale.
References Cited in the file of this patent UNITED STATES PATENTS 1,520,012 Conrader Dec. 23, 1924 2,300,348 Dana Oct. 27, 1942 2,423,674 Agren July 8, 1947 2,914,309 Salomonsson Nov. 24, 1959 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No 3,061,009 October 30, 1962 William J, Shirley It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
In. the grant, lines 2 to 4, for "assignor, by mesne assignments, of one-half to Svenska Skifferolje Aktiebolaget, of Orebro, Sweden, a corporation of Sweden," read assignor, by direct and mesne assignments, of one-=half to Husky Oil Company, of Cody, Wyoming, a corporation of Delaware and one half to Svenska Skifferolje Aktiebolaget, of Orebro, Sweden, lines 13 and 14, for "William J, Shirley, his heirs or assigns, and Svenska Skifferolje Aktiebolaget, its successors read Husky Oil Company and Svenska Skifferolje Aktiebolaget, their successors in the heading to the printed specification, lines 4 to 6, for "assignor, by mesne assignments, of one-=half to Svenska Skifferolje Aktiebj olaget, Orebro, Sweden, a corpora tion of Sweden" read assignor, bydirect and mesne assign ments, of one-half to Husky Oil Company, Cody, Wyo,, a corpo ration of Delaware, and one-half to Svenska Skifferolje Aktiebolaget, Orebro, Sweden Signed and sealed this 23rd day of June 1964,
(SEAL) Attest:
ERNEST W, SWIDER Attesting Officer EDWARD J, Brenner Commissioner of Patents

Claims (1)

1. A METHOD FOR PREVENTING OF TAR CLOGGING IN PRODUCT OUTLETS AND PRODUCT LINES IN RECOVERY OF OIL FROM FUELCONTAINING STRATA BY HEATING IN A BOREHOLE IN SITU IN SAID STRATA WHICH BOREHOLE CONTAINS WATER COLLECTED FROM THE FORMATION, WHICH CONSISTS ESSENTIALLY IN INTRODUCING HYDROCARBON OIL LIQUID UNDER PRESSURE INTO THE BOREHOLE SUFFICIENT TO REPLACE THE WATER IN THE BOREHOLE WITH HYDROCARBON OIL LIQUID INTRODUCED, AND TO DRIVE THE WATER BACK INTO THE FORMATION, HEATING THE STRATA THROUGH THE BOREHOLE UP TO DISTILLATION TEMPERATURE IN THE PRESENCE
US709679A 1958-01-17 1958-01-17 Method of recovery from fossil fuel bearing strata Expired - Lifetime US3061009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US709679A US3061009A (en) 1958-01-17 1958-01-17 Method of recovery from fossil fuel bearing strata

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US709679A US3061009A (en) 1958-01-17 1958-01-17 Method of recovery from fossil fuel bearing strata

Publications (1)

Publication Number Publication Date
US3061009A true US3061009A (en) 1962-10-30

Family

ID=24850888

Family Applications (1)

Application Number Title Priority Date Filing Date
US709679A Expired - Lifetime US3061009A (en) 1958-01-17 1958-01-17 Method of recovery from fossil fuel bearing strata

Country Status (1)

Country Link
US (1) US3061009A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528501A (en) * 1967-08-04 1970-09-15 Phillips Petroleum Co Recovery of oil from oil shale
US3964547A (en) * 1973-01-15 1976-06-22 Amoco Production Company Recovery of heavy hydrocarbons from underground formations
US4033411A (en) * 1975-02-05 1977-07-05 Goins John T Method for stimulating the recovery of crude oil
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030098605A1 (en) * 2001-04-24 2003-05-29 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20030196801A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20050269094A1 (en) * 2004-04-23 2005-12-08 Harris Christopher K Triaxial temperature limited heater
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US20080035705A1 (en) * 2006-04-21 2008-02-14 Menotti James L Welding shield for coupling heaters
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090260823A1 (en) * 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100089586A1 (en) * 2008-10-13 2010-04-15 John Andrew Stanecki Movable heaters for treating subsurface hydrocarbon containing formations
US20100155062A1 (en) * 2007-07-24 2010-06-24 Boone Thomas J Use Of A Heavy Petroleum Fraction As A Drive Fluid In The Recovery of Hydrocarbons From A Subterranean Formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701788B2 (en) 2011-12-22 2014-04-22 Chevron U.S.A. Inc. Preconditioning a subsurface shale formation by removing extractible organics
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8839860B2 (en) 2010-12-22 2014-09-23 Chevron U.S.A. Inc. In-situ Kerogen conversion and product isolation
US8851177B2 (en) 2011-12-22 2014-10-07 Chevron U.S.A. Inc. In-situ kerogen conversion and oxidant regeneration
US8992771B2 (en) 2012-05-25 2015-03-31 Chevron U.S.A. Inc. Isolating lubricating oils from subsurface shale formations
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9033033B2 (en) 2010-12-21 2015-05-19 Chevron U.S.A. Inc. Electrokinetic enhanced hydrocarbon recovery from oil shale
US9181467B2 (en) 2011-12-22 2015-11-10 Uchicago Argonne, Llc Preparation and use of nano-catalysts for in-situ reaction with kerogen
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1520012A (en) * 1921-03-28 1924-12-23 Conrader Rudolph Method of treating oil wells and apparatus therefor
US2300348A (en) * 1941-04-21 1942-10-27 Frank E Dana Method for cleaning oil wells
US2423674A (en) * 1942-08-24 1947-07-08 Johnson & Co A Process of catalytic cracking of petroleum hydrocarbons
US2914309A (en) * 1953-05-25 1959-11-24 Svenska Skifferolje Ab Oil and gas recovery from tar sands

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1520012A (en) * 1921-03-28 1924-12-23 Conrader Rudolph Method of treating oil wells and apparatus therefor
US2300348A (en) * 1941-04-21 1942-10-27 Frank E Dana Method for cleaning oil wells
US2423674A (en) * 1942-08-24 1947-07-08 Johnson & Co A Process of catalytic cracking of petroleum hydrocarbons
US2914309A (en) * 1953-05-25 1959-11-24 Svenska Skifferolje Ab Oil and gas recovery from tar sands

Cited By (393)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528501A (en) * 1967-08-04 1970-09-15 Phillips Petroleum Co Recovery of oil from oil shale
US3964547A (en) * 1973-01-15 1976-06-22 Amoco Production Company Recovery of heavy hydrocarbons from underground formations
US4033411A (en) * 1975-02-05 1977-07-05 Goins John T Method for stimulating the recovery of crude oil
US6715549B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US7096941B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7086468B2 (en) 2000-04-24 2006-08-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US6719047B2 (en) 2000-04-24 2004-04-13 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US7017661B2 (en) 2000-04-24 2006-03-28 Shell Oil Company Production of synthesis gas from a coal formation
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6588503B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In Situ thermal processing of a coal formation to control product composition
US6591907B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
US6591906B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6997255B2 (en) 2000-04-24 2006-02-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6994168B2 (en) 2000-04-24 2006-02-07 Scott Lee Wellington In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994161B2 (en) 2000-04-24 2006-02-07 Kevin Albert Maher In situ thermal processing of a coal formation with a selected moisture content
US6994160B2 (en) 2000-04-24 2006-02-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6991031B2 (en) 2000-04-24 2006-01-31 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6973967B2 (en) 2000-04-24 2005-12-13 Shell Oil Company Situ thermal processing of a coal formation using pressure and/or temperature control
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6966372B2 (en) 2000-04-24 2005-11-22 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6607033B2 (en) 2000-04-24 2003-08-19 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
US6609570B2 (en) 2000-04-24 2003-08-26 Shell Oil Company In situ thermal processing of a coal formation and ammonia production
US6959761B2 (en) 2000-04-24 2005-11-01 Shell Oil Company In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6953087B2 (en) 2000-04-24 2005-10-11 Shell Oil Company Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6948563B2 (en) 2000-04-24 2005-09-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6923258B2 (en) 2000-04-24 2005-08-02 Shell Oil Company In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6913078B2 (en) 2000-04-24 2005-07-05 Shell Oil Company In Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6910536B2 (en) 2000-04-24 2005-06-28 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6715547B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6902003B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6702016B2 (en) 2000-04-24 2004-03-09 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758B2 (en) 2000-04-24 2004-03-23 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712137B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6712135B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
US6712136B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6880635B2 (en) 2000-04-24 2005-04-19 Shell Oil Company In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US6736215B2 (en) 2000-04-24 2004-05-18 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7036583B2 (en) 2000-04-24 2006-05-02 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US6722431B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of hydrocarbons within a relatively permeable formation
US6722429B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6725928B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
US6725921B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
US6725920B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6729397B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
US6729395B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6732795B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732794B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732796B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6739394B2 (en) 2000-04-24 2004-05-25 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
US6739393B2 (en) 2000-04-24 2004-05-25 Shell Oil Company In situ thermal processing of a coal formation and tuning production
US6742593B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6742589B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742588B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742587B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6745832B2 (en) 2000-04-24 2004-06-08 Shell Oil Company Situ thermal processing of a hydrocarbon containing formation to control product composition
US6745831B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745837B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021B2 (en) 2000-04-24 2004-06-15 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
US6752210B2 (en) 2000-04-24 2004-06-22 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216B2 (en) 2000-04-24 2004-07-13 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886B2 (en) 2000-04-24 2004-07-20 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625B2 (en) 2000-04-24 2004-09-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195B2 (en) 2000-04-24 2004-10-19 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6902004B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6896053B2 (en) 2000-04-24 2005-05-24 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6820688B2 (en) 2000-04-24 2004-11-23 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6866097B2 (en) 2000-04-24 2005-03-15 Shell Oil Company In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6871707B2 (en) 2000-04-24 2005-03-29 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554B2 (en) 2000-04-24 2005-04-12 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6889769B2 (en) 2000-04-24 2005-05-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6880633B2 (en) 2001-04-24 2005-04-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
US6997518B2 (en) 2001-04-24 2006-02-14 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
US20040211557A1 (en) * 2001-04-24 2004-10-28 Cole Anthony Thomas Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20040211554A1 (en) * 2001-04-24 2004-10-28 Vinegar Harold J. Heat sources with conductive material for in situ thermal processing of an oil shale formation
US6915850B2 (en) 2001-04-24 2005-07-12 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
US6918443B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257B2 (en) 2001-04-24 2005-08-02 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US7225866B2 (en) 2001-04-24 2007-06-05 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030098605A1 (en) * 2001-04-24 2003-05-29 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6948562B2 (en) 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
US7096942B1 (en) 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
US6951247B2 (en) 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
US20030102126A1 (en) * 2001-04-24 2003-06-05 Sumnu-Dindoruk Meliha Deniz In situ thermal recovery from a relatively permeable formation with controlled production rate
US20030164239A1 (en) * 2001-04-24 2003-09-04 Wellington Scott Lee In situ thermal processing of an oil shale formation in a reducing environment
US6964300B2 (en) 2001-04-24 2005-11-15 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966374B2 (en) 2001-04-24 2005-11-22 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030146002A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20030148894A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. In situ thermal processing of an oil shale formation using a natural distributed combustor
US7055600B2 (en) 2001-04-24 2006-06-06 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
US7051807B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
US7051811B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
US7040399B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
US20030141066A1 (en) * 2001-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of an oil shale formation while inhibiting coking
US20030142964A1 (en) * 2001-04-24 2003-07-31 Wellington Scott Lee In situ thermal processing of an oil shale formation using a controlled heating rate
US6981548B2 (en) 2001-04-24 2006-01-03 Shell Oil Company In situ thermal recovery from a relatively permeable formation
US7040398B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
US6991033B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
US6991036B2 (en) 2001-04-24 2006-01-31 Shell Oil Company Thermal processing of a relatively permeable formation
US20030141067A1 (en) * 2001-04-24 2003-07-31 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation to increase permeability of the formation
US6991032B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20030141068A1 (en) * 2001-04-24 2003-07-31 Pierre De Rouffignac Eric In situ thermal processing through an open wellbore in an oil shale formation
US20030136559A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing while controlling pressure in an oil shale formation
US6994169B2 (en) 2001-04-24 2006-02-07 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
US20030136558A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a desired product
US20030131993A1 (en) * 2001-04-24 2003-07-17 Etuan Zhang In situ thermal processing of an oil shale formation with a selected property
US6877555B2 (en) 2001-04-24 2005-04-12 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
US7004247B2 (en) 2001-04-24 2006-02-28 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20030131996A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing of an oil shale formation having permeable and impermeable sections
US7013972B2 (en) 2001-04-24 2006-03-21 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
US20030116315A1 (en) * 2001-04-24 2003-06-26 Wellington Scott Lee In situ thermal processing of a relatively permeable formation
US7032660B2 (en) 2001-04-24 2006-04-25 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030111223A1 (en) * 2001-04-24 2003-06-19 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation using horizontal heat sources
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
US6932155B2 (en) 2001-10-24 2005-08-23 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030196801A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US7461691B2 (en) 2001-10-24 2008-12-09 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7063145B2 (en) 2001-10-24 2006-06-20 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7066257B2 (en) 2001-10-24 2006-06-27 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
US6991045B2 (en) 2001-10-24 2006-01-31 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US7077198B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US7086465B2 (en) 2001-10-24 2006-08-08 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7051808B1 (en) 2001-10-24 2006-05-30 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US20040040715A1 (en) * 2001-10-24 2004-03-04 Wellington Scott Lee In situ production of a blending agent from a hydrocarbon containing formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7114566B2 (en) 2001-10-24 2006-10-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20030201098A1 (en) * 2001-10-24 2003-10-30 Karanikas John Michael In situ recovery from a hydrocarbon containing formation using one or more simulations
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US7128153B2 (en) 2001-10-24 2006-10-31 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
US7156176B2 (en) 2001-10-24 2007-01-02 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US7121341B2 (en) 2002-10-24 2006-10-17 Shell Oil Company Conductor-in-conduit temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US7219734B2 (en) 2002-10-24 2007-05-22 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7360588B2 (en) 2003-04-24 2008-04-22 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US20050269093A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Variable frequency temperature limited heaters
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US20050269094A1 (en) * 2004-04-23 2005-12-08 Harris Christopher K Triaxial temperature limited heater
US7510000B2 (en) 2004-04-23 2009-03-31 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
US20050269091A1 (en) * 2004-04-23 2005-12-08 Guillermo Pastor-Sanz Reducing viscosity of oil for production from a hydrocarbon containing formation
US7490665B2 (en) 2004-04-23 2009-02-17 Shell Oil Company Variable frequency temperature limited heaters
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US7481274B2 (en) 2004-04-23 2009-01-27 Shell Oil Company Temperature limited heaters with relatively constant current
US20050269095A1 (en) * 2004-04-23 2005-12-08 Fairbanks Michael D Inhibiting reflux in a heated well of an in situ conversion system
US20050269088A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Inhibiting effects of sloughing in wellbores
US7431076B2 (en) 2004-04-23 2008-10-07 Shell Oil Company Temperature limited heaters using modulated DC power
US7353872B2 (en) 2004-04-23 2008-04-08 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
US7357180B2 (en) 2004-04-23 2008-04-15 Shell Oil Company Inhibiting effects of sloughing in wellbores
US7424915B2 (en) 2004-04-23 2008-09-16 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
US20050269090A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7370704B2 (en) 2004-04-23 2008-05-13 Shell Oil Company Triaxial temperature limited heater
US20050269089A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Temperature limited heaters using modulated DC power
US7383877B2 (en) 2004-04-23 2008-06-10 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20070108200A1 (en) * 2005-04-22 2007-05-17 Mckinzie Billy J Ii Low temperature barrier wellbores formed using water flushing
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
US7575052B2 (en) 2005-04-22 2009-08-18 Shell Oil Company In situ conversion process utilizing a closed loop heating system
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7527094B2 (en) 2005-04-22 2009-05-05 Shell Oil Company Double barrier system for an in situ conversion process
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US7500528B2 (en) 2005-04-22 2009-03-10 Shell Oil Company Low temperature barrier wellbores formed using water flushing
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US20070119098A1 (en) * 2005-04-22 2007-05-31 Zaida Diaz Treatment of gas from an in situ conversion process
US20070137856A1 (en) * 2005-04-22 2007-06-21 Mckinzie Billy J Double barrier system for an in situ conversion process
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US20070144732A1 (en) * 2005-04-22 2007-06-28 Kim Dong S Low temperature barriers for use with in situ processes
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US20070131420A1 (en) * 2005-10-24 2007-06-14 Weijian Mo Methods of cracking a crude product to produce additional crude products
US20070221377A1 (en) * 2005-10-24 2007-09-27 Vinegar Harold J Solution mining systems and methods for treating hydrocarbon containing formations
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US20070127897A1 (en) * 2005-10-24 2007-06-07 John Randy C Subsurface heaters with low sulfidation rates
US20070125533A1 (en) * 2005-10-24 2007-06-07 Minderhoud Johannes K Methods of hydrotreating a liquid stream to remove clogging compounds
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US20070131419A1 (en) * 2005-10-24 2007-06-14 Maria Roes Augustinus W Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7635025B2 (en) 2005-10-24 2009-12-22 Shell Oil Company Cogeneration systems and processes for treating hydrocarbon containing formations
US7591310B2 (en) 2005-10-24 2009-09-22 Shell Oil Company Methods of hydrotreating a liquid stream to remove clogging compounds
US7584789B2 (en) 2005-10-24 2009-09-08 Shell Oil Company Methods of cracking a crude product to produce additional crude products
US7581589B2 (en) 2005-10-24 2009-09-01 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US7556096B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Varying heating in dawsonite zones in hydrocarbon containing formations
US20080107577A1 (en) * 2005-10-24 2008-05-08 Vinegar Harold J Varying heating in dawsonite zones in hydrocarbon containing formations
US7562706B2 (en) 2005-10-24 2009-07-21 Shell Oil Company Systems and methods for producing hydrocarbons from tar sands formations
US7559367B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Temperature limited heater with a conduit substantially electrically isolated from the formation
US7559368B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
US20070131427A1 (en) * 2005-10-24 2007-06-14 Ruijian Li Systems and methods for producing hydrocarbons from tar sands formations
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
US20080173442A1 (en) * 2006-04-21 2008-07-24 Vinegar Harold J Sulfur barrier for use with in situ processes for treating formations
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US20080174115A1 (en) * 2006-04-21 2008-07-24 Gene Richard Lambirth Power systems utilizing the heat of produced formation fluid
US20080035705A1 (en) * 2006-04-21 2008-02-14 Menotti James L Welding shield for coupling heaters
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US20080035346A1 (en) * 2006-04-21 2008-02-14 Vijay Nair Methods of producing transportation fuel
US20080035348A1 (en) * 2006-04-21 2008-02-14 Vitek John M Temperature limited heaters using phase transformation of ferromagnetic material
US20080038144A1 (en) * 2006-04-21 2008-02-14 Maziasz Phillip J High strength alloys
US20080173450A1 (en) * 2006-04-21 2008-07-24 Bernard Goldberg Time sequenced heating of multiple layers in a hydrocarbon containing formation
US20100272595A1 (en) * 2006-04-21 2010-10-28 Shell Oil Company High strength alloys
US20080173444A1 (en) * 2006-04-21 2008-07-24 Francis Marion Stone Alternate energy source usage for in situ heat treatment processes
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7597147B2 (en) 2006-04-21 2009-10-06 Shell Oil Company Temperature limited heaters using phase transformation of ferromagnetic material
US7604052B2 (en) 2006-04-21 2009-10-20 Shell Oil Company Compositions produced using an in situ heat treatment process
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US20080173449A1 (en) * 2006-04-21 2008-07-24 Thomas David Fowler Sour gas injection for use with in situ heat treatment
US7610962B2 (en) 2006-04-21 2009-11-03 Shell Oil Company Sour gas injection for use with in situ heat treatment
US7635023B2 (en) 2006-04-21 2009-12-22 Shell Oil Company Time sequenced heating of multiple layers in a hydrocarbon containing formation
US7631689B2 (en) 2006-04-21 2009-12-15 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
US20080217015A1 (en) * 2006-10-20 2008-09-11 Vinegar Harold J Heating hydrocarbon containing formations in a spiral startup staged sequence
US20080185147A1 (en) * 2006-10-20 2008-08-07 Vinegar Harold J Wax barrier for use with in situ processes for treating formations
US7631690B2 (en) 2006-10-20 2009-12-15 Shell Oil Company Heating hydrocarbon containing formations in a spiral startup staged sequence
US7635024B2 (en) 2006-10-20 2009-12-22 Shell Oil Company Heating tar sands formations to visbreaking temperatures
US20080135244A1 (en) * 2006-10-20 2008-06-12 David Scott Miller Heating hydrocarbon containing formations in a line drive staged process
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US20080277113A1 (en) * 2006-10-20 2008-11-13 George Leo Stegemeier Heating tar sands formations while controlling pressure
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US20080217003A1 (en) * 2006-10-20 2008-09-11 Myron Ira Kuhlman Gas injection to inhibit migration during an in situ heat treatment process
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US20080135253A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J Treating tar sands formations with karsted zones
US20090014180A1 (en) * 2006-10-20 2009-01-15 George Leo Stegemeier Moving hydrocarbons through portions of tar sands formations with a fluid
US20080217004A1 (en) * 2006-10-20 2008-09-11 De Rouffignac Eric Pierre Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US20080135254A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J In situ heat treatment process utilizing a closed loop heating system
US20080142217A1 (en) * 2006-10-20 2008-06-19 Roelof Pieterson Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US20080142216A1 (en) * 2006-10-20 2008-06-19 Vinegar Harold J Treating tar sands formations with dolomite
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US20090014181A1 (en) * 2006-10-20 2009-01-15 Vinegar Harold J Creating and maintaining a gas cap in tar sands formations
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7562707B2 (en) 2006-10-20 2009-07-21 Shell Oil Company Heating hydrocarbon containing formations in a line drive staged process
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US20100276141A1 (en) * 2006-10-20 2010-11-04 Shell Oil Company Creating fluid injectivity in tar sands formations
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US20090095480A1 (en) * 2007-04-20 2009-04-16 Vinegar Harold J In situ heat treatment of a tar sands formation after drive process treatment
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US20090126929A1 (en) * 2007-04-20 2009-05-21 Vinegar Harold J Treating nahcolite containing formations and saline zones
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US20090084547A1 (en) * 2007-04-20 2009-04-02 Walter Farman Farmayan Downhole burner systems and methods for heating subsurface formations
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US20090321075A1 (en) * 2007-04-20 2009-12-31 Christopher Kelvin Harris Parallel heater system for subsurface formations
US20090090509A1 (en) * 2007-04-20 2009-04-09 Vinegar Harold J In situ recovery from residually heated sections in a hydrocarbon containing formation
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US20090095479A1 (en) * 2007-04-20 2009-04-16 John Michael Karanikas Production from multiple zones of a tar sands formation
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US20090095476A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Molten salt as a heat transfer fluid for heating a subsurface formation
US20090078461A1 (en) * 2007-04-20 2009-03-26 Arthur James Mansure Drilling subsurface wellbores with cutting structures
US20090095477A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Heating systems for heating subsurface formations
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US20090120646A1 (en) * 2007-04-20 2009-05-14 Dong Sub Kim Electrically isolating insulated conductor heater
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US8256511B2 (en) * 2007-07-24 2012-09-04 Exxonmobil Upstream Research Company Use of a heavy petroleum fraction as a drive fluid in the recovery of hydrocarbons from a subterranean formation
US20100155062A1 (en) * 2007-07-24 2010-06-24 Boone Thomas J Use Of A Heavy Petroleum Fraction As A Drive Fluid In The Recovery of Hydrocarbons From A Subterranean Formation
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US20090200031A1 (en) * 2007-10-19 2009-08-13 David Scott Miller Irregular spacing of heat sources for treating hydrocarbon containing formations
US20090200854A1 (en) * 2007-10-19 2009-08-13 Vinegar Harold J Solution mining and in situ treatment of nahcolite beds
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090194329A1 (en) * 2007-10-19 2009-08-06 Rosalvina Ramona Guimerans Methods for forming wellbores in heated formations
US20090194524A1 (en) * 2007-10-19 2009-08-06 Dong Sub Kim Methods for forming long subsurface heaters
US20090194269A1 (en) * 2007-10-19 2009-08-06 Vinegar Harold J Three-phase heaters with common overburden sections for heating subsurface formations
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US20090200025A1 (en) * 2007-10-19 2009-08-13 Jose Luis Bravo High temperature methods for forming oxidizer fuel
US20090194282A1 (en) * 2007-10-19 2009-08-06 Gary Lee Beer In situ oxidation of subsurface formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US20090272533A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US20090260823A1 (en) * 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090260824A1 (en) * 2008-04-18 2009-10-22 David Booth Burns Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090272535A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Using tunnels for treating subsurface hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US20090272578A1 (en) * 2008-04-18 2009-11-05 Macdonald Duncan Charles Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US20100101783A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Using self-regulating nuclear reactors in treating a subsurface formation
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100089586A1 (en) * 2008-10-13 2010-04-15 John Andrew Stanecki Movable heaters for treating subsurface hydrocarbon containing formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US20100089584A1 (en) * 2008-10-13 2010-04-15 David Booth Burns Double insulated heaters for treating subsurface formations
US20100108310A1 (en) * 2008-10-13 2010-05-06 Thomas David Fowler Offset barrier wells in subsurface formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US20100108379A1 (en) * 2008-10-13 2010-05-06 David Alston Edbury Systems and methods of forming subsurface wellbores
US20100096137A1 (en) * 2008-10-13 2010-04-22 Scott Vinh Nguyen Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US20100101784A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9033033B2 (en) 2010-12-21 2015-05-19 Chevron U.S.A. Inc. Electrokinetic enhanced hydrocarbon recovery from oil shale
US8997869B2 (en) 2010-12-22 2015-04-07 Chevron U.S.A. Inc. In-situ kerogen conversion and product upgrading
US9133398B2 (en) 2010-12-22 2015-09-15 Chevron U.S.A. Inc. In-situ kerogen conversion and recycling
US8839860B2 (en) 2010-12-22 2014-09-23 Chevron U.S.A. Inc. In-situ Kerogen conversion and product isolation
US8936089B2 (en) 2010-12-22 2015-01-20 Chevron U.S.A. Inc. In-situ kerogen conversion and recovery
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US8701788B2 (en) 2011-12-22 2014-04-22 Chevron U.S.A. Inc. Preconditioning a subsurface shale formation by removing extractible organics
US8851177B2 (en) 2011-12-22 2014-10-07 Chevron U.S.A. Inc. In-situ kerogen conversion and oxidant regeneration
US9181467B2 (en) 2011-12-22 2015-11-10 Uchicago Argonne, Llc Preparation and use of nano-catalysts for in-situ reaction with kerogen
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US8992771B2 (en) 2012-05-25 2015-03-31 Chevron U.S.A. Inc. Isolating lubricating oils from subsurface shale formations

Similar Documents

Publication Publication Date Title
US3061009A (en) Method of recovery from fossil fuel bearing strata
US3766982A (en) Method for the in-situ treatment of hydrocarbonaceous materials
US4896725A (en) In-well heat exchange method for improved recovery of subterranean fluids with poor flowability
US4280559A (en) Method for producing heavy crude
US3358756A (en) Method for in situ recovery of solid or semi-solid petroleum deposits
US4407367A (en) Method for in situ recovery of heavy crude oils and tars by hydrocarbon vapor injection
US2734579A (en) Production from bituminous sands
US3881550A (en) In situ recovery of hydrocarbons from tar sands
US3730270A (en) Shale oil recovery from fractured oil shale
US4884635A (en) Enhanced oil recovery with a mixture of water and aromatic hydrocarbons
EA015915B1 (en) Controlling and assessing pressure conditions during treatment of tar sands formations
US3327782A (en) Underground hydrogenation of oil
US3354954A (en) Steam injection process for recovery of petroleum
US4149597A (en) Method for generating steam
US2364222A (en) Control of wax deposition
US4387016A (en) Method for extraction of bituminous material
US4597443A (en) Viscous oil recovery method
US3375870A (en) Recovery of petroleum by thermal methods
US3847224A (en) Miscible displacement of petroleum
RU2515662C1 (en) Oil deposit development method
US3565174A (en) Method of in situ combustion with intermittent injection of volatile liquid
WO1995006093A1 (en) Enhanced hydrocarbon recovery method
US4373585A (en) Method of solvent flooding to recover viscous oils
US3263750A (en) In situ combustion method for high viscosity petroleum deposits
US4499949A (en) Combined surface and in situ tar sand bitumen production