Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2208633 A
Publication typeGrant
Publication date23 Jul 1940
Filing date19 Jul 1937
Priority date19 Jul 1937
Publication numberUS 2208633 A, US 2208633A, US-A-2208633, US2208633 A, US2208633A
InventorsJay A Heidbrink
Original AssigneeAir Reduction
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Anesthetizing apparatus
US 2208633 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

y 3, 1940. J. A. HEIDBRINK 2,208,633

ANESTBETIZING APPARATUS Filed July 19', 1937 2 Sheets-Sheet 1 lnveri'kor-z :rq Heidlor-ink.

fl tfor-nzgs.

3, 1940. .LA. .HEIDBRINK 2,208,633

ANESTHETIZING APPARATUS Filed July 19, 1957 2 Sheets-Sheet 2 Invenkor: J'a K. Heidlor-irzk. 55% d fitter-r1258.

Patented July 23, 1940 UNITED STATES mns'rnnnzmo APPARATUS Jay A. Heidbrlnk, Minneapolis, Minn assignor,

by mesne assignments, to Air Reduction Company, Incorporated, a corporation of New York Application July 19. 1937, Serial No. 154,444

Claims.

My invention relates to anesthetizingapparatus for administering anesthetizing gases through the nose to produce analgesia, and has for its object to provide in combination with a 5 gas-administering machine of any desired type a nasal inhaler with valve means associated therewith such that the patient will breathe anesthetizing mixture in conjunction with air mixing therewith in such proportions that deep anesthesia is impossible but a normal and sufllcient state of analgesia will be produced to relieve from pain and discomfort in, for example, operations for repairing cavities and injuries to the teeth.

It is a further object of my invention to provide a nasal inhaler in conjunction with a rebreathing bag supported directly on the head of the patient with novel means for holding the inhaler and bag in position on the head of the patient. It is a further object of my invention to provide means associated with said inhaler and bag whereby atmospheric air will go to the lungs of the patient along with gas mixture on inhalation, and air will go into the passageways and to the rebreathing bag on exhalation, the

latter part only of exhalation exhausting to atmosphere;

It is a further object of my invention to provide means under the control of the patient for admitting anesthetlzing mixture to the inhaler intermittently-and in such proportions in relation to the amount of air admitted to the inhaler as to produce a desired depth of analgesia, but such that deep anesthesia is automatically prevented.

The full objects-rand advantages of my invention-will appear in connection with the detailed description thereof, and the novel features oi the invention are particularly pointed out in the claims. I V

In the drawings illustrating an application of my invention in one form- Fig. 1 is a perspective view of the apparatus in position on the head of a patient. Fig. 2 is a part sectional plan view of the inhaler and airadmittlng elements thereof, the section beingtaken on line 22 of Fig. 3. Fig. 3 is a transverse sectional view taken on line 3-3 of Fig. 2.

Fig. 4 is a side elevation part sectional view of a gas-administering machine adapted to be employed in connection with my invention showing the patient-controlled valve mechanism 'for admitting supply of gas mixture. I a

As illustrated, the machine is associated with tanks ll of oxygen and II of nitrous oxide.

These gases now through well-known connections to a valve chamber l2, gauges l3 and I4 indicating proportions and volume of gases-delivered. The valve chamber I2 communicates through an opening IS with passageways l6, l1 5 and thence through passageways in flow valve chamber IQ of the flow valve l4 and a return passage in member l9 to a discharge nipple 20, from which said gases go through tubing 2| to the bore of a nipple 22 on atubular extension 10 23, Fig. 2, on inhaler valve casing 24. As clearly shown in Fig. 3, the tubular extension 23' is formed with a multiplicity of apertures 25 opening to atmosphere. And between said apertures and the chamber 26 within casing 24 is formed 15 a Venturi opening 21, as .clearly shown in Fig. 2. The chamber 23 communicates on one side through passageway 23 with nasal inhaler tubes 29 and 33, and on the other side through a venturl 3| with a hollow tubular extension 32 which 20 supports a rebreathing bag 33.

Within the chamber I6 is located a lipped valve ring 34 which is engaged by a valve disc 35 mounted on a stem '36 and moved into valve closing position by means of a coil spring 31. 25 The stem 33 is united with a holder 38 which projects from chamber l6 into a chamber 39 located in the valve casting 40. Within chamber 39 is a flexible diaphragm 4| which is secured to or engages the bottom portion 42 of the holder 30 38. A nipple 43 is secured to the casting 40 with a bore 44 which opens into chamber 39 below d aphragm 4|. Aiflexible tubing 45 is secured to the nipple 43 and has at its outer end a bulb 46 adapted to be gripped by the hand of the 35 patient, as indicated in' Fig. 1. When so gripped air pressure will operate on diaphragm 4| to lift stem 33 and valve disc 35 to permit flow of gas mixture through the various passageways and tube 2| to the inhaler chamber 26. A bore 41 40 through casting 40 into chamber 39- is of such dimension as to permit gradual exhaust of air from chamber 39 below diaphragm 4|, thus permitting spring 31 to close valve disc 35 even if the patient continues to hold bulb 46 squeezed 45 tight. In this way continued feed of anesthetizing gas mixture will be prevented until the patient again actuates the bulb 46.

The inhaler member 24 and the attached rebreathing bag 33 are supported on the head of 50 the patient with the nasal inhaler tubes 43 and 49 in position with the nostrils of the-patient by the following novel means: A band 50 passes from toward the front of the upper part of the head around the back of the head being made s5 I adjustable with respect thereto by means of a projection extending through one of a number of holes 52 in the band so that the band may ends of cord 55 are shown looped over the band 50 and secured by tying, although snaps or clasps can be substituted for tying. The whole combination operates to holdthe inhaler valve casing, rebreathing bag and nasal connections 29, 30 in balanced position on the head of the operator, which is thus free to move around to any extent desired for expectorating into the dental bowl or relieving the patient from strain.

The method of operation and advantages of my invention appear clearly from the above description thereof. The device is designed for use in connection with oral operative treatment in which deep anesthesia is not desired, primarily for use in connection with the grinding and excavating accompanying the repairing of teeth. The patient at all times breathes through the nostrils. When the bulb 46 has been squeezed the anesthetizing gas will pass through tube 2| into chamber 26. On inhalation this gas is mixed with air which is caused to draw through the apertures 25 by reason of the inlet through venturi 21. The inlet of gas and air as above noted will mix with the rebreathing mixture from the rebreathing bag 33. On exhalation as the exhaled gases first, pass to the rebreathing bag the venturi 3| and tubing 2| will have the effect of siphoning 'in additional air through I the apertures 25, thus providing a mixture of air and rebreathed gases. For this reason a patient cannot put himself in a condition of deep anesthesia. For to obtain continuous anesthetizing gases the bulb 46 would have to be repeatedly squeezed at close intervals. But the moment any approach to anesthesia begins to be felt by the patient his muscular control over the bulb will cease, and whether it is held squeezedby him or released flow of anesthetizing gas mixture will be terminated and the inlet airfrom ports 25 and admixture with the gases being breathed will easily restore the patient from any efiect of deep anesthesia, maintaining; however, a continuous state of analgesia which sufliciently deadens sensitiveness and pain for the type of operative treatment for which the apparatus is adapted.

It will be understood, however, that the terms anesthetizing agent or anesthetizing mixture as used herein do not require any specified proportions of mixture of gases such as, for example,

nitrous oxide and oxygen, but that any mixture in any proportion or in which pure nitrous oxide is used without any admixture of oxygen are within the scope of the invention and are contemplatai by the above-referred-to terms.

vAs the apparatus is employed the patient is positioned in whatever type of operating chair may be deemed desirable, and holds within his hand' the bulb 4-6. It may be that the gas administering machine is connected up to deliver a stream or jets of pure nitrous oxide. When the patient squeezes the bulb such a stream or jet of nitrous .oxide passes through the air port chamber 25 and the venturi 21 and siphons or drags along with it a quantity of air, and the amount of this air so taken in with the anesthetizing agent will be increased by the patients breathing. The relation of the pressure and size of delivery bore for the anesthetizing agent to the air ports, to the siphoning efl'ect -of the venturi and to the patients breathing is such as to produce a mixture of, say nitrous oxide and air, in proportions to oxygenate the blood and to dilute, the anesthetizing agent to a point where the patient will arrive at the desired plane of analgesia. In practice the flow of the anesthetizing gas will be intermittent, the patient preferably operating the bulb at each inhalation. If, however, the patient ceases for a time to operate the bulb and the jets of anesthetizing gas will be completely stopped, there cannot be such an accumulation of anesthetizing gas as to-produce deeper analgesia or anesthesia, but, rather, the patient will tend to come out from the state of analgesia and thereby will be prompted again to squeeze the bulb and start a fresh flow of anesthetizing gas. Always, however, whether jets of anesthetizing gas are being delivered through the venturi or whether it is cut oil and the patient is breathing back and forth to and from the rebreathing bag, additional quantities of air will be siphoning in to the mixture, which thus tends to become more dilute and produce less efl'ect upon the patient and thereby warns him of the need for again operating the bulb to provide a fresh supply of anesthetizing gas. In this manner the patient himself is able algesia comprising a connected inhaler and rebreathing bag, a mixing chamber in the connecting passage between the inhaler and rebreathing bag, a Venturi opening into said mixing chamber, means for causing a stream of, anesthetizing fluid to enter the mixing chamber through the center of the venturi, and means for admitting air to points adjacent said venturi and around said fluid stream, whereby air is taken into the mixing chamber by action of said fluid stream and the inhalations of the patient.

2. Anesthetizing apparatus including a double plugged nasal inhaler and associated mixing chamber andrebreathing bag, means for securing the same upon the head of the patient so the patients head is free to move in any direction in the operating chair, including a band secured to the body of the inhaler andadapted to be held tight about the head from the upper front portion to around the lower back portion, and a cord having sliding connection with both nasal plugs adapted to be adjustably secured to the band.

3. Anesthetizing apparatus for producing analgesia comprising means for delivering anesthetizing fluid to the patient including a jetforming breathing passage and a rebreathing bag, means for introducing air into the fluid on inhalation including a port open to atmosphere between the breathing passage and the rebreathing bag, and means including a venturi located between the rebreathing bag and the port and in alinement With the breathing passage for syphoning air into the rebreathing bag as the patient exhales.

algesia comprising a restricted breathing passage and a rebreathing bag closely connected therewith, a mixing chamber in the connecting passage between the breathing passage and rebreathing bag, means for admitting anesthetizing fluid and air into the mixing chamber, and means including a venturi located between the rebreathing bag I and the mixing chamber and close to the latter and in alinement with the breathing passage acting to cause air and anesthetizing fluid to move to the rebreathing bag upon-exhalation of the patient. a

5. Anesthetizing apparatus for producing analgesia. comprising a restricted breathing passage and a rebreathing bag closely connected therewith, a mixing chamber in the connecting passage between the breathing passage and rebreathing bag, a Venturi opening into said mixing chamber, means for causing a stream of anesthetizing fluid to enter the mixing chamber through the venturi, means for admitting air to the venturi, said venturi acting to draw air into the mixing chamber upon inhalation, and means including a second venturi located between the rebreathing bag and the mixing chamber and close to the latter and'in alinement with the breathing passage acting to cause air and anesthetizing fluid to move to the rebreathing bag upon exhalation of the patient.

JAY A. nmmmmx.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2693800 *27 Apr 19519 Nov 1954Lyle CaldwellNasal cannula
US2979055 *18 Jun 195411 Apr 1961Burroughs Wellcome CoMethod for the administration of muscle relaxant drugs
US2989357 *13 Apr 195620 Jun 1961Hazel V HebertObstetric labor pain recorder
US3799164 *12 Aug 197126 Mar 1974Du PontAnalgesic apparatus
US3814103 *8 Mar 19734 Jun 1974Shiley Labor IncBinasal pharyngeal airway
US4151843 *14 Nov 19771 May 1979Brekke John HApparatus for administration of a gas to a human and the exhausting thereof
US4201205 *20 Jan 19786 May 1980Hudson Oxygen Therapy Sales CompanyOxygen mask
US4681121 *15 Jan 198621 Jul 1987Gerd KobalProcess for measuring sensory qualities and apparatus therefor
US5099833 *19 Feb 199131 Mar 1992Baxter International Inc.High efficiency nebulizer having a flexible reservoir
US5335656 *21 Oct 19929 Aug 1994Salter LaboratoriesMethod and apparatus for inhalation of treating gas and sampling of exhaled gas for quantitative analysis
US5697363 *12 Apr 199616 Dec 1997Albert Einstein Healthcare NetworkInhalation and monitoring mask with headset
US6082359 *11 Dec 19974 Jul 2000Preston; Paul ChristopherDual cylinder manifold
US6098621 *2 Jul 19968 Aug 2000Esnouf; Philip StuartDisposable oxygenating device
US6354293 *13 Mar 200012 Mar 2002Foster E. MadisonBreathing humidifier
US650825023 Mar 200021 Jan 2003Philip Stuart EsnoufDisposable oxygenating device
US653643729 Oct 199925 Mar 2003Branislav M. DragisicCuffed nasal airway and anesthetic wand system
US663435521 Jun 199921 Oct 2003Colas Marie-JoseSingle breath induction anesthesia apparatus
US6684883 *21 Aug 20013 Feb 2004Bonnie C. BurnsNasal cannula headband apparatus
US6701915 *20 Nov 20009 Mar 2004Michael HermanussenDevice for inhaling medicaments using supported pressure respiration
US6990977 *20 Dec 199931 Jan 2006Resmed LimitedSubstance delivery apparatus
US7007692 *29 Oct 20037 Mar 2006Airmatrix Technologies, Inc.Method and system of sensing airflow and delivering therapeutic gas to a patient
US7066180 *9 Jul 200327 Jun 2006Airmatrix Technologies, Inc.Method and system for measuring airflow of nares
US777983429 Sep 200524 Aug 2010Resmed LimitedMethod and apparatus for substance delivery in system for supplying breathable gas
US839771616 Jul 201019 Mar 2013Resmed LimitedMethod and apparatus for substance delivery in system for supplying breathable gas
WO1984001293A1 *22 Sep 198312 Apr 1984Otsap Ben AOxygen delivery apparatus
WO1984001295A1 *22 Sep 198312 Apr 1984Otsap Ben AOxygen therapy method and apparatus
Classifications
U.S. Classification128/203.28, 128/203.13, 417/189, 128/203.22
International ClassificationA61M16/06, A61M16/10
Cooperative ClassificationA61M16/104, A61M2016/0672
European ClassificationA61M16/10B