US2985797A - Application of semiconductors to ignition circuitry - Google Patents

Application of semiconductors to ignition circuitry Download PDF

Info

Publication number
US2985797A
US2985797A US780914A US78091458A US2985797A US 2985797 A US2985797 A US 2985797A US 780914 A US780914 A US 780914A US 78091458 A US78091458 A US 78091458A US 2985797 A US2985797 A US 2985797A
Authority
US
United States
Prior art keywords
capacitor
voltage
plug
primary winding
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US780914A
Inventor
James L Williams
John G Roberts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to US780914A priority Critical patent/US2985797A/en
Application granted granted Critical
Publication of US2985797A publication Critical patent/US2985797A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator

Definitions

  • One broad object of this invention is to eliminate all moving parts from the existing ignition systems and thus effect a greater reliability.
  • Another object of this invent-ion is the provision of arc ignition system that is smaller in size and thus less in weight and cost than the existing prior art ignition systems.
  • Other objects of this invention comprise an ignition system having lower power requirements, less radio interference, higher efilciency, and faster operation than the existing prior art ignition system.
  • the transformer T has its primary winding TP supplied with an alternating current input.
  • the transformer steps the voltage up to some higher value.
  • This higher output voltage from the secondary TS is rectified by the rectifiers RBI, RE2, RE3, etc.
  • the purpose of the rectifiers in series is to provide a rectification of a relatively high voltage.
  • the number of rectifier tubes in series will depend on the output voltage, and the number needed will be directly proportional to the output voltage.
  • the rectified voltage from the rectifier tubes charges the capacitor C2 and the charge will rise until the breakdown voltage of the spark gap tube SGT is reached.
  • This spark gap tube is a gaseous tube which will conduct large transient current at the instant the spark gap tube breaks down. This breakdown of the spark gap tube usually occurs at from 1 to kilovolts.
  • the high volt age stored in the charged capacitor C2 is discharged through the spark igniter, or igniter plug IP.
  • the igniter plug IP is a shunted surface gap type spark plug, having the high resistance shunt R2, which will fire at a very low voltage. This firing voltage is between 800 and 1800 volts and is very low with reference to voltage at the capacitor terminals of capacitor C2 when this capacitor begins to discharge.
  • this ignition system In view of the low firing voltage of the spark plug this ignition system is usually called a low voltage, high en ergy capacitor discharge ignition system.
  • This system has an advantage over other systems due to the large availability of electrical energy at a comparatively low voltage. In this case,
  • Another advantage of this system lies in the use of the shunted surface igniter plug IP. This advantage is due 0 the physical properties of the shunted surface plug which allows it to fire at a rather low voltage (800 to' 1800 volts) and to the physical construction which does not allow the plug to foul even when the firing end is covered with raw fuel or even carbon.
  • the alternating current input to the transformer T is obtained from an involved alternating current supply or from a direct current supply by the use of elaborate, heavy and expensive switching means.
  • This ignition system is the substitution of a simple oscillator circuit which allows the use of a direct current power input without having to use a mechanical vibrator, or other rapidly operating switching means, to provide the electrical pulses which are necessary to provide proper transformer action.
  • B represents the direct current supply and S a switch for connecting the resistor R1 and inductance coil' L and capacitor C1 to the source of direct current.
  • a hyperconductive negative resistance diode known as a Dynister, is connectedin series with the primary winding TP and these elements are connected across the terminals of the capacitor C1.
  • this oscillator circuit is as follows.
  • the instant switch S is closed, the capacitor C1 begins to charge, the charging rate is rather high, and is merely limited by the resistor R1 and inductance coil L.
  • the voltage at the terminals of the Dynister Dy becomes sufficiently high for the diode to break down and become conducting and thus a surge of current flows through the primary winding TP.
  • the resistor R1 and inductance L allows the capacitor C1 to discharge and repeat the cycle again and again as long as switch S remains closed. The necessary pulsating current is thus supplied to the transformer, thus providing the proper transformer action necessary to operate the ignition unit.
  • Proper selection of the resistor R1, inductance coil L, and capacitor C1 can provide a very rapid charging rate for the capacitor C1, and an operation of the transformer primary TP at a higher voltage than the voltage of the direct current input B.
  • the circuit herein disclosed can be used to great advantage in the jet engine and possibly in the rocket engine ignition field.
  • the great advantage of the circuitry herein disclosed over existing prior art ignition systems lies in the large reduction in size and weight and the removal of all mechanical moving parts.
  • a low voltage, high energy capacitor discharge ignition system including a shunted surface gap type spark plug, a spark gap tube connected in series with the plug, a charging capacitor connected across the tube and plug, current rectifying means, a transformer having a low voltage primary winding and a high voltage output secondary winding, said secondary winding being connected in a loop circuit with the rectifying means and the capacitor, in combination with, a source of direct current, switching means, an electric oscillator circuit tuned to a relatively high frequency connected through said switching means to the primary winding and to the source of direct current, said oscillator circuit including a capacitor and impedance means connected in a loop circuit with the source of direct current by said switching means, and a hyperconductive negative resistance diode connected in series with the primary winding and selected to break down and conduct to discharge the capacitor each time the charge on the capacitor is increased to a selected magnitude.
  • a low voltage, high energy capacitor discharge ignition system including a shunted surface gap type spark plug, a spark gap tube connected in series with the plug, a charging capacitor connected across the tube and plug, current rectifying means, a transformer having a low voltage primary winding and a high voltage output secondary winding, said secondary winding being connected in a loop circuit with the rectifying means and the capacitor, in combination with, a source of direct current, switching means, an electric oscillator circuit including a hyperconductive negative resistance diode, connected in series with the primary winding, a capacitor connected across the primary winding and the diode connected in series with the primary winding, and impedance means connected through said switching means in a loop circuit with the last named capacitor and the source of direct current.
  • a low voltage, high energy capacitor discharge ignition system including a shunted surface gap type spark plug, a spark gap tube connected in series with the plug, a charging capacitor connected across the tube and plug, current rectifying means, a transformer having a low voltage primary winding and a high voltage output secondary winding, said secondary winding being connected in a loop circuit with the rectifying means and the capacitor, in combination with, a source of direct current, switching means, an electric oscillator circuit including a resistor, a capacitor, and an inductance connected through said switching means in a loop circuit with the source of direct current, a hyperconductive negative resistance diode connected in series with the primary winding, and the last named capacitor being connected across the series circuit formed by the primary winding and said hyperconductive negative resistance diode.

Description

y 1961 J. L. WILLIAMS ETAL 2,985,797
APPLICATION OF SEMICONDUCTORS TO IGNITION CIRCUITRY Filed 001;. 50-, 1958 INVENTOR3 James L. Williams 8 John G. Roberts BY FCI p ATTORNEY WITNESSES A Kai/4% United States Patent APPLICATION OF SEMICONDUCTORS TO IGNITION CIRC'UITRY James L. Williams, Prairie Village, Kans., and John G. Roberts, Cincinnati, Ohio, assignors to Westinghouse Electric Corporation, East Pittsburgh, Pa., a corporation' of Pennsylvania Filed Oct. 30, 1958, Ser. No. 780,914 3 Claims. (Cl. 315-209) This invention relates to aircraft engine ignition systems and more particularly to an improvement in the existing low voltage, high energy capacitor discharge ignition systems.
One broad object of this invention is to eliminate all moving parts from the existing ignition systems and thus effect a greater reliability.
Another object of this invent-ion is the provision of arc ignition system that is smaller in size and thus less in weight and cost than the existing prior art ignition systems.
Other objects of this invention comprise an ignition system having lower power requirements, less radio interference, higher efilciency, and faster operation than the existing prior art ignition system.
Other objects and advantages will become more apparent from a study of the following specification and the accompanying drawing.
The accompanying drawing shows the invention in diagrammatic form as applied to a portion of the circuitry now in vogue with aircraft jet engine ignition systems.
A better understanding of the contribution to the prior art can very likely be had from a study of a portion of the existing prior art circuitry.
Let the assumption be that the transformer T has its primary winding TP supplied with an alternating current input. The transformer steps the voltage up to some higher value. This higher output voltage from the secondary TS is rectified by the rectifiers RBI, RE2, RE3, etc. The purpose of the rectifiers in series is to provide a rectification of a relatively high voltage. The number of rectifier tubes in series will depend on the output voltage, and the number needed will be directly proportional to the output voltage.
The rectified voltage from the rectifier tubes charges the capacitor C2 and the charge will rise until the breakdown voltage of the spark gap tube SGT is reached. This spark gap tube is a gaseous tube which will conduct large transient current at the instant the spark gap tube breaks down. This breakdown of the spark gap tube usually occurs at from 1 to kilovolts.
Upon conduction of the spark gap tube, the high volt age stored in the charged capacitor C2 is discharged through the spark igniter, or igniter plug IP. The igniter plug IP is a shunted surface gap type spark plug, having the high resistance shunt R2, which will fire at a very low voltage. This firing voltage is between 800 and 1800 volts and is very low with reference to voltage at the capacitor terminals of capacitor C2 when this capacitor begins to discharge.
In view of the low firing voltage of the spark plug this ignition system is usually called a low voltage, high en ergy capacitor discharge ignition system. This system has an advantage over other systems due to the large availability of electrical energy at a comparatively low voltage. In this case,
Electric energy= CE.
where C=the capacitance of the capacitor C2 and E: the charging voltage of the capacitor C2.
Another advantage of this system lies in the use of the shunted surface igniter plug IP. This advantage is due 0 the physical properties of the shunted surface plug which allows it to fire at a rather low voltage (800 to' 1800 volts) and to the physical construction which does not allow the plug to foul even when the firing end is covered with raw fuel or even carbon.
In the existing prior art circuitry the alternating current input to the transformer T is obtained from an involved alternating current supply or from a direct current supply by the use of elaborate, heavy and expensive switching means.
The broad novel features of this ignition system is the substitution of a simple oscillator circuit which allows the use of a direct current power input without having to use a mechanical vibrator, or other rapidly operating switching means, to provide the electrical pulses which are necessary to provide proper transformer action.
In this mentioned simple oscillator, B represents the direct current supply and S a switch for connecting the resistor R1 and inductance coil' L and capacitor C1 to the source of direct current. A hyperconductive negative resistance diode, known as a Dynister, is connectedin series with the primary winding TP and these elements are connected across the terminals of the capacitor C1.
The operation of this oscillator circuit is as follows. The instant switch S is closed, the capacitor C1 begins to charge, the charging rate is rather high, and is merely limited by the resistor R1 and inductance coil L.
At, or near, full charge of the capacitor C1 the voltage at the terminals of the Dynister Dy becomes sufficiently high for the diode to break down and become conducting and thus a surge of current flows through the primary winding TP. The resistor R1 and inductance L allows the capacitor C1 to discharge and repeat the cycle again and again as long as switch S remains closed. The necessary pulsating current is thus supplied to the transformer, thus providing the proper transformer action necessary to operate the ignition unit. Proper selection of the resistor R1, inductance coil L, and capacitor C1, can provide a very rapid charging rate for the capacitor C1, and an operation of the transformer primary TP at a higher voltage than the voltage of the direct current input B.
From the foregoing it will be apparent that all mechanical oscillators and switching means are eliminated. Further mechanical oscillators are limited to frequencies equal to and less than cps. The circuit herein disclosed may be tuned to one kc. and thus give a much higher spark rate than prior art devices.
The circuit herein disclosed can be used to great advantage in the jet engine and possibly in the rocket engine ignition field. In these and other fields the great advantage of the circuitry herein disclosed over existing prior art ignition systems lies in the large reduction in size and weight and the removal of all mechanical moving parts.
While but one embodiment has been disclosed the invention is not limited to the one showing but includes such modifications as fall within the spirit and scope of this invention.
We claim as our invention:
1. In a low voltage, high energy capacitor discharge ignition system, including a shunted surface gap type spark plug, a spark gap tube connected in series with the plug, a charging capacitor connected across the tube and plug, current rectifying means, a transformer having a low voltage primary winding and a high voltage output secondary winding, said secondary winding being connected in a loop circuit with the rectifying means and the capacitor, in combination with, a source of direct current, switching means, an electric oscillator circuit tuned to a relatively high frequency connected through said switching means to the primary winding and to the source of direct current, said oscillator circuit including a capacitor and impedance means connected in a loop circuit with the source of direct current by said switching means, and a hyperconductive negative resistance diode connected in series with the primary winding and selected to break down and conduct to discharge the capacitor each time the charge on the capacitor is increased to a selected magnitude.
2. In a low voltage, high energy capacitor discharge ignition system, including a shunted surface gap type spark plug, a spark gap tube connected in series with the plug, a charging capacitor connected across the tube and plug, current rectifying means, a transformer having a low voltage primary winding and a high voltage output secondary winding, said secondary winding being connected in a loop circuit with the rectifying means and the capacitor, in combination with, a source of direct current, switching means, an electric oscillator circuit including a hyperconductive negative resistance diode, connected in series with the primary winding, a capacitor connected across the primary winding and the diode connected in series with the primary winding, and impedance means connected through said switching means in a loop circuit with the last named capacitor and the source of direct current.
3. In a low voltage, high energy capacitor discharge ignition system, including a shunted surface gap type spark plug, a spark gap tube connected in series with the plug, a charging capacitor connected across the tube and plug, current rectifying means, a transformer having a low voltage primary winding and a high voltage output secondary winding, said secondary winding being connected in a loop circuit with the rectifying means and the capacitor, in combination with, a source of direct current, switching means, an electric oscillator circuit including a resistor, a capacitor, and an inductance connected through said switching means in a loop circuit with the source of direct current, a hyperconductive negative resistance diode connected in series with the primary winding, and the last named capacitor being connected across the series circuit formed by the primary winding and said hyperconductive negative resistance diode.
References Cited in the file of this patent UNITED STATES PATENTS 2,328,444 Francis Aug. 31, 1943 2,347,286 Sandretto Apr, 25, 1944 2,544,477 West Mar. 6, 1951 2,571,789 Tognola Oct. 16, 1951 2,837,698 Segall June 3, 1958
US780914A 1958-10-30 1958-10-30 Application of semiconductors to ignition circuitry Expired - Lifetime US2985797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US780914A US2985797A (en) 1958-10-30 1958-10-30 Application of semiconductors to ignition circuitry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US780914A US2985797A (en) 1958-10-30 1958-10-30 Application of semiconductors to ignition circuitry

Publications (1)

Publication Number Publication Date
US2985797A true US2985797A (en) 1961-05-23

Family

ID=25121077

Family Applications (1)

Application Number Title Priority Date Filing Date
US780914A Expired - Lifetime US2985797A (en) 1958-10-30 1958-10-30 Application of semiconductors to ignition circuitry

Country Status (1)

Country Link
US (1) US2985797A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219880A (en) * 1963-06-27 1965-11-23 Spectrolab Automatic starter for the ignition of gas arc lamps
US3247887A (en) * 1962-09-04 1966-04-26 Penn Controls Spark ignition system
US3253187A (en) * 1962-04-05 1966-05-24 Gen Motors Corp Breakerless transistor ignition system
US3269447A (en) * 1964-01-16 1966-08-30 Controls Co Of America Fuel control and ignition system
US3336506A (en) * 1964-02-24 1967-08-15 Frank Edgar Electric ignition device for oils and gases
US3338288A (en) * 1964-02-28 1967-08-29 Whirlpool Co Electronic spark ignitor
US3361932A (en) * 1963-05-01 1968-01-02 Rotax Ltd A.c. operated spark ignition apparatus with compensation for changes in the frequency of the a.c. source
US3416512A (en) * 1967-01-09 1968-12-17 Mintz Alvin Infrared heating system
US3425780A (en) * 1966-09-26 1969-02-04 Liberty Combustion Corp Fluid fuel igniter control system
US3681001A (en) * 1970-05-15 1972-08-01 Liberty Combustion Corp Fluid fuel igniter control system
US3943905A (en) * 1973-07-27 1976-03-16 Gunter Hartig Method and device for igniting combustible substances
US3982518A (en) * 1971-10-14 1976-09-28 Fournitures Internationales De Materieles Electroniques Electronic ignition device for internal combustion engines
US4411247A (en) * 1980-04-24 1983-10-25 Sanke Electric Co., Ltd. Distributorless ignition system for multicylinder internal-combustion engines
US4487192A (en) * 1983-04-18 1984-12-11 Ford Motor Co Plasma jet ignition system
US5245252A (en) * 1988-11-15 1993-09-14 Frus John R Apparatus and method for providing ignition to a turbine engine
US5754011A (en) * 1995-07-14 1998-05-19 Unison Industries Limited Partnership Method and apparatus for controllably generating sparks in an ignition system or the like

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2328444A (en) * 1941-11-17 1943-08-31 Oliver T Francis Ignition system
US2347286A (en) * 1942-06-19 1944-04-25 United Air Lines Inc Ignition system
US2544477A (en) * 1949-01-04 1951-03-06 Rolls Royce Spark type ignition system for combustion engines
US2571789A (en) * 1949-06-09 1951-10-16 Bendix Aviat Corp Electrical apparatus
US2837698A (en) * 1953-09-29 1958-06-03 Bendix Aviat Corp Electrical apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2328444A (en) * 1941-11-17 1943-08-31 Oliver T Francis Ignition system
US2347286A (en) * 1942-06-19 1944-04-25 United Air Lines Inc Ignition system
US2544477A (en) * 1949-01-04 1951-03-06 Rolls Royce Spark type ignition system for combustion engines
US2571789A (en) * 1949-06-09 1951-10-16 Bendix Aviat Corp Electrical apparatus
US2837698A (en) * 1953-09-29 1958-06-03 Bendix Aviat Corp Electrical apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253187A (en) * 1962-04-05 1966-05-24 Gen Motors Corp Breakerless transistor ignition system
US3247887A (en) * 1962-09-04 1966-04-26 Penn Controls Spark ignition system
US3361932A (en) * 1963-05-01 1968-01-02 Rotax Ltd A.c. operated spark ignition apparatus with compensation for changes in the frequency of the a.c. source
US3219880A (en) * 1963-06-27 1965-11-23 Spectrolab Automatic starter for the ignition of gas arc lamps
US3269447A (en) * 1964-01-16 1966-08-30 Controls Co Of America Fuel control and ignition system
US3336506A (en) * 1964-02-24 1967-08-15 Frank Edgar Electric ignition device for oils and gases
US3338288A (en) * 1964-02-28 1967-08-29 Whirlpool Co Electronic spark ignitor
US3425780A (en) * 1966-09-26 1969-02-04 Liberty Combustion Corp Fluid fuel igniter control system
US3416512A (en) * 1967-01-09 1968-12-17 Mintz Alvin Infrared heating system
US3681001A (en) * 1970-05-15 1972-08-01 Liberty Combustion Corp Fluid fuel igniter control system
US3982518A (en) * 1971-10-14 1976-09-28 Fournitures Internationales De Materieles Electroniques Electronic ignition device for internal combustion engines
US3943905A (en) * 1973-07-27 1976-03-16 Gunter Hartig Method and device for igniting combustible substances
US4411247A (en) * 1980-04-24 1983-10-25 Sanke Electric Co., Ltd. Distributorless ignition system for multicylinder internal-combustion engines
US4487192A (en) * 1983-04-18 1984-12-11 Ford Motor Co Plasma jet ignition system
US5245252A (en) * 1988-11-15 1993-09-14 Frus John R Apparatus and method for providing ignition to a turbine engine
US5399942A (en) * 1988-11-15 1995-03-21 Unison Industries Limited Partnership Apparatus and method for providing ignition to a turbine engine
US5561350A (en) * 1988-11-15 1996-10-01 Unison Industries Ignition System for a turbine engine
US5754011A (en) * 1995-07-14 1998-05-19 Unison Industries Limited Partnership Method and apparatus for controllably generating sparks in an ignition system or the like
US6034483A (en) * 1995-07-14 2000-03-07 Unison Industries, Inc. Method for generating and controlling spark plume characteristics
US6353293B1 (en) 1995-07-14 2002-03-05 Unison Industries Method and apparatus for controllably generating sparks in an ignition system or the like
US20020101188A1 (en) * 1995-07-14 2002-08-01 Unison Industries, Inc. Method and apparatus for controllably generating sparks in an ingnition system or the like
US7095181B2 (en) 1995-07-14 2006-08-22 Unsion Industries Method and apparatus for controllably generating sparks in an ignition system or the like

Similar Documents

Publication Publication Date Title
US2985797A (en) Application of semiconductors to ignition circuitry
US2508954A (en) Electric discharge device with auxiliary electrode
US2799809A (en) Capacitor discharge ignition system
US2623921A (en) Apparatus for the ignition of explosive material in liquids
US2637769A (en) Means for suppressing arcing at contacts breaking a direct current inductive circuit
US3211915A (en) Semiconductor saturating reactor pulsers
GB589127A (en) Improvements in or relating to apparatus for generating electrical impulses
US2391225A (en) Spark generator for spectrographic analyses
US2977506A (en) Electronic ignition system
GB702968A (en) Improvements in or relating to pulse-generators, embodying sections of transmission line
US3619638A (en) Pulse generating apparatus
US3030548A (en) Ignition circuit
US2790935A (en) Multiple ignitor capacitor ignition system
US2459858A (en) Electrical pulse system
US3840774A (en) Magnetron operating circuit with surge-voltage absorber
US2585817A (en) Apparatus for generating repeated electric pulses
US3030550A (en) Electrical apparatus
GB1330504A (en) Pulse generating apparatus
GB1403377A (en) Ignition apparatus operating on a capacitive discharge ignition principle
US2416971A (en) Ignition system
US2764684A (en) Electronic control circuit
US4763045A (en) Spark ignitor generated by capacitor discharge synchronized with alternate current power frequency
US2433650A (en) Ignition system
US2546550A (en) Spark ignition apparatus
US2400113A (en) Circuits used in generating electric impulses