US2828413A - Self-contained antenna-radio system in which a split conductive container forms a dipole antenna - Google Patents

Self-contained antenna-radio system in which a split conductive container forms a dipole antenna Download PDF

Info

Publication number
US2828413A
US2828413A US592797A US59279756A US2828413A US 2828413 A US2828413 A US 2828413A US 592797 A US592797 A US 592797A US 59279756 A US59279756 A US 59279756A US 2828413 A US2828413 A US 2828413A
Authority
US
United States
Prior art keywords
radio
antenna
containers
container
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US592797A
Inventor
Fritz K Bowers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Priority to US592797A priority Critical patent/US2828413A/en
Application granted granted Critical
Publication of US2828413A publication Critical patent/US2828413A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • This invention relates to antenna systems and more particularly to an antenna system for portable radio communication devices of minimum size.
  • Radio equipments have in the past been provided with loop antennas which in some instances partly surround the 'equipments active elements.
  • a loop antenna is, however, responsive to magnetic fields. Radio waves employed for communication are characterized, for most efilcientpropagation near the earths surface, in having a great preponderance of their magnetic 'field strength residing in horizontally polarized waves. Hence, for most edective radio communications, any such loop antenna must be oriented in an essentially vertical plane. Without undue wiring complications a loop antenna so oriented has a response pattern that is nonuniform in a'horizontal plane. This pattern imposes upon the operator of a radio equipment provided with a simple loop antenna the requirement that he take care to orient the equipment properly with respect to a particular transmitting or receiving station with which it is desired to maintain communications.
  • This object is achieved, in accordance with a feature of the invention, by providing an electrical iiel'd-respnosive antenna adapted for enclosing its associated radio apparatus.
  • FIG. 1 shows in approximate full scale a radio receiver 1 which has its components arranged in two groups 2 and 2 within two enclosed, conductive containers 3 and 3'.
  • the first group of such components .2 constitutes the radio frequency detecting and amplifying stages of the radio receiver and the second group of components '2' makeup the power supply and low frequency output stages of the receiver, including aloudspeaker 4.
  • The'conductive containers thus function to prevent unwanted electromagnetic radiation from interfering with the operation of the radio receiver as well as to preclude mutual interference between the two groups of radio components.
  • the lirstcon'tainer is placed below the second and separated from it .a convenient distance, say one-eighth inch, by a sheet of dielectric material J5 which thus serves to lend physical strength to the structure. Other considerations may indicate in other embodiments an air separation of the two containers.
  • a radio frequency transformer T having a primary winding P and a secondary winding S, is enclosed within the lower container.
  • the primary winding P has one terminal 12 connected to the upper containers conductive surface and its second terminal 11 connected to the lower containers surface.
  • the two conductive containers are interconnected through the inductive impedance element which constitutes the primary of the transformer "T.
  • the secondary of this transformer is connected to other receiver elements 2, not shown in detail, in a fashion well known in the art for connecting antenna coupling transformers.
  • a radio transmitter 13 radiates high frequency electromagnetic energy having an electric field componentparallel to the axis on which the two conductive containers are arranged one above the other. is coupled .from the two containers through the transformer to the amplifying sections 2 and '2' of the radio receiver.
  • the containers constitute a dipole antenna and the transformer constitutes a familiar input stage to the receiver.
  • An insulated cable 6, having three illustrative conductors 7, 8 and 9, provides requisite low frequency electric paths between the two groups of components.
  • the invention provides no radio frequency insulation between the components and their respective containers. Accordingly the conductors might serve as radio frequency paths of flow impedance to bypass voltages impressed upon the transformer primary P. This possibility is eliminated in two ways.
  • the conductor 7 is wound turn for turn with the transformer primary P, that is to say, the primary coil has a bifilar winding.
  • the conductor 7 serves as an additional inductive impedance path for the primary with respect to radio frequency fields. At the same time it ofiers little impedance to low frequency currents.
  • the conductors 8 and 9 are provided with radio frequency choke coils 8 and 9' suitably wound to present very high impedances to electric currents in the frequency range of the transmitter 13. These coils, however, present very low impedances to low frequency currents which pass through conductors 8 and 9. Hence, radio frequency potential differences are maintained between the two containers but low frequency currents pass freely between the receiver component groups.
  • the containers are embedded in a plastic coating 14 having appropriate openings 15 to couple acoustic radiations from the loudspeaker to the atmosphere.
  • a conductive shield 16 of substantial dimensions is provided adjacent both the conductive containers but is separated therefrom by the plastic coating 14.
  • the intercontainer capacitance efiectively connected in shunt with the transformers primary winding P, is variable in the presence of movable objects, e. g.,-a human body.
  • -A capacitance so connected affects the resonant frequency of the receiver in put transformer.
  • the conductive shield 16 by its large area and fixed separation from the containers, protects the receiver from the capacitance varying effects of movable objects to one side.
  • the shield is interposed between the wearer and the receiver.
  • a connecting lead 17 is passed through an insulating bushing 19' to interconnect the shield 16 with the center tap C of the transformer primary winding.
  • This center tap connection tends to stabilize the electrical potential reference level of the radio receiver and its containers. Thus the overall stability of the receiving system is improved.
  • the invention encompasses not only a radio receiver, but a transmitter or transmitter-receiver, as well.
  • the loudspeaker 4 becomes a microphone or a microphone-speaker;
  • the low frequency output stages included in the upper component group 2 may comprise modulating circuitry; and
  • the radio frequency stages of the lower component group 2 may perform reverse order amplification to couple energy to the antenna instead of from it.
  • the invention comprehends employment of the antenna-receiver in orientations other than vertical.
  • the small size of radio equipment in accordance with the invention permits an operator a simple control of output volume merely by twisting the equipment to a new orientation with respect to vertically polarized waves.
  • the invention may be employed in an environment removed from the earths surface where electric waves of any polarization are freely propagated.
  • stations 13 and 13 which respectively radiate vertically and horizontally polarized electric waves
  • the operator may select between the two stations by a mere hand rotation of a receiver constructed in accordance with the invention to the orien tation indicated to select the desired station.
  • a first conductive container having a substantially closed surface
  • a second conductive container having a substantially closed surface
  • said second container being disposed in spaced relation with said first container
  • an impedance element interconnected between said first container surface and said second container surface
  • said containers act as elements of a dipole antenna electromagnetically to couple said impedance element to free space
  • a radio frequency translating system having a terminal stage and comprising a plurality of components, said components being disposed within said containers, whereby said containers shield said system from stray electromagnetic radiation
  • means for coupling said terminal stage to said impedance element whereby said translating system is coupled to free space, and in combination therewith a conductive sheet fixedly mounted in proximity to said containers thereby to establish a substantially fixed reactive coupling between said containers.
  • Radio communication apparatus which comprises a source for radiating electromagnetic energy into space, said energy having a fixed axis of polarization, a pair of substantially closed conductive containers fixedly mounted in spaced relation along an axis rotatable with respect to said fixed axis, impedance means for interconnecting said containers, a radio receiving system consisting in a plurality of components disposed within both of said containers, said system comprising a terminal stage, means for coupling said impedance element to said terminal stage, whereby said system is coupled to said source in dependence upon the alinement of said rotatable axis with said fixed axis.
  • Radio communication apparatus comprising a first substantially closed conductive container, a second substantially closed conductive container mounted in spaced relation with said first container, a radio frequency impedance element interconnecting said containers, a radio frequency translating system having a plurality of components disposed in at least two groups, a first one of said groups being enclosed within said first container and the second one of said groups being enclosed within said second container, 9. terminal element connected to said translating system, and means for coupling said impedance element to said terminal clement, whereby said translating system is coupled to free space.
  • Radio communication apparatus comprising a first substantially closed conductive container, a second substantially closed conductive container mounted in spaced relation with said first container, a radio frequency impedance element interconnecting said containers, a radio frequency translating system having a plurality of components disposed in at least two groups, the first one of said groups being enclosed within said first container and having at least one component connected for radio frequencies to said first container, and a second one of said groups being enclosed within said second container and having at least one component connected for radio frequencies to said second container, a terminal element connected to said translating system, means for coupling said impedance element to said terminal element, whereby said translating system is coupled to free space, and in combination therewith a radio frequency choke interconnecting said container-connected components, thereby to provide a low impedance path for low frequency currents between said last-named components.
  • Radio communication apparatus comprising a first substantially closed conductive container, asecond substantially closed conductive container mounted in spaced relation with said first container, a radio frequency impedance element interconnecting said containers, a radio frequency tranlsating system having a plurality of components disposed in at least two groups, the first one of said groups being enclosed within said first container and having at least one component connected for radio frequencies to said first container, and a second one of said groups being enclosed within said second container and having at least one component connected for radio frequencies to said second container, a terminal element connected to said translating system, and means for coupling said impedance element to said terminal element wherein said radio frequency element comprises a bifilar coil having one conductor interconnecting said last-named components thereby to provide a low frequency path between said last-named components and to couple said translating system to free space at radio frequencies through said last-named components.

Description

March 25, 1958- El as 2,828,413
BOW SELF-CONTAINED ANTENNA-RADIO SYSTEM IN WHICH A SPLIT CONDUCTIVE CONTAINER FORMS A DIPOLE ANTENNA Filed June 21, 1956 Mum/r00 f. A. BOWE/PS A T TORNEV States SELF-CONTAINED ANTENNA-RADIO SYSTEM IN WHICH A SPLIT CONDUCTIVE CONTAINER FORlVIS A DIPOLE ANTENNA Application June 2 1, 1956, Serial No. 592,797 5 Cla'ims. (Cl. 259-26) This invention relates to antenna systems and more particularly to an antenna system for portable radio communication devices of minimum size.
A severe impediment 'to complete portability of radio communication apparatus has existed in the past. This impediment has arisen from an inability to provide an elfective antenna of a 'size commensurate with the miniature radio receivers and transmitters made possible by progress in other radio system components.
Radio equipments have in the past been provided with loop antennas which in some instances partly surround the 'equipments active elements. A loop antenna is, however, responsive to magnetic fields. Radio waves employed for communication are characterized, for most efilcientpropagation near the earths surface, in having a great preponderance of their magnetic 'field strength residing in horizontally polarized waves. Hence, for most edective radio communications, any such loop antenna must be oriented in an essentially vertical plane. Without undue wiring complications a loop antenna so oriented has a response pattern that is nonuniform in a'horizontal plane. This pattern imposes upon the operator of a radio equipment provided with a simple loop antenna the requirement that he take care to orient the equipment properly with respect to a particular transmitting or receiving station with which it is desired to maintain communications.
Other radio systems have taken advantage of the fact "that the vertical electrical fields of radio waves propagated near the earths surface tend to be of greater strength than electrical fields of other polarizations and, accordingly, have provided vertical antennas as a means to couple one radio apparatus with another through free space. A vertical electric antenna has a uniform response pattern in a horizontal plane, i. e., the plane of the earths surface. Thus it does not require any particular orientation with respect to another station on the earths surface. Vertical antennas as they have been embodied in prior radio systems, however, have proven cumbersome or fragile through being disproportionally large, in one dimension at least, with respect to the radio apparatus with which they operate.
As a net result the portability of miniature radio apparatus has been hampered severely in the past, on the one hand by the necessity of properly orienting the antenna and, on the other, by the physical unwieldiness of a disproportionally large electric field responsive antenna.
It is an object of this invention to minimize the size of portable radio communication apparatus and to eliminate from such apparatus any requirement for a par ticular azimuthal orientation with respect to a companion communication station. This object is achieved, in accordance with a feature of the invention, by providing an electrical iiel'd-respnosive antenna adapted for enclosing its associated radio apparatus.
This and other objects of the invention will become more clear from a consideration of the following detailed description and sectioned perspective drawing of .an illustra't'ive embodiment of the invention.
adult 0 This drawing shows in approximate full scale a radio receiver 1 which has its components arranged in two groups 2 and 2 within two enclosed, conductive containers 3 and 3'. In this illustrative embodiment the first group of such components .2 constitutes the radio frequency detecting and amplifying stages of the radio receiver and the second group of components '2' makeup the power supply and low frequency output stages of the receiver, including aloudspeaker 4. 'The'conductive containers thus function to prevent unwanted electromagnetic radiation from interfering with the operation of the radio receiver as well as to preclude mutual interference between the two groups of radio components.
The lirstcon'tainer is placed below the second and separated from it .a convenient distance, say one-eighth inch, by a sheet of dielectric material J5 which thus serves to lend physical strength to the structure. Other considerations may indicate in other embodiments an air separation of the two containers.
A radio frequency transformer T, having a primary winding P and a secondary winding S, is enclosed within the lower container. The primary winding P has one terminal 12 connected to the upper containers conductive surface and its second terminal 11 connected to the lower containers surface. Thus the two conductive containers are interconnected through the inductive impedance element which constitutes the primary of the transformer "T. The secondary of this transformer .is connected to other receiver elements 2, not shown in detail, in a fashion well known in the art for connecting antenna coupling transformers.
A radio transmitter 13 radiates high frequency electromagnetic energy having an electric field componentparallel to the axis on which the two conductive containers are arranged one above the other. is coupled .from the two containers through the transformer to the amplifying sections 2 and '2' of the radio receiver. Thus the containers constitute a dipole antenna and the transformer constitutes a familiar input stage to the receiver.
An insulated cable 6, having three illustrative conductors 7, 8 and 9, provides requisite low frequency electric paths between the two groups of components. Toward minimizing the size of the assembled equipment, the invention provides no radio frequency insulation between the components and their respective containers. Accordingly the conductors might serve as radio frequency paths of flow impedance to bypass voltages impressed upon the transformer primary P. This possibility is eliminated in two ways. The conductor 7 is wound turn for turn with the transformer primary P, that is to say, the primary coil has a bifilar winding. Thus the conductor 7 serves as an additional inductive impedance path for the primary with respect to radio frequency fields. At the same time it ofiers little impedance to low frequency currents. For a like purpose the conductors 8 and 9 are provided with radio frequency choke coils 8 and 9' suitably wound to present very high impedances to electric currents in the frequency range of the transmitter 13. These coils, however, present very low impedances to low frequency currents which pass through conductors 8 and 9. Hence, radio frequency potential differences are maintained between the two containers but low frequency currents pass freely between the receiver component groups.
In order to give physical rigidity to this structure the containers are embedded in a plastic coating 14 having appropriate openings 15 to couple acoustic radiations from the loudspeaker to the atmosphere.
A conductive shield 16 of substantial dimensions is provided adjacent both the conductive containers but is separated therefrom by the plastic coating 14. As is well This Jfield component known in the radio art, the intercontainer capacitance, efiectively connected in shunt with the transformers primary winding P, is variable in the presence of movable objects, e. g.,-a human body. -A capacitance so connected affects the resonant frequency of the receiver in put transformer. The conductive shield 16, by its large area and fixed separation from the containers, protects the receiver from the capacitance varying effects of movable objects to one side. Thus in this illustrative equipment adapted to be carried in a mans shirt pocket, the shield is interposed between the wearer and the receiver.
A connecting lead 17 is passed through an insulating bushing 19' to interconnect the shield 16 with the center tap C of the transformer primary winding. This center tap connection tends to stabilize the electrical potential reference level of the radio receiver and its containers. Thus the overall stability of the receiving system is improved.
While the above-described illustrative embodiment of procity is applicable to antennas generally. Hence, the
invention encompasses not only a radio receiver, but a transmitter or transmitter-receiver, as well. In such embodiments the loudspeaker 4 becomes a microphone or a microphone-speaker; the low frequency output stages included in the upper component group 2 may comprise modulating circuitry; and the radio frequency stages of the lower component group 2 may perform reverse order amplification to couple energy to the antenna instead of from it.
Further, the invention comprehends employment of the antenna-receiver in orientations other than vertical. Near the earths surface where vertical electric fields must be employed for effective communication, the small size of radio equipment in accordance with the invention permits an operator a simple control of output volume merely by twisting the equipment to a new orientation with respect to vertically polarized waves.
Similarly the invention may be employed in an environment removed from the earths surface where electric waves of any polarization are freely propagated. Thus referring to the figure showing stations 13 and 13 which respectively radiate vertically and horizontally polarized electric waves, the operator may select between the two stations by a mere hand rotation of a receiver constructed in accordance with the invention to the orien tation indicated to select the desired station.
What is claimed is:
1. In apparatus for communication by radio waves, the combination which comprises a first conductive container having a substantially closed surface, a second conductive container having a substantially closed surface, said second container being disposed in spaced relation with said first container, an impedance element interconnected between said first container surface and said second container surface, whereby said containers act as elements of a dipole antenna electromagnetically to couple said impedance element to free space, a radio frequency translating system having a terminal stage and comprising a plurality of components, said components being disposed within said containers, whereby said containers shield said system from stray electromagnetic radiation, means for coupling said terminal stage to said impedance element, whereby said translating system is coupled to free space, and in combination therewith a conductive sheet fixedly mounted in proximity to said containers thereby to establish a substantially fixed reactive coupling between said containers.
- 2. Radio communication apparatus which comprises a source for radiating electromagnetic energy into space, said energy having a fixed axis of polarization, a pair of substantially closed conductive containers fixedly mounted in spaced relation along an axis rotatable with respect to said fixed axis, impedance means for interconnecting said containers, a radio receiving system consisting in a plurality of components disposed within both of said containers, said system comprising a terminal stage, means for coupling said impedance element to said terminal stage, whereby said system is coupled to said source in dependence upon the alinement of said rotatable axis with said fixed axis.
3. Radio communication apparatus comprising a first substantially closed conductive container, a second substantially closed conductive container mounted in spaced relation with said first container, a radio frequency impedance element interconnecting said containers, a radio frequency translating system having a plurality of components disposed in at least two groups, a first one of said groups being enclosed within said first container and the second one of said groups being enclosed within said second container, 9. terminal element connected to said translating system, and means for coupling said impedance element to said terminal clement, whereby said translating system is coupled to free space.
4. Radio communication apparatus comprising a first substantially closed conductive container, a second substantially closed conductive container mounted in spaced relation with said first container, a radio frequency impedance element interconnecting said containers, a radio frequency translating system having a plurality of components disposed in at least two groups, the first one of said groups being enclosed within said first container and having at least one component connected for radio frequencies to said first container, and a second one of said groups being enclosed within said second container and having at least one component connected for radio frequencies to said second container, a terminal element connected to said translating system, means for coupling said impedance element to said terminal element, whereby said translating system is coupled to free space, and in combination therewith a radio frequency choke interconnecting said container-connected components, thereby to provide a low impedance path for low frequency currents between said last-named components.
5. Radio communication apparatus comprising a first substantially closed conductive container, asecond substantially closed conductive container mounted in spaced relation with said first container, a radio frequency impedance element interconnecting said containers, a radio frequency tranlsating system having a plurality of components disposed in at least two groups, the first one of said groups being enclosed within said first container and having at least one component connected for radio frequencies to said first container, and a second one of said groups being enclosed within said second container and having at least one component connected for radio frequencies to said second container, a terminal element connected to said translating system, and means for coupling said impedance element to said terminal element wherein said radio frequency element comprises a bifilar coil having one conductor interconnecting said last-named components thereby to provide a low frequency path between said last-named components and to couple said translating system to free space at radio frequencies through said last-named components.
References Cited in the file of this patent UNITED STATES PATENTS 2,272,839 Hammond Feb. 10, 1942, 2,513,157 Ferris et al. June 27, 1950 2,521,423 Stuck Sept. 5, 1950 2,619,589 Florac Nov. 25, 1952 2,632,849 Fyler Mar. 24, 1953 2,714,625 Gould Aug. 2, 1955 FOREIGN PATENTS 585,791 Great Britain Feb. 25, 1947 585,792. Great Britain Feb. 25, 1947
US592797A 1956-06-21 1956-06-21 Self-contained antenna-radio system in which a split conductive container forms a dipole antenna Expired - Lifetime US2828413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US592797A US2828413A (en) 1956-06-21 1956-06-21 Self-contained antenna-radio system in which a split conductive container forms a dipole antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US592797A US2828413A (en) 1956-06-21 1956-06-21 Self-contained antenna-radio system in which a split conductive container forms a dipole antenna

Publications (1)

Publication Number Publication Date
US2828413A true US2828413A (en) 1958-03-25

Family

ID=24372102

Family Applications (1)

Application Number Title Priority Date Filing Date
US592797A Expired - Lifetime US2828413A (en) 1956-06-21 1956-06-21 Self-contained antenna-radio system in which a split conductive container forms a dipole antenna

Country Status (1)

Country Link
US (1) US2828413A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968037A (en) * 1957-04-08 1961-01-10 Thomas F Thompson High frequency receiving antenna
US3056951A (en) * 1958-05-06 1962-10-02 Doris H Tooni Safe alarm system
US3307108A (en) * 1960-05-23 1967-02-28 Patelhold Patentverwertung Spherical doublet antenna with transmission line feed at current nodal points
US3497808A (en) * 1966-03-28 1970-02-24 South Bay Associates Acceleration sensitive locating transmitter
US3736591A (en) * 1970-10-30 1973-05-29 Motorola Inc Receiving antenna for miniature radio receiver
US3980952A (en) * 1975-04-07 1976-09-14 Motorola, Inc. Dipole antenna system having conductive containers as radiators and a tubular matching coil
US4344184A (en) * 1980-07-31 1982-08-10 Cetec Corporation Wireless microphone
EP0117283A1 (en) * 1983-01-28 1984-09-05 Robert Bosch Gmbh Dipole antenna for a portable radio apparatus
US4471493A (en) * 1982-12-16 1984-09-11 Gte Automatic Electric Inc. Wireless telephone extension unit with self-contained dipole antenna
US4491843A (en) * 1981-01-23 1985-01-01 Thomson-Csf Portable receiver with housing serving as a dipole antenna
US4494095A (en) * 1981-11-20 1985-01-15 Alps Electric Co., Ltd. High frequency circuit shielding structure having tuning coils double shielded
US4504834A (en) * 1982-12-22 1985-03-12 Motorola, Inc. Coaxial dipole antenna with extended effective aperture
US4827272A (en) * 1984-06-04 1989-05-02 Davis Murray W Overhead power line clamp and antenna
EP0622864A1 (en) * 1993-04-28 1994-11-02 Casio Computer Co., Ltd. Antenna apparatus capable of producing desirable antenna radiation patterns without modifying antenna structure
US5365595A (en) * 1993-02-19 1994-11-15 Motorola, Inc. Sealed microphone assembly
US5771441A (en) * 1996-04-10 1998-06-23 Altstatt; John E. Small, battery operated RF transmitter for portable audio devices for use with headphones with RF receiver
US6031492A (en) * 1996-06-10 2000-02-29 Ericsson Inc. Mobile cradle antenna and heat sink enhancement
USD427182S (en) * 1999-04-30 2000-06-27 Triton Network Systems, Inc. Integrated antenna and housing for electronics
US6930260B2 (en) 2001-02-28 2005-08-16 Vip Investments Ltd. Switch matrix
US20070183449A1 (en) * 2005-09-07 2007-08-09 Vantage Controls, Inc. Radio frequency multiple protocol bridge
US7307542B1 (en) 2003-09-03 2007-12-11 Vantage Controls, Inc. System and method for commissioning addressable lighting systems
US7394451B1 (en) 2003-09-03 2008-07-01 Vantage Controls, Inc. Backlit display with motion sensor
US7755506B1 (en) 2003-09-03 2010-07-13 Legrand Home Systems, Inc. Automation and theater control system
US20170117622A1 (en) * 2015-10-27 2017-04-27 Microsoft Technology Licensing, Llc Batteries as antenna for device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272839A (en) * 1938-11-23 1942-02-10 Jr John Hays Hammond Radiant energy signaling system
GB585792A (en) * 1942-04-17 1947-02-25 Alwyn Douglas Crow Improvements in or relating to projectiles
GB585791A (en) * 1942-04-17 1947-02-25 Alwyn Douglas Crow Improvements in or relating to projectiles
US2513157A (en) * 1943-03-17 1950-06-27 Us Navy Nose structure for projectiles
US2521423A (en) * 1947-05-08 1950-09-05 Electronics Systems Corp Miniature radio receiver
US2619589A (en) * 1950-07-29 1952-11-25 Aircall Inc Radio receiver
US2632849A (en) * 1949-10-11 1953-03-24 Motorola Inc Television antenna
US2714625A (en) * 1950-10-27 1955-08-02 Sidney H Gould Television cabinets

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272839A (en) * 1938-11-23 1942-02-10 Jr John Hays Hammond Radiant energy signaling system
GB585792A (en) * 1942-04-17 1947-02-25 Alwyn Douglas Crow Improvements in or relating to projectiles
GB585791A (en) * 1942-04-17 1947-02-25 Alwyn Douglas Crow Improvements in or relating to projectiles
US2513157A (en) * 1943-03-17 1950-06-27 Us Navy Nose structure for projectiles
US2521423A (en) * 1947-05-08 1950-09-05 Electronics Systems Corp Miniature radio receiver
US2632849A (en) * 1949-10-11 1953-03-24 Motorola Inc Television antenna
US2619589A (en) * 1950-07-29 1952-11-25 Aircall Inc Radio receiver
US2714625A (en) * 1950-10-27 1955-08-02 Sidney H Gould Television cabinets

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968037A (en) * 1957-04-08 1961-01-10 Thomas F Thompson High frequency receiving antenna
US3056951A (en) * 1958-05-06 1962-10-02 Doris H Tooni Safe alarm system
US3307108A (en) * 1960-05-23 1967-02-28 Patelhold Patentverwertung Spherical doublet antenna with transmission line feed at current nodal points
US3497808A (en) * 1966-03-28 1970-02-24 South Bay Associates Acceleration sensitive locating transmitter
US3736591A (en) * 1970-10-30 1973-05-29 Motorola Inc Receiving antenna for miniature radio receiver
US3980952A (en) * 1975-04-07 1976-09-14 Motorola, Inc. Dipole antenna system having conductive containers as radiators and a tubular matching coil
US4344184A (en) * 1980-07-31 1982-08-10 Cetec Corporation Wireless microphone
US4491843A (en) * 1981-01-23 1985-01-01 Thomson-Csf Portable receiver with housing serving as a dipole antenna
US4494095A (en) * 1981-11-20 1985-01-15 Alps Electric Co., Ltd. High frequency circuit shielding structure having tuning coils double shielded
US4471493A (en) * 1982-12-16 1984-09-11 Gte Automatic Electric Inc. Wireless telephone extension unit with self-contained dipole antenna
US4504834A (en) * 1982-12-22 1985-03-12 Motorola, Inc. Coaxial dipole antenna with extended effective aperture
US4590614A (en) * 1983-01-28 1986-05-20 Robert Bosch Gmbh Dipole antenna for portable radio
EP0117283A1 (en) * 1983-01-28 1984-09-05 Robert Bosch Gmbh Dipole antenna for a portable radio apparatus
US4827272A (en) * 1984-06-04 1989-05-02 Davis Murray W Overhead power line clamp and antenna
US5365595A (en) * 1993-02-19 1994-11-15 Motorola, Inc. Sealed microphone assembly
US5977917A (en) * 1993-04-28 1999-11-02 Casio Computer Co., Ltd. Antenna apparatus capable of producing desirable antenna radiation patterns without modifying antenna structure
EP0622864A1 (en) * 1993-04-28 1994-11-02 Casio Computer Co., Ltd. Antenna apparatus capable of producing desirable antenna radiation patterns without modifying antenna structure
US5771441A (en) * 1996-04-10 1998-06-23 Altstatt; John E. Small, battery operated RF transmitter for portable audio devices for use with headphones with RF receiver
US6031492A (en) * 1996-06-10 2000-02-29 Ericsson Inc. Mobile cradle antenna and heat sink enhancement
USD427182S (en) * 1999-04-30 2000-06-27 Triton Network Systems, Inc. Integrated antenna and housing for electronics
US7361853B2 (en) 2001-02-28 2008-04-22 Vantage Controls, Inc. Button assembly with status indicator and programmable backlighting
US7432460B2 (en) 2001-02-28 2008-10-07 Vantage Controls, Inc. Button assembly with status indicator and programmable backlighting
US20070209916A1 (en) * 2001-02-28 2007-09-13 Clegg Paul T Button assembly with status indicator and programmable backlighting
US20070209913A1 (en) * 2001-02-28 2007-09-13 Clegg Paul T Button assembly with status indicator and programmable backlighting
US20070209912A1 (en) * 2001-02-28 2007-09-13 Clegg Paul T Button assembly with status indicator and programmable backlighting
US7432463B2 (en) 2001-02-28 2008-10-07 Vantage Controls, Inc. Button assembly with status indicator and programmable backlighting
US6930260B2 (en) 2001-02-28 2005-08-16 Vip Investments Ltd. Switch matrix
US7414210B2 (en) 2001-02-28 2008-08-19 Vantage Controls, Inc. Button assembly with status indicator and programmable backlighting
US7394451B1 (en) 2003-09-03 2008-07-01 Vantage Controls, Inc. Backlit display with motion sensor
US7307542B1 (en) 2003-09-03 2007-12-11 Vantage Controls, Inc. System and method for commissioning addressable lighting systems
US7755506B1 (en) 2003-09-03 2010-07-13 Legrand Home Systems, Inc. Automation and theater control system
US20070183449A1 (en) * 2005-09-07 2007-08-09 Vantage Controls, Inc. Radio frequency multiple protocol bridge
US7778262B2 (en) 2005-09-07 2010-08-17 Vantage Controls, Inc. Radio frequency multiple protocol bridge
US20170117622A1 (en) * 2015-10-27 2017-04-27 Microsoft Technology Licensing, Llc Batteries as antenna for device
US10090589B2 (en) * 2015-10-27 2018-10-02 Microsoft Technology Licensing, Llc Batteries as antenna for device

Similar Documents

Publication Publication Date Title
US2828413A (en) Self-contained antenna-radio system in which a split conductive container forms a dipole antenna
US3721989A (en) Cross loop antenna
US10546686B2 (en) Antenna system for near-field magnetic induction wireless communications
US3495264A (en) Loop antenna comprising plural helical coils on closed magnetic core
US4278980A (en) Antenna input circuit for radio receiver
CA1310147C (en) Antenna for cordless telephone system
GB714974A (en) Antenna system combinations and arrays
US3017633A (en) Linearly polarized spiral antenna system and feed system therefor
US3879735A (en) Broadband antenna systems with isolated independent radiators
US3396398A (en) Small unidirectional antenna array employing spaced electrically isolated antenna elements
GB814310A (en) Improvements in or relating to highly active wide-band absorbers for short radio waves
US3961331A (en) Lossy cable choke broadband isolation means for independent antennas
GB1018861A (en) Open ring antenna
US2981950A (en) Electrostatically-shielded loop antenna
JPS5763941A (en) Radio transmitter and receiver
US3980952A (en) Dipole antenna system having conductive containers as radiators and a tubular matching coil
GB921950A (en) Broad band loop antenna
GB1079048A (en) Improvements in or relating to antennas
US3217274A (en) Impedance matching balun having quarter wavelength conductors
US5050236A (en) Radio frequency field strength enhancer
GB881644A (en) Decoupled horizontally and vertically polarized antenna
GB811823A (en) Improvements in or relating to radio communication apparatus
US3403402A (en) Fm isolation transformer coupling to dual frequency transmitter antenna
JPS56144645A (en) Diversity antenna device for portable radio equipment
GB784807A (en) Improvements in or relating to aerials