US2952790A - X-ray tubes - Google Patents

X-ray tubes Download PDF

Info

Publication number
US2952790A
US2952790A US671781A US67178157A US2952790A US 2952790 A US2952790 A US 2952790A US 671781 A US671781 A US 671781A US 67178157 A US67178157 A US 67178157A US 2952790 A US2952790 A US 2952790A
Authority
US
United States
Prior art keywords
envelope
shield
anode
tube
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US671781A
Inventor
Gottfrid W Steen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Priority to US671781A priority Critical patent/US2952790A/en
Priority to GB21341/58A priority patent/GB839945A/en
Application granted granted Critical
Publication of US2952790A publication Critical patent/US2952790A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/168Shielding arrangements against charged particles

Definitions

  • This invention relates to improvements in X-ray tubes and has particular reference to an X-ray tube having novel shielding means located adjacent the interelectrode space for protection of the glass envelope from bombardment by secondary and cold emission electrons.
  • Charges are built up on the walls of a glass envelope .due to bombardment of the inner surface of the envelope by maximum Velocity electrons, both secondary electrons emanating from the target when bombarded by primary electrons, and cold emission electrons emanating from electrode structures subjected to high voltage gradients. Such bombardment of the envelope walls continues 'until the walls, due to the accumulation of electrons thereon, become charged to .a negative potential sufiiciently high to repel additional electrons.
  • This bombardment sometimes causes gas evolution and the accumulation of charge sometimes causes rupture of the glass envelope, thus considerably shortening the life of an otherwise eificiently operating tube.
  • Biasing of electron flow by wall charges varies with the magnitude of the wall charges, which in turn is dependent to a considerable degree upon the rate of leakage through the glass of the envelope.
  • the resistivity of the glass to such leakage is dependent upon the temperature of the envelope, which temperature increases from approximately room temperature to an elevated equilibrium value after several minutes of tube operation. Thus, a lengthy warmup period of several minutes must be permitted before an X-ray tube can be operated with some degree of stability of output radiation.
  • the interelectrode space is encircled by a shield which is maintained at anode potential.
  • damage may be caused by cold emission :electrons which leave the anode structure during the inverse cycle.
  • Another object is to provide an X-ray tube which when operated when in a cold condition will substantially immediately produce relatively stable output radiation.
  • Another object is to provide a tube wherein the interelectrode space is enclosed by means adapted to be maintained at a potential substantially midway between the potentials applied to the cathode and anode respectively, whereby cold emission to the envelope wall is substantially reduced or eliminated and whereby a stable electrical field encloses the path taken by the flow of primary electrons between cathode and anode.
  • Fig. 1 is an elevational view partly in axial section of one type of X-ray tubeembodying the invention
  • Fig. 2 is .a diagram illustrating schematically the electrical system embodied in connection with the invention as applied to the tube in Fig. 1;
  • Fig. 3 is a view similar to Fig. 1 of another type of .X-ray tube embodying the invention.
  • Fig. 4 is a diagram similar to Fig. 2 as applied to the tube of Fig. 3;
  • Figs. 5 and 6 are fragmentary axial sectional views 'illustrating modifications in the shielding structure.
  • the tube illustrated in Fig. 1 embodies an evacuated envelope 10 having two glass portions 11 and 12 joined by a metal ring 13.
  • Envelope portion 11 supports within it a cath- Ode structure 14 which embodies a metal body 15 within which is positioned an electron emitting filament 16.
  • the filament is preferably recessed slightly within a depression ar cavity 17 formed in the inner end of body 15 so that electrons emanating from the filament will tend to be focussed by the side walls of the cavity 17 in a wellknown manner.
  • the cathode structure, and particularly the filament 16 is adapted to be supplied with a suitable potential by means of conductors 18-19 which extend outwardly through the adjacent end of the envelope.
  • Envelope portion 12 supports within it an anode 20 which is provided with means such as pipe 21, which extends from its outer end outwardly of the envelope, by which a suitable potential may be applied.
  • the inner end of the anode 20 is directed toward the cathode and is provided with a recess or cavity 22 which terminates in a wall 23 in which is embedded a target 24, preferably of tungsten.
  • the target is angled so as to obtain maximum electron loading with proper X-ray beam coverage and focal spot size.
  • Electron bombardment of the target 24 by electrons liberated by the filament 16 generates X-radi'ation which passes outwardly of the cavity 22 through a window 25 carried in a wall surrounding the cavity, and through the glass of the envelope.
  • the window is comprised of a disc of a material highly transparent to X-rays, such as beryllium or the like.
  • Generation of X-rays produces anode heating, which may be dissipated by suitable means and methods such as by forcing cold fluid through conduits therein or by other selected means well known in the art whereby the target 24 is prevented from overheating.
  • a substantially tubular metal shield 27 which is coaxially mounted in the envelope in encircling relation to the interelectrode space and overlying the metal ring 13 and adjacent ends of the glass portions 11 and 12 of the envelope.
  • Shield 27 is of a length to extend at least between the planes of the ends of the cathode and anode, and'preferably extends a substantial distance beyond the adjacent ends of both electrodes, thus intercepting most, if not all, of the secondary electrons from the target which spray out through the interelectrode space as well as the cold emission electrons from the electrode structures.
  • a further important feature of such a shield 27 is that it is located substantially at mid-potential; that is, it is electrically connected to and supported by the metal ring '13 to which is applied potential of an amount which is approximately midway between the potentials which are applied to the anode and cathode respectively.
  • the addition to a conventional tube of a shield 27 will reduce or eliminate the damaging cold emission and the secondary electrons which bombard the envelope and create a stable field around the interelectrode space, and will further permit the tube to be operated at higher voltages with long life, with stable output, and without the lengthy warmup periods formerly required.
  • FIG. 2 a very schematic circuit is shown to illustrate the invention as applied to the so-called center grounded tube shown in Fig. 1.
  • the filament 16 is heated by a transformer 29.
  • a second transformer 28 has one side of its secondary winding connected to transformer 29 while its other side is connected to the anode for application of high voltage for electron driving purposes.
  • Transformer 28 is tapped substantially midway of its secondary winding by a lead 30 which is grounded.
  • the shield 27 and enclosure 26 are also connected to ground. Thus the shield is at a potential substantially midway between the potentials which are applied to the cathode and anode respectively.
  • Fig. 3 an end grounded tube embodying the invention.
  • the cathode structure 31 is mounted on a reentrant portion 32 of the glass envelope and includes a tubular metal cathode shield or hood 33.
  • an emitter or filament 34 to which electrical energy is supplied by conductors 35-36 which penetrate the end of the en velope.
  • the inner end of the shield 33 extends beyond the emitter 34 and is provided with a reentrant portion 37 which terminates in a bottom portion or platform 38 which is slotted to expose the emitter.
  • This structure thus forms a focusing device whereby electrons from the emitter 34 are directed toward a target 39.
  • An anode 40 is supported within an opening 41 by any suitable means such as a metal ring structure 42 which is sealed at one end to a circumferential portion of the anode 40 and at its other end to the end of the envelope to close the opening therein.
  • a metal ring structure 42 which is sealed at one end to a circumferential portion of the anode 40 and at its other end to the end of the envelope to close the opening therein.
  • the main body of the anode is located externally of the glass envelope and is provided with a deep recess or cavity 43 which opens into the interior of the envelope. Cavity 43 terminates in a wall in which is embedded the target 39, which is preferably formed of tungsten. X-radiation from the target 39 passes outwardly through a window 44 which is comprised of a disc of a material highly transparent to X-rays, such as beryllium or the like.
  • a metal anode shield 45 which is tubular in shape and extends coaxially of the tube toward the cathode from the inner end of the main body of the anode, to which it is connected.
  • Shield 45 is provided at its end nearest the cathode with an inwardly turned flange 46 which is curved so as to prevent the relatively sharp edges from being presented in such a manner as to increase cold electron emission. While one of the primary purposes of the shield 45 is to restrict secondary electron emission, a substantial amount of such emission still escapes into the interelectrode space where it may bombard the glass envelope.
  • End grounded tubes are operated within enclosures 47 as shown in the schematic diagram of Fig. 4.
  • the anode 40 is grounded and the filament 34 is heated by a transformer 48.
  • a second transformer 49 has one side of its secondary winding effectively grounded while the other side is connected to the cathode for application of high voltage for electron driving purposes.
  • the metal enclosure 47 is connected to and maintained at anode (or ground) potential. This causes cold emission electrons to be drawn from the cathode shield 33 and accelerated toward the enclosure, whereupon they bombard the glass walls with undesirable results.
  • a substantially tubular shield 50 is mounted in encircling relation to the interelectrode space for the purpose of stabilizing the electric field around the interelectrode space and intercepting cold emission and secondary electrons before they contact the glass walls of the envelope.
  • transformer 49 (Fig. 4) is tapped substantially midway of its secondary winding by a lead 51 which is connected to the shield 50 through a metal ring 52, in the envelope, which supports the shield 50.
  • the shield 50 is supplied with a potential substantially midway between the potentials which are applied to the cathode and anode respectively.
  • the invention may be applied to tubes where the anode is at ground potential or where the anode and cathode are maintained at potentials above or below ground.
  • the shield should be maintained at a potential which is substantially midway between the potentials applied to the anode and cathode respectively.
  • it may be desirable. in certain cases to apply a potential to the shield appreciably different from the mid-potential.
  • the center shield may take any of several shapes depending upon the type of tube in which it is used.
  • the shield 27 in the tube of Fig. 1 consists merely of two tubular-shaped members 5354 having their adjacent ends provided with flanges 55-56 by which they are afiixed to a flat ring 57. This assembled unit is secured by brazing or the like to the inner side of ring 13.
  • the ends of members 5354 may be turned outwardly as shown, if desired, in tubes Where cold emission is not a serious problem, such as where the center shield and the tube enclosure are at the same potential.
  • Supporting ring 52 is formed of two annular flanged members 5859 the flanges of which are sealed together and to an inner annulus 60.
  • the shield 50 may be secured in any suitable manner directly to the annulus 60, and the ends thereof are turned inwardly away from the glass to reduce possibilities of cold emission.
  • the shield may be provided with an annular baifle.
  • shield 50 is formed of two tubular members 61-62 located in coaxial end-to-end relation, with their adjacent ends being bent inwardly to form flanges which are joined together to form a baflie 63 having a central opening through which passes the primary electron flow.
  • FIG. 5 Another satisfactory shield structure is shown in Fig. 5 and comprises a pair of tubular members 64-65 which are brazed at their adjacent ends to a relatively heavy, fiat, washerlike member 66.
  • Member 66 is sealed throughout its outer periphery to two kovar rings 67-68 which form the metal portion of the envelope.
  • the inner peripheral portion of member 66 extends for a short distance toward the axis of the structure, with its inner edge having a curved bead 69 which is provided to eliminate the sharp edges which may become sources of cold emission.
  • Fig. -6 modified shield structure is shown as embodying a baflle 70 which has an orifice 71 therein of approximately the same size as the openings in the cathode and anode structures 72 and 73.
  • the shield 74 is shown as being of such a length that its ends lie in planes defined by the ends of the anode and cathode structures.
  • a high voltage X-ray tube comprising an envelope enclosing a single evacuated space having therein spaced cathode and anode electrode structures adapted to be maintained during operation of the tube at known difierent potentials whereby a stream of electrons may be driven through the interelectrode space from the cathode to the anode, said envelope comprising a pair of spaced dielectric bulb portions and an annular metal terminal encircling the interelectrode space and having opposite ends sealed to the adjacent ends of the respective bulb portions, said terminal being exposed on its outer surface to atmosphere external of the tube and on its inner surface to the evacuated space within the envelope, and a metal shield in the evacuated space within the envelope encircling the interelectrode space and overlying the adjacent ends of the electrode structures and the seals between the terminal and bulb portions, said shield being mounted directly upon the inner side of the terminal in rigid supporting and electrically conductive relation to the terminal, said terminal and shield being maintained during operation of the tube at a potential substantially midway between the potentials
  • an X-ray tube substantially as set forth in claim 1 wherein the shield includes a longitudinally extending member of generally tubular shape, and an annular metal weblike member sealed at its outer periphery to the terminal and at its inner periphery to the longitudinally extending member, said member having an annular portion encircling the electron stream in predetermined spaced relation thereto.
  • An X-ray tube substantially as set forth in claim 2 wherein said annular portion is a bafile mounted on the inner surface of the longitudinally extending member.
  • An X-ray tube substantially as set forth in claim 2 wherein said annular portion is a portion of the longitudinally extending member which is of reduced diameter and which extends a controlled distance toward the center of the electron stream.

Description

Sept. 13, 1960 Filed July 15, 1957 G. W. STEEN X-RAY TUBES 2 Sheets-Sheet 1 GOTTFRID W. STEEN AGENT INVENTOR.
Sept. 13, 1960 G. w. STEEN 2,952,790
X-RAY TUBES Filed July 15, 1957 2 Sheets-Sheet 2 INVENTOR. GOTTFRID W. STEEN AGENT ilnited States ?atent i X-RAY TUBES Gottfrid W. Steen, Stamford, Conn., assignor, by rnesne assignments, to Raytheon Company, a corporation of Delaware Filed July 15, 1957, Ser. No. 671,781
4 Claims. (Cl. 313-58) This invention relates to improvements in X-ray tubes and has particular reference to an X-ray tube having novel shielding means located adjacent the interelectrode space for protection of the glass envelope from bombardment by secondary and cold emission electrons.
Two serious problems are encountered in the operation of X-ray tubes; first, the variable biasing effect of wall charges on the flow of electrons through the interelectrode space which causes undesirable variations in the output radiation and, second, the rapid deterioration and short life of tubes when operated at relatively high voltages.
Charges are built up on the walls of a glass envelope .due to bombardment of the inner surface of the envelope by maximum Velocity electrons, both secondary electrons emanating from the target when bombarded by primary electrons, and cold emission electrons emanating from electrode structures subjected to high voltage gradients. Such bombardment of the envelope walls continues 'until the walls, due to the accumulation of electrons thereon, become charged to .a negative potential sufiiciently high to repel additional electrons.
This bombardment sometimes causes gas evolution and the accumulation of charge sometimes causes rupture of the glass envelope, thus considerably shortening the life of an otherwise eificiently operating tube.
Since, in high voltage tubes as normally constructed and .operated, charges which accumulate on the envelope walls tend to leak away'nearly as rapidly as the bombarding electrons arrive, it will be apparent that some time must elapse before the walls are sufliciently negatively charged to repel electrons. Furthermore, wall charges affect the electron flow between cathode and anode to a considerable extent. In fact, the output radiation may vary with time as much as 15%, which is definitely objectioriable since variations in radiation may adversely affect the operation being performed with the tube. This is particularly true when using the tube for time exposures such as in X-ray therapy.
Biasing of electron flow by wall charges varies with the magnitude of the wall charges, which in turn is dependent to a considerable degree upon the rate of leakage through the glass of the envelope. The resistivity of the glass to such leakage is dependent upon the temperature of the envelope, which temperature increases from approximately room temperature to an elevated equilibrium value after several minutes of tube operation. Thus, a lengthy warmup period of several minutes must be permitted before an X-ray tube can be operated with some degree of stability of output radiation.
In some types of high voltage X-ray tubes, the interelectrode space is encircled by a shield which is maintained at anode potential. In these tubes, While the envelope is fairly well protected from bombardment by secondary electrons, damage may be caused by cold emission :electrons which leave the anode structure during the inverse cycle.
Accordingly, it is a primary object of the present in- 2,952,790 Patented Sept. 13, 1960 vention to provide an X-ray tube structure wherein the envelope is protected from harmful high velocity electron bombardment.
Another object is to provide an X-ray tube which when operated when in a cold condition will substantially immediately produce relatively stable output radiation.
Another object is to provide a tube wherein the interelectrode space is enclosed by means adapted to be maintained at a potential substantially midway between the potentials applied to the cathode and anode respectively, whereby cold emission to the envelope wall is substantially reduced or eliminated and whereby a stable electrical field encloses the path taken by the flow of primary electrons between cathode and anode.
Other objects and advantages will become apparent from the following description taken in connection with the accompanying drawings, wherein:
Fig. 1 is an elevational view partly in axial section of one type of X-ray tubeembodying the invention;
Fig. 2 is .a diagram illustrating schematically the electrical system embodied in connection with the invention as applied to the tube in Fig. 1;
Fig. 3 is a view similar to Fig. 1 of another type of .X-ray tube embodying the invention;
Fig. 4 is a diagram similar to Fig. 2 as applied to the tube of Fig. 3; and
Figs. 5 and 6 are fragmentary axial sectional views 'illustrating modifications in the shielding structure.
:Referring more particularly to the drawings, the tube illustrated in Fig. 1 embodies an evacuated envelope 10 having two glass portions 11 and 12 joined by a metal ring 13. Envelope portion 11 supports within it a cath- Ode structure 14 which embodies a metal body 15 within which is positioned an electron emitting filament 16. The filament is preferably recessed slightly within a depression ar cavity 17 formed in the inner end of body 15 so that electrons emanating from the filament will tend to be focussed by the side walls of the cavity 17 in a wellknown manner. The cathode structure, and particularly the filament 16, is adapted to be supplied with a suitable potential by means of conductors 18-19 which extend outwardly through the adjacent end of the envelope.
Envelope portion 12 supports within it an anode 20 which is provided with means such as pipe 21, which extends from its outer end outwardly of the envelope, by which a suitable potential may be applied.
The inner end of the anode 20 is directed toward the cathode and is provided with a recess or cavity 22 which terminates in a wall 23 in which is embedded a target 24, preferably of tungsten. The target is angled so as to obtain maximum electron loading with proper X-ray beam coverage and focal spot size. Electron bombardment of the target 24 by electrons liberated by the filament 16 generates X-radi'ation which passes outwardly of the cavity 22 through a window 25 carried in a wall surrounding the cavity, and through the glass of the envelope. The window is comprised of a disc of a material highly transparent to X-rays, such as beryllium or the like. Generation of X-rays produces anode heating, which may be dissipated by suitable means and methods such as by forcing cold fluid through conduits therein or by other selected means well known in the art whereby the target 24 is prevented from overheating.
When the filament 16 is heated by application of electrical energy through conductors 1819, and when the anode is simultaneously made positive with respect to the cathode, primary electrons are caused to flow from the filament 16, through the interelectrode space, onto the target 24 for generation of X-radiation.
In conventional tubes, when a cold tube is operated some primary electron emission and a considerable amount of secondary electron emission is attracted to the glass walls of the envelope 10. Such bombardment at maximum velocities may rupture the envelope, renderingthe tube faulty. Wall charges are built up which tend to' bias the electron flow and, consequently, affect the output of the tube. Since a relatively long period of time must elapse before the wall charge is built up to a potential which will repel bombardment, the biasing efiect will vary considerably during this warmup period and, consequently, the output radiation will vary during this period. The electrodes themselves are additional sources of electrons which bombard the envelope and consequently build up wall charges. In the normal operation of many tubes of the presently described char- --acter, each tube is mounted within a metal enclosure,
as indicated by dotted lines 26 in Fig. 2, which enclosure is connected to ground. The enclosure attracts cold emission electrons from the cathode structure, which electrons are intercepted by the glass walls of the envelope as they are accelerated toward the enclosure. On the inverse cycle such cold emission electrons are likewise drawn from the anode structure.
The above undesirable features are overcome in the present invention by a substantially tubular metal shield 27 which is coaxially mounted in the envelope in encircling relation to the interelectrode space and overlying the metal ring 13 and adjacent ends of the glass portions 11 and 12 of the envelope. Shield 27 is of a length to extend at least between the planes of the ends of the cathode and anode, and'preferably extends a substantial distance beyond the adjacent ends of both electrodes, thus intercepting most, if not all, of the secondary electrons from the target which spray out through the interelectrode space as well as the cold emission electrons from the electrode structures.
A further important feature of such a shield 27 is that it is located substantially at mid-potential; that is, it is electrically connected to and supported by the metal ring '13 to which is applied potential of an amount which is approximately midway between the potentials which are applied to the anode and cathode respectively. Thus, there is created a stable electric field about the interelectrode space. The addition to a conventional tube of a shield 27 will reduce or eliminate the damaging cold emission and the secondary electrons which bombard the envelope and create a stable field around the interelectrode space, and will further permit the tube to be operated at higher voltages with long life, with stable output, and without the lengthy warmup periods formerly required.
Referring to Fig. 2, a very schematic circuit is shown to illustrate the invention as applied to the so-called center grounded tube shown in Fig. 1. The filament 16 is heated by a transformer 29. A second transformer 28 has one side of its secondary winding connected to transformer 29 while its other side is connected to the anode for application of high voltage for electron driving purposes. Transformer 28 is tapped substantially midway of its secondary winding by a lead 30 which is grounded. The shield 27 and enclosure 26 are also connected to ground. Thus the shield is at a potential substantially midway between the potentials which are applied to the cathode and anode respectively.
Although an alternating current circuit is specifically described herein, it is to be understood that constant potential or rectified direct current circuits, or combinations of the two, can be used if desired with the present invention.
In Fig. 3 is shown an end grounded tube embodying the invention. In this tube the cathode structure 31 is mounted on a reentrant portion 32 of the glass envelope and includes a tubular metal cathode shield or hood 33. Within the shield 33 is located an emitter or filament 34 to which electrical energy is supplied by conductors 35-36 which penetrate the end of the en velope. The inner end of the shield 33 extends beyond the emitter 34 and is provided with a reentrant portion 37 which terminates in a bottom portion or platform 38 which is slotted to expose the emitter. This structure thus forms a focusing device whereby electrons from the emitter 34 are directed toward a target 39.
An anode 40 is supported within an opening 41 by any suitable means such as a metal ring structure 42 which is sealed at one end to a circumferential portion of the anode 40 and at its other end to the end of the envelope to close the opening therein.
The main body of the anode is located externally of the glass envelope and is provided with a deep recess or cavity 43 which opens into the interior of the envelope. Cavity 43 terminates in a wall in which is embedded the target 39, which is preferably formed of tungsten. X-radiation from the target 39 passes outwardly through a window 44 which is comprised of a disc of a material highly transparent to X-rays, such as beryllium or the like.
To aid in reducing secondary electron bombardment of the glass walls of the envelope, there is provided a metal anode shield 45 which is tubular in shape and extends coaxially of the tube toward the cathode from the inner end of the main body of the anode, to which it is connected.
Shield 45 is provided at its end nearest the cathode with an inwardly turned flange 46 which is curved so as to prevent the relatively sharp edges from being presented in such a manner as to increase cold electron emission. While one of the primary purposes of the shield 45 is to restrict secondary electron emission, a substantial amount of such emission still escapes into the interelectrode space where it may bombard the glass envelope.
End grounded tubes are operated within enclosures 47 as shown in the schematic diagram of Fig. 4. The anode 40 is grounded and the filament 34 is heated by a transformer 48. A second transformer 49 has one side of its secondary winding effectively grounded while the other side is connected to the cathode for application of high voltage for electron driving purposes.
In the normal operation of this tube, the metal enclosure 47 is connected to and maintained at anode (or ground) potential. This causes cold emission electrons to be drawn from the cathode shield 33 and accelerated toward the enclosure, whereupon they bombard the glass walls with undesirable results.
A substantially tubular shield 50, generally similar to shield 27 in Fig. 1, is mounted in encircling relation to the interelectrode space for the purpose of stabilizing the electric field around the interelectrode space and intercepting cold emission and secondary electrons before they contact the glass walls of the envelope. In the operation of this end-grounded tube, transformer 49 (Fig. 4) is tapped substantially midway of its secondary winding by a lead 51 which is connected to the shield 50 through a metal ring 52, in the envelope, which supports the shield 50. Thus the shield 50 is supplied with a potential substantially midway between the potentials which are applied to the cathode and anode respectively.
From the above, it will be understood that the invention may be applied to tubes where the anode is at ground potential or where the anode and cathode are maintained at potentials above or below ground. Generally, the shield should be maintained at a potential which is substantially midway between the potentials applied to the anode and cathode respectively. However, it may be desirable. in certain cases to apply a potential to the shield appreciably different from the mid-potential.
The center shield may take any of several shapes depending upon the type of tube in which it is used. For example the shield 27 in the tube of Fig. 1 consists merely of two tubular-shaped members 5354 having their adjacent ends provided with flanges 55-56 by which they are afiixed to a flat ring 57. This assembled unit is secured by brazing or the like to the inner side of ring 13. The ends of members 5354 may be turned outwardly as shown, if desired, in tubes Where cold emission is not a serious problem, such as where the center shield and the tube enclosure are at the same potential.
In Fig. 3 a somewhat different construction is shown. Supporting ring 52 is formed of two annular flanged members 5859 the flanges of which are sealed together and to an inner annulus 60. The shield 50 may be secured in any suitable manner directly to the annulus 60, and the ends thereof are turned inwardly away from the glass to reduce possibilities of cold emission.
To further increase the area of the shield for the purpose of still more efliciently intercepting secondary and cold emission electrons, and to isolate the anode and cathode sections of the tube and maintain a stable electric field even closer to the electron stream passing through the interelectrode space, the shield may be provided with an annular baifle. For this purpose shield 50 is formed of two tubular members 61-62 located in coaxial end-to-end relation, with their adjacent ends being bent inwardly to form flanges which are joined together to form a baflie 63 having a central opening through which passes the primary electron flow.
Another satisfactory shield structure is shown in Fig. 5 and comprises a pair of tubular members 64-65 which are brazed at their adjacent ends to a relatively heavy, fiat, washerlike member 66. Member 66 is sealed throughout its outer periphery to two kovar rings 67-68 which form the metal portion of the envelope. The inner peripheral portion of member 66 extends for a short distance toward the axis of the structure, with its inner edge having a curved bead 69 which is provided to eliminate the sharp edges which may become sources of cold emission.
In Fig. -6 modified shield structure is shown as embodying a baflle 70 which has an orifice 71 therein of approximately the same size as the openings in the cathode and anode structures 72 and 73. In Fig. 6 also, the shield 74 is shown as being of such a length that its ends lie in planes defined by the ends of the anode and cathode structures.
From the foregoing description it will be seen that novel shielding means has been provided in accordance with the objects of this invention. While the preferred embodiments of the invention have been shown and described and are pointed out in the annexed claims, it is to be understood that many changes may be made by those skilled in the art without departing from the spirit of the invention. Therefore, all matter shown or described is to be interpreted as illustrative and not in a limiting sense.
I claim:
1. A high voltage X-ray tube comprising an envelope enclosing a single evacuated space having therein spaced cathode and anode electrode structures adapted to be maintained during operation of the tube at known difierent potentials whereby a stream of electrons may be driven through the interelectrode space from the cathode to the anode, said envelope comprising a pair of spaced dielectric bulb portions and an annular metal terminal encircling the interelectrode space and having opposite ends sealed to the adjacent ends of the respective bulb portions, said terminal being exposed on its outer surface to atmosphere external of the tube and on its inner surface to the evacuated space within the envelope, and a metal shield in the evacuated space within the envelope encircling the interelectrode space and overlying the adjacent ends of the electrode structures and the seals between the terminal and bulb portions, said shield being mounted directly upon the inner side of the terminal in rigid supporting and electrically conductive relation to the terminal, said terminal and shield being maintained during operation of the tube at a potential substantially midway between the potentials applied to the anode and cathode electrode structures for maintaining a stable electric field in the interelectrode space.
2. An X-ray tube substantially as set forth in claim 1 wherein the shield includes a longitudinally extending member of generally tubular shape, and an annular metal weblike member sealed at its outer periphery to the terminal and at its inner periphery to the longitudinally extending member, said member having an annular portion encircling the electron stream in predetermined spaced relation thereto.
3. An X-ray tube substantially as set forth in claim 2 wherein said annular portion is a bafile mounted on the inner surface of the longitudinally extending member.
4. An X-ray tube substantially as set forth in claim 2 wherein said annular portion is a portion of the longitudinally extending member which is of reduced diameter and which extends a controlled distance toward the center of the electron stream.
References Cited in the file of this patent UNITED STATES PATENTS 1,920,606 Stewart Aug. 1, 1933 1,927,475 Volkel Sept. 14, 1933 1,954,709 Niclassen Apr. 10, 1934 1,955,665 Alfter Apr. 17, 1934 1,980,017 Traub Nov. 6, 1934 2,024,332 Bouwers Dec. 17, 1935 2,113,334 Slack Apr. 5, 1938 2,405,477 Westendorp Aug. 6, 1946
US671781A 1957-07-15 1957-07-15 X-ray tubes Expired - Lifetime US2952790A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US671781A US2952790A (en) 1957-07-15 1957-07-15 X-ray tubes
GB21341/58A GB839945A (en) 1957-07-15 1958-07-03 Improvements in x-ray tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US671781A US2952790A (en) 1957-07-15 1957-07-15 X-ray tubes

Publications (1)

Publication Number Publication Date
US2952790A true US2952790A (en) 1960-09-13

Family

ID=24695859

Family Applications (1)

Application Number Title Priority Date Filing Date
US671781A Expired - Lifetime US2952790A (en) 1957-07-15 1957-07-15 X-ray tubes

Country Status (2)

Country Link
US (1) US2952790A (en)
GB (1) GB839945A (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143679A (en) * 1959-06-11 1964-08-04 Hilger & Watts Ltd Focussing arrangement for X-ray tubes
US4468802A (en) * 1981-03-02 1984-08-28 Siemens Aktiengesellschaft X-Ray tube
US6215852B1 (en) * 1998-12-10 2001-04-10 General Electric Company Thermal energy storage and transfer assembly
WO2003065402A1 (en) * 2002-01-30 2003-08-07 Koninklijke Philips Electronics Nv X-ray tube envelope with integral corona shield
US20060256924A1 (en) * 2003-04-25 2006-11-16 Morton Edward J X-ray sources
US20070058782A1 (en) * 2005-08-31 2007-03-15 Hamamatsu Photonics K.K. X-ray tube
US20070076849A1 (en) * 2005-09-30 2007-04-05 Moxtek,Inc X-ray tube cathode with reduced unintended electrical field emission
US20070172023A1 (en) * 2003-04-25 2007-07-26 Cxr Limited Control means for heat load in x-ray scanning apparatus
US20070211862A1 (en) * 2004-04-07 2007-09-13 Yuichi Ito Transmission Type X-Ray Tube And Manufacturing Method Thereof
US20080144774A1 (en) * 2003-04-25 2008-06-19 Crx Limited X-Ray Tubes
US20080296518A1 (en) * 2007-06-01 2008-12-04 Degao Xu X-Ray Window with Grid Structure
US20090022277A1 (en) * 2007-07-18 2009-01-22 Moxtek, Inc. Cathode header optic for x-ray tube
US7512215B2 (en) 2003-04-25 2009-03-31 Rapiscan Systems, Inc. X-ray tube electron sources
US20090086923A1 (en) * 2007-09-28 2009-04-02 Davis Robert C X-ray radiation window with carbon nanotube frame
US20100008471A1 (en) * 2003-04-25 2010-01-14 Edward James Morton X-Ray Sources
US7684538B2 (en) 2003-04-25 2010-03-23 Rapiscan Systems, Inc. X-ray scanning system
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US7983394B2 (en) 2009-12-17 2011-07-19 Moxtek, Inc. Multiple wavelength X-ray source
US8135110B2 (en) 2005-12-16 2012-03-13 Rapiscan Systems, Inc. X-ray tomography inspection systems
US8247971B1 (en) 2009-03-19 2012-08-21 Moxtek, Inc. Resistively heated small planar filament
US8451974B2 (en) 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
US8526574B2 (en) 2010-09-24 2013-09-03 Moxtek, Inc. Capacitor AC power coupling across high DC voltage differential
US8736138B2 (en) 2007-09-28 2014-05-27 Brigham Young University Carbon nanotube MEMS assembly
US8750458B1 (en) 2011-02-17 2014-06-10 Moxtek, Inc. Cold electron number amplifier
US8761344B2 (en) 2011-12-29 2014-06-24 Moxtek, Inc. Small x-ray tube with electron beam control optics
US8792619B2 (en) 2011-03-30 2014-07-29 Moxtek, Inc. X-ray tube with semiconductor coating
US8804910B1 (en) 2011-01-24 2014-08-12 Moxtek, Inc. Reduced power consumption X-ray source
US8817950B2 (en) 2011-12-22 2014-08-26 Moxtek, Inc. X-ray tube to power supply connector
US8824637B2 (en) 2008-09-13 2014-09-02 Rapiscan Systems, Inc. X-ray tubes
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US8929515B2 (en) 2011-02-23 2015-01-06 Moxtek, Inc. Multiple-size support for X-ray window
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US8995621B2 (en) 2010-09-24 2015-03-31 Moxtek, Inc. Compact X-ray source
US9020095B2 (en) 2003-04-25 2015-04-28 Rapiscan Systems, Inc. X-ray scanners
US9052403B2 (en) 2002-07-23 2015-06-09 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US9072154B2 (en) 2012-12-21 2015-06-30 Moxtek, Inc. Grid voltage generation for x-ray tube
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US9173623B2 (en) 2013-04-19 2015-11-03 Samuel Soonho Lee X-ray tube and receiver inside mouth
US9177755B2 (en) 2013-03-04 2015-11-03 Moxtek, Inc. Multi-target X-ray tube with stationary electron beam position
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US9184020B2 (en) 2013-03-04 2015-11-10 Moxtek, Inc. Tiltable or deflectable anode x-ray tube
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
US9223049B2 (en) 2002-07-23 2015-12-29 Rapiscan Systems, Inc. Cargo scanning system with boom structure
US9223052B2 (en) 2008-02-28 2015-12-29 Rapiscan Systems, Inc. Scanning systems
US9223050B2 (en) 2005-04-15 2015-12-29 Rapiscan Systems, Inc. X-ray imaging system having improved mobility
US9263225B2 (en) 2008-07-15 2016-02-16 Rapiscan Systems, Inc. X-ray tube anode comprising a coolant tube
US9285498B2 (en) 2003-06-20 2016-03-15 Rapiscan Systems, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
US9305735B2 (en) 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window
US9332624B2 (en) 2008-05-20 2016-05-03 Rapiscan Systems, Inc. Gantry scanner systems
US9420677B2 (en) 2009-01-28 2016-08-16 Rapiscan Systems, Inc. X-ray tube electron sources
US9429530B2 (en) 2008-02-28 2016-08-30 Rapiscan Systems, Inc. Scanning systems
US9726619B2 (en) 2005-10-25 2017-08-08 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
US9791590B2 (en) 2013-01-31 2017-10-17 Rapiscan Systems, Inc. Portable security inspection system
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US20220208503A1 (en) * 2020-12-31 2022-06-30 VEC Imaging GmbH & Co. KG Anodes, cooling systems, and x-ray sources including the same
US11551903B2 (en) 2020-06-25 2023-01-10 American Science And Engineering, Inc. Devices and methods for dissipating heat from an anode of an x-ray tube assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411490A (en) * 1966-12-09 1968-11-19 White Motor Corp Intake port structure for internal combustion engine
GB2517671A (en) 2013-03-15 2015-03-04 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target and rotary vacuum seal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1920606A (en) * 1931-12-01 1933-08-01 Westinghouse Lamp Co X-ray cathode shield
US1927475A (en) * 1930-09-09 1933-09-19 Mueller C H F Ag High vacuum discharge vessel in particular X-ray tubes
US1954709A (en) * 1929-04-19 1934-04-10 Mueller C H F Ag X-ray tube
US1955665A (en) * 1930-07-03 1934-04-17 Mueller C H F Ag Discharge vessel having alpha discharge space which is limited by alpha metal wall
US1980017A (en) * 1930-10-29 1934-11-06 Gen Electric Electric discharge device
US2024332A (en) * 1930-04-16 1935-12-17 Philips Nv Discharge tube having a metal envelope
US2113334A (en) * 1934-10-30 1938-04-05 Westinghouse Electric & Mfg Co X-ray tube
US2405477A (en) * 1942-08-26 1946-08-06 Gen Electric Ray-generating apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1954709A (en) * 1929-04-19 1934-04-10 Mueller C H F Ag X-ray tube
US2024332A (en) * 1930-04-16 1935-12-17 Philips Nv Discharge tube having a metal envelope
US1955665A (en) * 1930-07-03 1934-04-17 Mueller C H F Ag Discharge vessel having alpha discharge space which is limited by alpha metal wall
US1927475A (en) * 1930-09-09 1933-09-19 Mueller C H F Ag High vacuum discharge vessel in particular X-ray tubes
US1980017A (en) * 1930-10-29 1934-11-06 Gen Electric Electric discharge device
US1920606A (en) * 1931-12-01 1933-08-01 Westinghouse Lamp Co X-ray cathode shield
US2113334A (en) * 1934-10-30 1938-04-05 Westinghouse Electric & Mfg Co X-ray tube
US2405477A (en) * 1942-08-26 1946-08-06 Gen Electric Ray-generating apparatus

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143679A (en) * 1959-06-11 1964-08-04 Hilger & Watts Ltd Focussing arrangement for X-ray tubes
US4468802A (en) * 1981-03-02 1984-08-28 Siemens Aktiengesellschaft X-Ray tube
US6215852B1 (en) * 1998-12-10 2001-04-10 General Electric Company Thermal energy storage and transfer assembly
US6301332B1 (en) 1998-12-10 2001-10-09 General Electric Company Thermal filter for an x-ray tube window
WO2003065402A1 (en) * 2002-01-30 2003-08-07 Koninklijke Philips Electronics Nv X-ray tube envelope with integral corona shield
US10670769B2 (en) 2002-07-23 2020-06-02 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US9052403B2 (en) 2002-07-23 2015-06-09 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US9223049B2 (en) 2002-07-23 2015-12-29 Rapiscan Systems, Inc. Cargo scanning system with boom structure
US10007019B2 (en) 2002-07-23 2018-06-26 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US10175381B2 (en) 2003-04-25 2019-01-08 Rapiscan Systems, Inc. X-ray scanners having source points with less than a predefined variation in brightness
US7684538B2 (en) 2003-04-25 2010-03-23 Rapiscan Systems, Inc. X-ray scanning system
US20070172023A1 (en) * 2003-04-25 2007-07-26 Cxr Limited Control means for heat load in x-ray scanning apparatus
US7349525B2 (en) 2003-04-25 2008-03-25 Rapiscan Systems, Inc. X-ray sources
US20060256924A1 (en) * 2003-04-25 2006-11-16 Morton Edward J X-ray sources
US9675306B2 (en) 2003-04-25 2017-06-13 Rapiscan Systems, Inc. X-ray scanning system
US20080144774A1 (en) * 2003-04-25 2008-06-19 Crx Limited X-Ray Tubes
US20080267355A1 (en) * 2003-04-25 2008-10-30 Edward James Morton X-Ray Sources
US9020095B2 (en) 2003-04-25 2015-04-28 Rapiscan Systems, Inc. X-ray scanners
US9001973B2 (en) 2003-04-25 2015-04-07 Rapiscan Systems, Inc. X-ray sources
US7505563B2 (en) 2003-04-25 2009-03-17 Rapiscan Systems, Inc. X-ray sources
US7512215B2 (en) 2003-04-25 2009-03-31 Rapiscan Systems, Inc. X-ray tube electron sources
US11796711B2 (en) 2003-04-25 2023-10-24 Rapiscan Systems, Inc. Modular CT scanning system
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US7564939B2 (en) 2003-04-25 2009-07-21 Rapiscan Systems, Inc. Control means for heat load in X-ray scanning apparatus
US20090274277A1 (en) * 2003-04-25 2009-11-05 Edward James Morton X-Ray Sources
US8451974B2 (en) 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US20090316855A1 (en) * 2003-04-25 2009-12-24 Edward James Morton Control Means for Heat Load in X-Ray Scanning Apparatus
US20100008471A1 (en) * 2003-04-25 2010-01-14 Edward James Morton X-Ray Sources
US7664230B2 (en) 2003-04-25 2010-02-16 Rapiscan Systems, Inc. X-ray tubes
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US9618648B2 (en) 2003-04-25 2017-04-11 Rapiscan Systems, Inc. X-ray scanners
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US20100172476A1 (en) * 2003-04-25 2010-07-08 Edward James Morton X-Ray Tubes
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
US20100195788A1 (en) * 2003-04-25 2010-08-05 Edward James Morton X-Ray Scanning System
US8085897B2 (en) 2003-04-25 2011-12-27 Rapiscan Systems, Inc. X-ray scanning system
US9442082B2 (en) 2003-04-25 2016-09-13 Rapiscan Systems, Inc. X-ray inspection system and method
US7903789B2 (en) 2003-04-25 2011-03-08 Rapiscan Systems, Inc. X-ray tube electron sources
US8885794B2 (en) 2003-04-25 2014-11-11 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US10901112B2 (en) 2003-04-25 2021-01-26 Rapiscan Systems, Inc. X-ray scanning system with stationary x-ray sources
US9285498B2 (en) 2003-06-20 2016-03-15 Rapiscan Systems, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
US7783011B2 (en) 2004-04-07 2010-08-24 Hitachi Medical Corporation Transmission type X-ray tube and manufacturing method thereof
US20100074410A1 (en) * 2004-04-07 2010-03-25 Yuichi Ito Transmission type x-ray tube and manufacturing method thereof
US7623629B2 (en) * 2004-04-07 2009-11-24 Hitachi Medical Corporation Transmission type X-ray tube and manufacturing method thereof
US20090161831A1 (en) * 2004-04-07 2009-06-25 Yuichi Ito Transmission type x-ray tube and manufacturing method thereof
US20070211862A1 (en) * 2004-04-07 2007-09-13 Yuichi Ito Transmission Type X-Ray Tube And Manufacturing Method Thereof
US9223050B2 (en) 2005-04-15 2015-12-29 Rapiscan Systems, Inc. X-ray imaging system having improved mobility
US20070058782A1 (en) * 2005-08-31 2007-03-15 Hamamatsu Photonics K.K. X-ray tube
US7386095B2 (en) * 2005-08-31 2008-06-10 Hamamatsu Photonics K.K. X-ray tube
WO2007041498A2 (en) * 2005-09-30 2007-04-12 Moxtek, Inc. X-ray tube cathode with reduced unintended electrical field emission
US20070076849A1 (en) * 2005-09-30 2007-04-05 Moxtek,Inc X-ray tube cathode with reduced unintended electrical field emission
US7382862B2 (en) * 2005-09-30 2008-06-03 Moxtek, Inc. X-ray tube cathode with reduced unintended electrical field emission
WO2007041498A3 (en) * 2005-09-30 2007-07-19 Moxtek Inc X-ray tube cathode with reduced unintended electrical field emission
US9726619B2 (en) 2005-10-25 2017-08-08 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US8958526B2 (en) 2005-12-16 2015-02-17 Rapiscan Systems, Inc. Data collection, processing and storage systems for X-ray tomographic images
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US10295483B2 (en) 2005-12-16 2019-05-21 Rapiscan Systems, Inc. Data collection, processing and storage systems for X-ray tomographic images
US9638646B2 (en) 2005-12-16 2017-05-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US10976271B2 (en) 2005-12-16 2021-04-13 Rapiscan Systems, Inc. Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images
US9048061B2 (en) 2005-12-16 2015-06-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US8135110B2 (en) 2005-12-16 2012-03-13 Rapiscan Systems, Inc. X-ray tomography inspection systems
US8625735B2 (en) 2005-12-16 2014-01-07 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US20100243895A1 (en) * 2007-06-01 2010-09-30 Moxtek, Inc. X-ray window with grid structure
US7737424B2 (en) 2007-06-01 2010-06-15 Moxtek, Inc. X-ray window with grid structure
US20080296518A1 (en) * 2007-06-01 2008-12-04 Degao Xu X-Ray Window with Grid Structure
US7529345B2 (en) 2007-07-18 2009-05-05 Moxtek, Inc. Cathode header optic for x-ray tube
US20090022277A1 (en) * 2007-07-18 2009-01-22 Moxtek, Inc. Cathode header optic for x-ray tube
US9305735B2 (en) 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window
US7756251B2 (en) 2007-09-28 2010-07-13 Brigham Young Univers ity X-ray radiation window with carbon nanotube frame
US20090086923A1 (en) * 2007-09-28 2009-04-02 Davis Robert C X-ray radiation window with carbon nanotube frame
US8736138B2 (en) 2007-09-28 2014-05-27 Brigham Young University Carbon nanotube MEMS assembly
US9223052B2 (en) 2008-02-28 2015-12-29 Rapiscan Systems, Inc. Scanning systems
US11275194B2 (en) 2008-02-28 2022-03-15 Rapiscan Systems, Inc. Scanning systems
US9429530B2 (en) 2008-02-28 2016-08-30 Rapiscan Systems, Inc. Scanning systems
US11768313B2 (en) 2008-02-28 2023-09-26 Rapiscan Systems, Inc. Multi-scanner networked systems for performing material discrimination processes on scanned objects
US10585207B2 (en) 2008-02-28 2020-03-10 Rapiscan Systems, Inc. Scanning systems
US10098214B2 (en) 2008-05-20 2018-10-09 Rapiscan Systems, Inc. Detector support structures for gantry scanner systems
US9332624B2 (en) 2008-05-20 2016-05-03 Rapiscan Systems, Inc. Gantry scanner systems
US9263225B2 (en) 2008-07-15 2016-02-16 Rapiscan Systems, Inc. X-ray tube anode comprising a coolant tube
US8824637B2 (en) 2008-09-13 2014-09-02 Rapiscan Systems, Inc. X-ray tubes
US9420677B2 (en) 2009-01-28 2016-08-16 Rapiscan Systems, Inc. X-ray tube electron sources
US8247971B1 (en) 2009-03-19 2012-08-21 Moxtek, Inc. Resistively heated small planar filament
US7983394B2 (en) 2009-12-17 2011-07-19 Moxtek, Inc. Multiple wavelength X-ray source
US8526574B2 (en) 2010-09-24 2013-09-03 Moxtek, Inc. Capacitor AC power coupling across high DC voltage differential
US8948345B2 (en) 2010-09-24 2015-02-03 Moxtek, Inc. X-ray tube high voltage sensing resistor
US8995621B2 (en) 2010-09-24 2015-03-31 Moxtek, Inc. Compact X-ray source
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
US8964943B2 (en) 2010-10-07 2015-02-24 Moxtek, Inc. Polymer layer on X-ray window
US8804910B1 (en) 2011-01-24 2014-08-12 Moxtek, Inc. Reduced power consumption X-ray source
US8750458B1 (en) 2011-02-17 2014-06-10 Moxtek, Inc. Cold electron number amplifier
US8929515B2 (en) 2011-02-23 2015-01-06 Moxtek, Inc. Multiple-size support for X-ray window
US8792619B2 (en) 2011-03-30 2014-07-29 Moxtek, Inc. X-ray tube with semiconductor coating
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
US8817950B2 (en) 2011-12-22 2014-08-26 Moxtek, Inc. X-ray tube to power supply connector
US8761344B2 (en) 2011-12-29 2014-06-24 Moxtek, Inc. Small x-ray tube with electron beam control optics
US9072154B2 (en) 2012-12-21 2015-06-30 Moxtek, Inc. Grid voltage generation for x-ray tube
US9351387B2 (en) 2012-12-21 2016-05-24 Moxtek, Inc. Grid voltage generation for x-ray tube
US11550077B2 (en) 2013-01-31 2023-01-10 Rapiscan Systems, Inc. Portable vehicle inspection portal with accompanying workstation
US9791590B2 (en) 2013-01-31 2017-10-17 Rapiscan Systems, Inc. Portable security inspection system
US10317566B2 (en) 2013-01-31 2019-06-11 Rapiscan Systems, Inc. Portable security inspection system
US9184020B2 (en) 2013-03-04 2015-11-10 Moxtek, Inc. Tiltable or deflectable anode x-ray tube
US9177755B2 (en) 2013-03-04 2015-11-03 Moxtek, Inc. Multi-target X-ray tube with stationary electron beam position
US9173623B2 (en) 2013-04-19 2015-11-03 Samuel Soonho Lee X-ray tube and receiver inside mouth
US11551903B2 (en) 2020-06-25 2023-01-10 American Science And Engineering, Inc. Devices and methods for dissipating heat from an anode of an x-ray tube assembly
US20220208503A1 (en) * 2020-12-31 2022-06-30 VEC Imaging GmbH & Co. KG Anodes, cooling systems, and x-ray sources including the same
US11749489B2 (en) * 2020-12-31 2023-09-05 Varex Imaging Corporation Anodes, cooling systems, and x-ray sources including the same

Also Published As

Publication number Publication date
GB839945A (en) 1960-06-29

Similar Documents

Publication Publication Date Title
US2952790A (en) X-ray tubes
US1211092A (en) X-ray tube.
US1946288A (en) Electron discharge device
US3665236A (en) Electrode structure for controlling electron flow with high transmission efficiency
US2367331A (en) Cathode construction
US3751701A (en) Convergent flow hollow beam x-ray gun with high average power
US2107520A (en) Electron discharge device
US2990492A (en) Electric discharge device
US2356645A (en) X-ray tube
US2421767A (en) Electrode structure
US2660687A (en) Mercury vapor rectifier tube employing magnetic field
US2936394A (en) Electron gun
US2229152A (en) Rotary anode X-ray tube
US3646379A (en) X-ray tube having controllable focal spot size
US1924319A (en) Cathode structure for thermionic devices
US2679016A (en) Gas discharge device
JPH0352168B2 (en)
US2381632A (en) Electron discharge device
US3334256A (en) Sealed window for x-ray generator with shield for seal
US3365601A (en) High power vacuum tube with magnetic beaming
US2093002A (en) Electric discharge tube
US3892989A (en) Convergent flow hollow beam X-ray gun construction
US1808430A (en) X-ray tube
US1927475A (en) High vacuum discharge vessel in particular X-ray tubes
US3549931A (en) X-ray transmissive window assembly