Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2804848 A
Publication typeGrant
Publication date3 Sep 1957
Filing date30 Sep 1954
Priority date30 Sep 1954
Publication numberUS 2804848 A, US 2804848A, US-A-2804848, US2804848 A, US2804848A
InventorsMatthew O'farrell, Rudy Stephen J
Original AssigneeChicago Pneumatic Tool Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Drilling apparatus
US 2804848 A
Abstract  available in
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Sept. 3, 1957 M, O'FARRELL ET AL 2,804,848

DRILLING APPARATUS Filed Sept. 30. 1954 5 Sheets-Sheet l M1 5745/ 01/2/9254 4 SZEPAi/Y a. la/ r (p -W m ATTORNEYI Sept. 3, 1957 M. O'FARRELL ET AL 2,804,848

DRILLING APPARATUS Filed Sept. 30, 1954 5 Sheets-Sheet 2 T1 :rEu.

grip/sf J A 00) Wei/9. m

ATTORNEYI Sept- 1957 M. O'FARRELL ET AL 2,804,848

DRILLING APPARATUS 5 Sheets-Sheet 3 ATTORNEY:

5 Sheets-Sheet 4 Sept. 3, 1957 M. O'FARRELL' ET AL DRILLING APPAFAKATUS iled Sept. 30, 1954 Sept. 3, 1957 M. OFARRELL ET AL DRILLING APPARATUS 5 Sheets-Sheet 5 Tiled Sept. 30, 1954 DRILLING APPARATUS Matthew OFarrell, Utica, and Stephen J. Rudy, Yonkers,

N. Y., assignors to Chicago Pneumatic Tool (Company, 7 New York, N. Y,, a corporation of New Jersey This invention relates to drilling apparatus, and more particularly to a feed leg arrangement for drilling tools.

United States Patent "ice longitudinal section;

In the rock drilling art, particularly where stoper drills are used, variousrtypes of feeding mechanisms have been designed for the purpose of advancing the drilling tool toward the work surface as drilling progresses. One type of feeding mechanism comprises a feed leg; which incorporates expansible chamber elements telescopically arranged, and which are operated by fluid pressure to urge one of the elements against the ground, or other supporting surface, whereby the reactive force can be utilized for the purpose of causing feeding movement of the drilling tool.

The present invention represents an improvement in such type of feeding mechanism and briefly, comprises three telescopic cylinders arranged so that the innermost cylinder is adapted to contact a supporting surface, while the outer cylinder is attached to the body of the drilling tool. An elongated center portion, affixed to the body of the drilling tool, extends within the cylinders to provide means for an automatic distribution of pressure fluid, whereby the outer cylinder will be operatively moved to ,full extension followed by movement of the intermediate, .cylinder to full extension. The effective pressure areas .of the cylinders are made as nearly equal aspossible so .that relative operative movement between the cylinders .will proceed under constant pressure for all practical purposes. The cylinders are arranged for positive limittation in fully extendedposition, and will quickly colvlapse upon release of fluid pressure therefrom. The over- .all assemblage is one of improved ruggedness, greater compactness and less complicationas compared with the ;prior art devices, as will be more apparent fromthe dis- .closure following. 1

The general object of this invention isto providea itelescopic feed leg for attachment to a drilling tool which will provide uniform feeding pressure.

Another object is to provide a telescopic feed leg .that can. be used in tandem, or in multiple, arrangement, .to obtain an extremely long drill feeding drive. i

A further object is to provide a telescopic feed leg that "is rugged, compact, smooth operating, and simple in de- ;SIgIl.

These and further objects and featuresof the invention will become apparent from the following disclosure when considered with the accompanying drawings wherein:

Figjl is a schematic illustration of a representative embodiment of a feed leg according to the invention, and showing the parts in non-operative, or collapsed condition;

Fig. 2 is similar to Fig. 1 but showing the parts in an intermediate state of operation, or expansion;

Fig. 3 is similar to Fig. 1 but showing the parts in fully expanded condition; v

Fig. 3a, is a cross-sectional view as seen from line 3a--3ain Fig.3; i

Fig. 4 is a schematicillustration of a modified; emi: 'bodirnentof a feed leg according to the'invention, and

. fully expanded condition;

235M348 Patented Sept. 3,

Fig. 7 is a plan view of a stoper drill having a tele-' scopic feed leg of the invention afiixed thereto;

Fig. 8 is an enlarged longitudinal section view of the telescopic feed leg of the tool in Fig. 7, the arrangement conforming substantially ,with the embodiment of Figs. 1 to 3;

Fig. 9 is a plan view of a modified stoper drill having telescopic feed legs of the invention applied on each side of the drill, and showing one of the feed legs in .Fig. .10 is a side view of the tool of Fig. 9, showing the feed leg in longitudinalsection; and

Fig; 11 is a broken plan view of. another modified stoper drill having three telescopic feed legs of the in: vention, one on each side and one concentrically located with respect to the axis of the tool. A

' Referring to Figs. 1 -3 of the drawings a general assembly 20 of an embodiment of the feed leg of the invention is shown therein in schematic form for an easy understanding of the principles of the invention. The feed leg comprises an outer cylinder 21, an intermediate. cylinder 22, and an inner cylinder 23, all slidably arranged for relative longitudinal movement. The outer cylinder 21 has a centrally disposed shaft, or stem, 24 which hasa head p.0rtion26, arranged to slidingly engage the inner surface of the cylinder 23. A head portion 27v is formed on the inner end of the intermediate cylinder 22, which has a centrally disposed hole 28, to slidingly receive the shaft 24. The head portion 26 has a plurality of vertical grooves 25 formed on its periphery, as seen in Fig. 3a, which provide venting of the region between head portion 26 and head portion 27. The inner cylinder 23, has a pointed head portion 29 at its lower end, which i adapted for abutment with the ground or other supporting surface. Outer cylinder 21 is aflixed to a head piece 31, which may be part of a drilling tool (not shown), or which may be attached to the latter.

An enclosed expansion chamber 32 is formed between the top of head portion 27 and the inside of the outer cylinder 21, while another enclosed expansion chamber 33 is formed between the bottom of the shaft head portion 26, and the inside of the inner cylinder 23. The chamber 33 when fully expanded includes the inside of intermediate cylinder 22, as best seen in .Fig. 3. An annular flange 34 is formed on the outer peripheryvof the inner cylinder 23 at the open end thereof, which flange 34 slidingly engages the inside'of the intermediate cylinder 22, while a similar annular flange 36 is formed on the inner periphery of the intermediate cylinder 22 at the open end thereof, flange 36 slidingly engaging the-outside of the inner cylinder 23 in an air tight manner. At' full expansion of the feed leg, the annular flanges 34, 36 abut each other, as seen in Fig. 3, and thereby positively limit the intermediate and inner cylinders against further relative longitudinal movement. A vent hole 35 is positioned in the intermediate cylinder 22'adjacent annular flange 36, to-vent the clearance space between the cylinders 22 and 23. V

A pressure fluid passageway 37 is arranged in the head piece 31, said passageway extending into the shaft 24 and terminating in radial ports 38, whereby pressure fluid, such as compressed air, is conducted into chamber 32. Another pressure fluid passageway 39 is arranged to extend through the head portion 26 and into the shaft 24, and terminate in radial ports 41, which are located rearward of the head portion 26 a distance somewhat greater than the thickness of the intermediate cylinder head portion 27. It will be seen in Figs. 2 and 3, that the arrangement of passageway 39 and' radial ports 41 is such as to afford communication between expansion chambers 32 and 33, in the Fig. 2 position and during later stages of feed leg expansion as illustrated. The passageway 39 and radial ports 41 also serve to transfer the pressure fluid entrapped in the space behind the head portion 26 and surrounding the shaft 24, into chamber 33, during initial feed leg expansion.

For purposes of which will later be discussed, the cross-sectional area of expansion chamber 32, i. e., area based upon interior diameter of outer cylinder 21 minus area of shaft 24, is made to be substantially equal to the average cross-sectional area of expansion chamber 33.

The operation, or expansion cycle, of the feed leg assembly 20 is as follows: Considering Fig. 1, compressed air, at say 90 p. s. i., is admitted to chamber 32 by way of passageway 37 and radial ports 38, resulting in the upward movement of the outer cylinder 21 and associated elements, viz., head piece 31 and aflixed tool (not shown), and shaft 24 Withhead piece 26. During this part of the expansion cycle the intermediate cylinder 22 does not move from original position, because of the absence of pressure fluid in chamber 33. The upward movement of the head portion 26, forces the air thereabove and surrounding the rod 24, into the chamber 33 via ports 41 and passageway 39. When the outer cylinder 21 approaches the position illustrated in Fig. 2, ports 41 will be open to the interior of chamber 32, whereupon pressure fluid from chamber 32 will flow into chamber 33 via passageway 39. Under such conditions the intermediate cylinder 22 will be caused to move upwardly, together with the outer cylinder 21, until the feed leg attains the maximum expansion condition as illustrated in Fig. 3. Since the cross-sectional areas of chambers 32 and 33 are substantially equal, feed leg expansion will proceed at substantially uniform pressure, throughout the complete expansion cycle. To collapse the feed leg, it is only required to release the air pressure via passageway 37, by suitable valve means (not shown), whereupon the chambers 32 and 33 will be evacuated, and the feed leg will collapse to the condition illustrated in Fig. l.

A feed leg assembly 40 which is a variation of the feed leg of the first form of invention is illustrated in Figs. 4 to 6; the main diflerence between this variation and the feed leg arrangement 20 is that the cylinder which corresponds to inner cylinder 23 is arranged exteriorly of the cylinder which corresponds to intermediate cylinder 22. Considering briefly the arrangement of the feed leg assembly 40, the outer cylinder 21 and associated parts, viz. head piece 31, shaft 24, head portion 26, passageways 37, 39 and radial ports 38, 41 are identical with the feed leg assembly 20. .An inner cylinder 42, having a head portion 27,'adapted to slidingly engage the inside surface of cylinder 21, is arranged with a major portion inside of an intermediate cylinder 43. The inner cylinder 42 has an annular flange 44 formed on the outer periphery and at the open end .thereof, which is adapted to slidingly engage the inside of the intermediate cylinder 43 in an air tight manner, while annular flange 46 is formed on the inner periphery and at the open end thereof, which flange 46 is adapted to slidingly engage the outside of the inner cylinder 42 in an air tight manner. A vent hole 45 is positioned in the cylinder 43 adjacent annular flange 46, to vent the clearance space between the cylinders 42 and 43. At full expansion of the feed leg, the annular flanges 44, 46 abut each other, as seen in Fig. 6, and thereby positively limit the intermediate and inner cylinders against further relative longitudinal movement. The feed leg assembly 40 is, provided with expansion chambers 32, 33, which are arranged in the same manner, and for the same purpose as the like chambers described in the feed leg assembly 20. Accordingly,

expansion in feed leg assembly 40, will proceed at constant pressure, as in the case of the feed leg assembly 26.

Referring now to Figs. 7 and 8, an embodiment of the invention is illustrated in the form of a feed leg assembly 47 aflixedly arranged concentric with the axis of a rock drill 48 of the stoper type. A feed leg control assembly 49 is arranged upon the drill 43 in the manner and for the purpose of controlling a feed leg assembly, as set forth in the U. S. Patent of M. OFarrell, No. 2,298,720 of October 13, 1942. A valve assembly 51 is threadably afiixed to the drill 48 at inlet port 52, for conducting water, or other fluid to the drill for hole clearing purposes, as is well known in the art.

The feed leg assembly 47 includes an outer cylinder 53, an intermediate cylinder 54- slidably arranged Within the outer cylinder, and an inner cylinder 56 slidably arranged within the intermediate cylinder. inner and intermediate cylinders 56 and 54 respectively are slidably supported upon a centrally disposed projecting member, or rod 57, which is of hollow construction, one end of which is rigidly affixed to a connecting piece 58. The connecting piece has a reduced diameter end portion 553 which is tightly fitted into an annular recess 61 formed on the backhead of the drill, and may be maintained in position by holding means, such as welding. A sleeve member 62, surrounds the end of the outer cylinder 54 and serves to maintain the latter upon the connecting piece 58, in the manner shown.

The rear end of the intermediate cylinder 54, has a head portion 63 to which is threadably aflixed a sleeve 64 which compressively maintains a cup leather washer 65 against an end shoulder 66 of the intermediate cylinder 54, said cup leather washer slidably engaging the inside surface of the outer cylinder 53 to provide an air tight seal. The forward end of the intermediate cylinder 54 has a sleeve 67 threadably aflixed thereto, and a further sleeve 68 threadably affixed to sleeve 67, in a manner as to positionally maintain a cup leather washer 69 in air tight engagement upon the outer surface of the inner cylinder 56.

The rear end of inner cylinder 56 has an increased diameter portion 71 which slidingly engages the inner surface of the intermediate cylinder 54, and which abuts an inner edge of the sleeve 67 at one extreme position of the inner cylinder. The forward end of inner cylinder 56 is of, reduced diameter, and threadably receives a hollow point element 72. Toward the forward end of the rod 57'is arranged an enlarged diameter portion 73 which slidingly engages the inside surface of the inner cylinder 56. A plurality of radially disposed holes 74 are formed in the rod 57 at a distance from the enlarged diameter portion 73, greater than the width of intermediate cylinder head portion 63 and the end of the sleeve 64. In other words, when the intermediate cylinder 54 is at extreme forward, or extended position upon the rod 57, the holes 74 will not be covered by the head portion 63, or any part of the sleeve 64. At the forward end of the rod 57, a horizontal passageway 76 is provided which connects the interior of the rod 57 with the interior of the inner cylinder 56.

Formed within the rock drill 48, and extending rearwardly from the feed leg control assembly 49, is a passageway 77 which conducts pressure fluid, such as compressed air, from the feed leg control assembly to the annular recess 61 in back head 69. The connecting piece 58 has a plurality of passageways 73 which conduct pressure fluid from the recess 61 to the variable volumelchamber formed between the outer cylinder 53 and the rod 57.

In arranging the various cylinders ofthe feed leg assembly 47, it is necessary for the effective internal cylinder areas to be nearly as equal as possible, that is, the area definedby the inside diameter of the outer cylinder 53 minus the area defined by the outside diameter of the rod 57, should be equal to the area defined by the inside diameter of the inner cylinder 56. If such balancing of areas is 'obs erved, the feed 'leg' will operate to provide constant holding pressure over its full range of expansion, as will be described hereinafter.

The operation of the feed leg assembly will be seen to involve two stages as follows: assume that the rock drill 48 is in position and drilling operation is about to commence, the feed leg control 49 is manipulated by the operator to cause live air to enter the annular recess 61 from passageway 77, and to flow into the interior of the outer cylinder 53, by way of the connecting piece passageways 78. As a result of air pressure built up within the outer cylinder, the intermediate cylinder 54 will be forced outwardly from the outer cylinder 53, or more "accurately speaking, since the intermediate cylinder head portion 63 is in contact with the end of'the inner cylinder 56 which is immovable due to engagement with the ground, the outer cylinder 53 together with the rod 57 will move upwardly relative to the ground upon intermediate and inner cylinders, thus forcing the rock drill toward the work surface;

' Such movement, constituting the first stage of feed leg expansion, will continue until the head portion 63 of the intermediate cylinder 54 abuts the enlarged diameter portion 73 of the rod 57, at which time the radial holes 74 will be uncovered thus completing the first'stage. The second stage of feed leg expansion begins when live air, within outer cylinder 53 flows through radial holes 74 and passageway 76 of the rod 57 and into the inner cylinder 56, in the region of the outer end thereof. As a result of air pressure built up within the inner cylinder, therod 57 wfll be forced upwardly within the inner cylinder relative the ground, and due to engagement between the diameter portion 73 with head portion 63 of the intermediate cylinder, the latter will be moved upwardly also. Such movement will continue until the increased diameter portion71 of the inner cylinder, abuts the inner end of intermediate cylinder sleeve 67, ending the'second stage of feed leg expansion, and resulting in the cylinders being restricted against further relative movement. 7

1 To collapse the extended cylinders, it is only necessary to release the air pressure in the annular recess 61 by manipulation of the feed leg control 49, whereupon the feed leg will collapse by movement of the cylinders toward original position due to action of gravity, ..or if the drill is being worked in a horizontal position, due

to movement of the rock drill by the tool operator, in-

Stage Cylinders Cylinders Stage begins Stage ends Moving Stationary when when- 1 s 54, 56 air enters 77, 7s 63 abuts 7s.

2 53, 54 56 64 uncovers 74..." 71 abuts 67.

Referring to Figs. 9 and 10, a rock drill 79 is shown having a pair of telescopic feed leg assemblies 81 arranged on each side of the rock drill, which feed leg assemblies have their respective axes in a plane coincident withthe axis of the rock drill. The rock drill 79 is of a common type hereinbefore referred to, and contains a feed leg control arrangement 82, which is usedby the tool operator to control flow of live air, via a passageway 83, into a feed leg assembly 81. It is pointed out that the feed leg assemblies 81 are identical in structure, hence whatever description is made of the feed leg illustrated inlongitudinal-section, will apply to the other feed leg as well. The feed leg assembly 81 is generally similar in structure to the feed leg assembly 47 above described,

and comprises an outer cylinder 84,anintermediate cylinder 86 'slidably arranged within the outer cylinder, an inner cylinder 87 slidably arranged within the intermediate cylinder, and a centrally disposed projecting member or rod 88. a

One end of the outer cylinder 84 has a reduced diameter portion 89 which is snugly maintained in a hole 91 formed in a front head casting 92 of the rock drill. Toward the other end of the outer cylinder 84, the latter is supported within a backhead portion 93 of the rock drill. 'The rod 88 has a shoulder portion 94 which abuts a shoulder 96 formed upon the interior of the outer cylinder .84, whereby turning of a nut 97 drawn against, afw'asher 100, pulls the rod and outer cylinder sojthat a collar on outer cylinder 84 seats against the back head portion 93. j i

The end of the inner cylinder 87 has a reduced dir ameter portion 98 which is snugly maintained by a nut 99'within a hole 101 formedin a feed piston cross head 102. The latter servesto couplethe respective endsof the inner cylinders 87, and has a centrally disposed point 103 for positionally supporting the 'assemblage upon the' ground. A passageway 104 in' the reduced diameter portion 98, extends from the inside of the inner cylinder 87 to the side of reduced diameter'pertion'9'8, is arranged for operation of a third feed leg, as will later be described; however, in the Fig. 9 embodiment of'the invention, the passageway 104 is closed as shown.

The intermediate cylinder 86 has a head portion 106' to which is threadablyaffixed a sleeve 107, which com-'- pressively maintains a cup leather washer 108 against an end shoulder-109 of the intermediate cylinder 86, said cup leather washer slidably engaging the inside surface of the outer cylinder 84 to provide an air tight seal. At the otherend of the intermediate cylinder 86, is thread-' ably arranged a sleeve 111, and a further sleeve 112 threadably affixed to sleeve 111 in .a'manner as to positionally maintain a cup leather washer 113' in air tight engagement upon the outer surface of the inner cylinder 87. V W I The inner cylinder 87 has an increased diameter portion 114 which slidingly engages the inner surface of the intermediate cylinder 86, and which abuts an inner edge of the sleeve 111 at a fully extended position of the inner cylinder. Toward the end of the rod 88 is arranged an enlarged diameter portion 116, which slidingly engages the inside surface of the inner cylinder 87. A plurality of radially disposed holes 117 are formed in the rod 88' at a distance from the enlarged diameter portion 116,

greater than the width of intermediate cylinder head portion 106 and the end of the sleeve 107. words, when the intermediate cylinder 86 is at extreme forward, or extended position upon the rod 88, the holes 117 will not be covered by the head portion 106, or any part of the sleeve 107. At the forward end ofthe rod v88, a horizontal passageway 118 is provided which con-' nects the interior of the rod 88 with theinterior'of the inner cylinder 87.

The passageway 83conductslive air, upon manipula sembly 81, as in the case of the feed leg assembly 47, it is necessary for the effective internal cylinder areas to' be nearly as equal as possible, that is, the area defined' by the inside diameter of the outer cylinder 84 minus the area defined by the outside diameter of the rod 88, should be equal to the area defined by the inside diameter of the nner cylinder 87. If such balancing of areasis ob In other served, the feed leg will operate to provide constant holding pressure over its full range of expansion.

The operation of the feed leg assembly 81, is similar to that of the feed leg assembly 47, it being noted however that the pair of feed leg assemblies 81 operate simultaneously throughout the full range of expansion thereof. Expansion of a feed leg assembly 81 occurs in two stages, the first stage beginning when live air enters each feed leg assembly via passageway 83, recess 119, holes 121, recess 122 and passageways 123, to the interior of the outside cylinder 84 in the region of sleeve 107, thereby causing longitudinal movement of the outer cylinder 84 and rod 88 relative to the intermediate and inner cylinders 86, 87. As a result, the rock drill 79 is forced in the direction of the work surface, assuming of course, that the point 103 is in solid engagement with the ground. Such movement continues until the head portion 106 of the intermediate cylinder abuts the enlarged diameter portion 116 of the rod, thus completing the first stage of feed leg expansion. The second stage of feed leg expansion begins when the radial holes 117 are uncovered, and live air flows to the interior of the inner cylinder 87, via passageway 118. As a result, longitudinal movement is effected between the inner cylinder 87 on the one hand, and the rod 88, intermediate cylinder 86 and outer cylinder 84 on the other hand, so that the rock drill 79 is further forced in the direction of the work surface. Such movement will continue until the increased diameter portion 114 abuts the inner end of the intermediate cylinder sleeve 111, ending the second stage of feed leg expansion, and resulting in the cylinders against further relative movement. To collapse the extended cylinders, it is only necessary to release the air pressure in the passageways 83, by manipulation of the feed leg control 82, whereupon the feed leg will collapse by movement of the cylinders toward original position due to action of gravity.

The relative positions of the various cylinders of each feed leg assembly 81, relative to the drill 79, during the two stages of feed leg expansion, are summarized in the following chart:

In Fig. 11 is illustrated a further modified rock drill assemblage which is identical in all respects with that illustrated in Figs. 9 and and described above, with the exception that a third feed leg assembly 124, is arrangedconcentric with the rock drill axis, in place of the cross head 102 and point 103. The feed leg assembly 124, has the same arrangement of cylinders as feed leg assemblies 47 and 81, with very little difference in structure, such differences relating in general to structural proportions, and method of mounting.

Feed leg assembly 124 includes an outer cylinder 126 supported in a cross head piece 127, and which is surrounded by a casing 128 connected to the cross head piece 127, an intermediate cylinder 129, an inner cylinder 131, and a centrally arranged projecting member, or rod 132. The casing 128 is spaced from the outer cylinder 126, to provide clearance for fiow of live air from passageway 104, and a passageway 133 arranged in the cross head piece 127. Such air flow enters the outer cylinder 126 byway of holes 134 arranged near the end thereof. A head portion 136 is arranged at one end of the intermediate cylinder, which threadably supports a sleeve member 137 for use in maintaining a cup leather washer 138 in engagement with the inside of the outer cylinder 126. At the other end :of the intermediate cylinder are threadably arranged two sleeves 139, 141, which positionally maintain acup leather washer 142 for sliding engagement on the outer surface of the inner cylinder 131.

The inner cylinder 131 has an enlarged diameter portion 143 which is adapted to abut the inner edge of the sleeve 139 when the inner cylinder is fully extended during feed leg expansion, while the rod 132 has an enlarged diameter portion 144 which is adapted to abut the head portion 136 of the intermediate cylinder 129, when the latter has been fully extended during feed leg expansion. A plurality of vertical slots 145 are formed on the periphery of the enlarged diameter portion 144, to vent the region between portion 144 and head portion 136. The inner cylinder 131 has a point member 146 on the outer end thereof for engagement with the ground or other supporting surface during drilling operations. A plurality of radially disposed holes 147 are arranged in the rod such holes being uncovered to allow live air flow to the interior of the inner cylinder 131 via an opening 150, when the intermediate cylinder 129 has moved its maximum amount during feed leg expansion.

As in the case of the feed leg assemblies previously described, vi-z., 47 and 81, it is important that a proper balance of areas is observed for full feed leg expansion at constant pressure. In other words the area defined by the inner diameter of the outer cylinder 126 minus the area defined by the outer diameter of the rod 132, should be equal to the area defined by the inside diameter of the inner cylinder 131.

The operation of the feed leg assembly 124 is the same as with the feed leg assemblies 47 and 81, and includes two stages of feed leg expansion as follows: the first stage occurs when live air enters passageway 133, after the feed leg assemblies 81 have completed their first stage of expansion. The second stage of expansion of the feed leg assemblies 81, will occur at the same time as first stage of expansion of the feed leg assembly 124. The second stage of expansion of feed leg assembly 124 will occur when the holes 147 are uncovered to allow flow of live air via opening 150, to the inside of the inner cylinder 131.

The relative positions of the various cylinders of the feed leg assemblies 81 and 124, relative to the drill 79 during the two stages of feed leg expansion of each assembly, are summarized in the following chart.

I These stages occur together.

The relative proportions of the feed leg assemblies 81 and 124 are arranged so that the second stage of expansion of the feed leg assembly 124, will be terminated before completion of the second stage expansion of feed leg assemblies 81; likewise the feed leg assembly 124 will be fully collapsed, during the period of feed leg retraction, before the holes 117 of the feed leg assembly 81 are covered during reverse movement of the intermediate cylinder 86 relative the rod 88 so that full collapse of feed leg assembly 124 is assured. The feed leg arrangement 124, in combination with the feed leg assemblies 81, will provide greater overall movement of the rock drill during drilling operations, as compared with the feed leg assemblies discussed hereinbefore.

What is claimed is:

l. A telescopic feed leg comprising in combination an outer cylinder afiixed to a body portion and being open at one end, an intermediate cylinder slidably arranged in part in the outer cylinder and having a head portion at the end that is slidably arranged within the outer cylinder an d being open at the other endfan inner cylinder slidably arranged in part in theiintermediate cylinder and having an open end at that portion that is slidably arranged within the intermediate cylinder and being, closed at the other end, and a projecting member aflixed to the body portion and having an enlarged head portion adapted to be enclosed by the intermediate cylinder and also having a first pressure fluid passageway opening into the outer cylinder, and a second pressure fluid passageway connecting the interior of the outer cylinder with the interior of the inner cylinder during one phase of feed leg expansion.

2. A telescopic feed leg comprising in combination an outer cylinder aflixed to a body portion and being open at one end, an intermediate cylinder slidably arranged in part in the outer cylinder and having a head portion at the end that is slidably arranged within the outer cylinder and being open at the other end, an inner cylinder slidably arranged in part in the intermediate cylinder and having an open end at that portion that is slidably arranged within the intermediate cylinder and being closed at the other end, and a rod afiixed to the body portion and centrally disposed relative said cylinders, said rod having an enlarged head portion adapted to be enclosed by the intermediate cylinder and also having a first live air passageway opening into the outer cylinder, and a second live air passageway connecting the interior of the outer cylinder with the interior of the inner cylinder when the intermediate cylinder is slidably positioned substantially outside of the outer cylinder.

3. A telescopic feed leg according to claim 2, wherein the rod has means to limit expansive movement of the intermediate cylinder relative the rod, and wherein the intermediate cylinder has means to limit expansive movement of the inner cylinder relative to the intermediate cylinder.

4. A telescopic feed leg according to claim 3, wherein fluid pressure sealing means are provided between the intermediate cylinder and the outer cylinder, and between the intermediate cylinder, and between the intermediate cylinder and the inner cylinder.

5. A telescopic feed leg according to claim 2, wherein the area defined by the inside diameter of the inner cylinder is substantially equal to the area defined by the inside diameter of the outer cylinder minus the outside diameter of the rod.

6. In a rock drill, a feed leg assembly arranged concentric with the axis of the rock drill and including an outer cylinder rigidly affixed to the rock drill and being open at one end, a rod member affixed to the rock drill and extending into the outer cylinder and having a head portion at the unaffixed end, an intermediate cylinder having a head portion supported for slidable movement upon the rod member and having a pressure fluid sealing mean engaging the outer cylinder, an inner cylinder positioned between the rod member and the intermediate cylinder and having a head portion supported for sliding movement upon the rod member, said rod member having a first live air passageway opening into the outer cylinder, and a second live air passageway adapted to connect the interior of the outer cylinder with the interior of the inner cylinder when the intermediate cylinder is slidably positioned substantially outside of the outer cylinder, and a fluid pressure sealing means on the intermediate cylinder and engaging the inner cylinder, the cross-section area defined by the inside diameter of the inner cylinder being substantially equal to the cross-section area defined by the inside diameter of the outer cylinder minus the outside diameter of the rod member.

7. In a rock drill, a feed leg assembly according to claim 6, wherein the inner cylinder has a point on the outside end thereof for positionally locating the feed leg on a supporting surface.

8. In a rock drill, a pair of feed leg assemblies arranged one on each side of the rock drill and with their axis in a plane coinciding with the axis of the rock drill,

eachof said feed leg assemblies including an outer cyl-- inder rigidly aflixed to a front head of the rock drill, a

mediate cylinder having a head portion at one end and being open at the other end, said intermediate cylinder being supported at one end for slidable movement upon the rod member and having a pressure fluid sealing means engaging the outercylinder, an inner cylinder positioned between the rod member and the intermediate cylinder and having a closed portion at one end and being open at the other end, and being supported for sliding movement upon the rod member, said rod member having a first live air passageway opening into the outer cylinder, and a second live air passageway adapted to connect the interior of the outer cylinder with the interior of the inner cylinder when the intermediate cylinder is slidably positioned outside of the outer cylinder, and a fluid pressure sealing means on the intermediate cylinder and engaging the inner cylinder, the cross-sectional area defined by the inside diameter of the inner cylinder being substantially equal to the cross-sectional area defined by the inside diameter of the outer cylinder minus the outside diameter of the rod member.

9. In a rock drill a feed leg assembly arrangement according to claim 8, wherein a third feed leg assembly is disposed between the pair of feed leg assemblies, said third feed leg assembly having its axis concentric with the axis of the rock drill and including, an outer cylinder which is affixed to a casing supported in a cross-head piece connected to the end of each inner cylinder of the pair of feed leg assemblies, a rod member afiixed at one end to a part of the casing and having a head portion, an intermediate cylinder having a head portion at one end and being open at the other end, said intermediate cylinder being supported at one end for slidable movement upon the rod member and having a pressure fluid sealing means engaging the outer cylinder, an inner cylinder positioned between the rod member and the intermediate cylinder and having a closed portion at one end and being open at the other end, said inner cylinder being supported for sliding movement upon the rod member, a plurality of passageways arranged to allow for expansion of the third feed leg and fluid pressure sealing means on the intermediate cylinder and engaging the inner cylinder, the cross-sectional area defined by the inside diameter of the inner cylinder being substantially equal to the cross-sectional area defined by the inside diameter of the outer cylinder minus the outside di ameter of the rod member.

10. In a rock drill, a feed leg assembly arrangement according to claim 9, wherein said passageways are arranged to conduct pressure fluid from the interior of the inner cylinder of the pair of feed leg assemblies to a first variable volume formed between the outer and intermediate cylinders of the third feed leg assembly, and wherein said passageways are arranged in the rod member to conduct pressure fluid from said first variable volume of the third feed leg assembly to a second variable volume therein, formed between the inner cylinder and the end of the rod member, when the intermediate cylinder has moved a substantial distance from out of the outer cylinder.

11. In a rock drill, a feed leg assembly arrangement according to claim 10, wherein the inner cylinder of the third feed leg assembly has a point on the outside end thereof for positionally locating the feed leg on a supporting surface.

12. A telescopic feed leg comprising in combination an outer cylinder enclosed at one end and open at the other end, an elongated central member within the outer portion and aflixed thereto, an intermediate cylinder arranged partially within the outer cylinder and having a head portion slidingly engaging the inner surface of the outer cylinder and the surface of the central member, and an inner cylinder slidably arranged partially within the intermediate cylinder and having a head portion slidingly engaging the inner surface of the intermediate cylinder, said central member having passageways whereby live air may be directed to cause relative movement of said cylinders.

References Cited in the file of this patent UNITED STATES PATENTS Osgood Dec. 24, Goss Sept. 26, OFarrell Oct. 13, Gunning et al. Feb. 8,

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1740701 *17 Oct 192124 Dec 1929Sullivan Machinery CoDrilling mechanism
US1928553 *12 Sep 193026 Sep 1933CfcmugMethod of scanning images in television
US2298720 *20 Sep 194113 Oct 1942Chicago Pneumatic Tool CoFeed leg control for stoping drills
US2701551 *20 Feb 19528 Feb 1955Westinghouse Air Brake CoAutomatic air feed pressure control for rock drills
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2955572 *31 Jan 195811 Oct 1960Westinghouse Air Brake CoTelescopic feed leg for hydraulic tools
US3650142 *18 Jul 196921 Mar 1972Western Electric CoMethod of and apparatus for decreasing the spacing between articles
US3707086 *10 Dec 197026 Dec 1972Berg Gunter RudolfDeep-drawing press
US3789738 *24 Mar 19725 Feb 1974Bendix CorpExtensible piston
US77401592 Aug 200622 Jun 2010Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US779381214 Feb 200814 Sep 2010Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US781929614 Feb 200826 Oct 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with retractable firing systems
US781929714 Feb 200826 Oct 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with reprocessible handle assembly
US781929814 Feb 200826 Oct 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features operable with one hand
US786190614 Feb 20084 Jan 2011Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with articulatable components
US786652714 Feb 200811 Jan 2011Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US81134109 Feb 201114 Feb 2012Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features
US81571534 Feb 201117 Apr 2012Ethicon Endo-Surgery, Inc.Surgical instrument with force-feedback capabilities
US816197723 Sep 200824 Apr 2012Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US816718518 Nov 20101 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US81721244 Feb 20118 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US818655531 Jan 200629 May 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US818656016 Oct 200929 May 2012Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US819679513 Aug 201012 Jun 2012Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US81967963 Feb 201112 Jun 2012Ethicon Endo-Surgery, Inc.Shaft based rotary drive system for surgical instruments
US82921552 Jun 201123 Oct 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with tactile position feedback
US831707028 Feb 200727 Nov 2012Ethicon Endo-Surgery, Inc.Surgical stapling devices that produce formed staples having different lengths
US834813129 Sep 20068 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US836029729 Sep 200629 Jan 2013Ethicon Endo-Surgery, Inc.Surgical cutting and stapling instrument with self adjusting anvil
US836597629 Sep 20065 Feb 2013Ethicon Endo-Surgery, Inc.Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US83979715 Feb 200919 Mar 2013Ethicon Endo-Surgery, Inc.Sterilizable surgical instrument
US841457719 Nov 20099 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instruments and components for use in sterile environments
US84247404 Nov 201023 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a directional switching mechanism
US845952010 Jan 200711 Jun 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US845952514 Feb 200811 Jun 2013Ethicon Endo-Sugery, Inc.Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US846492328 Jan 201018 Jun 2013Ethicon Endo-Surgery, Inc.Surgical stapling devices for forming staples with different formed heights
US84799699 Feb 20129 Jul 2013Ethicon Endo-Surgery, Inc.Drive interface for operably coupling a manipulatable surgical tool to a robot
US848541229 Sep 200616 Jul 2013Ethicon Endo-Surgery, Inc.Surgical staples having attached drivers and stapling instruments for deploying the same
US849999312 Jun 20126 Aug 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridge
US851724314 Feb 201127 Aug 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US85345281 Mar 201117 Sep 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a multiple rate directional switching mechanism
US854012811 Jan 200724 Sep 2013Ethicon Endo-Surgery, Inc.Surgical stapling device with a curved end effector
US85401308 Feb 201124 Sep 2013Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US856765628 Mar 201129 Oct 2013Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US85734619 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Surgical stapling instruments with cam-driven staple deployment arrangements
US85734659 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US858491914 Feb 200819 Nov 2013Ethicon Endo-Sugery, Inc.Surgical stapling apparatus with load-sensitive firing mechanism
US859076229 Jun 200726 Nov 2013Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US86022871 Jun 201210 Dec 2013Ethicon Endo-Surgery, Inc.Motor driven surgical cutting instrument
US86022889 Feb 201210 Dec 2013Ethicon Endo-Surgery. Inc.Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US860804510 Oct 200817 Dec 2013Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US86164319 Feb 201231 Dec 2013Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US862227414 Feb 20087 Jan 2014Ethicon Endo-Surgery, Inc.Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US863198717 May 201021 Jan 2014Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US86361873 Feb 201128 Jan 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems that produce formed staples having different lengths
US863673614 Feb 200828 Jan 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US865212010 Jan 200718 Feb 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US865717414 Feb 200825 Feb 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument having handle based power source
US86571789 Jan 201325 Feb 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US866813024 May 201211 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US86722085 Mar 201018 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US868425327 May 20111 Apr 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US870195811 Jan 200722 Apr 2014Ethicon Endo-Surgery, Inc.Curved end effector for a surgical stapling device
US87465292 Dec 201110 Jun 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US874653028 Sep 201210 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US874723828 Jun 201210 Jun 2014Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US875274720 Mar 201217 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US875274927 May 201117 Jun 2014Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US875839114 Feb 200824 Jun 2014Ethicon Endo-Surgery, Inc.Interchangeable tools for surgical instruments
US87638756 Mar 20131 Jul 2014Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US87638791 Mar 20111 Jul 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of surgical instrument
US87835419 Feb 201222 Jul 2014Frederick E. Shelton, IVRobotically-controlled surgical end effector system
US878974123 Sep 201129 Jul 2014Ethicon Endo-Surgery, Inc.Surgical instrument with trigger assembly for generating multiple actuation motions
US88008389 Feb 201212 Aug 2014Ethicon Endo-Surgery, Inc.Robotically-controlled cable-based surgical end effectors
US880832519 Nov 201219 Aug 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with staples having crown features for increasing formed staple footprint
US88206031 Mar 20112 Sep 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US88206059 Feb 20122 Sep 2014Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instruments
US882713311 Jan 20079 Sep 2014Ethicon Endo-Surgery, Inc.Surgical stapling device having supports for a flexible drive mechanism
US88406033 Jun 201023 Sep 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US88447899 Feb 201230 Sep 2014Ethicon Endo-Surgery, Inc.Automated end effector component reloading system for use with a robotic system
US88759711 Dec 20104 Nov 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US889394628 Mar 200725 Nov 2014Ethicon Endo-Surgery, Inc.Laparoscopic tissue thickness and clamp load measuring devices
US889394923 Sep 201125 Nov 2014Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US88994655 Mar 20132 Dec 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising drivers for deploying a plurality of staples
US891147114 Sep 201216 Dec 2014Ethicon Endo-Surgery, Inc.Articulatable surgical device
US89257883 Mar 20146 Jan 2015Ethicon Endo-Surgery, Inc.End effectors for surgical stapling instruments
US893168227 May 201113 Jan 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US89738039 Sep 201010 Mar 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features operable with one hand
US897380418 Mar 201410 Mar 2015Ethicon Endo-Surgery, Inc.Cartridge assembly having a buttressing member
US897895429 Apr 201117 Mar 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising an adjustable distal portion
US899167629 Jun 200731 Mar 2015Ethicon Endo-Surgery, Inc.Surgical staple having a slidable crown
US899167721 May 201431 Mar 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US899242227 May 201131 Mar 2015Ethicon Endo-Surgery, Inc.Robotically-controlled endoscopic accessory channel
US899805820 May 20147 Apr 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US900523018 Jan 201314 Apr 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US902849428 Jun 201212 May 2015Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US90285197 Feb 201112 May 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US904423013 Feb 20122 Jun 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US905008323 Sep 20089 Jun 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US905008423 Sep 20119 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck arrangement
US905594123 Sep 201116 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck
US906077027 May 201123 Jun 2015Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US907251525 Jun 20147 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US907253527 May 20117 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US907253628 Jun 20127 Jul 2015Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US908460115 Mar 201321 Jul 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US909533919 May 20144 Aug 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US910135815 Jun 201211 Aug 2015Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US910138528 Jun 201211 Aug 2015Ethicon Endo-Surgery, Inc.Electrode connections for rotary driven surgical tools
US911387424 Jun 201425 Aug 2015Ethicon Endo-Surgery, Inc.Surgical instrument system
US911965728 Jun 20121 Sep 2015Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US912566228 Jun 20128 Sep 2015Ethicon Endo-Surgery, Inc.Multi-axis articulating and rotating surgical tools
US913822526 Feb 201322 Sep 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US914927417 Feb 20116 Oct 2015Ethicon Endo-Surgery, Inc.Articulating endoscopic accessory channel
US917991123 May 201410 Nov 2015Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US917991227 May 201110 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US918614325 Jun 201417 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US919866226 Jun 20121 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator having improved visibility
US920487814 Aug 20148 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US920487928 Jun 20128 Dec 2015Ethicon Endo-Surgery, Inc.Flexible drive member
US920488028 Mar 20128 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising capsules defining a low pressure environment
US921112028 Mar 201215 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US921112113 Jan 201515 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US921601923 Sep 201122 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapler with stationary staple drivers
US922050028 Mar 201229 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising structure to produce a resilient load
US922050128 Mar 201229 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensators
US922675128 Jun 20125 Jan 2016Ethicon Endo-Surgery, Inc.Surgical instrument system including replaceable end effectors
US923294128 Mar 201212 Jan 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a reservoir
US923789127 May 201119 Jan 2016Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US924171428 Mar 201226 Jan 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator and method for making the same
US927179925 Jun 20141 Mar 2016Ethicon Endo-Surgery, LlcRobotic surgical system with removable motor housing
US92724068 Feb 20131 Mar 2016Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US927791928 Mar 20128 Mar 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising fibers to produce a resilient load
US92829628 Feb 201315 Mar 2016Ethicon Endo-Surgery, LlcAdhesive film laminate
US92829667 Feb 201415 Mar 2016Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US928297428 Jun 201215 Mar 2016Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US928305423 Aug 201315 Mar 2016Ethicon Endo-Surgery, LlcInteractive displays
US928920615 Dec 201422 Mar 2016Ethicon Endo-Surgery, LlcLateral securement members for surgical staple cartridges
US928925628 Jun 201222 Mar 2016Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US930175228 Mar 20125 Apr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising a plurality of capsules
US930175328 Mar 20125 Apr 2016Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US93017599 Feb 20125 Apr 2016Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US930796525 Jun 201212 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-microbial agent
US93079861 Mar 201312 Apr 2016Ethicon Endo-Surgery, LlcSurgical instrument soft stop
US930798828 Oct 201312 Apr 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US930798926 Jun 201212 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorportating a hydrophobic agent
US931424625 Jun 201219 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US931424726 Jun 201219 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating a hydrophilic agent
US932051825 Jun 201226 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an oxygen generating agent
US932052019 Aug 201526 Apr 2016Ethicon Endo-Surgery, Inc.Surgical instrument system
US932052129 Oct 201226 Apr 2016Ethicon Endo-Surgery, LlcSurgical instrument
US932052328 Mar 201226 Apr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising tissue ingrowth features
US93267671 Mar 20133 May 2016Ethicon Endo-Surgery, LlcJoystick switch assemblies for surgical instruments
US932676812 Mar 20133 May 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US93267696 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267706 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US933297428 Mar 201210 May 2016Ethicon Endo-Surgery, LlcLayered tissue thickness compensator
US933298427 Mar 201310 May 2016Ethicon Endo-Surgery, LlcFastener cartridge assemblies
US933298714 Mar 201310 May 2016Ethicon Endo-Surgery, LlcControl arrangements for a drive member of a surgical instrument
US934547725 Jun 201224 May 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US934548113 Mar 201324 May 2016Ethicon Endo-Surgery, LlcStaple cartridge tissue thickness sensor system
US935172614 Mar 201331 May 2016Ethicon Endo-Surgery, LlcArticulation control system for articulatable surgical instruments
US935172714 Mar 201331 May 2016Ethicon Endo-Surgery, LlcDrive train control arrangements for modular surgical instruments
US935173028 Mar 201231 May 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US93580031 Mar 20137 Jun 2016Ethicon Endo-Surgery, LlcElectromechanical surgical device with signal relay arrangement
US935800522 Jun 20157 Jun 2016Ethicon Endo-Surgery, LlcEnd effector layer including holding features
US936423028 Jun 201214 Jun 2016Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotary joint assemblies
US936423328 Mar 201214 Jun 2016Ethicon Endo-Surgery, LlcTissue thickness compensators for circular surgical staplers
US937035819 Oct 201221 Jun 2016Ethicon Endo-Surgery, LlcMotor-driven surgical cutting and fastening instrument with tactile position feedback
US93703645 Mar 201321 Jun 2016Ethicon Endo-Surgery, LlcPowered surgical cutting and stapling apparatus with manually retractable firing system
US938698327 May 201112 Jul 2016Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument
US93869848 Feb 201312 Jul 2016Ethicon Endo-Surgery, LlcStaple cartridge comprising a releasable cover
US938698828 Mar 201212 Jul 2016Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US939301510 May 201319 Jul 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with cutting member reversing mechanism
US93989111 Mar 201326 Jul 2016Ethicon Endo-Surgery, LlcRotary powered surgical instruments with multiple degrees of freedom
US940262618 Jul 20122 Aug 2016Ethicon Endo-Surgery, LlcRotary actuatable surgical fastener and cutter
US940860428 Feb 20149 Aug 2016Ethicon Endo-Surgery, LlcSurgical instrument comprising a firing system including a compliant portion
US940860628 Jun 20129 Aug 2016Ethicon Endo-Surgery, LlcRobotically powered surgical device with manually-actuatable reversing system
US941483828 Mar 201216 Aug 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprised of a plurality of materials
US943341928 Mar 20126 Sep 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of layers
US943964912 Dec 201213 Sep 2016Ethicon Endo-Surgery, LlcSurgical instrument having force feedback capabilities
US944581323 Aug 201320 Sep 2016Ethicon Endo-Surgery, LlcClosure indicator systems for surgical instruments
US94519585 Aug 201327 Sep 2016Ethicon Endo-Surgery, LlcSurgical instrument with firing actuator lockout
US94684381 Mar 201318 Oct 2016Eticon Endo-Surgery, LLCSensor straightened end effector during removal through trocar
US948047628 Mar 20121 Nov 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising resilient members
US948621420 May 20138 Nov 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US949216714 Mar 201315 Nov 2016Ethicon Endo-Surgery, LlcArticulatable surgical device with rotary driven cutting member
US949821930 Jun 201522 Nov 2016Ethicon Endo-Surgery, LlcDetachable motor powered surgical instrument
US951082823 Aug 20136 Dec 2016Ethicon Endo-Surgery, LlcConductor arrangements for electrically powered surgical instruments with rotatable end effectors
US951083023 Oct 20146 Dec 2016Ethicon Endo-Surgery, LlcStaple cartridge
US951706328 Mar 201213 Dec 2016Ethicon Endo-Surgery, LlcMovable member for use with a tissue thickness compensator
US95170685 Aug 201313 Dec 2016Ethicon Endo-Surgery, LlcSurgical instrument with automatically-returned firing member
US952202912 Mar 201320 Dec 2016Ethicon Endo-Surgery, LlcMotorized surgical cutting and fastening instrument having handle based power source
US95497325 Mar 201324 Jan 2017Ethicon Endo-Surgery, LlcMotor-driven surgical cutting instrument
US95547941 Mar 201331 Jan 2017Ethicon Endo-Surgery, LlcMultiple processor motor control for modular surgical instruments
US956103213 Aug 20137 Feb 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising a staple driver arrangement
US956103828 Jun 20127 Feb 2017Ethicon Endo-Surgery, LlcInterchangeable clip applier
US95660618 Feb 201314 Feb 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasably attached tissue thickness compensator
US957257422 Jun 201521 Feb 2017Ethicon Endo-Surgery, LlcTissue thickness compensators comprising therapeutic agents
US957257727 Mar 201321 Feb 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a tissue thickness compensator including openings therein
US957464430 May 201321 Feb 2017Ethicon Endo-Surgery, LlcPower module for use with a surgical instrument
US95856578 Feb 20137 Mar 2017Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
US95856587 Apr 20167 Mar 2017Ethicon Endo-Surgery, LlcStapling systems
US95856638 Mar 20167 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument configured to apply a compressive pressure to tissue
US95920508 Feb 201314 Mar 2017Ethicon Endo-Surgery, LlcEnd effector comprising a distal tissue abutment member
US959205212 Mar 201414 Mar 2017Ethicon Endo-Surgery, LlcStapling assembly for forming different formed staple heights
US959205322 May 201414 Mar 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising multiple regions
US95920544 Nov 201514 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapler with stationary staple drivers
US960359528 Feb 201428 Mar 2017Ethicon Endo-Surgery, LlcSurgical instrument comprising an adjustable system configured to accommodate different jaw heights
US960359830 Aug 201328 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapling device with a curved end effector
US96158268 Feb 201311 Apr 2017Ethicon Endo-Surgery, LlcMultiple thickness implantable layers for surgical stapling devices
US962962314 Mar 201325 Apr 2017Ethicon Endo-Surgery, LlcDrive system lockout arrangements for modular surgical instruments
US96296297 Mar 201425 Apr 2017Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US962981420 Mar 201425 Apr 2017Ethicon Endo-Surgery, LlcTissue thickness compensator configured to redistribute compressive forces
US96491109 Apr 201416 May 2017Ethicon LlcSurgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US964911128 Jun 201216 May 2017Ethicon Endo-Surgery, LlcReplaceable clip cartridge for a clip applier
US965561411 Mar 201323 May 2017Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument with an end effector
US965562430 Aug 201323 May 2017Ethicon LlcSurgical stapling device with a curved end effector
US966211015 Sep 201530 May 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument with an articulatable end effector
US967535530 Aug 201313 Jun 2017Ethicon LlcSurgical stapling device with a curved end effector
US968723014 Mar 201327 Jun 2017Ethicon LlcArticulatable surgical instrument comprising a firing drive
US96872378 Jun 201527 Jun 2017Ethicon Endo-Surgery, LlcStaple cartridge including collapsible deck arrangement
US969036226 Mar 201427 Jun 2017Ethicon LlcSurgical instrument control circuit having a safety processor
US969377724 Feb 20144 Jul 2017Ethicon LlcImplantable layers comprising a pressed region
US97003091 Mar 201311 Jul 2017Ethicon LlcArticulatable surgical instruments with conductive pathways for signal communication
US970031023 Aug 201311 Jul 2017Ethicon LlcFiring member retraction devices for powered surgical instruments
US97003178 Feb 201311 Jul 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasable tissue thickness compensator
US970032128 May 201411 Jul 2017Ethicon LlcSurgical stapling device having supports for a flexible drive mechanism
US970699119 Feb 201418 Jul 2017Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples including a lateral base
US972409129 Aug 20138 Aug 2017Ethicon LlcSurgical stapling device
US97240945 Sep 20148 Aug 2017Ethicon LlcAdjunct with integrated sensors to quantify tissue compression
US972409813 Nov 20148 Aug 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising an implantable layer
US973069212 Mar 201315 Aug 2017Ethicon LlcSurgical stapling device with a curved staple cartridge
US973069517 Sep 201515 Aug 2017Ethicon Endo-Surgery, LlcPower management through segmented circuit
US973069723 Apr 201515 Aug 2017Ethicon Endo-Surgery, LlcSurgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US973366326 Mar 201415 Aug 2017Ethicon LlcPower management through segmented circuit and variable voltage protection
US97373015 Sep 201422 Aug 2017Ethicon LlcMonitoring device degradation based on component evaluation
US97373028 Mar 201622 Aug 2017Ethicon LlcSurgical stapling instrument having a restraining member
US973730310 Sep 201522 Aug 2017Ethicon LlcArticulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US974392825 Mar 201429 Aug 2017Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US974392926 Mar 201429 Aug 2017Ethicon LlcModular powered surgical instrument with detachable shaft assemblies
US975049828 Sep 20155 Sep 2017Ethicon Endo Surgery, LlcDrive systems for surgical instruments
US975049926 Mar 20145 Sep 2017Ethicon LlcSurgical stapling instrument system
US975050124 May 20165 Sep 2017Ethicon Endo-Surgery, LlcSurgical stapling devices having laterally movable anvils
US97571237 Mar 201312 Sep 2017Ethicon LlcPowered surgical instrument having a transmission system
US975712424 Feb 201412 Sep 2017Ethicon LlcImplantable layer assemblies
US97571285 Sep 201412 Sep 2017Ethicon LlcMultiple sensors with one sensor affecting a second sensor's output or interpretation
US975713012 Mar 201412 Sep 2017Ethicon LlcStapling assembly for forming different formed staple heights
Classifications
U.S. Classification91/168, 91/392, 92/52
International ClassificationE21B19/00, E21B19/086
Cooperative ClassificationE21B19/086
European ClassificationE21B19/086