US2208633A - Anesthetizing apparatus - Google Patents

Anesthetizing apparatus Download PDF

Info

Publication number
US2208633A
US2208633A US15444A US15444437A US2208633A US 2208633 A US2208633 A US 2208633A US 15444 A US15444 A US 15444A US 15444437 A US15444437 A US 15444437A US 2208633 A US2208633 A US 2208633A
Authority
US
United States
Prior art keywords
patient
anesthetizing
air
chamber
inhaler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US15444A
Inventor
Jay A Heidbrink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airco Inc
Original Assignee
Air Reduction Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Reduction Co Inc filed Critical Air Reduction Co Inc
Priority to US15444A priority Critical patent/US2208633A/en
Application granted granted Critical
Publication of US2208633A publication Critical patent/US2208633A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/104Preparation of respiratory gases or vapours specially adapted for anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy

Definitions

  • My invention relates to anesthetizingapparatus for administering anesthetizing gases through the nose to produce analgesia, and has for its object to provide in combination with a 5 gas-administering machine of any desired type a nasal inhaler with valve means associated therewith such that the patient will breathe anesthetizing mixture in conjunction with air mixing therewith in such proportions that deep anesthesia is impossible but a normal and sufllcient state of analgesia will be produced to relieve from pain and discomfort in, for example, operations for repairing cavities and injuries to the teeth.
  • FIG. 1 is a perspective view of the apparatus in position on the head of a patient.
  • Fig. 2 is a part sectional plan view of the inhaler and airadmittlng elements thereof, the section beingtaken on line 22 of Fig. 3.
  • Fig. 3 is a transverse sectional view taken on line 3-3 of Fig. 2.
  • Fig. 4 is a side elevation part sectional view of a gas-administering machine adapted to be employed in connection with my invention showing the patient-controlled valve mechanism 'for admitting supply of gas mixture.
  • the machine is associated with tanks ll of oxygen and II of nitrous oxide.
  • valve chamber I2 communicates through an opening IS with passageways l6, l1 5 and thence through passageways in flow valve chamber IQ of the flow valve l4 and a return passage in member l9 to a discharge nipple 20, from which said gases go through tubing 2
  • the tubular extension 23' is formed with a multiplicity of apertures 25 opening to atmosphere.
  • the chamber 23 communicates on one side through passageway 23 with nasal inhaler tubes 29 and 33, and on the other side through a venturl 3
  • a lipped valve ring 34 which is engaged by a valve disc 35 mounted on a stem '36 and moved into valve closing position by means of a coil spring 31. 25
  • the stem 33 is united with a holder 38 which projects from chamber l6 into a chamber 39 located in the valve casting 40.
  • which is secured to or engages the bottom portion 42 of the holder 30 38.
  • a nipple 43 is secured to the casting 40 with a bore 44 which opens into chamber 39 below d aphragm 4
  • Aiflexible tubing 45 is secured to the nipple 43 and has at its outer end a bulb 46 adapted to be gripped by the hand of the 35 patient, as indicated in' Fig. 1.
  • a bulb 46 adapted to be gripped by the hand of the 35 patient, as indicated in' Fig. 1.
  • a bore 41 40 through casting 40 into chamber 39- is of such dimension as to permit gradual exhaust of air from chamber 39 below diaphragm 4
  • the inhaler member 24 and the attached rebreathing bag 33 are supported on the head of 50 the patient with the nasal inhaler tubes 43 and 49 in position with the nostrils of the-patient by the following novel means:
  • a band 50 passes from toward the front of the upper part of the head around the back of the head being made s5 I adjustable with respect thereto by means of a projection extending through one of a number of holes 52 in the band so that the band may ends of cord 55 are shown looped over the band 50 and secured by tying, although snaps or clasps can be substituted for tying.
  • the whole combination operates to holdthe inhaler valve casing, rebreathing bag and nasal connections 29, 30 in balanced position on the head of the operator, which is thus free to move around to any extent desired for expectorating into the dental bowl or relieving the patient from strain.
  • the device is designed for use in connection with oral operative treatment in which deep anesthesia is not desired, primarily for use in connection with the grinding and excavating accompanying the repairing of teeth.
  • the patient at all times breathes through the nostrils.
  • the bulb 46 When the bulb 46 has been squeezed the anesthetizing gas will pass through tube 2
  • the inlet of gas and air as above noted will mix with the rebreathing mixture from the rebreathing bag 33.
  • anesthetizing agent or anesthetizing mixture as used herein do not require any specified proportions of mixture of gases such as, for example,
  • the apparatus is employed the patient is positioned in whatever type of operating chair may be deemed desirable, and holds within his hand' the bulb 4-6. It may be that the gas administering machine is connected up to deliver a stream or jets of pure nitrous oxide. When the patient squeezes the bulb such a stream or jet of nitrous .oxide passes through the air port chamber 25 and the venturi 21 and siphons or drags along with it a quantity of air, and the amount of this air so taken in with the anesthetizing agent will be increased by the patients breathing.
  • the relation of the pressure and size of delivery bore for the anesthetizing agent to the air ports, to the siphoning efl'ect -of the venturi and to the patients breathing is such as to produce a mixture of, say nitrous oxide and air, in proportions to oxygenate the blood and to dilute, the anesthetizing agent to a point where the patient will arrive at the desired plane of analgesia.
  • the flow of the anesthetizing gas will be intermittent, the patient preferably operating the bulb at each inhalation.
  • the patient himself is able algesia comprising a connected inhaler and rebreathing bag, a mixing chamber in the connecting passage between the inhaler and rebreathing bag, a Venturi opening into said mixing chamber, means for causing a stream of, anesthetizing fluid to enter the mixing chamber through the center of the venturi, and means for admitting air to points adjacent said venturi and around said fluid stream, whereby air is taken into the mixing chamber by action of said fluid stream and the inhalations of the patient.
  • Anesthetizing apparatus including a double plugged nasal inhaler and associated mixing chamber andrebreathing bag, means for securing the same upon the head of the patient so the patients head is free to move in any direction in the operating chair, including a band secured to the body of the inhaler andadapted to be held tight about the head from the upper front portion to around the lower back portion, and a cord having sliding connection with both nasal plugs adapted to be adjustably secured to the band.
  • Anesthetizing apparatus for producing analgesia comprising means for delivering anesthetizing fluid to the patient including a jetforming breathing passage and a rebreathing bag, means for introducing air into the fluid on inhalation including a port open to atmosphere between the breathing passage and the rebreathing bag, and means including a venturi located between the rebreathing bag and the port and in alinement With the breathing passage for syphoning air into the rebreathing bag as the patient exhales.
  • algesia comprising a restricted breathing passage and a rebreathing bag closely connected therewith, a mixing chamber in the connecting passage between the breathing passage and rebreathing bag, means for admitting anesthetizing fluid and air into the mixing chamber, and means including a venturi located between the rebreathing bag I and the mixing chamber and close to the latter and in alinement with the breathing passage acting to cause air and anesthetizing fluid to move to the rebreathing bag upon-exhalation of the patient.
  • Anesthetizing apparatus for producing analgesia. comprising a restricted breathing passage and a rebreathing bag closely connected therewith, a mixing chamber in the connecting passage between the breathing passage and rebreathing bag, a Venturi opening into said mixing chamber, means for causing a stream of anesthetizing fluid to enter the mixing chamber through the venturi, means for admitting air to the venturi, said venturi acting to draw air into the mixing chamber upon inhalation, and means including a second venturi located between the rebreathing bag and the mixing chamber and close to the latter and'in alinement with the breathing passage acting to cause air and anesthetizing fluid to move to the rebreathing bag upon exhalation of the patient.

Description

y 3, 1940. J. A. HEIDBRINK 2,208,633
ANESTBETIZING APPARATUS Filed July 19', 1937 2 Sheets-Sheet 1 lnveri'kor-z :rq Heidlor-ink.
fl tfor-nzgs.
3, 1940. .LA. .HEIDBRINK 2,208,633
ANESTHETIZING APPARATUS Filed July 19, 1957 2 Sheets-Sheet 2 Invenkor: J'a K. Heidlor-irzk. 55% d fitter-r1258.
Patented July 23, 1940 UNITED STATES mns'rnnnzmo APPARATUS Jay A. Heidbrlnk, Minneapolis, Minn assignor,
by mesne assignments, to Air Reduction Company, Incorporated, a corporation of New York Application July 19. 1937, Serial No. 154,444
Claims.
My invention relates to anesthetizingapparatus for administering anesthetizing gases through the nose to produce analgesia, and has for its object to provide in combination with a 5 gas-administering machine of any desired type a nasal inhaler with valve means associated therewith such that the patient will breathe anesthetizing mixture in conjunction with air mixing therewith in such proportions that deep anesthesia is impossible but a normal and sufllcient state of analgesia will be produced to relieve from pain and discomfort in, for example, operations for repairing cavities and injuries to the teeth.
It is a further object of my invention to provide a nasal inhaler in conjunction with a rebreathing bag supported directly on the head of the patient with novel means for holding the inhaler and bag in position on the head of the patient. It is a further object of my invention to provide means associated with said inhaler and bag whereby atmospheric air will go to the lungs of the patient along with gas mixture on inhalation, and air will go into the passageways and to the rebreathing bag on exhalation, the
latter part only of exhalation exhausting to atmosphere;
It is a further object of my invention to provide means under the control of the patient for admitting anesthetlzing mixture to the inhaler intermittently-and in such proportions in relation to the amount of air admitted to the inhaler as to produce a desired depth of analgesia, but such that deep anesthesia is automatically prevented.
The full objects-rand advantages of my invention-will appear in connection with the detailed description thereof, and the novel features oi the invention are particularly pointed out in the claims. I V
In the drawings illustrating an application of my invention in one form- Fig. 1 is a perspective view of the apparatus in position on the head of a patient. Fig. 2 is a part sectional plan view of the inhaler and airadmittlng elements thereof, the section beingtaken on line 22 of Fig. 3. Fig. 3 is a transverse sectional view taken on line 3-3 of Fig. 2.
Fig. 4 is a side elevation part sectional view of a gas-administering machine adapted to be employed in connection with my invention showing the patient-controlled valve mechanism 'for admitting supply of gas mixture. I a
As illustrated, the machine is associated with tanks ll of oxygen and II of nitrous oxide.
These gases now through well-known connections to a valve chamber l2, gauges l3 and I4 indicating proportions and volume of gases-delivered. The valve chamber I2 communicates through an opening IS with passageways l6, l1 5 and thence through passageways in flow valve chamber IQ of the flow valve l4 and a return passage in member l9 to a discharge nipple 20, from which said gases go through tubing 2| to the bore of a nipple 22 on atubular extension 10 23, Fig. 2, on inhaler valve casing 24. As clearly shown in Fig. 3, the tubular extension 23' is formed with a multiplicity of apertures 25 opening to atmosphere. And between said apertures and the chamber 26 within casing 24 is formed 15 a Venturi opening 21, as .clearly shown in Fig. 2. The chamber 23 communicates on one side through passageway 23 with nasal inhaler tubes 29 and 33, and on the other side through a venturl 3| with a hollow tubular extension 32 which 20 supports a rebreathing bag 33.
Within the chamber I6 is located a lipped valve ring 34 which is engaged by a valve disc 35 mounted on a stem '36 and moved into valve closing position by means of a coil spring 31. 25 The stem 33 is united with a holder 38 which projects from chamber l6 into a chamber 39 located in the valve casting 40. Within chamber 39 is a flexible diaphragm 4| which is secured to or engages the bottom portion 42 of the holder 30 38. A nipple 43 is secured to the casting 40 with a bore 44 which opens into chamber 39 below d aphragm 4|. Aiflexible tubing 45 is secured to the nipple 43 and has at its outer end a bulb 46 adapted to be gripped by the hand of the 35 patient, as indicated in' Fig. 1. When so gripped air pressure will operate on diaphragm 4| to lift stem 33 and valve disc 35 to permit flow of gas mixture through the various passageways and tube 2| to the inhaler chamber 26. A bore 41 40 through casting 40 into chamber 39- is of such dimension as to permit gradual exhaust of air from chamber 39 below diaphragm 4|, thus permitting spring 31 to close valve disc 35 even if the patient continues to hold bulb 46 squeezed 45 tight. In this way continued feed of anesthetizing gas mixture will be prevented until the patient again actuates the bulb 46.
The inhaler member 24 and the attached rebreathing bag 33 are supported on the head of 50 the patient with the nasal inhaler tubes 43 and 49 in position with the nostrils of the-patient by the following novel means: A band 50 passes from toward the front of the upper part of the head around the back of the head being made s5 I adjustable with respect thereto by means of a projection extending through one of a number of holes 52 in the band so that the band may ends of cord 55 are shown looped over the band 50 and secured by tying, although snaps or clasps can be substituted for tying. The whole combination operates to holdthe inhaler valve casing, rebreathing bag and nasal connections 29, 30 in balanced position on the head of the operator, which is thus free to move around to any extent desired for expectorating into the dental bowl or relieving the patient from strain.
The method of operation and advantages of my invention appear clearly from the above description thereof. The device is designed for use in connection with oral operative treatment in which deep anesthesia is not desired, primarily for use in connection with the grinding and excavating accompanying the repairing of teeth. The patient at all times breathes through the nostrils. When the bulb 46 has been squeezed the anesthetizing gas will pass through tube 2| into chamber 26. On inhalation this gas is mixed with air which is caused to draw through the apertures 25 by reason of the inlet through venturi 21. The inlet of gas and air as above noted will mix with the rebreathing mixture from the rebreathing bag 33. On exhalation as the exhaled gases first, pass to the rebreathing bag the venturi 3| and tubing 2| will have the effect of siphoning 'in additional air through I the apertures 25, thus providing a mixture of air and rebreathed gases. For this reason a patient cannot put himself in a condition of deep anesthesia. For to obtain continuous anesthetizing gases the bulb 46 would have to be repeatedly squeezed at close intervals. But the moment any approach to anesthesia begins to be felt by the patient his muscular control over the bulb will cease, and whether it is held squeezedby him or released flow of anesthetizing gas mixture will be terminated and the inlet airfrom ports 25 and admixture with the gases being breathed will easily restore the patient from any efiect of deep anesthesia, maintaining; however, a continuous state of analgesia which sufliciently deadens sensitiveness and pain for the type of operative treatment for which the apparatus is adapted.
It will be understood, however, that the terms anesthetizing agent or anesthetizing mixture as used herein do not require any specified proportions of mixture of gases such as, for example,
nitrous oxide and oxygen, but that any mixture in any proportion or in which pure nitrous oxide is used without any admixture of oxygen are within the scope of the invention and are contemplatai by the above-referred-to terms.
vAs the apparatus is employed the patient is positioned in whatever type of operating chair may be deemed desirable, and holds within his hand' the bulb 4-6. It may be that the gas administering machine is connected up to deliver a stream or jets of pure nitrous oxide. When the patient squeezes the bulb such a stream or jet of nitrous .oxide passes through the air port chamber 25 and the venturi 21 and siphons or drags along with it a quantity of air, and the amount of this air so taken in with the anesthetizing agent will be increased by the patients breathing. The relation of the pressure and size of delivery bore for the anesthetizing agent to the air ports, to the siphoning efl'ect -of the venturi and to the patients breathing is such as to produce a mixture of, say nitrous oxide and air, in proportions to oxygenate the blood and to dilute, the anesthetizing agent to a point where the patient will arrive at the desired plane of analgesia. In practice the flow of the anesthetizing gas will be intermittent, the patient preferably operating the bulb at each inhalation. If, however, the patient ceases for a time to operate the bulb and the jets of anesthetizing gas will be completely stopped, there cannot be such an accumulation of anesthetizing gas as to-produce deeper analgesia or anesthesia, but, rather, the patient will tend to come out from the state of analgesia and thereby will be prompted again to squeeze the bulb and start a fresh flow of anesthetizing gas. Always, however, whether jets of anesthetizing gas are being delivered through the venturi or whether it is cut oil and the patient is breathing back and forth to and from the rebreathing bag, additional quantities of air will be siphoning in to the mixture, which thus tends to become more dilute and produce less efl'ect upon the patient and thereby warns him of the need for again operating the bulb to provide a fresh supply of anesthetizing gas. In this manner the patient himself is able algesia comprising a connected inhaler and rebreathing bag, a mixing chamber in the connecting passage between the inhaler and rebreathing bag, a Venturi opening into said mixing chamber, means for causing a stream of, anesthetizing fluid to enter the mixing chamber through the center of the venturi, and means for admitting air to points adjacent said venturi and around said fluid stream, whereby air is taken into the mixing chamber by action of said fluid stream and the inhalations of the patient.
2. Anesthetizing apparatus including a double plugged nasal inhaler and associated mixing chamber andrebreathing bag, means for securing the same upon the head of the patient so the patients head is free to move in any direction in the operating chair, including a band secured to the body of the inhaler andadapted to be held tight about the head from the upper front portion to around the lower back portion, and a cord having sliding connection with both nasal plugs adapted to be adjustably secured to the band.
3. Anesthetizing apparatus for producing analgesia comprising means for delivering anesthetizing fluid to the patient including a jetforming breathing passage and a rebreathing bag, means for introducing air into the fluid on inhalation including a port open to atmosphere between the breathing passage and the rebreathing bag, and means including a venturi located between the rebreathing bag and the port and in alinement With the breathing passage for syphoning air into the rebreathing bag as the patient exhales.
algesia comprising a restricted breathing passage and a rebreathing bag closely connected therewith, a mixing chamber in the connecting passage between the breathing passage and rebreathing bag, means for admitting anesthetizing fluid and air into the mixing chamber, and means including a venturi located between the rebreathing bag I and the mixing chamber and close to the latter and in alinement with the breathing passage acting to cause air and anesthetizing fluid to move to the rebreathing bag upon-exhalation of the patient. a
5. Anesthetizing apparatus for producing analgesia. comprising a restricted breathing passage and a rebreathing bag closely connected therewith, a mixing chamber in the connecting passage between the breathing passage and rebreathing bag, a Venturi opening into said mixing chamber, means for causing a stream of anesthetizing fluid to enter the mixing chamber through the venturi, means for admitting air to the venturi, said venturi acting to draw air into the mixing chamber upon inhalation, and means including a second venturi located between the rebreathing bag and the mixing chamber and close to the latter and'in alinement with the breathing passage acting to cause air and anesthetizing fluid to move to the rebreathing bag upon exhalation of the patient.
JAY A. nmmmmx.
US15444A 1937-07-19 1937-07-19 Anesthetizing apparatus Expired - Lifetime US2208633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15444A US2208633A (en) 1937-07-19 1937-07-19 Anesthetizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15444A US2208633A (en) 1937-07-19 1937-07-19 Anesthetizing apparatus

Publications (1)

Publication Number Publication Date
US2208633A true US2208633A (en) 1940-07-23

Family

ID=22551380

Family Applications (1)

Application Number Title Priority Date Filing Date
US15444A Expired - Lifetime US2208633A (en) 1937-07-19 1937-07-19 Anesthetizing apparatus

Country Status (1)

Country Link
US (1) US2208633A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2693800A (en) * 1951-04-27 1954-11-09 Caldwell Lyle Nasal cannula
US2979055A (en) * 1954-06-18 1961-04-11 Burroughs Wellcome Co Method for the administration of muscle relaxant drugs
US2989357A (en) * 1956-04-13 1961-06-20 Wallace A Verrett Obstetric labor pain recorder
US3799164A (en) * 1971-08-12 1974-03-26 Du Pont Analgesic apparatus
US3814103A (en) * 1973-03-08 1974-06-04 Shiley Labor Inc Binasal pharyngeal airway
US4151843A (en) * 1976-06-28 1979-05-01 Brekke John H Apparatus for administration of a gas to a human and the exhausting thereof
US4201205A (en) * 1978-01-20 1980-05-06 Hudson Oxygen Therapy Sales Company Oxygen mask
WO1984001293A1 (en) * 1982-10-01 1984-04-12 Robert E Phillips Oxygen delivery apparatus
WO1984001295A1 (en) * 1982-10-01 1984-04-12 Robert E Phillips Oxygen therapy method and apparatus
US4681121A (en) * 1985-01-15 1987-07-21 Gerd Kobal Process for measuring sensory qualities and apparatus therefor
US5099833A (en) * 1991-02-19 1992-03-31 Baxter International Inc. High efficiency nebulizer having a flexible reservoir
US5335656A (en) * 1988-04-15 1994-08-09 Salter Laboratories Method and apparatus for inhalation of treating gas and sampling of exhaled gas for quantitative analysis
US5697363A (en) * 1996-04-12 1997-12-16 Albert Einstein Healthcare Network Inhalation and monitoring mask with headset
US6082359A (en) * 1997-12-11 2000-07-04 Preston; Paul Christopher Dual cylinder manifold
US6098621A (en) * 1995-09-12 2000-08-08 Esnouf; Philip Stuart Disposable oxygenating device
US6354293B1 (en) * 1999-03-16 2002-03-12 Foster E. Madison Breathing humidifier
US6536437B1 (en) 1999-10-29 2003-03-25 Branislav M. Dragisic Cuffed nasal airway and anesthetic wand system
US6634355B2 (en) 1999-06-11 2003-10-21 Colas Marie-Jose Single breath induction anesthesia apparatus
US6684883B1 (en) * 2001-08-21 2004-02-03 Bonnie C. Burns Nasal cannula headband apparatus
US6701915B1 (en) * 1999-11-20 2004-03-09 Michael Hermanussen Device for inhaling medicaments using supported pressure respiration
US20050092321A1 (en) * 2003-10-29 2005-05-05 Airmatrix Technologies, Inc. Method and system of sensing airflow and delivering therapeutic gas to a patient
US6990977B1 (en) * 1996-12-12 2006-01-31 Resmed Limited Substance delivery apparatus
US7066180B2 (en) * 2003-07-09 2006-06-27 Airmatrix Technologies, Inc. Method and system for measuring airflow of nares
US20060169281A1 (en) * 2005-02-03 2006-08-03 Aylsworth Alonzo C Continuous flow selective delivery of therapeutic gas
US20190269868A1 (en) * 2018-03-02 2019-09-05 Msafe, Inc. Breathing Gas Delivery System

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2693800A (en) * 1951-04-27 1954-11-09 Caldwell Lyle Nasal cannula
US2979055A (en) * 1954-06-18 1961-04-11 Burroughs Wellcome Co Method for the administration of muscle relaxant drugs
US2989357A (en) * 1956-04-13 1961-06-20 Wallace A Verrett Obstetric labor pain recorder
US3799164A (en) * 1971-08-12 1974-03-26 Du Pont Analgesic apparatus
US3814103A (en) * 1973-03-08 1974-06-04 Shiley Labor Inc Binasal pharyngeal airway
US4151843A (en) * 1976-06-28 1979-05-01 Brekke John H Apparatus for administration of a gas to a human and the exhausting thereof
US4201205A (en) * 1978-01-20 1980-05-06 Hudson Oxygen Therapy Sales Company Oxygen mask
WO1984001293A1 (en) * 1982-10-01 1984-04-12 Robert E Phillips Oxygen delivery apparatus
WO1984001295A1 (en) * 1982-10-01 1984-04-12 Robert E Phillips Oxygen therapy method and apparatus
GB2142545A (en) * 1982-10-01 1985-01-23 Phillips Robert E Oxygen therapy method and apparatus
US4681121A (en) * 1985-01-15 1987-07-21 Gerd Kobal Process for measuring sensory qualities and apparatus therefor
US5335656A (en) * 1988-04-15 1994-08-09 Salter Laboratories Method and apparatus for inhalation of treating gas and sampling of exhaled gas for quantitative analysis
US5099833A (en) * 1991-02-19 1992-03-31 Baxter International Inc. High efficiency nebulizer having a flexible reservoir
US6098621A (en) * 1995-09-12 2000-08-08 Esnouf; Philip Stuart Disposable oxygenating device
US6508250B1 (en) 1995-09-12 2003-01-21 Philip Stuart Esnouf Disposable oxygenating device
US5697363A (en) * 1996-04-12 1997-12-16 Albert Einstein Healthcare Network Inhalation and monitoring mask with headset
US6990977B1 (en) * 1996-12-12 2006-01-31 Resmed Limited Substance delivery apparatus
US8397716B2 (en) 1996-12-12 2013-03-19 Resmed Limited Method and apparatus for substance delivery in system for supplying breathable gas
US20100282251A1 (en) * 1996-12-12 2010-11-11 Resmed Limited Method and apparatus for substance delivery in system for supplying breathable gas
US7779834B2 (en) 1996-12-12 2010-08-24 Resmed Limited Method and apparatus for substance delivery in system for supplying breathable gas
US6082359A (en) * 1997-12-11 2000-07-04 Preston; Paul Christopher Dual cylinder manifold
US6354293B1 (en) * 1999-03-16 2002-03-12 Foster E. Madison Breathing humidifier
US6634355B2 (en) 1999-06-11 2003-10-21 Colas Marie-Jose Single breath induction anesthesia apparatus
US6536437B1 (en) 1999-10-29 2003-03-25 Branislav M. Dragisic Cuffed nasal airway and anesthetic wand system
US6701915B1 (en) * 1999-11-20 2004-03-09 Michael Hermanussen Device for inhaling medicaments using supported pressure respiration
US6684883B1 (en) * 2001-08-21 2004-02-03 Bonnie C. Burns Nasal cannula headband apparatus
US7066180B2 (en) * 2003-07-09 2006-06-27 Airmatrix Technologies, Inc. Method and system for measuring airflow of nares
US20050092321A1 (en) * 2003-10-29 2005-05-05 Airmatrix Technologies, Inc. Method and system of sensing airflow and delivering therapeutic gas to a patient
US7007692B2 (en) * 2003-10-29 2006-03-07 Airmatrix Technologies, Inc. Method and system of sensing airflow and delivering therapeutic gas to a patient
US20060169281A1 (en) * 2005-02-03 2006-08-03 Aylsworth Alonzo C Continuous flow selective delivery of therapeutic gas
US20190269868A1 (en) * 2018-03-02 2019-09-05 Msafe, Inc. Breathing Gas Delivery System
US10561811B2 (en) * 2018-03-02 2020-02-18 Msafe, Inc. Breathing gas delivery system
US10842960B2 (en) 2018-03-02 2020-11-24 Msafe, Inc. Breathing gas delivery system
US11077269B2 (en) 2018-03-02 2021-08-03 Msafe, Inc. Breathing gas delivery system

Similar Documents

Publication Publication Date Title
US2208633A (en) Anesthetizing apparatus
US10722674B2 (en) Respiratory face mask and breathing circuit assembly
US3537448A (en) Therapeutic intermittent positive pressure respirator
US4265239A (en) Gas scavenging exhaust system
US4919132A (en) Apparatus for supplying gas to a patient
US4502481A (en) Device for manually ventilating a patient
US6340023B2 (en) Rebreather nebulizer device
US4245633A (en) PEEP providing circuit for anesthesia systems
EP2701786B1 (en) Nasal interface device
US3853105A (en) Insufflator gas flow device
US20030079749A1 (en) Nasal cannula
JP2000051360A (en) Respiration assisting device
US20230226306A1 (en) Pressure safety device for bag valve mask
GB2139099A (en) Resuscitator
US3581742A (en) Intermittent positive pressure breathing device
US20080283051A1 (en) Lung therapy device
US2881757A (en) Respirator control systems
US3441020A (en) Continuous flow inhalator mask with obturator means
US3967619A (en) Apparatus and method for intermittent mandatory ventilation
US2868198A (en) Unidirectional valve for anesthesia equipment
US10682483B2 (en) Apparatus and method for delivering a gas mixture to a child
US1695930A (en) Inhaling device for administering gases and the like
CN216022537U (en) Bidirectional ventilation structure and oxygen supply device capable of adjusting oxygen inhalation concentration
CN111375110B (en) Gas inhalation device for making concentration of gas entering respiratory tract constant and having no respiratory resistance
CN113633861A (en) Bidirectional ventilation structure and oxygen supply device capable of adjusting oxygen inhalation concentration