Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2970826 A
Publication typeGrant
Publication date7 Feb 1961
Filing date21 Nov 1958
Priority date21 Nov 1958
Publication numberUS 2970826 A, US 2970826A, US-A-2970826, US2970826 A, US2970826A
InventorsWoodruff Homer O
Original AssigneeTexaco Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Recovery of oil from oil shale
US 2970826 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

Feb. 7, 1961 H. o. wooDRUFF 'RECOVERY oF onJ FROM on. sHALE Filed Nov. 21, 195s n r r HH; 1| \.\\\\I|V|M%Qb i l l f l l wl .l MTW! N N l u I im QU. l -QENG il @g l; K HII m .QN

1 |vlx. Irl |v` I l www. T ||1 Hiwlllvll. M?

I wf United States RECOVERY F OIL FROM OIL SHALE Filed Nov. 2l, 1958, Ser. No. 775,550

Claims. (Cl. 262-3) This invention relates to a method for in situ recovery of oil from naturally occurring deposits of oil shale. The process is particularly applicable to recovery of oil and fuel gases from subterranean deposits of oil shale. In accordance with the process of this invention, oil shale is retorted in situ to liberate shale oil. The shale oil is then produced like crude petroleum. The necessary heat for the retorting operation is supplied by combustion of a portion of the shale oil within the oil shale bed.

A number of proposals have been made for the recovery of oil from underground deposits of oil shale by heating the oil shale in place, either by burning a portion of the oil or by burning an auxiliary fuel. Some of the fuel value of the shale may be recovered in the form of a heavy hydrocarbon oil or in the form of fuel gas of high calorific value, or gas rich in carbon monoxide and hydrogen suitable for use as synthesis gas or a source of hydrogen. When in situ combustion is employed for retorting, generally only a relatively small portion of the fuel value of the shale, e.g., l0 to 30 percent, is consumed as fuel in the burning operation.

In the usual proposals for retorting shale n place, passages are formed in the shale bed by explosive or hydraulic fracturing, combustion is initiated, and air or other oxygen-containing, combustion-supporting gas is forced into and through the oil shale whereby a part of the fuel value of the shale is consumed, heating the shale and releasing oil therefrom. The oil is displaced from the shale bed by the hot gases generated in the partial combustion process. A number of disadvantages stand in the way of the recovery of oil shale by these processes. A principal difficulty stems from the fact that generally the shale bed initially is highly impervious and it is di"l cult to establish uniform permeability by artificial means. It is also difficult to control the distribution and direction of ow of the gases into and through the shale bed.

In accordance with the present process, interconnected horizontal and vertical shafts are drilled through and into a shale bed, ignition is established and combustion prod? ucts collected through the vertical shaft. In a specific embodiment of this invention, one or more drifts, or passages, are formed along the lower portion of a shale bed from which oil is to be recovered. These channels may be formed either by mining or drilling, preferably by drilling, and preferably at the dip of the shale bed, to follow the course of the bed. Shale beds are often in a horizontal or near horizontal plane; consequently-horizontal or near horizontal passages may be employed in a majority of applications of the process. The process is particularly applicable to shale beds, which outcrop along a slope or cliff, such as the Mahogany Ledge formation near Rifle, Colorado. In many such cases, the edge of the shale bed is exposed and is readily reached with equipment either for horizontal drilling or mining. The process is also applicable to completely covered shale deposits; known techniques for horizontal drilling are useful in such cases.

Combustion is initiated in the passage or drift in the atefnt `ice lower part of the shale bed and the products of com# bustion and of retorting are collected and discharged through a vertical shaft or well bore. As the burning progresses in the drift along the lower portion of the shale bed, heat moves upward through the shale, releas-V ing the shale oil. The oil drains downward by gravity into the drift and is collected at the well bore, from which it may be produced through a tubing string to the surface.

The accompanying figures illustrate diagrammatically the mechanics of oil recovery from oil shale in situ retorting in accordance with the present invention.

Figs. 1 to 4 represent vertical cross sections through subterranean shale beds.

Referring to the drawings, particularly with reference to Fig. 1, shale bed 2, overlain by substantially impervious rock 3 and underlain by substantially impervious seam 4 of bed rock, is exposed along face of a clilf or slope. A horizontal passage 6 is drilled or otherwise formed in the shale bed along its lower portion, substantially parallel to its bedding plane. A substantially impervious pipe or liner 7 extends into passage 6 some distance from the face 5 of the shale bed and is cemented in place to prevent escape of gases at this point. The liner may be of steel with a refractory liner. Passage 6 is intersected by well bore 8 extending through the overburden to a point below the level of the passage. Tubing 9 extends into the well bore also to a point below passage 6. The tubing string is set in the well bore in conformity with good practice in the art of petroleum production.

In operation, air is injected through pipe 7 into the exposed end of passageway 6 at a point remote from well bore 8. A suitable fuel, eg., oil, is mixed with the air or separately introduced to form a combustible mixture. Combustion is initiated and resulting products of combustion are passed through passage 6 to the well bore 8. Gaseous combustion products are discharged through annular space S between the wall of the well bore and the tubing string to the surface of the earth. Outflow of gas and pressure in the burning and producing zone are controlled by valve 12.

During the initial period of tiring, using an auxiliary fuel, the temperature of the shale bed is raised to the retorting temperature and oil retorted from the shale bed collects in passage 6. When the rate ofoil accumulation in passage 6 is sucient to supply the fuel requirements, the introduction of auxiliary fuel may be discontinued. Combustion-supporting gas, suitably air, is continously supplied to the tiring tunnel, burning a portion of the retorted oil and further heating the shale bed. As the retorting progresses the amount of oil produced from the shale and collected in passage 6 exceeds the amount which may be burned, whereupon the excess oil flows along with the gaseous combustion products to well bore 8 where they collect in sump 8A. The oil is lifted through the tubing string 9 to the surface.

With reference to Fig. 2, the arrangement is the same as for Fig. l except that a second passage 13 in the upper portion of the shale bed is provided to carry gaseous products from the burning and retorting back through the shale bed to recover further amounts of heat from the gas and distribute this heat throughout the shale bed. By operation of valve 12, gas may be withdrawn through the well bore or forced out through passage 13. So long as the shale bed along the face of the well bore and along the upper passage 13 are relatively cold, particularly during initial phases of the operation, hydrocarbon vapors contained in the gases from the burning and retortng zone are condensed and collected in the well bore and produced through tubing 9. As the reto-rting proceeds, a point is reached when it may be desirable to process the gas externally of the formation for Patented Feb. 7, 1961.

-the recovery of condensable constituents therefrom. This may be accomplished by opening valve 12 producing gas through the annular passageway between well bore 8 and tubing 9, as in Fig..1. At this point,- passage 13 may be plugged or air may be introduced into upper passageway 13 at a point remote from the well bore, i.e. at the face of the outcrop of the shale bed, and retorting initiated in the upper passage. When air is introduced into passage 13, provided with a suitable pipe liner 14, lo-wer passage 6 may be plugged or air may be simultaneously injected through both. As an alternative, generally less desirable, gas may be produced through passage 6 and pipe 7.

Fig. 3 illustrates an alternate procedure for the production of oil from the shale stratum using the arrangement of passageways illustrated in Fig. 2. In this instance, combustion-supporting gas is first injected into the upper portion of the shale bed through passage 13. Shale in the immediate vicinity of the passage, particularly that lying above passage 13, when sufficiently heated, gives up o-il which drains into passage 13 and supports combustion thereby supplying the necessary heat for retorting the shale bed. Gaseous products of combustion pass through the shale bed along. passage 13 to the well bore 8, are conducted downward through annular passageway 10 to the lower passage 6, and then pass out to the face of the outcrop where the gases are discharged through pipe 7. Oil retorted from the shale bed in the portion of the bed between passages 13 and 6 collects in the lower passage 6 and preferably is drained into well bore 8 and produced through line 9. Alternatively, a portion of the oil may be recovered from the stream of products discharged from passageway 6. After the upper part of the shale bed is burned out, air may be introduced through pipe 7 and gas Withdrawn through the well bore by opening pipe 12 and plugging pipe 14.

Fig. 4 illustrates a further modification of my process, particularly applicable to recovery of oil from subterranean beds of oil shale which do not outcrop so that an exposed face is available. In this instance, a second well 15 is drilled through the overburden and the shale stratum as illustrated. Lower passage 6 is drilled by directional drilling from well 15 and intersected with well bore 8. Explosives Vor hydraulic fracturing may be used to establish communication between well 8 and passage 6 if the two do not .intersect when drilled. A tubing string 16 may be provided in well 15 to conduct a combustion-supporting gas to the desired level in the oil stratum. A plug or packer 17 may be provided in known manner to ensure that the combustionsupporting gas enters the stratum at the desired level. As illustrated, the oil shale is hydraulically fractured and-cement forced into the formation under pressure to prevent leakage of gas past plug 17. Valve 1S at the surface of the earth may be provided to control the flow of gas into or from the shale stratum through well 15. As illustrated in Fig. 4, apermeable section 2A is created in the upper portion of the shale stratum in suitable manner, for example, by fractnring with hydraulic pressure or explosives. Alternatively, an upper passage, similar to passage 13 of Figs. 2 and 3, may be drilled through the upper section of shale bed 2.

In a preferred method of operation as illustrated in Fig. 4, air is introduced through tubing -16 in -well 15 to lower passageway 6 where combustion is Vinitiated and carried out as previously described. The products of combustion are collected in well 8. During the initial period it is generally desirable to vent the gaseous combustion products through valve 12. As the retorting progresses and the temperature of the combustion products rises, valve 12 is closed and valve lopened, forcing the combustion products to flow from well S to well 15 through'the permeable section 2A in the upper portion .of .the oilshale'stratum. The gas is discharged from wel! 15 through valve 18. Oil retorted from the shale accumulates in well 8 and is produced through tubing 9. After the lower portion of the shale bed has been retorted and burned out, during which period some production of oil from well 15 may also take place, air may be injected into the upper portion of the shale stratum from well 15 by forcing air under pressure through valve 18, and gas again produced from well 8 through valvelZ.' As the retorting progresses, the permeability of the shale stratum greatly increases so that by the time the point is reached at which combustionsupporting gas is injected into the upper portion of the formation through. weil 15, the permeability of section 2A is high and burning and retorting proceed at a rapid rate. The retorted loil collects in Well 8 and is produced through tubing string 9.

Although I have illustrated only a single well and single passageway in Fig. l, it is to be understood that a plurality of such'k wells and passageways may be vemployed and that one or more of such passages may be connected to.y each well. With reference to Figs. 2' and 3, although ihave .shown for the purpose of illustration only an upper and v,lower horizontal passage through the shale bed, it is to be understood that a number of such vertically spaced passages may be provided, depending to a large extent upon the thickness of the shale stratum. Similarly, although only one set of well bores is illustrated, it is to be understood that multiples may be employed in .a suitable pattern, for example, the live spot o-r seven spot patterns well known in the art of secondary recovery from petroleum reservoirs by water ooding.

Obviously, many modications and variations of the invention as hereinbefore set forth may be made without departing from the spirit and scope thereof, and therefore only such limitations should kbe made as are indicated in the appended claims.

I claim:

l. A process for obtaining shale oil froma subterranean oil shale stratum comprising forming a passage through said stratum in the lower portion thereof substantially parallel to said stratum, forming a passage along the upper portion of said stratum substantially parallel thereto, intersecting said passages with a vertical well bore, supplying combustion-supporting gas to vone of 4said passages at a point in said shale stratum remote from said well bore and `initiating combustion in said passage effecting retorting of oil from said shale, passing combustion products and retorted oil through said passage to said well bore, withdrawing retorted Aoilsubstantially free from gas through said well bore, passing gaseous products of combustion along said well bore to the other of said passages, and re-introducing said gases into and through said shale ybed through said last mentioned passage to supply'heat to said shale bed.

2. A process according to claim 1 wherein combustion is effected in saidlower passage. i

3. A process according to claim l wherein combustion is initially Vcarried out in said lower passagey effecting retorting of oil shale in the lower portion of said stratum and preheating oil shale in the upper portion of said stratum,and subsequentlythe.withdrawal ofgaseous combustion rproducts through said upper passage is discontinuedcombusti on supporting gas is then introduced into said upper passage at a point remote from said well bore, and gaseous VVproductso-f combustion discharged-separatelyl from saidoil through said well bore.

l4. A process according to claim l wherein combustionsupporting gas is initially supplied to said lower passage andgaseous products ofcombustion and retorting are dischargedthrough ysaid upper passage effecting retorting of shale in theslower portion of said stratum and preheating of r`-shale in the upper portion thereof, and subsequently the -flow of gases Vthrough said passages is reversed by introduction of combustion-supporting gas to said upper.

passage ata point'remotefromsaid well b ore anddischarge of gaseous products of combustion through said lower passage.

5. A process according to claim 1 wherein combustionsupporting gas is introduced to said lower passage through a second vertical well bore at a point remote from said first well bore.

6. A process for obtaining shale oil from a subterranean oil shale stratum comprising forming a passage through the upper portion of said stratum substantially parallel to said stratum, forming a second passage along the lower portion of said stratum substantially parallel to said upper passage, intersecting said passages with a well bore, supplying combustion-supporting gas to said upper passage at a point in said shale stratum remote from said well bore and initiating combustion in said upper passage effecting retorting of oil from the upper portion of said stratum, passing combustion products yand retorted oil through said upper passage to said Well bore, removing retorted oil substantially free from gas through said well bore, passing gaseous products of combustion along said well bore to said lower passage, passing said gaseous products of combustion through said shale stratum along said lower passage eifecting preheating of said shale in the lower portion of said stratum, and subsequently introducing combustion-supporting gas to said lower passage at a point remote from said well bore and withdrawing gaseous products of combustion separately from said oil through said well bore.

7. A process for obtaining shale oil from a subterranean oil shale stratum comprising forming a passage through said stratum in the lower portion thereof substantially parallel to said stratum, forming a passage along the upper portion of said stratum substantially parallel thereto, driving spaced well bores into said stratum, establishing communication between said passages and a plurality of said well bores, supplying combustion-supporting gas to one of said passages through one of said well bores and initiating combustion in said passage effecting retorting of oil from said shale, passing combustion products and retorted oil through said passage Ato another of said well bores, withdrawing retorted oil substantially free from gas through said last mentioned well bore, passing gaseous products of combustion through said other passage to said first well bore, and

withdrawing gaseous products of combustion and retort ing from said stratum through said first well bore.

8. A process according to claim 1 wherein said oombustion-supporting gas is supplied to said passage in the upper portion of said stratum eifecting combustion therein, and gaseous products of combustion are withdrawn through said lower passage.

9. A process for obtaining shale oil from an outcropping subterranean oil shale stratum which comprises forming a continuous open passage from its outcrop through said stratum in the lower portion thereof, interconnecting said passage with a Vertical well bore spaced from said outcrop, providing a substantially impervious liner along a portion of said passage yadjacent said outcrop, introducing combustion-supporting gas into said formation through said lined portion of said passage at said outcrop, initiating combustion in the unlined portion of said passage iat a point remote from said well bore, passing combustion products through said passage to said well bore effecting retorting of shale along the path of llow of gas through said passage and movement of retorted oil to said well bore, and withdrawing resulting retorted oil through said well bore.

10. A process according to claim 9 wherein gaseous combustion products and liquid products of retorting of said shale are separately withdrawn from said stratum through said well bore.

References Cited in the le of this patent UNTED STATES PATENTS 1,816,260 Lee July 28, 1931 2,584,605 Merriam et al. Feb. 5, 1952 2,630,306 Evans Mar. 3, 1953 2,630,307 Martin Mar. 3, 1953 2,780,449 Fisher et al. Feb. 5, 1957 2,819,761 Popham et al Ian. 14, 1958 2,874,777 Tadema Feb. 24, 1959

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1816260 *5 Apr 193028 Jul 1931Edward Lee RobertMethod of repressuring and flowing of wells
US2584605 *14 Apr 19485 Feb 1952Frederick SquiresThermal drive method for recovery of oil
US2630306 *3 Jan 19523 Mar 1953Socony Vacuum Oil Co IncSubterranean retorting of shales
US2630307 *9 Dec 19483 Mar 1953Carbonic Products IncMethod of recovering oil from oil shale
US2780449 *26 Dec 19525 Feb 1957Sinclair Oil & Gas CoThermal process for in-situ decomposition of oil shale
US2819761 *19 Jan 195614 Jan 1958Continental Oil CoProcess of removing viscous oil from a well bore
US2874777 *14 Jul 195524 Feb 1959Shell DevProducing petroleum by underground combustion
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3084919 *3 Aug 19609 Apr 1963Texaco IncRecovery of oil from oil shale by underground hydrogenation
US3167117 *8 Feb 196326 Jan 1965Phillips Petroleum CoProducing oil from an oil-bearing stratum having high directional permeability
US3205942 *7 Feb 196314 Sep 1965Socony Mobil Oil Co IncMethod for recovery of hydrocarbons by in situ heating of oil shale
US3223158 *10 Dec 196214 Dec 1965Socony Mobil Oil Co IncIn situ retorting of oil shale
US3228468 *8 Dec 196111 Jan 1966Socony Mobil Oil Co IncIn-situ recovery of hydrocarbons from underground formations of oil shale
US3241611 *10 Apr 196322 Mar 1966Equity Oil CompanyRecovery of petroleum products from oil shale
US3250327 *2 Apr 196310 May 1966Socony Mobil Oil Co IncRecovering nonflowing hydrocarbons
US3282355 *23 Oct 19651 Nov 1966Henderson John KMethod for directional drilling a relief well to control an adjacent wild well
US3285335 *11 Dec 196315 Nov 1966Exxon Research Engineering CoIn situ pyrolysis of oil shale formations
US3362751 *28 Feb 19669 Jan 1968Tinlin WilliamMethod and system for recovering shale oil and gas
US3386508 *21 Feb 19664 Jun 1968Exxon Production Research CoProcess and system for the recovery of viscous oil
US3513913 *19 Apr 196626 May 1970Shell Oil CoOil recovery from oil shales by transverse combustion
US3917344 *22 Aug 19744 Nov 1975Atlantic Richfield CoIn situ retorting system
US4015664 *14 Apr 19765 Apr 1977Gulf Research & Development CompanyShale oil recovery process
US4119345 *4 Apr 197710 Oct 1978Occidental Oil Shale, Inc.In situ oil shale retorting process using introduction of gas at an intermediate location
US4384614 *11 May 198124 May 1983Justheim Pertroleum CompanyMethod of retorting oil shale by velocity flow of super-heated air
US4856587 *27 Oct 198815 Aug 1989Nielson Jay PRecovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix
US696430024 Apr 200215 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US696637424 Apr 200222 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US699104524 Oct 200231 Jan 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US699751824 Apr 200214 Feb 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US700425124 Apr 200228 Feb 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US701115424 Oct 200214 Mar 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US701397224 Apr 200221 Mar 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US704039824 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US704040024 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US705180824 Oct 200230 May 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US705181124 Apr 200230 May 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7063145 *24 Oct 200220 Jun 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US706625424 Oct 200227 Jun 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US706625724 Oct 200227 Jun 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US707357824 Oct 200311 Jul 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US707719924 Oct 200218 Jul 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US708646524 Oct 20028 Aug 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US709001324 Oct 200215 Aug 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US709694224 Apr 200229 Aug 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US710099424 Oct 20025 Sep 2006Shell Oil Companyinjecting a heated fluid into the well bore, producing a second fluid from the formation, conducting an in situ conversion process in the selected section.
US710431924 Oct 200212 Sep 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US711456624 Oct 20023 Oct 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US712134124 Oct 200317 Oct 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US712134223 Apr 200417 Oct 2006Shell Oil CompanyThermal processes for subsurface formations
US712815324 Oct 200231 Oct 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US715617624 Oct 20022 Jan 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US716561524 Oct 200223 Jan 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US721973424 Oct 200322 May 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US722586631 Jan 20065 Jun 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US732036422 Apr 200522 Jan 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US735387222 Apr 20058 Apr 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US735718022 Apr 200515 Apr 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US736058817 Oct 200622 Apr 2008Shell Oil CompanyThermal processes for subsurface formations
US737070422 Apr 200513 May 2008Shell Oil CompanyTriaxial temperature limited heater
US738387722 Apr 200510 Jun 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US742491522 Apr 200516 Sep 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US743107622 Apr 20057 Oct 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US743503721 Apr 200614 Oct 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7451814 *12 Jan 200618 Nov 2008Halliburton Energy Services, Inc.System and method for producing fluids from a subterranean formation
US746169123 Jan 20079 Dec 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US748127422 Apr 200527 Jan 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US749066522 Apr 200517 Feb 2009Shell Oil CompanyVariable frequency temperature limited heaters
US750052821 Apr 200610 Mar 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US751000022 Apr 200531 Mar 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US752709421 Apr 20065 May 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US753371920 Apr 200719 May 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US754032419 Oct 20072 Jun 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US754687321 Apr 200616 Jun 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US754947020 Oct 200623 Jun 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US755609520 Oct 20067 Jul 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US755609620 Oct 20067 Jul 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US755936720 Oct 200614 Jul 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US755936820 Oct 200614 Jul 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US756270620 Oct 200621 Jul 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US756270719 Oct 200721 Jul 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US757505221 Apr 200618 Aug 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US757505321 Apr 200618 Aug 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US758158920 Oct 20061 Sep 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US758478920 Oct 20068 Sep 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US759131020 Oct 200622 Sep 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US759714720 Apr 20076 Oct 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US760405220 Apr 200720 Oct 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US761096220 Apr 20073 Nov 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US763168920 Apr 200715 Dec 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US763169019 Oct 200715 Dec 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US763502320 Apr 200722 Dec 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US763502419 Oct 200722 Dec 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US763502520 Oct 200622 Dec 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US76409807 Apr 20085 Jan 2010Shell Oil CompanyThermal processes for subsurface formations
US764476519 Oct 200712 Jan 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US767368119 Oct 20079 Mar 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US767378620 Apr 20079 Mar 2010Shell Oil CompanyWelding shield for coupling heaters
US767731019 Oct 200716 Mar 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US767731419 Oct 200716 Mar 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US768164719 Oct 200723 Mar 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US768329620 Apr 200723 Mar 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US770351319 Oct 200727 Apr 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US771717119 Oct 200718 May 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US773094519 Oct 20078 Jun 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US773094619 Oct 20078 Jun 2010Shell Oil CompanyTreating tar sands formations with dolomite
US773094719 Oct 20078 Jun 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US77359351 Jun 200715 Jun 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US778542720 Apr 200731 Aug 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US779372220 Apr 200714 Sep 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US779822018 Apr 200821 Sep 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US779822131 May 200721 Sep 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US781918723 Oct 200826 Oct 2010Halliburton Energy Services, Inc.System and method for producing fluids from a subterranean formation
US783113421 Apr 20069 Nov 2010Shell Oil CompanyGrouped exposed metal heaters
US783248418 Apr 200816 Nov 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US784140119 Oct 200730 Nov 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US784140818 Apr 200830 Nov 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US784142518 Apr 200830 Nov 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US784541119 Oct 20077 Dec 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US784992218 Apr 200814 Dec 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US786037721 Apr 200628 Dec 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US786638520 Apr 200711 Jan 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US786638613 Oct 200811 Jan 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US786638813 Oct 200811 Jan 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US791235820 Apr 200722 Mar 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US793108618 Apr 200826 Apr 2011Shell Oil CompanyHeating systems for heating subsurface formations
US794219721 Apr 200617 May 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US79422034 Jan 201017 May 2011Shell Oil CompanyThermal processes for subsurface formations
US795045318 Apr 200831 May 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US798686921 Apr 200626 Jul 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US801145113 Oct 20086 Sep 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US802757121 Apr 200627 Sep 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US804261018 Apr 200825 Oct 2011Shell Oil CompanyParallel heater system for subsurface formations
US807084021 Apr 20066 Dec 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US808381320 Apr 200727 Dec 2011Shell Oil CompanyMethods of producing transportation fuel
US811327213 Oct 200814 Feb 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US814666113 Oct 20083 Apr 2012Shell Oil CompanyCryogenic treatment of gas
US814666913 Oct 20083 Apr 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US81518809 Dec 201010 Apr 2012Shell Oil CompanyMethods of making transportation fuel
US815190710 Apr 200910 Apr 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US816205913 Oct 200824 Apr 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US816240510 Apr 200924 Apr 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US817233510 Apr 20098 May 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US817730510 Apr 200915 May 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US819163028 Apr 20105 Jun 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US819268226 Apr 20105 Jun 2012Shell Oil CompanyHigh strength alloys
US819665813 Oct 200812 Jun 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US820007224 Oct 200312 Jun 2012Shell Oil CompanyTemperature limited heaters for heating subsurface formations or wellbores
US82205399 Oct 200917 Jul 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US822416324 Oct 200317 Jul 2012Shell Oil CompanyVariable frequency temperature limited heaters
US822416424 Oct 200317 Jul 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US822416521 Apr 200617 Jul 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US823092716 May 201131 Jul 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US823378229 Sep 201031 Jul 2012Shell Oil CompanyGrouped exposed metal heaters
US823873024 Oct 20037 Aug 2012Shell Oil CompanyHigh voltage temperature limited heaters
US824077413 Oct 200814 Aug 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US82565129 Oct 20094 Sep 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US82618329 Oct 200911 Sep 2012Shell Oil CompanyHeating subsurface formations with fluids
US82671709 Oct 200918 Sep 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US82671859 Oct 200918 Sep 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US827245513 Oct 200825 Sep 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US827666113 Oct 20082 Oct 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US82818619 Oct 20099 Oct 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US832768118 Apr 200811 Dec 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US83279329 Apr 201011 Dec 2012Shell Oil CompanyRecovering energy from a subsurface formation
US83533479 Oct 200915 Jan 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US835562322 Apr 200515 Jan 2013Shell Oil CompanyTemperature limited heaters with high power factors
US838181518 Apr 200826 Feb 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US84345559 Apr 20107 May 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US84487079 Apr 201028 May 2013Shell Oil CompanyNon-conducting heater casings
US845935918 Apr 200811 Jun 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US848525211 Jul 201216 Jul 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US853649713 Oct 200817 Sep 2013Shell Oil CompanyMethods for forming long subsurface heaters
US855597131 May 201215 Oct 2013Shell Oil CompanyTreating tar sands formations with dolomite
US856207825 Nov 200922 Oct 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US857903117 May 201112 Nov 2013Shell Oil CompanyThermal processes for subsurface formations
US860609120 Oct 200610 Dec 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US860824926 Apr 201017 Dec 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US86278878 Dec 200814 Jan 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US86318668 Apr 201121 Jan 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US863632325 Nov 200928 Jan 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US866217518 Apr 20084 Mar 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US87017688 Apr 201122 Apr 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US87017698 Apr 201122 Apr 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US87398748 Apr 20113 Jun 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US875290410 Apr 200917 Jun 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US878958612 Jul 201329 Jul 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US879139618 Apr 200829 Jul 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
CN101395338B12 Jan 200611 Dec 2013哈利伯顿能源服务公司System and method for producing fluids from a subterranean formation
Classifications
U.S. Classification166/265, 166/256, 175/12, 166/306, 166/266, 166/272.7, 166/257
International ClassificationE21B43/247, E21B43/16
Cooperative ClassificationE21B43/247
European ClassificationE21B43/247