US2831620A - Self-sealing closure mechanism for liquids - Google Patents

Self-sealing closure mechanism for liquids Download PDF

Info

Publication number
US2831620A
US2831620A US444115A US44411554A US2831620A US 2831620 A US2831620 A US 2831620A US 444115 A US444115 A US 444115A US 44411554 A US44411554 A US 44411554A US 2831620 A US2831620 A US 2831620A
Authority
US
United States
Prior art keywords
post
spout
nozzle
valve
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US444115A
Inventor
Theodore F Schlicksupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US444115A priority Critical patent/US2831620A/en
Application granted granted Critical
Publication of US2831620A publication Critical patent/US2831620A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/20Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge
    • B65D47/2018Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge comprising a valve or like element which is opened or closed by deformation of the container or closure
    • B65D47/2056Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge comprising a valve or like element which is opened or closed by deformation of the container or closure lift valve type
    • B65D47/2081Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge comprising a valve or like element which is opened or closed by deformation of the container or closure lift valve type in which the deformation raises or lowers the valve port
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/20Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge

Definitions

  • This invention relates to devices for closing containers of various kinds from which liquids are to be dispensed, and, more particularly, it relates to a discharge mechanism which is self-sealing or self-closing so that the container can not be unintentionally left open after use.
  • the discharge mechanism of the invention is intended to be used in connection with containers for liquids, creams, toilet water, skin lotions, perfume, and the like, where conservation of the liquid is essential, and also with containers charged with a volatile propellant under suitable pressure.
  • the primary object of the invention is to provide a discharge mechanism which provides a tight closure so as to reduce evaporization to a minimum, and which at the same time can be easily manipulated to control the discharge of the contents of the container.
  • Another object of the invention is to provide a device of this kind which can be readily applied to the bottle of toilet water, lotion, etc. in place on the cap or other closure with which the bottle is provided at the time of purchase.
  • a further object of the invention is to provide a device of this kind wherein the construction is sufficiently simple and economical to produce to enable it to be supplied with the container in place of the ordinary cap or other closure, or, if desired, built into the container as a permanent part thereof.
  • Figs. 1 and 2 are views the device in closed and open positions, respectively;
  • Fig. 3 is a view similar to Fig. 2 showing a very slightly changed form of the device in open position;
  • Figs. 4 and 5 are similar views of another modification, in closed and open positions, respectively;
  • Fig. 6 is a sectional view taken on line 66 of Fig. 4;
  • Figs. 7 and 8 are views similar to Figs. 1 and 2 showing a still further modification
  • Fig. 9 is a sectional view taken on line 9-9 of Fig. 1;
  • Fig. 10 is a sectional view taken on line 10-10 of Fig. 7.
  • the device comprises a generally cylindrical body member, or fixed part 44, a spout or nozzle member indicated generally by reference numeral 40, having at its outer or upper end a discharge aperture 4b, and an associated valve seat surrounding the inner periphery of this aperture, together with a central post 5b supporting at its outer end a valve member 6b, the end of the fixed post itself being rounded to constitute this valve member.
  • nozzle member 40 is a substantially rigid cylindrical member, as illustrated in Figs. 1 and 2, although in Fig. 3
  • Such rigid nozzle portion 45 (Figs. 1 and 2) is connected with the body member 44 by means of a longitudinally extending bellows sections 41, having bellows-like formations therein with alternate inwardly and outwardly projecting folds 42. and 43.
  • This bellows section renders the nozzle end portion 45 movable both longitudinally and laterally.
  • the inner surface of such nozzle end portion is conical forming a cam surface 29c, and the bellows-like portion 41 of the nozzle being both flexible and resilient, tends to urge the end portion of the nozzle and the fixed post 5b in opposite directions so as to cause the valve 4b, 6b to be biased to closed position as shown in Fig. 1.
  • the bellows construction referred to renders the nozzle both axially and laterally displaceable, and inasmuch as it is made of resilient material the spout member is also resilient in both of these directions.
  • the spout members shown in each of Figs. l-10 are made of any suitable flexible and resilient material, and advantageously are made of nylon plastic although they may also be made of other plastic, such as polyethylene or of thin resilient metal.
  • the body portion 44 of the device is formed by enlarging the lower portion of spout member 40, that is, these parts are integral with one another. This body portion is fittedclosely, with a force or push fit, onto the outer cylindrical surface of a collar member 46 by which the discharge mechanism may be removably connected to the neck 47 of the container by means of the screw threads shown, or otherwise.
  • the post member 5b is advantageously made integral with a base flange or base portion 48, formed integrally with the upper end of collar 46.
  • the flow of the material from the container to the discharge aperture 4b is upwardly through a set of four passageways 49 which extend through the base flange 48 adjacent the base of post 5b so that the material may flow upwardly in the annular space between this post and the nozzle member 40 as indicated by the arrows.
  • Fig. 2 which shows the device in open position
  • the opening action is obtained by pressing with the fingers on the side of the spout or nozzle member 40 in any direction.
  • This opening movement causes the inner conical or cam surface 290 of the end portion of the nozzle to slide on the rounded outer end 6b of the post and open the discharge aperture 4b, inasmuch as cam surface 290 is in contact with the rounded outer end 6b of the post when the spout and post are in coaxial position, i. e. even when the post closes the discharge aperture 4b (Fig. 1).
  • the resilient construction of the nozzle member 40 resulting from the cylindrical bellows formation permits not only the tilting of the nozzle, but also the necessary axially outward movement of the outer end portion 45. It will be understood that upon release of the pressure at the side of the nozzle it will automatically return to closed position by the natural resilient nature of the material of which the nozzle is made and the cam action of the coacting surfaces of 290 and 6b.
  • annular space intermediate the post and spout member serves in the various forms of the discharge mechanism to permit the tilting movement required to open the nozzle mechanism, and in addition also to serve as the flow space for the material between the neck of the container and the discharge opening of the nozzle.
  • Fig. 3 the construction shown in Fig. 3, is similar to that just described.
  • the outer end of the post member 50 is formed with a conical valve portion 6c having a pointed tip and constructed to cooperate with a smaller discharge opening 4c.
  • the spout or nozzle member 40a is formed as a smooth cylinder without the cylindrical bellows-like formation of Figs. 1 and 2.
  • the interconnection of the base of the nozzle with the body portion 44a is by means of what may be described as a radial type of bellows, indicated generally by numeral 50.
  • Such a radial bellows construction includes a downwardly or inwardly projecting fold 51 from the lower end of the cylindrical spout member 40a and continuing into an upwardly extending cylindrical portion 52 which may be approximately one-quarter the height of the spout member. At the upper end of cylindrical portion 52 there is a second upwardly extending fold 53 which joins it with a downwardly flared conical skirt portion 54. This lower end of this skirt joins integrally with the body section 44a.
  • the two folds 51 and 53 will provide sufficient axial flexibility as well as lateral flexibility to permit the axial and lateral displacements of the upper end portion 44b which are required in shifting such upper end from the central or closed position to the open position as shown in Fig. 3.
  • a solid post instead of a solid post, the form shown in Figs. 4- and 5 is provided with a hollow post 5d.
  • This post has a cylindrical bore 55 extending from bottom to top within the upper end of which a plug type valve 6d slides.
  • This valve is urged upwardly by means of a coil spring 56 which is seated at the bottom of bore 55 on a ledge surrounding a central opening 57.
  • This opening is necessary for the admission of the contents of the container to the interior of bore 55, and in order to allow the material to flow past the plug valve 6d it is made of generally triangular shape in cross section, as shown in Fig. 6, with the apexes of the triangular formation rounded to fit the surface of bore 55, and with the flat sides spaced from the walls of the bore to form flow passages.
  • Valve 6a and spring 56 are preferably of metal.
  • the upper end of the valve member is a pointed cone so as to close a small aperture 40 the same as in the device of Fig. 3, although a larger discharge aperture, and a corresponding change in the valve form can be made, if desired.
  • the opening of this mechanism is by a tilting movement of the spout member 40a as in the other forms, but it is not necessary for the outer end 45 of the nozzle member to move axially inasmuch as the required relative motion is provided by the sliding valve member 6d.
  • the discharge mechanism construction here shown is intended for use where some degree of pressure exists within the container upon which the mechanism is mounted. Such pressure might be due to the incorporation in the container of a volatile propellant for the purpose of discharging the contents in the form of a spray, foam, lather, etc.
  • the post 5e carries at its upper end a small valve member 58 which is placed horizontally instead of vertically and cooperates with a. small lateral discharge aperture 59 provided in the side wall of the spout or nozzle member 40b adjacent the end thereof.
  • the discharge is therefore lateral instead of axial.
  • the opening of the valve is caused by tilting the nozzle 40]) as in the other constructions, although it is necessary to place an indicator on the end of the nozzle to show in which, direction the nozzle should be tilted.
  • the post Se is rigid and may be supported as described in connection with Figs. 1 and 2. As shown, it has a bore 59 extending from end to end for the flow of the container contents to the discharge aperture, although perforations may be made around the base of the post and the flow permitted through the space between the post and interior wall of the nozzle, as shown in Figs. 1, 2 and 3, and also in the earlier figures.
  • the valve 58 is preferably provided with an integral supporting disc 60 and, to mount the valve, a cross bore 61 is provided at the top of post 5e slightly larger in diameter than the disc 69.
  • This bore 61 is open at its left-hand end, but is not cut entirely through at the right end, leaving a thin vertical wall 62.
  • the shank of the valve 58 is inserted through a small aperture made in this wall, and the valve is held in place by means of a coil spring 63.
  • Spring 63 not only holds the valve in place, but projects from the left-hand open end of cross bore 61 and engages the interior wall of the nozzle or spout member 4%. This spring therefore tends to return the spout member to vertical position in axial alignment with the post 5e to close the valve after the nozzle member has been tilted to the right in open position, as shown in Fig. 8.
  • the extent of tilting movement required for the opening of the valve in this form of the invention is small, and is provided for by the flexibility of a small radial flange portion 64 which is formed on the lower end of spout or nozzle member 40b and joins in the base of this nozzle to the body portion 44a.
  • a discharge mechanism for containers comprising a fixed part, a post member fixed at its inner end to said part and projecting outwardly therefrom, a valve member adjacent the outer end of said post, a spout member surrounding and in spaced relation to said post and forming an annular passage therewith, said spout member having a discharge aperture adjacent its outer end and a seat for said valve member associated with said aperture, said spout member being displaceable to a tilting position with respect to said post, said spout member having a flexible resilient bellows section intermediate its outer end and said fixed part urging the said post and spout memher in opposite axial directions and towards coaxial position with respect to said post to close the said discharge aperture, and an interior cam surface at the outer end of said spout member in engagement with said valve member when said post and spout members are in coaxial position so that when a lateral force is applied to tilt the spout member the interaction of said cam surface with said valve member causes a combined lateral and longitudinal movement of the
  • a discharge mechanism for containers comprising a fixed part, a post member fixed at its inner end to said part and projecting outwardly therefrom, a valve member adjacent the outer end of said post, a spout member surrounding said post and forming an annular passage therewith, said spout member having a discharge aperture adjacent its outer end and a seat for said valve member associated with said aperture, said spout member being displaceable to a tilting position with respect to said post, said spout member having an enlarged base portion joining it to said fixed part, the inner end of the spout member and said enlarged base portion being interconnected by a flexible resilient section urging said post and spout member in opposite axial directions and towards coaxial position with respect to said post to close the said discharge aperture, and an interior cam surface at the outer end of said spout member in engagement with said valve member when said post and spout members are in coaxial position so that when a lateral force is applied to tilt the spout member the interaction of said cam surface with said valve

Description

A ril 22, 1958 T. F. SCHLICKSUPP 2,831,620
SELF-SEALING CLOSURE MECHANISM FOR LIQUIDS Filed July 19, 1954 2 Sheets -Sheet 2 INVENTOR.
THEODORE F. SCHLICKSUPP HIS ATTORNEYS SELF-SEALING CLOSURE MECHANISM FOR LIQUIDS Theodore F. Schlirksupp, Long Island City, N. Y. Application July 19, 1954, Serial No. 444,115
4 Claims. (Cl. 222-517) This invention relates to devices for closing containers of various kinds from which liquids are to be dispensed, and, more particularly, it relates to a discharge mechanism which is self-sealing or self-closing so that the container can not be unintentionally left open after use.
The discharge mechanism of the invention is intended to be used in connection with containers for liquids, creams, toilet water, skin lotions, perfume, and the like, where conservation of the liquid is essential, and also with containers charged with a volatile propellant under suitable pressure.
The primary object of the invention is to provide a discharge mechanism which provides a tight closure so as to reduce evaporization to a minimum, and which at the same time can be easily manipulated to control the discharge of the contents of the container.
Another object of the invention is to provide a device of this kind which can be readily applied to the bottle of toilet water, lotion, etc. in place on the cap or other closure with which the bottle is provided at the time of purchase.
A further object of the invention is to provide a device of this kind wherein the construction is sufficiently simple and economical to produce to enable it to be supplied with the container in place of the ordinary cap or other closure, or, if desired, built into the container as a permanent part thereof.
The construction of the improved discharge mechanism of the invention will be understood from a consideration of the accompanying drawings and the following detailed description of the several embodiments illustrated therein.
In these drawings:
Figs. 1 and 2 are views the device in closed and open positions, respectively;
Fig. 3 is a view similar to Fig. 2 showing a very slightly changed form of the device in open position;
Figs. 4 and 5 are similar views of another modification, in closed and open positions, respectively;
Fig. 6 is a sectional view taken on line 66 of Fig. 4;
Figs. 7 and 8 are views similar to Figs. 1 and 2 showing a still further modification;
Fig. 9 is a sectional view taken on line 9-9 of Fig. 1; and
Fig. 10 is a sectional view taken on line 10-10 of Fig. 7.
Referring now to these drawings, the device comprises a generally cylindrical body member, or fixed part 44, a spout or nozzle member indicated generally by reference numeral 40, having at its outer or upper end a discharge aperture 4b, and an associated valve seat surrounding the inner periphery of this aperture, together with a central post 5b supporting at its outer end a valve member 6b, the end of the fixed post itself being rounded to constitute this valve member. At least the outer end portion 45 of nozzle member 40 is a substantially rigid cylindrical member, as illustrated in Figs. 1 and 2, although in Fig. 3
life ates Patent A O this rigid portion 45b is much longer and extends'approximately the entire length of the nozzle.
Such rigid nozzle portion 45 (Figs. 1 and 2) is connected with the body member 44 by means of a longitudinally extending bellows sections 41, having bellows-like formations therein with alternate inwardly and outwardly projecting folds 42. and 43. This bellows section renders the nozzle end portion 45 movable both longitudinally and laterally. The inner surface of such nozzle end portion is conical forming a cam surface 29c, and the bellows-like portion 41 of the nozzle being both flexible and resilient, tends to urge the end portion of the nozzle and the fixed post 5b in opposite directions so as to cause the valve 4b, 6b to be biased to closed position as shown in Fig. 1.
The bellows construction referred to renders the nozzle both axially and laterally displaceable, and inasmuch as it is made of resilient material the spout member is also resilient in both of these directions. The spout members shown in each of Figs. l-10 are made of any suitable flexible and resilient material, and advantageously are made of nylon plastic although they may also be made of other plastic, such as polyethylene or of thin resilient metal.
The body portion 44 of the device is formed by enlarging the lower portion of spout member 40, that is, these parts are integral with one another. This body portion is fittedclosely, with a force or push fit, onto the outer cylindrical surface of a collar member 46 by which the discharge mechanism may be removably connected to the neck 47 of the container by means of the screw threads shown, or otherwise.
The post member 5b is advantageously made integral with a base flange or base portion 48, formed integrally with the upper end of collar 46.
The flow of the material from the container to the discharge aperture 4b is upwardly through a set of four passageways 49 which extend through the base flange 48 adjacent the base of post 5b so that the material may flow upwardly in the annular space between this post and the nozzle member 40 as indicated by the arrows.
Referring to Fig. 2 which shows the device in open position, the opening action is obtained by pressing with the fingers on the side of the spout or nozzle member 40 in any direction. This opening movement causes the inner conical or cam surface 290 of the end portion of the nozzle to slide on the rounded outer end 6b of the post and open the discharge aperture 4b, inasmuch as cam surface 290 is in contact with the rounded outer end 6b of the post when the spout and post are in coaxial position, i. e. even when the post closes the discharge aperture 4b (Fig. 1). The resilient construction of the nozzle member 40 resulting from the cylindrical bellows formation permits not only the tilting of the nozzle, but also the necessary axially outward movement of the outer end portion 45. It will be understood that upon release of the pressure at the side of the nozzle it will automatically return to closed position by the natural resilient nature of the material of which the nozzle is made and the cam action of the coacting surfaces of 290 and 6b.
It will be understood that the annular space intermediate the post and spout member serves in the various forms of the discharge mechanism to permit the tilting movement required to open the nozzle mechanism, and in addition also to serve as the flow space for the material between the neck of the container and the discharge opening of the nozzle.
With certain exceptions, the construction shown in Fig. 3, is similar to that just described. Thus, the outer end of the post member 50 is formed with a conical valve portion 6c having a pointed tip and constructed to cooperate with a smaller discharge opening 4c. Also, the spout or nozzle member 40a is formed as a smooth cylinder without the cylindrical bellows-like formation of Figs. 1 and 2. Also, the interconnection of the base of the nozzle with the body portion 44a is by means of what may be described as a radial type of bellows, indicated generally by numeral 50.
Such a radial bellows construction includes a downwardly or inwardly projecting fold 51 from the lower end of the cylindrical spout member 40a and continuing into an upwardly extending cylindrical portion 52 which may be approximately one-quarter the height of the spout member. At the upper end of cylindrical portion 52 there is a second upwardly extending fold 53 which joins it with a downwardly flared conical skirt portion 54. This lower end of this skirt joins integrally with the body section 44a.
With the spout or nozzle member 40a and its integral parts molded for nylon, the two folds 51 and 53 will provide sufficient axial flexibility as well as lateral flexibility to permit the axial and lateral displacements of the upper end portion 44b which are required in shifting such upper end from the central or closed position to the open position as shown in Fig. 3.
In the modified form of the device shown in Figs. 4 and the construction of the spout or nozzle member 40a is identical with that just described including the construction of its lower end with the formation 50 which has been referred to as a radial form of bellows. The only difference between these two modifications is in the construction of the post and valve members.
Instead of a solid post, the form shown in Figs. 4- and 5 is provided with a hollow post 5d. This post has a cylindrical bore 55 extending from bottom to top within the upper end of which a plug type valve 6d slides. This valve is urged upwardly by means of a coil spring 56 which is seated at the bottom of bore 55 on a ledge surrounding a central opening 57. This opening is necessary for the admission of the contents of the container to the interior of bore 55, and in order to allow the material to flow past the plug valve 6d it is made of generally triangular shape in cross section, as shown in Fig. 6, with the apexes of the triangular formation rounded to fit the surface of bore 55, and with the flat sides spaced from the walls of the bore to form flow passages. Valve 6a and spring 56 are preferably of metal. The upper end of the valve member is a pointed cone so as to close a small aperture 40 the same as in the device of Fig. 3, although a larger discharge aperture, and a corresponding change in the valve form can be made, if desired.
The opening of this mechanism is by a tilting movement of the spout member 40a as in the other forms, but it is not necessary for the outer end 45 of the nozzle member to move axially inasmuch as the required relative motion is provided by the sliding valve member 6d.
Referring now to Figs. 7, 8 and 10, the discharge mechanism construction here shown is intended for use where some degree of pressure exists within the container upon which the mechanism is mounted. Such pressure might be due to the incorporation in the container of a volatile propellant for the purpose of discharging the contents in the form of a spray, foam, lather, etc.
In this form of the mechanism the post 5e carries at its upper end a small valve member 58 which is placed horizontally instead of vertically and cooperates with a. small lateral discharge aperture 59 provided in the side wall of the spout or nozzle member 40b adjacent the end thereof. The discharge is therefore lateral instead of axial.
The opening of the valve is caused by tilting the nozzle 40]) as in the other constructions, although it is necessary to place an indicator on the end of the nozzle to show in which, direction the nozzle should be tilted. The post Se is rigid and may be supported as described in connection with Figs. 1 and 2. As shown, it has a bore 59 extending from end to end for the flow of the container contents to the discharge aperture, although perforations may be made around the base of the post and the flow permitted through the space between the post and interior wall of the nozzle, as shown in Figs. 1, 2 and 3, and also in the earlier figures.
The valve 58 is preferably provided with an integral supporting disc 60 and, to mount the valve, a cross bore 61 is provided at the top of post 5e slightly larger in diameter than the disc 69. This bore 61 is open at its left-hand end, but is not cut entirely through at the right end, leaving a thin vertical wall 62. The shank of the valve 58 is inserted through a small aperture made in this wall, and the valve is held in place by means of a coil spring 63. Spring 63 not only holds the valve in place, but projects from the left-hand open end of cross bore 61 and engages the interior wall of the nozzle or spout member 4%. This spring therefore tends to return the spout member to vertical position in axial alignment with the post 5e to close the valve after the nozzle member has been tilted to the right in open position, as shown in Fig. 8.
The extent of tilting movement required for the opening of the valve in this form of the invention, is small, and is provided for by the flexibility of a small radial flange portion 64 which is formed on the lower end of spout or nozzle member 40b and joins in the base of this nozzle to the body portion 44a.
It will be understood that changes may be made in the construction and arrangement of the parts of the closure mechanism of the invention, which changes are intended to be included as part of the invention if they are within the terms of the appended claims.
it will also be understood that the form of the invention shown in Figs. 7 and 8, instead of being removably attached to the container in the manner shown in the drawings, or otherwise, may be built into the container structure itself thereby eliminating the necessity for a screw thread or similar attachment, and it will be understood further that in the forms of construction which include a movable valve, namely, Figs. 4 and 5, the flow of the contents to the discharge aperture may be, at least in part, through hollow post 5d.
I claim:
1. A discharge mechanism for containers comprising a fixed part, a post member fixed at its inner end to said part and projecting outwardly therefrom, a valve member adjacent the outer end of said post, a spout member surrounding and in spaced relation to said post and forming an annular passage therewith, said spout member having a discharge aperture adjacent its outer end and a seat for said valve member associated with said aperture, said spout member being displaceable to a tilting position with respect to said post, said spout member having a flexible resilient bellows section intermediate its outer end and said fixed part urging the said post and spout memher in opposite axial directions and towards coaxial position with respect to said post to close the said discharge aperture, and an interior cam surface at the outer end of said spout member in engagement with said valve member when said post and spout members are in coaxial position so that when a lateral force is applied to tilt the spout member the interaction of said cam surface with said valve member causes a combined lateral and longitudinal movement of the outer end of said spout member thereby opening said discharge aperture.
2. A discharge mechanism as set forth in claim 1 wherein the outer end of the spout member has an interior conical surface forming a cam surface which is in operative engagement with the outer end of said post when the post and spout members are in coaxial position.
3. A discharge mechanism as claimed in claim 1 in which the spout member is of substantially rigid tubular form and the flexible resilient bellows section thereof is a radial formation connecting the inner end of said spout member and the fixed part and rendering the spout member flexible and resilient both laterally and longitudinally for coaction with the fixed post.
4. A discharge mechanism for containers comprising a fixed part, a post member fixed at its inner end to said part and projecting outwardly therefrom, a valve member adjacent the outer end of said post, a spout member surrounding said post and forming an annular passage therewith, said spout member having a discharge aperture adjacent its outer end and a seat for said valve member associated with said aperture, said spout member being displaceable to a tilting position with respect to said post, said spout member having an enlarged base portion joining it to said fixed part, the inner end of the spout member and said enlarged base portion being interconnected by a flexible resilient section urging said post and spout member in opposite axial directions and towards coaxial position with respect to said post to close the said discharge aperture, and an interior cam surface at the outer end of said spout member in engagement with said valve member when said post and spout members are in coaxial position so that when a lateral force is applied to tilt the spout member the interaction of said cam surface with said valve member causes a combined lateral and longitudinal movement of the outer end of said spout member thereby opening said discharge aperture.
References Cited in the file of this patent UNITED STATES PATENTS 1,418,592 McGee June 6, 1922 1,958,434 Hartog May 15, 1934 2,107,106 Crook Feb. 1, 1938 2,223,854 Peaster Dec. 3, 1940 2,591,465 Popofi Apr. 1, 1952 2,614,732 Pararra Oct. 21, 1952 2,615,597 Tomasek et al. Oct. 28, 1952 2,641,376 Parziale et a1. June 9, 1953 U. S. DEPARTMENT OF COMMERCE PATENT OFFICE CERTIFICATE OF CORRECTION Patent No 2,831,620 Theodore F. Schlicksupp. April 22, 1958 It is hereby certified that error appears in the printed specification of the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 1, line 34, for "on the" read of the column 3, line 19, for "for nylon read from Nylon Signed and sealed this 27th day of May 1958.,
(SEAL) Attest:
KARL AXL INE I ROBERT c. WATSON Attestlng Officer Comnissioner of Patents
US444115A 1954-07-19 1954-07-19 Self-sealing closure mechanism for liquids Expired - Lifetime US2831620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US444115A US2831620A (en) 1954-07-19 1954-07-19 Self-sealing closure mechanism for liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US444115A US2831620A (en) 1954-07-19 1954-07-19 Self-sealing closure mechanism for liquids

Publications (1)

Publication Number Publication Date
US2831620A true US2831620A (en) 1958-04-22

Family

ID=23763566

Family Applications (1)

Application Number Title Priority Date Filing Date
US444115A Expired - Lifetime US2831620A (en) 1954-07-19 1954-07-19 Self-sealing closure mechanism for liquids

Country Status (1)

Country Link
US (1) US2831620A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974835A (en) * 1959-02-12 1961-03-14 Milton B Herbrick Self-sealing receptacle closure
US3128016A (en) * 1961-02-16 1964-04-07 Jr Gustave L Ferri Container with dispensing spout
US3191622A (en) * 1963-05-02 1965-06-29 Sunbeam Corp Dispensing valve
US3193154A (en) * 1961-05-17 1965-07-06 Frank T Johmann Closure means
US3221952A (en) * 1963-11-27 1965-12-07 Halkey Roberts Corp Dispensing container closure
DE1222397B (en) * 1961-06-09 1966-08-04 Helmut Bross Dipl Ing Container closure with expandable removal tube
US3273757A (en) * 1964-10-30 1966-09-20 Lenard E Moen Fluid dispenser with support therefor
US3285477A (en) * 1965-04-01 1966-11-15 Gen Foods Corp Liquid metering dispenser
US3506165A (en) * 1968-03-27 1970-04-14 Walter C Beard Valve mechanism
US3637118A (en) * 1970-02-09 1972-01-25 John Petrocy Self-closing liquid dispenser
DE1775974B1 (en) * 1967-04-07 1973-04-19 Walter C Beard Inc Tilt valve for dispensing a flowable material under pressure in a container
JPS49125193A (en) * 1972-08-15 1974-11-29
FR2449612A1 (en) * 1979-02-20 1980-09-19 Oreal Stopper for pressurised bottle - has flexible delivery duct with fixed finger releasably closing valve
EP0045384A1 (en) * 1980-08-05 1982-02-10 Luigi Del Bon Self-closing tilting valve
US4707279A (en) * 1986-11-19 1987-11-17 Walls Gary C Self-seating valve with compressive release
US5265777A (en) * 1992-05-18 1993-11-30 Primary Delivery Systems, Inc. Push-push tilting dispensing cap system
DE19638602A1 (en) * 1995-10-31 1997-05-15 Fritz Meckenstock Discharge valve for hand-operated pump
US20070116509A1 (en) * 2005-11-18 2007-05-24 Robert Lin Collapsible squeeze tube
US20130043284A1 (en) * 2011-08-15 2013-02-21 Jackson W. Wegelin Dispenser with multi-directional pushbar
WO2018217641A1 (en) * 2017-05-25 2018-11-29 GCP Applied Technologies, Inc. Expanding nozzle for component additions in a concrete truck, and method and system for use of same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1418592A (en) * 1922-06-06 Necticut
US1958434A (en) * 1933-02-06 1934-05-15 American Tube And Cap Corp Closure for containers
US2107106A (en) * 1937-04-30 1938-02-01 James M Crook Closure for containers of liquid or semiliquid substances
US2223854A (en) * 1939-05-11 1940-12-03 Milton E Peaster Antileak nozzle
US2591465A (en) * 1949-09-14 1952-04-01 Popoff Vladimir Dispensing cap having cam actuated closure
US2614732A (en) * 1948-06-23 1952-10-21 Pararra Lefer Inc Moistureproof salt shaker
US2615597A (en) * 1948-09-27 1952-10-28 Reddi Wip Inc Dispensing valve for liquid and gas containers
US2641376A (en) * 1949-04-12 1953-06-09 Parziale Joseph Dispensing caps for bottles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1418592A (en) * 1922-06-06 Necticut
US1958434A (en) * 1933-02-06 1934-05-15 American Tube And Cap Corp Closure for containers
US2107106A (en) * 1937-04-30 1938-02-01 James M Crook Closure for containers of liquid or semiliquid substances
US2223854A (en) * 1939-05-11 1940-12-03 Milton E Peaster Antileak nozzle
US2614732A (en) * 1948-06-23 1952-10-21 Pararra Lefer Inc Moistureproof salt shaker
US2615597A (en) * 1948-09-27 1952-10-28 Reddi Wip Inc Dispensing valve for liquid and gas containers
US2641376A (en) * 1949-04-12 1953-06-09 Parziale Joseph Dispensing caps for bottles
US2591465A (en) * 1949-09-14 1952-04-01 Popoff Vladimir Dispensing cap having cam actuated closure

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974835A (en) * 1959-02-12 1961-03-14 Milton B Herbrick Self-sealing receptacle closure
US3128016A (en) * 1961-02-16 1964-04-07 Jr Gustave L Ferri Container with dispensing spout
US3193154A (en) * 1961-05-17 1965-07-06 Frank T Johmann Closure means
DE1222397B (en) * 1961-06-09 1966-08-04 Helmut Bross Dipl Ing Container closure with expandable removal tube
US3191622A (en) * 1963-05-02 1965-06-29 Sunbeam Corp Dispensing valve
US3221952A (en) * 1963-11-27 1965-12-07 Halkey Roberts Corp Dispensing container closure
US3273757A (en) * 1964-10-30 1966-09-20 Lenard E Moen Fluid dispenser with support therefor
US3285477A (en) * 1965-04-01 1966-11-15 Gen Foods Corp Liquid metering dispenser
DE1775974B1 (en) * 1967-04-07 1973-04-19 Walter C Beard Inc Tilt valve for dispensing a flowable material under pressure in a container
US3506165A (en) * 1968-03-27 1970-04-14 Walter C Beard Valve mechanism
US3637118A (en) * 1970-02-09 1972-01-25 John Petrocy Self-closing liquid dispenser
JPS49125193A (en) * 1972-08-15 1974-11-29
FR2449612A1 (en) * 1979-02-20 1980-09-19 Oreal Stopper for pressurised bottle - has flexible delivery duct with fixed finger releasably closing valve
US4389004A (en) * 1980-08-05 1983-06-21 Bon Luigi Del Self-closing tilting valve
EP0045384A1 (en) * 1980-08-05 1982-02-10 Luigi Del Bon Self-closing tilting valve
US4541550A (en) * 1980-08-05 1985-09-17 Luigi Del Bon Self-closing tilting valve
US4707279A (en) * 1986-11-19 1987-11-17 Walls Gary C Self-seating valve with compressive release
US5265777A (en) * 1992-05-18 1993-11-30 Primary Delivery Systems, Inc. Push-push tilting dispensing cap system
DE19638602A1 (en) * 1995-10-31 1997-05-15 Fritz Meckenstock Discharge valve for hand-operated pump
US20070116509A1 (en) * 2005-11-18 2007-05-24 Robert Lin Collapsible squeeze tube
US20130043284A1 (en) * 2011-08-15 2013-02-21 Jackson W. Wegelin Dispenser with multi-directional pushbar
US9060654B2 (en) * 2011-08-15 2015-06-23 Gojo Industries, Inc. Dispenser with multi-directional pushbar
WO2018217641A1 (en) * 2017-05-25 2018-11-29 GCP Applied Technologies, Inc. Expanding nozzle for component additions in a concrete truck, and method and system for use of same
CN110913993A (en) * 2017-05-25 2020-03-24 Gcp应用技术有限公司 Expansion nozzle for component addition in concrete delivery vehicles and method and system for using same
JP2020521652A (en) * 2017-05-25 2020-07-27 ジーシーピー・アプライド・テクノロジーズ・インコーポレーテッド Expansion nozzle for component chemical additives in concrete trucks and method and apparatus for the use thereof
EP3630364A4 (en) * 2017-05-25 2021-03-17 GCP Applied Technologies Inc. Expanding nozzle for component additions in a concrete truck, and method and system for use of same
CN110913993B (en) * 2017-05-25 2021-08-03 Gcp应用技术有限公司 Expansion nozzle for component addition in concrete delivery vehicles and method and system for using same
US11358166B2 (en) * 2017-05-25 2022-06-14 Gcp Applied Technologies Inc. Expanding nozzle for component additions in a concrete truck, and method and system for use of same
AU2018273349B2 (en) * 2017-05-25 2023-06-08 GCP Applied Technologies, Inc. Expanding nozzle for component additions in a concrete truck, and method and system for use of same

Similar Documents

Publication Publication Date Title
US2831620A (en) Self-sealing closure mechanism for liquids
US2994461A (en) Dispensing apparatus
US3749286A (en) Actuator cap with actuation disabling means
JP2005305433A (en) Pushbutton
US3400997A (en) Squeeze container applicator
FR2598101B1 (en) NOZZLE FOR DISPENSING A FOAMING PRODUCT
US3887116A (en) Receptacle for liquid material
JP2005087736A (en) Packaging and dispensing device for cosmetics
US3255933A (en) Dispensing container with bellows
US4964548A (en) Dispensing closure having an interior sealing sleeve, a threaded sleeve engaging a threaded tube, and stop blocks limiting twisting of the closure cap
US3201013A (en) Dispensing and closure cap for containers
US2889086A (en) Dispensing valve with stem sealing means
US4993600A (en) Liquid dispenser pump
US2695737A (en) Self-sealing closure mechanism for liquids
US1861442A (en) Self closing stopper for receptacles
US4522318A (en) Discharge valve for use in a pressurized container
JPH0159186B2 (en)
US3788528A (en) Mini dropper
US3029742A (en) Dispensing pump for fluids
US2811390A (en) Aerosol valve assembly
US3278096A (en) Combination cap for containers
US3550813A (en) Hand-held dispenser for mixing fluids
US3264676A (en) Spin welded package
US3356441A (en) Applicator with cap closed valves
US2045926A (en) Dispenser