US2664702A - Cooled flame tube - Google Patents

Cooled flame tube Download PDF

Info

Publication number
US2664702A
US2664702A US41277A US4127748A US2664702A US 2664702 A US2664702 A US 2664702A US 41277 A US41277 A US 41277A US 4127748 A US4127748 A US 4127748A US 2664702 A US2664702 A US 2664702A
Authority
US
United States
Prior art keywords
chamber
air
downstream
flame tube
entry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US41277A
Inventor
Lloyd Peter
Shilling Walter Frederick
Brown John
Boulter Raymond Arthur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Jets Research and Development Ltd
Original Assignee
Power Jets Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Jets Research and Development Ltd filed Critical Power Jets Research and Development Ltd
Application granted granted Critical
Publication of US2664702A publication Critical patent/US2664702A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Description

P. LLOYD ET AL Jan. 5, 1954 COOLED FLAME TUBE 2 Sheets-Sheer 1 Filed July'29, 1948 Jan. 5, 1954 P. LLOYD ET AL COOLED FLAME TUBE 2 Sheets-Shem 2 Filed July 29, 1948 lnvenlorJ gA/forueys having any substantial penetrative power transverse to the hot gas stream.
By way of example, various forms of the invention are described below with reference to the accompanying drawings, in which:
Figure 1 is an axial section of one form;
Figure 2 is an axial section of a modification of Fig. 1.
In Figure 1, a high temperature gas duct in the form of a combustion chamber l of circular section is arranged co-axially within an outer air casing 2 and is provided with a hollow baffle or cap 3, having its open larger end facing downstream and forming in combination with the duct I an annular cooling air entry 4.
The cap 3 encloses a primary combustion zone 5 into which fuel is injected through a burner t, and combustion is initiated by means of a spark plug 24.
The cap 3 is enclosed within a convergent tubular scoop i of frusto-conical form, having its upstream narrower end open to form an entry aperture 8. The wall of the chamber I has an upstream tubular extension la, enclosing said scoop 1 which defines a metering orifice and passage for the entry of primary air, while the extension la forms with scoop 1 a passage for a supply of cooling air through the entry 4.
The casing 2 is also provided with an extension 2a, similar to the extension la, and has an entry portion 2b into which is led a fast moving airstream, as for example from the compressor of a gas turbine. This airstream is divided by the extensions la, 2a and the scoop E, into the three parts, of which one part forms an annular air cooling stream entering the chamber i through the aperture 4, a second part flows through the annular space between the casing 2 and the duct i, while the remainder passes through the cap 3 to the primary combustion zone 5.
The dimensions of the cap 3, entry i and chamber l are such that in operation at the design point, the velocity of the air at the entry s and the velocity of the hot gas flowing downstream from the primary combustion zone 5 are, in the region of the aperture 4, sufficiently closely matched to enable these two streams to flow as separate streams for a substantial distance downstream of the entry so as to maintain an envelope of cool air as a separate non-turbulent flow between the hot gas stream and the inner wall of the chamber 1. Since, however, the velocity of these two streams cannot be matched over a wide range of operating conditions, the velocities are preferably matched at the conditions existing at the maximum operating temperature as a breakdown of the cooling air layer at lower temperatures can be generally accepted.
The cap 3 constitutes the flame stablising baflie generally used in such cases and is provided with an axial air entry 9 for primary air, this entry being of suitable dimensions to pass the required air flow.
The cap 3 may also be provided with swirl vanes ill for swirling the air passing through entry 9 and circular apertures H and slots i2 may also be provided in the wall of the cap 3 for the entry of further primary air.
Downstream of the cap 3 are provided apertures 25 (which may also be scoops or stub pipes) in the wall of chamber 1 for the admission of further air from casing 2 to form a zone I! where turbulence and mixing take place.
In Fig. 1 the fuel is injected downstream CO! axially into the chamber l, but the fuel may alternatively be injected upstream, for example by suitably adapting the structure disclosed in co-pending application No. 609,532, new Patent No. 2,529,506.
It may also be possible in some cases to modify the arrangement described by dispensing entirely with a separate flame tube or inner chamber downstream of the bafiie.
It is desirable to cool the chamber 5 downstream of the point at which the initial cooling air flow through the entry 4 ceases to be effective, since at high temperatures the cooling effect of the additional air normally introduced for further stages of combustion may be insuiilcient; moreover any turbulence so produced will promote heat exchange between the hot gases and the chamber wall, and is therefore disadvantageous. For this purpose additional flows of cooling air may be provided similar to that aiready described, and having at their regions of introduction into the chamber l a velocity comparable to that in the outermost zone oi the chamber at these regions.
Such additional cooling air may be introduced through radial flow entries arranged and shaped so as to avoid the formation of well defined air-- streams of substantial penetrative power transverse to the hot gas stream, thus forming over the inside of the chamber wall a relatively stable or non-turbulent insulating air layer which mixes only slowly with the hot gases due to the differing velocities and by difiusion rather than by trans verse penetration.
For this purpose, as shown in Fig. l, the wall of the chamber I may be provided downstream the mixing zone with a very large number of small circular apertures l3, or by a relatively smaller number of transversely elongated apertures i i, and in either case throttling means be provided to reduce the amount and velocity of air entering through these apertures.
In Fig. 1 throttling is effected by means of a flanged annular plate 26 suitably perforated to admit the desired air flow downstream of the plate, the whole of this admitted flow entering progressively in the downstream direction into the chamber I.
As an alternative, the chamber 4 may be formed towards its downstream end 29 by a wall of metal gauze or of porous material, as for example, sintered metal, to permit substantially uniform entry of cooling air by diffusion from the casing 2 into the chamber I. The chamber i and casing 2 are relatively tapered towards their downstream ends to provide a gradual reduction in the cross-sectional area of the annular space between them and to maintain a uniform flow of air therethrough.
As a further alternative for cooling the downstream parts of a combustion chamber use may be made of an arrangement wherein part of the airstream is first led to a locality downstream of the most upstream region at which it is required to enter the combustion chamber and is then led in the reverse direction along the outer surface of the combustion chamber to cool said surface being then allowed to enter the combustion chamber to mix with the gases of combustion.
Such an arrangement is shown in Fig. 2, which is similar to Fig. 1, except that between the casing 2 and the chamber l is inserted an annular shield 15, which forms, together with chamber i, an annular space I6 open at its downstream end and closed at its upstream end.
Beyond this downstream end the casing 2 is partly closed by a stop plate 26 and an apertured flanged annular plate 26 similar to that in Fig. 1.
Air flows downstream through the casing 2, and due to the presence of the plates 26 and 28 a part of this air is reversed in direction so as to flow upstream through space [6, entering chamber through entry apertures 25 to form a mixing zone I? as in Fig. 1.
Downstream of the mixing zone, as in Fig. 1, the wall of the chamber I may have small circular apertures l3 or transversely elongated apertures l4, and may also have a tapered outlet 29 conforming in shape to the tapered downstream end of the casing 2. Alternatively, the chamber I may be provided at its downstream region with a wall of metal gauze or porous material as described in connection with Fig. 1.
We claim:
In combustion apparatus in which fuel is to be burnt in a fast-moving airstream, and comprising an outer tubular casin having an inlet for the stream, a tubular flame tube within the casing, a hollow baffle centrally located in one end of the flame tube defining a primary combustion zone, and means for injecting fuel into said zone, said bafiie being apertured to provide an inlet for part of said stream as primary combustion air to said zone, and said flame tube having an outlet at its other end, whereby the flame tube defines a path for a stream of hot combustion gases; means for directing a layer of cooling air along the inside of the flame tube wall, said means comprising a tubular member enclosin the baffle and projecting for a short distance into the end of the flame tube and defining therewith an annular gap providing a path from the casing into the flame tube for a stream of cooling air,
the gap being so dimensioned in relation to the conditions inside and outside the flame tube in the conditions of operation, that the velocity of said stream of cooling air through the gap is substantially the same as the velocity of said stream of hot combustion gases.
PETER LLOYD.
WALTER FREDERICK SHILLING.
JOHN BROWN.
RAYMOND ARTHUR BOULTER.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 2,382,564 Haverstick Aug. 14, 1945 2,396,068 Youngash Mar. 5, 1946 2,398,654 Lubbock et a1 Apr. 16, 1946 2,404,335 Whittle July 16, 1946 2,446,059 Peterson et a1. July 27, 1948 2,447,482 Arnold Aug. 24, 1948 2,458,497 Bailey Jan. 11, 1949 2,470,184 Pfenninger May 17, 1949 2,547,619 Buckland Apr. 3, 1951 2,581,999 Blatz Jan. 8, 1952 FOREIGN PATENTS Number Country Date 433,631 Great Britain Aug. 19, 1935 539,069 Great Britain Aug. 27, 1941 579,424 Great Britain Aug. 2, 1946 588,086 Great Britain May 14, 1947 OTHER REFERENCES The Oil Engine and Gas Turbine, January 1950, pages 300 and 301. (Article therein entitled Developing Marine-Type Combustion Chambers.)
US41277A 1947-08-11 1948-07-29 Cooled flame tube Expired - Lifetime US2664702A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB275237X 1947-08-11

Publications (1)

Publication Number Publication Date
US2664702A true US2664702A (en) 1954-01-05

Family

ID=10260976

Family Applications (1)

Application Number Title Priority Date Filing Date
US41277A Expired - Lifetime US2664702A (en) 1947-08-11 1948-07-29 Cooled flame tube

Country Status (5)

Country Link
US (1) US2664702A (en)
CH (1) CH275237A (en)
FR (1) FR988963A (en)
GB (1) GB636624A (en)
NL (1) NL74196C (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722180A (en) * 1950-05-12 1955-11-01 Oran T Mcilvaine Fuel burners
US2741090A (en) * 1949-06-30 1956-04-10 Rolls Royce Combustion equipment for gas-turbine engines with anticarbon wall portion
US2807139A (en) * 1953-01-19 1957-09-24 Lucas Industries Ltd Air-jacketed combustion chambers for jet propulsion engines, gas turbines and the like
US2815069A (en) * 1951-06-29 1957-12-03 Orr & Sembower Inc Burner apparatus
US2847826A (en) * 1952-09-10 1958-08-19 Ca Nat Research Council Pulsating torch igniter
US2872971A (en) * 1959-02-10 Combustion chambers for jet propulsion
US2958194A (en) * 1951-09-24 1960-11-01 Power Jets Res & Dev Ltd Cooled flame tube
US2972230A (en) * 1954-01-13 1961-02-21 Gen Motors Corp Automobile gas turbine
US2988139A (en) * 1956-11-14 1961-06-13 Sebac Nouvelie S A Spraying device
US3031012A (en) * 1957-12-27 1962-04-24 Gen Thermique Procedes Brola S Combustion apparatus
US3175361A (en) * 1959-08-05 1965-03-30 Phillips Petroleum Co Turbojet engine and its operation
US3372541A (en) * 1965-06-21 1968-03-12 Rolls Royce Gas turbine engine combustion chamber
US3374624A (en) * 1963-06-20 1968-03-26 Rolls Royce Gas turbine engine combustion equipment
US4012902A (en) * 1974-03-29 1977-03-22 Phillips Petroleum Company Method of operating a gas turbine combustor having an independent airstream to remove heat from the primary combustion zone
US4085580A (en) * 1975-11-29 1978-04-25 Rolls-Royce Limited Combustion chambers for gas turbine engines
US4122674A (en) * 1976-12-27 1978-10-31 The Boeing Company Apparatus for suppressing combustion noise within gas turbine engines
US4199936A (en) * 1975-12-24 1980-04-29 The Boeing Company Gas turbine engine combustion noise suppressor
US4419863A (en) * 1981-09-30 1983-12-13 United Technologies Corporation Fuel-air mixing apparatus
US4475344A (en) * 1982-02-16 1984-10-09 Westinghouse Electric Corp. Low smoke combustor for land based combustion turbines
US4687436A (en) * 1986-08-05 1987-08-18 Tadao Shigeta Gasified fuel combustion apparatus
US5220795A (en) * 1991-04-16 1993-06-22 General Electric Company Method and apparatus for injecting dilution air
EP1271057A2 (en) * 2001-06-29 2003-01-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
US6568187B1 (en) * 2001-12-10 2003-05-27 Power Systems Mfg, Llc Effusion cooled transition duct
US20040074236A1 (en) * 2001-06-27 2004-04-22 Shigemi Mandai Gas turbine combustor
US20080264035A1 (en) * 2007-04-25 2008-10-30 Ricciardo Mark J Coolant flow swirler for a rocket engine
US20090272124A1 (en) * 2006-12-21 2009-11-05 Dawson Robert W Cooling channel for cooling a hot gas guiding component
WO2011015543A1 (en) * 2009-08-04 2011-02-10 Snecma Combustion chamber for a turbine engine having improved air inlets
US20140331678A1 (en) * 2013-05-08 2014-11-13 Solar Turbines Incorporated System for distributing compressed air in a combustor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB721209A (en) * 1951-09-24 1955-01-05 Power Jets Res & Dev Ltd Combustion apparatus
DE1032622B (en) * 1955-09-22 1958-06-19 Power Jets Res & Dev Ltd Leadership for guiding a hot, flowing medium

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB433631A (en) * 1934-02-19 1935-08-19 George Roddam Improvements in or relating to internal combustion turbines
GB539069A (en) * 1939-01-30 1941-08-27 Bbc Brown Boveri & Cie Improvements in and relating to pipes, containers, casings or the like for gases of high temperature
US2382564A (en) * 1943-09-16 1945-08-14 Laval Steam Turbine Co Turbine system
US2396068A (en) * 1941-06-10 1946-03-05 Youngash Reginald William Turbine
US2398654A (en) * 1940-01-24 1946-04-16 Anglo Saxon Petroleum Co Combustion burner
US2404335A (en) * 1939-12-09 1946-07-16 Power Jets Res & Dev Ltd Liquid fuel burner, vaporizer, and combustion engine
GB579424A (en) * 1943-09-29 1946-08-02 Lucas Ltd Joseph Improvements relating to liquid fuel combustion apparatus for generating gases for power purposes
GB588086A (en) * 1943-04-01 1947-05-14 Power Jets Ltd Improvements relating to combustion apparatus
US2446059A (en) * 1944-10-05 1948-07-27 Peabody Engineering Corp Gas heater
US2447482A (en) * 1945-04-25 1948-08-24 Westinghouse Electric Corp Turbine apparatus
US2458497A (en) * 1945-05-05 1949-01-11 Babcock & Wilcox Co Combustion chamber
US2470184A (en) * 1941-07-12 1949-05-17 Bbc Brown Boveri & Cie Arrangement for cooling combustion chambers
US2547619A (en) * 1948-11-27 1951-04-03 Gen Electric Combustor with sectional housing and liner
US2581999A (en) * 1946-02-01 1952-01-08 Gen Electric Hemispherical combustion chamber end dome having cooling air deflecting means

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB433631A (en) * 1934-02-19 1935-08-19 George Roddam Improvements in or relating to internal combustion turbines
GB539069A (en) * 1939-01-30 1941-08-27 Bbc Brown Boveri & Cie Improvements in and relating to pipes, containers, casings or the like for gases of high temperature
US2404335A (en) * 1939-12-09 1946-07-16 Power Jets Res & Dev Ltd Liquid fuel burner, vaporizer, and combustion engine
US2398654A (en) * 1940-01-24 1946-04-16 Anglo Saxon Petroleum Co Combustion burner
US2396068A (en) * 1941-06-10 1946-03-05 Youngash Reginald William Turbine
US2470184A (en) * 1941-07-12 1949-05-17 Bbc Brown Boveri & Cie Arrangement for cooling combustion chambers
GB588086A (en) * 1943-04-01 1947-05-14 Power Jets Ltd Improvements relating to combustion apparatus
US2382564A (en) * 1943-09-16 1945-08-14 Laval Steam Turbine Co Turbine system
GB579424A (en) * 1943-09-29 1946-08-02 Lucas Ltd Joseph Improvements relating to liquid fuel combustion apparatus for generating gases for power purposes
US2446059A (en) * 1944-10-05 1948-07-27 Peabody Engineering Corp Gas heater
US2447482A (en) * 1945-04-25 1948-08-24 Westinghouse Electric Corp Turbine apparatus
US2458497A (en) * 1945-05-05 1949-01-11 Babcock & Wilcox Co Combustion chamber
US2581999A (en) * 1946-02-01 1952-01-08 Gen Electric Hemispherical combustion chamber end dome having cooling air deflecting means
US2547619A (en) * 1948-11-27 1951-04-03 Gen Electric Combustor with sectional housing and liner

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872971A (en) * 1959-02-10 Combustion chambers for jet propulsion
US2741090A (en) * 1949-06-30 1956-04-10 Rolls Royce Combustion equipment for gas-turbine engines with anticarbon wall portion
US2722180A (en) * 1950-05-12 1955-11-01 Oran T Mcilvaine Fuel burners
US2815069A (en) * 1951-06-29 1957-12-03 Orr & Sembower Inc Burner apparatus
US2958194A (en) * 1951-09-24 1960-11-01 Power Jets Res & Dev Ltd Cooled flame tube
US2847826A (en) * 1952-09-10 1958-08-19 Ca Nat Research Council Pulsating torch igniter
US2807139A (en) * 1953-01-19 1957-09-24 Lucas Industries Ltd Air-jacketed combustion chambers for jet propulsion engines, gas turbines and the like
US2972230A (en) * 1954-01-13 1961-02-21 Gen Motors Corp Automobile gas turbine
US2988139A (en) * 1956-11-14 1961-06-13 Sebac Nouvelie S A Spraying device
US3031012A (en) * 1957-12-27 1962-04-24 Gen Thermique Procedes Brola S Combustion apparatus
US3175361A (en) * 1959-08-05 1965-03-30 Phillips Petroleum Co Turbojet engine and its operation
US3374624A (en) * 1963-06-20 1968-03-26 Rolls Royce Gas turbine engine combustion equipment
US3372541A (en) * 1965-06-21 1968-03-12 Rolls Royce Gas turbine engine combustion chamber
US4012902A (en) * 1974-03-29 1977-03-22 Phillips Petroleum Company Method of operating a gas turbine combustor having an independent airstream to remove heat from the primary combustion zone
US4085580A (en) * 1975-11-29 1978-04-25 Rolls-Royce Limited Combustion chambers for gas turbine engines
US4199936A (en) * 1975-12-24 1980-04-29 The Boeing Company Gas turbine engine combustion noise suppressor
US4122674A (en) * 1976-12-27 1978-10-31 The Boeing Company Apparatus for suppressing combustion noise within gas turbine engines
US4419863A (en) * 1981-09-30 1983-12-13 United Technologies Corporation Fuel-air mixing apparatus
US4475344A (en) * 1982-02-16 1984-10-09 Westinghouse Electric Corp. Low smoke combustor for land based combustion turbines
US4687436A (en) * 1986-08-05 1987-08-18 Tadao Shigeta Gasified fuel combustion apparatus
US5220795A (en) * 1991-04-16 1993-06-22 General Electric Company Method and apparatus for injecting dilution air
US20040074236A1 (en) * 2001-06-27 2004-04-22 Shigemi Mandai Gas turbine combustor
US7032386B2 (en) * 2001-06-27 2006-04-25 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
EP1271057A3 (en) * 2001-06-29 2004-01-21 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
EP1271057A2 (en) * 2001-06-29 2003-01-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
US6732528B2 (en) 2001-06-29 2004-05-11 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
US6568187B1 (en) * 2001-12-10 2003-05-27 Power Systems Mfg, Llc Effusion cooled transition duct
US20090272124A1 (en) * 2006-12-21 2009-11-05 Dawson Robert W Cooling channel for cooling a hot gas guiding component
US8522557B2 (en) * 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component
US20080264035A1 (en) * 2007-04-25 2008-10-30 Ricciardo Mark J Coolant flow swirler for a rocket engine
WO2011015543A1 (en) * 2009-08-04 2011-02-10 Snecma Combustion chamber for a turbine engine having improved air inlets
FR2948988A1 (en) * 2009-08-04 2011-02-11 Snecma TURBOMACHINE COMBUSTION CHAMBER COMPRISING ENHANCED AIR INLET ORIFICES
US9175856B2 (en) 2009-08-04 2015-11-03 Snecma Combustion chamber for a turbomachine including improved air inlets
US20140331678A1 (en) * 2013-05-08 2014-11-13 Solar Turbines Incorporated System for distributing compressed air in a combustor

Also Published As

Publication number Publication date
CH275237A (en) 1951-05-15
GB636624A (en) 1950-05-03
NL74196C (en)
FR988963A (en) 1951-09-03

Similar Documents

Publication Publication Date Title
US2664702A (en) Cooled flame tube
US2621477A (en) Combustion apparatus having valve controlled passages for preheating the fuel-air mixture
US2515845A (en) Flame pocket fluid fuel burner
US3299632A (en) Combustion chamber for a gas turbine engine
US3800527A (en) Piloted flameholder construction
US2638745A (en) Gas turbine combustor having tangential air inlets for primary and secondary air
US2592110A (en) Orifice type flame holder construction
RU2450211C2 (en) Tubular combustion chamber with impact cooling
US2815069A (en) Burner apparatus
US2475911A (en) Combustion apparatus
US4374466A (en) Gas turbine engine
CN106247405B (en) Membranae praeformativa air blast (PAB) guiding device for low emission combustor
US2552492A (en) Air ducting arrangement for combustion chambers
US2560207A (en) Annular combustion chamber with circumferentially spaced double air-swirl burners
US2720753A (en) Combustion apparatus
US2920445A (en) Flame holder apparatus
GB1247144A (en) Combustion chambers, especially for use in gas turbine engines
US2705869A (en) Combustion apparatus
US3820324A (en) Flame tubes for gas turbine engines
US20120111014A1 (en) Low calorific fuel combustor for gas turbine
GB1180524A (en) Gas Turbine Jet Engine of the By-Pass Type
US2577918A (en) Air jacketed combustion chamber flame tube
US4651534A (en) Gas turbine engine combustor
US3373562A (en) Combustion chamber for gas turbines and the like having improved flame holder
US2560223A (en) Double air-swirl baffle construction for fuel burners