Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2714930 A
Publication typeGrant
Publication date9 Aug 1955
Filing date8 Dec 1950
Priority date8 Dec 1950
Publication numberUS 2714930 A, US 2714930A, US-A-2714930, US2714930 A, US2714930A
InventorsCarpenter Clayton A
Original AssigneeUnion Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for preventing paraffin deposition
US 2714930 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

C. A. CARPENTER APPARATUS FOR PREVENTING PARAFFIN DEPOSITION Aug. 9, 1955 Filed Deo. 8, 1950 United States Patent() APPARATUS FR PREVENTING PARAFFIN DEPOSITION Clayton A. Carpenter, Wilmington, Calif., assignor to Union Oil Company of California, Los Angeles, Calif., a corporation of California Application December 8, 1950, Serial No. 199,813

2 Claims. (Cl. 166-60) This invention relates generally to apparatus for electrically heating a flowing oil stream within a well bore. More particularly, this invention relates to an apparatus for electrically heating an upper portion of the column of oil flowing within the tubing of a flowing oil well.

Numerous methods have been employed in the prior art for heating oil wells such as by electrical means, heat transfer agents and the like. A considerable number of such inventions pertain to preventing paraffin deposition in the well bore equipment. In general, the employment of such methods and apparatus necessitates a general shutdown or killing of the well. Killing the well is highly undesirable since during the interval in which oil flow is shut in, the water in the flowing oil Within the formation becomes rather firmly attached to the formation in the vicinity thereby causing water logging and other difficulties.

The apparatus of this invention permits a flowing well to be fitted with heating equipment without any necessity whatsoever for shutting-in the well. Since it has been found that deposition of paraffin in the Well bore equipment is serious only in about the uppermost 1,000 feet or so of the equipment, the apparatus of this invention is specifically designed for heating only the uppermost portion of the fiowing oil column thereby conserving electrical energy.

It is therefore an object of this invention to heat a flowing oil column within the tubing from the earth surface to a short distance therebelow, for example 1,000 feet.

It is another object of this invention to provide an electrical resistance apparatus for heating an oil column within the tubing of the well bore whereby there is obtained a maximum transfer of heat to the flowing oil.

It is another object of this invention to provide an apparatus which is readily insertable into the tubing of a fiowing oil well without necessity of killing the well.

It is another object of this invention to employ a single cable to support a combination electrical contact to the tubing and weighting member and also to provide a resistance in the electrical circuit for the generation and transmission of thermal energy.

Other objects and advantages of this invention Will become apparent to those skilled in the art as the description thereof proceeds.

Briefly, this invention relates to a new apparatus for preventing paraffin deposition in the tubing of a well bore wherein only the upper portion of the tubing is subjected to heating. Such apparatus comprises a weight suspended within the upper part of the tubing on a cornbination supporting cable and resistance wire. Attached to the weight, or in the vicinity thereof, is a contacting device for electrically contacting the inner surface of the tubing. The weight and wire are inserted into the top of the tubing through any suitable sealing member for passing solid objects and wire into the tubing under seal. Such sealing means may be a system of resilient rubber seals having a center opening which is expandible under force to permit entry of the object while maintaining a pressure seal. The sealing means also provides electrical insulation between the body of the tubing and the resistance cable where the latter is not covered with electrical insulation. The electrical circuit for the resistance cable is provided by attaching a current source to the resistance cable whence the current flows through the wire to the contacting member in the vicinity of the weighting member, thence to the tubing whence it flows upwardly through the tubing to a grounded connection or other conductor and returns to the current source.

It is a particularly advantageous feature of the apparatus of this invention in that it employs a minimum of bulky equipment and lends itself to ready installation in the conventional flowing well. Furthermore, the insertion of the Weighting member, the contacting member, and the resistance cable through a sealing means eliminates any requirement of shutting-in the well during the installation.

Figure l shows a partial cross-sectional elevation view of the installation of the apparatus of this invention positioned Within a well bore.

Figure 2 shows the combination of a weighting member, a contacting member, and resistance cable such as is employed in Figure l.

Figure 3 shows a cross-sectional View of the resistance cable such as may be taken through the plane 3 3 of Figure 2, for example.

Figure 4 shows an alternative modification of the weighting member and contacting member.

Figure 5 shows a cross-sectional view of the weighting member-contacting member modication shown in Figure 4 taken through a plane 5 5.

Figure 6 shows one modification of packing glandA member 28 of Figure l, which is adaptable for inserting the resistance cable and other members therethrough while maintaining a pressure seal between the upper and lower faces of the packing gland.

Figure 7 shows a modification of the invention for inserting parts of the apparatus of this invention into a high pressure well wherein the Well is not killed during the inserting.

Referring now to Figure l, well casing 11 extends downwardly from the earths surface 12 into bore hole 13 to the vicinity of the upper boundary of oil-bearing sand 14. Well casing 11 is capped with tubing head 15. Tubing 16 is suspended through the tubing head 15 downwardly within casing 11. Tubing 16 terminates at its lower end in opening 17 which permits oil from oil pool 18 to flow into the tubing and force its way under pressure through the tubing to production line 19 whence it is withdrawn. Gas production separating from oil pool 18 flows upwardly in the annular zone created by the well casing 11 and tubing 16 to the vicinity of earth surface 12 whence it is withdrawn through gas production line 20.

In Figure 1 weighting member 25, contacting member 26 and resistance cable 27 are insertable through packing gland member 28 without necessity of killing the Well.

At the earth surface, current source 30 passes electrical energy to transformer 31 whose secondary winding has been tapped at a series of points. The one terminal of the secondary winding of transformer 31 is connected through conductor 32 to resistance cable 27 at its upper end. Resistance cable 27 is supported by suitable means not shown, Contact 33 is adapted to be connected in sequence to the series of tapped windings of transformer 31 and passes electrical energy therefrom through conductor r'ce 34 to a ground connection on tubing head 15 which is in turny electrically grounded to tubing 16.

Electrical energy from source 30 is thusly transmittable to resistance cable 27. Resistance cable 27 is electrically connected to contacting member 26 which in turn is electrically connected to tubing 16 by slidable contact therewith. A return path for the electrical energy to source 30 is thereby provided.

Referring now more particularly to Figure 2, resistance cable 27 is electrically connected to stationary sleeve 40 by suitable means not shown. Stationary sleeve is rigidly attached to weighting member 42 by securing member 41. Attached to stationary sleeve 40 are two or more radially extending spring contacting bows 43 and 44. Such bows comprise uninsulated electrical conductors, e. g., bare metal bow springs. The lower ends of bows 43 and 44 are in turn anchored to slidable sleeve 45 which is free to slide coaxially over the outer surface of Weighting member 42. The construction of bows 43 and 44 is such that their natural tension tends to pull slidable sleeve 45 upwardly toward stationary sleeve 40 with the resultant increase in the bowing of members 43 and 44.

In the arrangement described in Figure 2 it is apparent that the normal tendency of bows 43 and 44 when confined within a tubing of suitable relative dimension is to fill the confines of the zone of confinement and expand their outer section to touch the circumscribing tubing face. Accordingly, slidable sleeve 45 `moves upwardly and downwardly as the requirements of bows 43 and 44 change in accordance with changes in the diameter of the circumscribing environment.

Referring now to Figure 3, which shows a modiiication of the resistance cable 27 taken through the plane 3-3 of Figure 2, the central core of the resistance cable is preferably a steel strand or core of suitable dimensions and characteristics to support the weighting member which may be in the range of 200 to 1000 lbs. A plurality of conductors 51, for example copper wires, is stranded around, wound on, or supported by steel core 50. Preferably copper conductors 51 are wrapped in doublestranded glass or other electrical insulation. Conductors 51 are so constructed as to resist the flow of electricity therethrough, thereby generating heat which is transmitted to the surrounding oil. In the preferred modification, conductors 51 are wrapped with suitable high temperature electrical insulation which permits transmission of heat therethrough and protects cable 27 from electrically contacting tubing 16 and thereby short-circuiting resistance cable 27.

It is apparent that numerous modifications of electrical contacting means of the type employed in the petroleum lndustry, in electric logging operations and the like may be employed as contacting member 26. One alternative modification of such means comprises a series of spines which are curved to permit theirentry into a circumscribing member of small diameter and which expand as the diameter of the circumscribing member is increased and contract as the diameter is decreased.

Referring now to Figure 4, weighting member is supported by and electrically connected to resistance cable 61. Electrically and rigidly attached to weighting member 60 is sleeve 62 which in turn mounts flexible spines 63 and 64. Flexible spines 63, 64 and others not shown, expand to the inner wall of the tubing and make electrical contact therewith during variations in the level of weighting member 60.

Referring now to Figure 5, which carries the same numerical reference characters as Figure 4 and is a crosssectional view through plane S-S of Figure 4, weighting member 60 is surrounded by electrically connected rigid sleeve 62 to which are attached electrically conducting iiexible spines 63, 64, 65 and 66, respectively. The flexible spines push outwardly against circumscribing tubing 67 and make electrical contact therewith.

Referring now more particularly to Figure 6, tubing 16 of Figure 1 may be tted with a packing gland to permit entry of the resistance wire, etc. In Figure 6 packing gland 28 is fitted with a suitable retainer which holds resilient packing 71 in place. The center of packing 71 is equipped with a small expandible opening 72 through which the equipment including the weighting member, the contacting means, and the resistance cable are inserted. The expandible opening 72 is normally closed and seals the pressure within tubing 16. When the equipment is inserted, packing gland 28 forms a tight seal about it so that there is little pressure loss therethrough.

Referring now more particularly to Figure 7, the equipment may be inserted into the tubing through a specially created sealing zone. Tubing 80, which corresponds to tubing 16 of Figure l, is capped with a gate type control valve 81. Fitting 82 is screwed into valve 8l and sealing member S3 threads into fitting 82, In using this modiiication, the sealing member is fitted with a packing gland S5 through which the resistance cable is passed and which maintains a pressure seal. While the sealing member is detached from fitting 82, the contacting means and weighting assembly are squeezed into place, as shown, by compressing bows 43 and 44. With the apparatus in place within sealing member 83, the latter is attached to fitting 82 above closed gate valve 81. When sealing member 83 is secured, gate valve 81 is opened and the resistance cable is payed out by suitable means not shown to lower the contacting means and weighting member to the desired level. The arrangement is then employed in substantially the same manner as was described in connection with Figure l.

The electrically resistant cable may suitably comprise about 1000 feet of No. 10 copper wire covered with a double glass wrap of electrical insulation wound about a steel core of suitable dimensions for supporting a 500 pound sinker bar or weighting member. The weighting member is fitted with an electrical contacting mechanism of the type shown in Figure l and Figure 2. About volts of electrical potential is supplied to cross the resistance cable and the tubing. There is a current ow of about 91 amperes with the result that about 10 kilowatts of electrical power are converted to thermal energy. The generation of thermal power at this rate is sufficient to prevent parain deposition in a flowing well producing barrels of oil per day when the average ground level temperature is in the vicinity of 70 F.

In the application of this invention it is preferable to use alternating current inasmuch as such current is readily stepped up or down according to the changing requirements of the system. Thus alternating currents ranging from 50 to 2000 volts, and which have frequencies in the range of 25 to 400 cycles per second may be employed. When direct current is employed, it is preferable to employ voltages in the range of about 50 to 1000 volts.

The size and electrical properties of the stranded copper wire or other resistance cable should be such that the major portion, such as at least 50% and preferably 90% of the generation of thermal energy occurs within the resistance cable. Accordingly, it is desirable to use relatively large copper wire in order to maintain a high current flow therethrough. Under these conditions the thermal energy is to a large extent generated in the resistance cable.

The sinker bar or weighting means employed in this 'invention may be of any suitable shape or configuration and performs the task of weighting the resistance cable. The weighting assembly in general performs three functions, viz. it provides a tension on the cable so that it is drawn taut, it provides support for the contacting mechanism which contacts the tubing, and it serves to center the resistance cable in the bore hole, particularly at its lower end, and minimizes wear and tear on the cable during raising and lowering.

It should also be noted that by the method of 'this invention .the slack or tension created by expansion and contraction of the resistance cable arising from temperature fluctuations is continuously compensated for by the raising and lowering of the weighting member which maintains a constant tension on the cable.

With regard to the amount of heat generated in the resistance cable, such amount is generally determined by the characteristics of the oil being produced and the characteristics of the formation and the locale of the oil lield. Generally speaking, a temperature drop of only a few degrees Fahrenheit in the uppermost few thousand feet of tubing is suicient to cause an excessive accumulation of parain during continued operation of the well. In some cases the temperature of the formation is in the range of about 80 F. while the temperature in the oil pool may be in the range of about 70 F. and the atmospheric temperature around the well head may be as low as' 10 or 20 F. Under this type of situation it has been found preferable to supply an amount of heat to the oil in the last 500 or 1000 feet of ow which is sufcient to maintain the temperature in the range of about 70 F. and preferably not less than about 65 F.

Generally speaking, crude oil may flow from the formation at a given temperature T1 and will cool as it ows through relatively cooler formations toward the earth surface due to evaporation of gases, heat transfer with the cooler surrounding earth strata in the upper layers, etc.

With wax bearing oils and particularly with the limited class of oils described hereinafter, a wax and/or resin deposition begins when the oil cools below to a temperature T2 which is lower than T1. Progressive cooling below temperature T2 results in progressive deposits of wax and/ or resin. The oil flow generally reaches temperature T2 only during the uppermost 1000 or so of the well tubing. The heating of the oil flow by the process of this invention is so controlled that a temperature greater than the wax or resin deposition temperature T2 is maintained throughout the owing oil column and especially in the uppermost section of the flowing oil column.

Oils which are prone to deposit wax, resins, etc., upon cooling have been found to be identifiable by their physical properties. The deposition is a function of the amount and the gravity of the residuum obtained after a Bureau of Mines Hempel distillation as described in The Analytical Distillation of Petroleum and its Products, U. S. Bur. Mines Bull. 207, pp. 4-19 (1922). It has been found that oils for which the value of the expression Per cent residuum A. P. I. gravity of residuum is less than 2.0, particularly less than 1.5, are prone to deposit solids.

The tendency of an oil to deposit solids determined by the value of the expression:

(Cloud point in F of key fraction 2) (A. P. I. Gr. of the residuum) Per cent residuum is greater than 30, particularly greater than 50, are prone to deposit solids.

The method and apparatus of the present invention effects beneficial results in dealing with oils which are prone to deposit solids as determined by either of the above methods.

Where the heat radiation from the tubing and oil flow therethrough is non-uniform with respect to distance near the earth surface, the resistance cable may be so constructed that its electrical resistance is non-uniform and varies with respect to its length in order to vary the generation of thermal energy per unit distance so as to provide a constant temperature of the oil column owing therethrough independently of the level.

The foregoing disclosure of this invention is not to be considered as limiting since many variations may be made by those skilled in the art without departing from the spirit and scope of the following claims.

I claim:

1. In combination, an electrically conductive well tubing positioned within a well; a cable extending within said tubing and supporting at its lower end an electrically conductive weighting member adapted to be lowered into and withdrawn from said tubing, said cable being substantially uniformly electrically resistant throughout its length and being maintained taut by the action of gravity on said weighting member; an electrically conductive upper sleeve rigidly attached to said weighting member; an electrically conductive lower sleeve free to slide along said weighting member; a plurality of electrically conductive radially extending spring bows disposed radially around said weighting member and attached at their upper ends to said upper sleeve and at their lower ends to said lower sleeve, said bows being adapted to frictionally engage the inner walls of said tubing; and means for applying an electric potential between said cable and said tubing.

2. In combination, an electrically conductive well tubing positioned within a well; a cable extending within said tubing and supporting at its lower end an electrically conductive weighting member adapted to be lowered into and withdrawn from said tubing, said cable comprising a center weight-supporting core, a substantially uniformly electrically resistant winding supported on the outer surface of said core, and means for electrically insulating said winding from said core, and said cable being maintained taut within said tubing by the force of gravity acting on said weighting member; a contacting member borne by said weighting member and adapted to provide electrical contact between said weighting member and said tubing; and means for applying an electrical potential between said cable and said tubing.

References Cited in the file of this patent UNITED STATES PATENTS 1,327,269 Christians Jan. 6, 1920 1,546,467 Bennett July 21, 1925 1,646,599 Schaefer Oct. 25, 1927 1,715,592 Christians Jan. 4, 1929 1,764,213 Knox June 17, 1930 1,776,997 Downey Sept. 30, 1930 1,970,295 Fitzpatrick Aug. 14, 1934 2,244,256 Looman June 3, 1941 2,660,249 Jakosky Nov. 24, 1953

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1327269 *9 Jun 19196 Jan 1920Christians George WApparatus for use in sealing crevices in rock formations
US1546467 *9 Jan 192421 Jul 1925Bennett Joseph FOil or gas drilling mechanism
US1646599 *30 Apr 192525 Oct 1927Schaefer George AApparatus for removing fluid from wells
US1715592 *11 Sep 19264 Jun 1929Christians George WApparatus for sealing crevices in rock formations or the like
US1764213 *21 Feb 192717 Jun 1930Knox George WashingtonConductor for oil-well heaters
US1776997 *10 Sep 192830 Sep 1930Downey Patrick VOil-well heater
US1970295 *19 Nov 192714 Aug 1934Paraffin Heater Engineering CoApparatus for treating well fluids
US2244256 *24 May 19403 Jun 1941Electrical Treating CompanyApparatus for clearing wells
US2660249 *18 Nov 194924 Nov 1953Jakosky John JMeans for heating oil wells
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3092514 *25 May 19594 Jun 1963Petro Electronics CorpMethod and apparatus for cleaning and thawing flow lines and the like
US4716960 *14 Jul 19865 Jan 1988Production Technologies International, Inc.Method and system for introducing electric current into a well
US4911239 *20 Apr 198827 Mar 1990Intra-Global Petroleum Reservers, Inc.Method and apparatus for removal of oil well paraffin
US6142707 *27 Aug 19977 Nov 2000Shell Oil CompanyDirect electric pipeline heating
US617102526 Mar 19969 Jan 2001Shell Oil CompanyMethod for pipeline leak detection
US617952326 Mar 199630 Jan 2001Shell Oil CompanyMethod for pipeline installation
US626440126 Mar 199624 Jul 2001Shell Oil CompanyMethod for enhancing the flow of heavy crudes through subsea pipelines
US631549723 Dec 199713 Nov 2001Shell Oil CompanyJoint for applying current across a pipe-in-pipe system
US658168424 Apr 200124 Jun 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US658850324 Apr 20018 Jul 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US658850424 Apr 20018 Jul 2003Shell Oil CompanyConversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground coal formations; pyrolysis
US659190624 Apr 200115 Jul 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US659190724 Apr 200115 Jul 2003Shell Oil CompanyPyrolysis
US660703324 Apr 200119 Aug 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US660957024 Apr 200126 Aug 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6632047 *16 Apr 200114 Oct 2003Board Of Regents, The University Of Texas SystemHeater element for use in an in situ thermal desorption soil remediation system
US668674520 Jul 20013 Feb 2004Shell Oil CompanyApparatus and method for electrical testing of electrically heated pipe-in-pipe pipeline
US668838724 Apr 200110 Feb 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US668890025 Jun 200210 Feb 2004Shell Oil CompanyInsulating joint for electrically heated pipeline
US669851524 Apr 20012 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US670201624 Apr 20019 Mar 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US670701220 Jul 200116 Mar 2004Shell Oil CompanyPower supply for electrically heated subsea pipeline
US670875824 Apr 200123 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US671213524 Apr 200130 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US671213624 Apr 200130 Mar 2004Shell Oil CompanyProviding heat to the formation; controlling the heat from the heat source such that an average temperature within at least a majority of the selected section of the formation is less than about 375 degrees c.
US671213724 Apr 200130 Mar 2004Shell Oil CompanyHeat exchanging to superimpose heat
US671401820 Jul 200130 Mar 2004Shell Oil CompanyMethod of commissioning and operating an electrically heated pipe-in-pipe subsea pipeline
US671554624 Apr 20016 Apr 2004Shell Oil CompanyChemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed
US671554724 Apr 20016 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US671554824 Apr 20016 Apr 2004Shell Oil CompanyElectrical heaters may be used to heat the subterranean formation by radiation and/or conduction
US671554924 Apr 20016 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US671904724 Apr 200113 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US672242924 Apr 200120 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US672243124 Apr 200120 Apr 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US672592024 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US672592124 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US672592824 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US672939524 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US672939624 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US672939724 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US672940124 Apr 20014 May 2004Shell Oil CompanySynthesis gas may be produced from the formation. synthesis gas may be used as a feed stream in an ammonia synthesis process. ammonia may be used as a feed stream in a urea synthesis process.
US673279524 Apr 200111 May 2004Shell Oil CompanyProviding heat from one or more heat sources to at least one portion of formation; allowing heat to transfer from the one or more heat sources to a selected section of the formation; controlling the heat; producing a mixture from the formation
US673279624 Apr 200111 May 2004Shell Oil CompanyHeating section of formation with heat sources to temperature allowing generation of synthesis gas, providing synthesis gas generating fluid to section, removing synthesis gas generated, repeating for second section, blending for desired ratio
US673621524 Apr 200118 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US673939324 Apr 200125 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US673939424 Apr 200125 May 2004Shell Oil CompanyProviding heat and a synthesis gas generating fluid to the section to generate synthesis gas
US673980320 Jul 200125 May 2004Shell Oil CompanyMethod of installation of electrically heated pipe-in-pipe subsea pipeline
US674258724 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US674258824 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US674258924 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US674259324 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US674583124 Apr 20018 Jun 2004Shell Oil CompanyMixture of hydrocarbons, h2, and/or other formation fluids may be produced from the formation. heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature.
US674583224 Apr 20018 Jun 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US674583724 Apr 20018 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US674902124 Apr 200115 Jun 2004Shell Oil CompanyPyrolysis
US675221024 Apr 200122 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US675826824 Apr 20016 Jul 2004Shell Oil CompanyHeat exchanging, pyrolysis; monitoring temperature
US676121624 Apr 200113 Jul 2004Shell Oil CompanyPyrolysis temperature
US676388624 Apr 200120 Jul 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US676948324 Apr 20013 Aug 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US676948524 Apr 20013 Aug 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US678962524 Apr 200114 Sep 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US680519524 Apr 200119 Oct 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US682068824 Apr 200123 Nov 2004Shell Oil CompanyHeat exchanging after pyrolyzation to support synthesis gas generation
US686609724 Apr 200115 Mar 2005Shell Oil CompanySuperpositioning of heaters for pyrolysis to form mixture of hydrocarbons and hydrogen; controlling pressure; heat exchanging
US687170724 Apr 200129 Mar 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US687755424 Apr 200112 Apr 2005Shell Oil CompanyPyrolysis
US687755524 Apr 200212 Apr 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US688063324 Apr 200219 Apr 2005Shell Oil CompanyIncludes shutting-in an in situ treatment process in an oil shale formation may include terminating heating from heat sources providing heat to a portion of the formation; hydrocarbon vapor may be produced
US688063524 Apr 200119 Apr 2005Shell Oil CompanyMethods and systems for production of hydrocarbons, hydrogen, and/or other products from underground coal formations
US688976924 Apr 200110 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US689605324 Apr 200124 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US690200324 Apr 20017 Jun 2005Shell Oil CompanyAllowing heat to transfer from heaters to a formation selected for heating using a total organic matter weight percentage of > 5% and recirculating hydrogen
US6902004 *24 Apr 20017 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US691053624 Apr 200128 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US691307824 Apr 20015 Jul 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US691585024 Apr 200212 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US691844224 Apr 200219 Jul 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US691844324 Apr 200219 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US692325724 Apr 20022 Aug 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US692325812 Jun 20032 Aug 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US692906724 Apr 200216 Aug 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US693215524 Oct 200223 Aug 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US69370308 Nov 200230 Aug 2005Shell Oil CompanyTesting electrical integrity of electrically heated subsea pipelines
US694856224 Apr 200227 Sep 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US694856324 Apr 200127 Sep 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US695124724 Apr 20024 Oct 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US695308724 Apr 200111 Oct 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US695976124 Apr 20011 Nov 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US696430024 Apr 200215 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US696637224 Apr 200122 Nov 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US696637424 Apr 200222 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US696912324 Oct 200229 Nov 2005Shell Oil CompanyUpgrading and mining of coal
US697396724 Apr 200113 Dec 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US698154824 Apr 20023 Jan 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US699103124 Apr 200131 Jan 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US699103224 Apr 200231 Jan 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US699103324 Apr 200231 Jan 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US699103624 Apr 200231 Jan 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US699104524 Oct 200231 Jan 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US699416024 Apr 20017 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US699416124 Apr 20017 Feb 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US699416824 Apr 20017 Feb 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US699416924 Apr 20027 Feb 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US699725524 Apr 200114 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US699751824 Apr 200214 Feb 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US700424724 Apr 200228 Feb 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US700425124 Apr 200228 Feb 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US701115424 Oct 200214 Mar 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US701397224 Apr 200221 Mar 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US701766124 Apr 200128 Mar 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US703266024 Apr 200225 Apr 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US703658324 Sep 20012 May 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US704039724 Apr 20029 May 2006Shell Oil CompanyThermal processing of an oil shale formation to increase permeability of the formation
US704039824 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US704039924 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US704040024 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US705180724 Apr 200230 May 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US705180824 Oct 200230 May 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US705181124 Apr 200230 May 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US705560024 Apr 20026 Jun 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US706314524 Oct 200220 Jun 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US706625424 Oct 200227 Jun 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US706625724 Oct 200227 Jun 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US707357824 Oct 200311 Jul 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US707719824 Oct 200218 Jul 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US707719924 Oct 200218 Jul 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US708646524 Oct 20028 Aug 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US708646824 Apr 20018 Aug 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US709001324 Oct 200215 Aug 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US709694124 Apr 200129 Aug 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US709694224 Apr 200229 Aug 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US709695324 Apr 200129 Aug 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US710099424 Oct 20025 Sep 2006Shell Oil Companyinjecting a heated fluid into the well bore, producing a second fluid from the formation, conducting an in situ conversion process in the selected section.
US710431924 Oct 200212 Sep 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US711456624 Oct 20023 Oct 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US712134124 Oct 200317 Oct 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US712134223 Apr 200417 Oct 2006Shell Oil CompanyThermal processes for subsurface formations
US712815324 Oct 200231 Oct 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US715617624 Oct 20022 Jan 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US716561524 Oct 200223 Jan 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US721973424 Oct 200322 May 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US722586631 Jan 20065 Jun 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US732036422 Apr 200522 Jan 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US735387222 Apr 20058 Apr 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US735718022 Apr 200515 Apr 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US736058817 Oct 200622 Apr 2008Shell Oil CompanyThermal processes for subsurface formations
US737070422 Apr 200513 May 2008Shell Oil CompanyTriaxial temperature limited heater
US738387722 Apr 200510 Jun 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US742491522 Apr 200516 Sep 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US743107622 Apr 20057 Oct 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US743503721 Apr 200614 Oct 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US746169123 Jan 20079 Dec 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US748127422 Apr 200527 Jan 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US749066522 Apr 200517 Feb 2009Shell Oil CompanyVariable frequency temperature limited heaters
US750052821 Apr 200610 Mar 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US751000022 Apr 200531 Mar 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US752709421 Apr 20065 May 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US753371920 Apr 200719 May 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US754032419 Oct 20072 Jun 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US754687321 Apr 200616 Jun 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US754947020 Oct 200623 Jun 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US755609520 Oct 20067 Jul 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US755609620 Oct 20067 Jul 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US755936720 Oct 200614 Jul 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US755936820 Oct 200614 Jul 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US756270620 Oct 200621 Jul 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US756270719 Oct 200721 Jul 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US757505221 Apr 200618 Aug 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US757505321 Apr 200618 Aug 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US758158920 Oct 20061 Sep 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US758478920 Oct 20068 Sep 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US759131020 Oct 200622 Sep 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US759714720 Apr 20076 Oct 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US760405220 Apr 200720 Oct 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US761096220 Apr 20073 Nov 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US763168920 Apr 200715 Dec 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US763169019 Oct 200715 Dec 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US763502320 Apr 200722 Dec 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US763502419 Oct 200722 Dec 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US763502520 Oct 200622 Dec 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US76409807 Apr 20085 Jan 2010Shell Oil CompanyThermal processes for subsurface formations
US764476519 Oct 200712 Jan 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US767368119 Oct 20079 Mar 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US767378620 Apr 20079 Mar 2010Shell Oil CompanyWelding shield for coupling heaters
US767731019 Oct 200716 Mar 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US767731419 Oct 200716 Mar 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US768164719 Oct 200723 Mar 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US768329620 Apr 200723 Mar 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US770351319 Oct 200727 Apr 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US771717119 Oct 200718 May 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US773094519 Oct 20078 Jun 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US773094619 Oct 20078 Jun 2010Shell Oil CompanyTreating tar sands formations with dolomite
US773094719 Oct 20078 Jun 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US77359351 Jun 200715 Jun 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US778542720 Apr 200731 Aug 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US779372220 Apr 200714 Sep 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US779822018 Apr 200821 Sep 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US779822131 May 200721 Sep 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US783113321 Apr 20069 Nov 2010Shell Oil CompanyInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US783113421 Apr 20069 Nov 2010Shell Oil CompanyGrouped exposed metal heaters
US783248418 Apr 200816 Nov 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US784140119 Oct 200730 Nov 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US784140818 Apr 200830 Nov 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US784142518 Apr 200830 Nov 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US784541119 Oct 20077 Dec 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US784992218 Apr 200814 Dec 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US786037721 Apr 200628 Dec 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US786638520 Apr 200711 Jan 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US786638613 Oct 200811 Jan 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US786638813 Oct 200811 Jan 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US791235820 Apr 200722 Mar 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US793108618 Apr 200826 Apr 2011Shell Oil CompanyHeating systems for heating subsurface formations
US794219721 Apr 200617 May 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US79422034 Jan 201017 May 2011Shell Oil CompanyThermal processes for subsurface formations
US795045318 Apr 200831 May 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US798686921 Apr 200626 Jul 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US801145113 Oct 20086 Sep 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US802757121 Apr 200627 Sep 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US804261018 Apr 200825 Oct 2011Shell Oil CompanyParallel heater system for subsurface formations
US807084021 Apr 20066 Dec 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US808381320 Apr 200727 Dec 2011Shell Oil CompanyMethods of producing transportation fuel
US811327213 Oct 200814 Feb 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US814666113 Oct 20083 Apr 2012Shell Oil CompanyCryogenic treatment of gas
US814666913 Oct 20083 Apr 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US81518809 Dec 201010 Apr 2012Shell Oil CompanyMethods of making transportation fuel
US815190710 Apr 200910 Apr 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US816205913 Oct 200824 Apr 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US816240510 Apr 200924 Apr 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US817233510 Apr 20098 May 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US817730510 Apr 200915 May 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US819163028 Apr 20105 Jun 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US819268226 Apr 20105 Jun 2012Shell Oil CompanyHigh strength alloys
US819665813 Oct 200812 Jun 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US82205399 Oct 200917 Jul 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US822416324 Oct 200317 Jul 2012Shell Oil CompanyVariable frequency temperature limited heaters
US822416424 Oct 200317 Jul 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US822416521 Apr 200617 Jul 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US822586621 Jul 201024 Jul 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US823092716 May 201131 Jul 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US823378229 Sep 201031 Jul 2012Shell Oil CompanyGrouped exposed metal heaters
US823873024 Oct 20037 Aug 2012Shell Oil CompanyHigh voltage temperature limited heaters
US824077413 Oct 200814 Aug 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US82565129 Oct 20094 Sep 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US82618329 Oct 200911 Sep 2012Shell Oil CompanyHeating subsurface formations with fluids
US82671709 Oct 200918 Sep 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US82671859 Oct 200918 Sep 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US827245513 Oct 200825 Sep 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US827666113 Oct 20082 Oct 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US82818619 Oct 20099 Oct 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US832768118 Apr 200811 Dec 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US83279329 Apr 201011 Dec 2012Shell Oil CompanyRecovering energy from a subsurface formation
US83533479 Oct 200915 Jan 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US835562322 Apr 200515 Jan 2013Shell Oil CompanyTemperature limited heaters with high power factors
US838181518 Apr 200826 Feb 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US84345559 Apr 20107 May 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US84487079 Apr 201028 May 2013Shell Oil CompanyNon-conducting heater casings
US845935918 Apr 200811 Jun 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US848525211 Jul 201216 Jul 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US853649713 Oct 200817 Sep 2013Shell Oil CompanyMethods for forming long subsurface heaters
US855597131 May 201215 Oct 2013Shell Oil CompanyTreating tar sands formations with dolomite
US856207825 Nov 200922 Oct 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US857903117 May 201112 Nov 2013Shell Oil CompanyThermal processes for subsurface formations
US860609120 Oct 200610 Dec 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US86278878 Dec 200814 Jan 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US86318668 Apr 201121 Jan 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US863632325 Nov 200928 Jan 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US866217518 Apr 20084 Mar 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US87017688 Apr 201122 Apr 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US87017698 Apr 201122 Apr 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US87398748 Apr 20113 Jun 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US875290410 Apr 200917 Jun 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US878958612 Jul 201329 Jul 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US879139618 Apr 200829 Jul 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US88204068 Apr 20112 Sep 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US88334538 Apr 201116 Sep 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
Classifications
U.S. Classification166/60, 392/301
International ClassificationE21B36/04, E21B36/00
Cooperative ClassificationE21B36/04
European ClassificationE21B36/04