US20160166253A1 - Stapling device with distally located hydraulic drive- rotary operated system and method - Google Patents

Stapling device with distally located hydraulic drive- rotary operated system and method Download PDF

Info

Publication number
US20160166253A1
US20160166253A1 US14/793,641 US201514793641A US2016166253A1 US 20160166253 A1 US20160166253 A1 US 20160166253A1 US 201514793641 A US201514793641 A US 201514793641A US 2016166253 A1 US2016166253 A1 US 2016166253A1
Authority
US
United States
Prior art keywords
effector
stapling device
drive
drive system
hydraulic drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/793,641
Inventor
Bryan D. Knodel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aesdex LLC
Original Assignee
Dextera Surgical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dextera Surgical Inc filed Critical Dextera Surgical Inc
Priority to US14/793,641 priority Critical patent/US20160166253A1/en
Priority to PCT/US2015/065459 priority patent/WO2016094892A1/en
Publication of US20160166253A1 publication Critical patent/US20160166253A1/en
Assigned to DEXTERA SURGICAL INC. reassignment DEXTERA SURGICAL INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CARDICA, INC.
Assigned to DEXTERA SURGICAL INC. reassignment DEXTERA SURGICAL INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CARDICA, INC.
Assigned to AESDEX, LLC reassignment AESDEX, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEXTERA SURGICAL INC.
Assigned to AESCULAP AG reassignment AESCULAP AG ASSET PURCHASE AGREEMENT Assignors: AESDEX, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00415Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like having power generation near the working tip of the tool
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00539Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated hydraulically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/0069Aspects not otherwise provided for with universal joint, cardan joint
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07278Stapler heads characterised by its sled or its staple holder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07285Stapler heads characterised by its cutter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft

Definitions

  • the present invention relates generally to surgical devices, and more particularly to surgical stapling or clip applying systems.
  • Surgical stapling devices such as endocutters, typically staple and cut tissue to transect that tissue while leaving the cut ends of that tissue hemostatic. More advanced surgical stapling devices typically have end-effectors that are small enough in diameter so that they can be used in minimally invasive surgical procedures where access to a surgical site is obtained through a trocar, port, or small incision in the body of a patient.
  • a typical stapling device holds a disposable single-use cartridge with typically two or more rows of staples, and includes an anvil to oppose the staples as the staples are deployed from the cartridge.
  • the surgeon inserts the stapling device through an opening in the body (usually using a trocar), orients the end of the stapling device around the tissue to be transected, and compresses the anvil and cartridge together to clamp that tissue. Then, a row or rows of staples are deployed on either side of the transection line, and a blade is advanced along the transection line to cut and/or divide the tissue.
  • the stapling device fires all of the staples in the single-use disposable cartridge.
  • the endocutter In order to deploy more staples, the endocutter must be moved away from the surgical site and removed from within the patient. The spent cartridge is removed from the endocutter and replaced by a new cartridge. The endocutter is then reinserted into the patient for further staple deployment.
  • a surgical stapling device is configured for use in open and/or laparoscopic surgical procedures.
  • the device includes a handle assembly, a shaft assembly coupled to the handle assembly, and an end-effector coupled to the shaft assembly.
  • the end-effector comprises of a jaw assembly configured to clamp, staple, and/or cut a target tissue.
  • the handle assembly comprises of a trigger member that can activate a clamp control member to close the jaw assembly on the target tissue.
  • the stapling device includes a rotary hydraulic drive system within the end-effector to provide direct driving of a deployment assembly member to deploy staples.
  • a surgical stapling device is configured for use in open and/or laparoscopic surgical procedures.
  • the device includes a handle assembly, a shaft assembly coupled to the handle assembly, and an end-effector coupled to the shaft assembly.
  • the end-effector comprises of a jaw assembly configured to clamp, staple, and/or cut a target tissue.
  • the handle assembly comprises of a trigger member that can activate a control member to close the jaw assembly to clamp, staple, and/or cut the target tissue.
  • the end-effector also includes a rotary hydraulic drive system to provide direct drive power next the distal portion of the end-effector to drive the deployment operations, such as deploying staples and cutting tissue.
  • the stapling device as described in this disclosure comprises of a shaft member coupled to the end-effector, wherein the shaft member includes a flexible segment to allow articulation of the end-effector.
  • hydraulic supply lines are routed from within the shaft member to the end-effector to operate the rotary hydraulic drive system within the end-effector.
  • the rotary hydraulic drive system includes a drive power member to operate a drive control member that advances or retracts the deployment assembly member to execute deployment operations or to execute reset operations.
  • the drive power member is a drive gear or a drive pulley and the drive control member is cable.
  • the drive power member is a drive gear and the drive control member is screw drive rod.
  • the hydraulic drive system includes a pair of drive power members, wherein each of the pair of drive power members operates a respective drive control member that advances or retracts a corresponding sub-assembly member of the deployment assembly member to execute deployment operations or to execute reset operations.
  • the corresponding sub-assembly member comprises of a wedge member configured to deploy staples.
  • the hydraulic drive system can selectively drive one or both of the pair of drive power members, such that each of the pair of drive power members can be operated separately or independently.
  • each of the pair of the drive power members is a drive gear and the respective drive control member is screw drive rod.
  • FIG. 1A illustrates an example of a surgical stapling device, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 1B illustrates the distal portion of the surgical stapling device which includes an articulation segment that allows an end-effector of the surgical stapling device to articulate, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 1C illustrates a joint portion or section of the end-effector of the surgical stapling device, wherein the joint portion, as illustrated, is located distally to the articulation segment and proximally to the effector, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 1D illustrates one example of a hydraulic drive system positioned distally to the joint portion or articulation portion and within the end-effector which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 2A illustrates a close-up (side) view of the hydraulic drive system positioned distally to the joint portion or articulation portion and within the end-effector which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 2B illustrates a close-up (isometric) view of the hydraulic drive system positioned distally to the joint portion or articulation portion and within the end-effector which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • FIGS. 3A and 3B illustrate the hydraulic drive system that drives the control elements to operate various components in the end-effector of the surgical stapling device, wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 4A illustrates a close-up (side) view of the hydraulic drive system that drives the control elements to operate various components in the end-effector of the surgical stapling device, wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 4B illustrates a close-up (isometric) view of the hydraulic drive system that drives the control elements to operate various components in the end-effector of the surgical stapling device, wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIGS. 5A and 5B illustrate another example of a hydraulic drive system positioned distally to the joint portion or articulation portion (and within the end-effector of the stapling device) which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 6A through FIG. 6G illustrate the close-up views of the hydraulic drive system which drives various control elements to operate various components in the end-effector of the surgical stapling device, wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIGS. 7 illustrates yet another example of a hydraulic drive system positioned distally to the joint portion or articulation portion (and within the end-effector of the stapling device) which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 8A through FIG. 8C illustrate the close-up views of the hydraulic drive system which drives various control elements to operate various components in the end-effector of the surgical stapling device, wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • surgical stapling devices such as endocutters, typically staple and cut tissue to transect that tissue while leaving the cut ends of that tissue hemostatic.
  • More advanced surgical stapling devices typically have end-effectors that are small enough in diameter so that they can be used in minimally invasive surgical procedures where access to a surgical site is obtained through a trocar, port, or small incision in the body of a patient.
  • a typical stapling device holds a disposable single-use cartridge with several rows of staples, and includes an anvil to oppose the staples as the staples are deployed from the cartridge.
  • the surgeon inserts the stapling device through an opening in the body (typically using a trocar), orients the end of the stapling device around the tissue to be transected, and compresses the anvil and cartridge together to clamp that tissue. Then, a row or rows of staples are deployed on either side of the transection line, and a blade is advanced along the transection line to divide the tissue.
  • an opening in the body typically using a trocar
  • this disclosure describes a stapling device with a distally located hydraulic drive system in accordance with features, aspects or embodiments of the present invention.
  • FIG. 1A illustrates a surgical stapling device 100 in accordance with features, aspects and embodiments of the present invention.
  • the surgical stapling device 100 includes a body portion 102 , a handle portion 104 , a trigger member 106 , a shaft member 108 , and an end-effector 110 .
  • FIG. 1B illustrates a close up view of the distal portion of the shaft member 108 along with the end-effector 110 .
  • the distal portion of the shaft member 108 may include a flexible segment or flexible region such that the shaft member 108 may be articulated.
  • the shaft member 108 may include a flexible section (as illustrated), and in some embodiments, the shaft member 108 may be a substantially rigid shaft.
  • the end-effector 110 may include jaw members such as an anvil member 204 and a staple holder channel member 206 .
  • the staple holder channel member 206 may be configured to hold a staple cartridge 208 .
  • the staple cartridge 208 may include staples and a cutting member for stapling and cutting tissue(s).
  • FIG. 1C illustrates a joint portion or section 210 of the end-effector of the surgical stapling device, wherein the joint portion 210 , as illustrated, is located distally to the articulation segment and proximally to the effector.
  • the joint 210 may be a separate component joining, coupling or connecting the shaft member 108 and the end-effector 110 .
  • the joint 210 may not be a separate component integral to the shaft member 108 and the end-effector 110 .
  • the joint member 210 may be a substantially flexible joint connecting the shaft member 108 and the end-effector 110 .
  • FIG. 1D illustrates an example of an embodiment of a rotary hydraulic drive system 140 positioned distally to the joint portion or articulation portion and within the end-effector which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • the rotary hydraulic drive system 140 is housed or located distally of the joint portion 210 and near the proximal portion of the end-effector 110 .
  • the hydraulic drive system 140 is configured to provide the necessary driving force to operate the deployment operations of the staple device 100 .
  • the hydraulic drive system 140 as contained within the end-effector is configured to provide “direct drive input” for deployment operations of the stapling device. Such direct drive input provided by the hydraulic drive system enhances mechanical output advantages.
  • the features, aspects, and embodiments of the present invention implements a “direct drive” system right near the very tip of the end-effector 110 , where deployment operations are executed, to provide increased efficient operating or driving force necessary to performance various deployment operations of the stapling device 100 .
  • FIG. 2A illustrates a close-up (side) view of the rotary hydraulic drive system 140 positioned distally to the joint portion or articulation portion 210 and within the end-effector 110 which allows for direct operation of the control elements of the end-effector 110 .
  • the rotary hydraulic drive system 140 includes input and output hydraulic lines 212 that operate a hydraulic rotary gear or pulley 214 which drives a control element 216 , such as a deployment cable.
  • the deployment cable 216 advances or retracts a deployment slide 218 .
  • the deployment slide 218 may be coupled to a staple deployment member and a tissue cutting member (e.g., a staple deployment wedge, a tissue cutting knife, or other similar instruments), such that the deployment cable 216 operatively controls the deployment of staples and cutting of tissue for the stapling device 100 .
  • a tissue cutting member e.g., a staple deployment wedge, a tissue cutting knife, or other similar instruments
  • the rotary system 140 is located within the end-effector 110 , the mechanical advantage of operation is highly efficient as compared to other conventional power supply systems for operating the deployment components of the stapling device.
  • a control member 202 which may be configured to operate the jaw members, e.g., anvil member 204 and staple holder channel 206 .
  • FIG. 2B illustrates a close-up (isometric) view of the hydraulic drive system 140 positioned distally to the joint portion or articulation portion 210 and within the end-effector 110 which allows for direct operation of the control elements of the end-effector 110 , e.g., staple deployment and tissue cutting members of the stapling device.
  • FIG. 3A and FIG. 3B illustrate the rotary hydraulic drive system 140 that drives the control element 216 to operate various components in the end-effector 110 of the surgical stapling device 100 , wherein the components may include a deployment slide 218 , a wedge assembly 302 to deploy staples 306 in the staple cartridge 208 and a knife member 304 to cut tissue.
  • FIG. 3A illustrates an enclosed staple cartridge 208 .
  • FIG. 3B illustrates an exposed staple cartridge 208 with the enclosed staples 306 visible.
  • the wedge assembly 302 is also visible in this exposed view.
  • FIG. 4A illustrates a close-up (side) view of the hydraulic drive system 140 that drives the control elements 216 and 218 to operate various components 302 and 304 in the end-effector 110 of the surgical stapling device, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • FIG. 4A illustrates a close-up (side) view of the hydraulic drive system 140 that drives the control elements 216 and 218 to operate various components 302 and 304 in the end-effector 110 of the surgical stapling device, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • FIG. 4B illustrates a close-up (isometric) view of the hydraulic drive system 140 that drives the control elements (e.g., deployment cable 216 and deployment slide 218 ) to operate various components (e.g., wedge assembly 302 and cutting member 304 ) in the end-effector 110 of the surgical stapling device, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • FIG. 5A and FIG. 5B illustrate another example of a hydraulic drive system 500 positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device) which allows for direct operation of the control elements of the end-effector.
  • the hydraulic drive system 500 may be comprises of a hydraulic-turbo drive member 502 (e.g., gear, pulley and the like) to operate a drive rod (e.g., a rod screw) 504 .
  • the drive rod 504 or rod screw member is coupled to a deployment slide member 506 , which is configured to “ride” on the rod screw member 504 .
  • FIG. 5B illustrates a side view of the hydraulic drive system 500 positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device).
  • FIG. 6A through FIG. 6G illustrate the close-up views of the hydraulic drive system 500 which drives various control elements, e.g., 502 , 504 and 506 , to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100 , wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 6A through FIG. 6G illustrate the close-up views of the hydraulic drive system 500 which drives various control elements, e.g., 502 , 504 and 506 , to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100 , wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 6A illustrates a close-up side view of the hydraulic drive system 500 which drives various control elements, e.g., 502 , 504 and 506 , to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100 , wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • various control elements e.g., 502 , 504 and 506
  • components e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100
  • the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • FIG. 6B illustrates a close-up perspective view of the hydraulic drive system 500 which drives various control elements, e.g., 502 , 504 and 506 , to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100 , wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • various control elements e.g., 502 , 504 and 506
  • components e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100
  • the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • FIG. 6C illustrates another close-up perspective view of the hydraulic drive system 500 which drives various control elements, e.g., 502 , 504 and 506 , to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100 , wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • various control elements e.g., 502 , 504 and 506
  • components e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100
  • the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • FIG. 6D illustrates a side-view of the hydraulic drive system 500 which drives various control elements, e.g., 502 , 504 and 506 , to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100 , wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • various control elements e.g., 502 , 504 and 506
  • components e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100
  • the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • FIG. 6E illustrates a perspective view with a staple cartridge 208 along with the hydraulic drive system 500 which drives various control elements, e.g., 502 , 504 and 506 , to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100 , wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • FIG. 6F illustrates a perspective view with an exposed staple cartridge 208 along with the hydraulic drive system 500 which drives various control elements, e.g., 502 , 504 and 506 , to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100 , wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • 6G illustrates a close-up side view with an exposed staple cartridge 208 along with the hydraulic drive system 500 which drives various control elements, e.g., 502 , 504 and 506 , to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100 , wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • various control elements e.g., 502 , 504 and 506
  • components e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100
  • the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • FIG. 7 illustrates yet another example of a hydraulic drive system 700 with dual-hydraulic turbo drive members 702 (e.g., gear, pulley and the like) positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device 100 ) which allows for direct dual and independent operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • the hydraulic drive system 700 operates two hydraulic turbo drive members 702 , which each of the turbo drive members 702 may separately and independently operate a deployment control member 504 (such as a direct drive screw rod).
  • Each of the deployment control members 504 may separately and independently operate a deployment slide member 706 to separately and independently advance or retract respective staple deployment wedge member and cutting member to deploy respective staples and cut respective portion or section of target tissue.
  • FIG. 8A through FIG. 8C illustrate the close-up views of the hydraulic drive system 700 the dual control elements, e.g., 702 , 504 and 706 , to operate various components, e.g., 302 and 304 , in the end-effector 110 of the surgical stapling device 100 , wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 8A through FIG. 8C illustrate the close-up views of the hydraulic drive system 700 the dual control elements, e.g., 702 , 504 and 706 , to operate various components, e.g., 302 and 304 , in the end-effector 110 of the surgical stapling device 100 , wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 8A illustrates a close-up top view of the hydraulic drive system 700 with dual-hydraulic turbo drive members 702 positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device 100 ) which allows for direct dual and independent operation of the control elements of the end-effector.
  • FIG. 8B illustrates a close-up perspective view of the hydraulic drive system 700 with dual-hydraulic turbo drive members 702 positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device 100 ), with an exposed view of the staple cartridge 208 , which allows for direct dual and independent operation of the control elements of the end-effector.
  • FIG. 8B illustrates a close-up perspective view of the hydraulic drive system 700 with dual-hydraulic turbo drive members 702 positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device 100 ), with an exposed view of
  • FIG. 8C illustrates a close-up perspective view of the hydraulic drive system 700 with dual-hydraulic turbo drive members 702 positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device 100 ), with an unexposed view of the staple cartridge 208 , which allows for direct dual and independent operation of the control elements of the end-effector.

Abstract

A surgical stapling device is configured for use in open and/or laparoscopic surgical procedures. The device includes a handle assembly, a shaft assembly coupled to the handle assembly, and an end-effector coupled to the shaft assembly. The end-effector comprises of a jaw assembly configured to clamp, staple, and/or cut a target tissue. The handle assembly comprises of a trigger member that can activate a control member to close the jaw assembly to clamp, staple, and/or cut the target tissue. The end-effector also includes a rotary hydraulic drive system to provide direct drive power next the distal portion of the end-effector to drive the deployment operations, such as deploying staples and cutting tissue.

Description

    FIELD OF THE INVENTION
  • This Nonprovisional Application claims priority to Provisional Application No. 62/091,251 filed Dec. 12, 2014.
  • The present invention relates generally to surgical devices, and more particularly to surgical stapling or clip applying systems.
  • BACKGROUND
  • Surgical stapling devices, such as endocutters, typically staple and cut tissue to transect that tissue while leaving the cut ends of that tissue hemostatic. More advanced surgical stapling devices typically have end-effectors that are small enough in diameter so that they can be used in minimally invasive surgical procedures where access to a surgical site is obtained through a trocar, port, or small incision in the body of a patient. A typical stapling device holds a disposable single-use cartridge with typically two or more rows of staples, and includes an anvil to oppose the staples as the staples are deployed from the cartridge. During operations, the surgeon inserts the stapling device through an opening in the body (usually using a trocar), orients the end of the stapling device around the tissue to be transected, and compresses the anvil and cartridge together to clamp that tissue. Then, a row or rows of staples are deployed on either side of the transection line, and a blade is advanced along the transection line to cut and/or divide the tissue.
  • During actuation of the endocutter, the stapling device fires all of the staples in the single-use disposable cartridge. In order to deploy more staples, the endocutter must be moved away from the surgical site and removed from within the patient. The spent cartridge is removed from the endocutter and replaced by a new cartridge. The endocutter is then reinserted into the patient for further staple deployment.
  • Accordingly, it would be desirable to miniaturize the components within the end-effector of the stapling device to allow for greater operability within a small space and ease of operation.
  • SUMMARY OF THE INVENTION
  • A surgical stapling device is configured for use in open and/or laparoscopic surgical procedures. The device includes a handle assembly, a shaft assembly coupled to the handle assembly, and an end-effector coupled to the shaft assembly. The end-effector comprises of a jaw assembly configured to clamp, staple, and/or cut a target tissue. The handle assembly comprises of a trigger member that can activate a clamp control member to close the jaw assembly on the target tissue. The stapling device includes a rotary hydraulic drive system within the end-effector to provide direct driving of a deployment assembly member to deploy staples.
  • A surgical stapling device is configured for use in open and/or laparoscopic surgical procedures. The device includes a handle assembly, a shaft assembly coupled to the handle assembly, and an end-effector coupled to the shaft assembly. The end-effector comprises of a jaw assembly configured to clamp, staple, and/or cut a target tissue. The handle assembly comprises of a trigger member that can activate a control member to close the jaw assembly to clamp, staple, and/or cut the target tissue. The end-effector also includes a rotary hydraulic drive system to provide direct drive power next the distal portion of the end-effector to drive the deployment operations, such as deploying staples and cutting tissue.
  • The stapling device as described in this disclosure comprises of a shaft member coupled to the end-effector, wherein the shaft member includes a flexible segment to allow articulation of the end-effector. In addition, hydraulic supply lines are routed from within the shaft member to the end-effector to operate the rotary hydraulic drive system within the end-effector.
  • The stapling device as described in this disclosure, wherein in some embodiments the rotary hydraulic drive system is disposed within the lower jaw member of the end-effector.
  • The stapling device as described in this disclosure, wherein in some embodiments the rotary hydraulic drive system includes a drive power member to operate a drive control member that advances or retracts the deployment assembly member to execute deployment operations or to execute reset operations.
  • The stapling device as described in this disclosure, wherein in some embodiments the drive power member is a drive gear or a drive pulley and the drive control member is cable.
  • The stapling device as described in this disclosure, wherein in some embodiments the drive power member is a drive gear and the drive control member is screw drive rod.
  • The stapling device as described in this disclosure, wherein in some embodiments the hydraulic drive system includes a pair of drive power members, wherein each of the pair of drive power members operates a respective drive control member that advances or retracts a corresponding sub-assembly member of the deployment assembly member to execute deployment operations or to execute reset operations.
  • The stapling device as described in this disclosure, in some embodiments the corresponding sub-assembly member comprises of a wedge member configured to deploy staples.
  • The stapling device as described in this disclosure, in some embodiments, the hydraulic drive system can selectively drive one or both of the pair of drive power members, such that each of the pair of drive power members can be operated separately or independently.
  • The stapling device as described in this disclosure, in some embodiments, each of the pair of the drive power members is a drive gear and the respective drive control member is screw drive rod.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be readily understood by the following detailed description, taken in conjunction with accompanying drawings, illustrating by way of examples of the embodiments of the invention. The figures are merely exemplary and not limiting. The objects and elements in the drawings are not necessarily drawn to scale, proportion, precise orientation or positional relationships; instead, emphasis is focused on illustrating the principles of the invention. Descriptive terms such as “upper,” “lower,” “upward,” “downward”, “forward”, “backward”, and the like are intended for the convenience of the reader and refer to the orientation and/or motion of parts as illustrated and described; they do not necessarily limit the orientation or operation of the features, aspects, or embodiments of the invention. The drawings illustrate the design and utility of various features, aspects, or embodiments of the present invention, in which like element are typically referred to by like reference symbols or numerals. The drawings, however, depict the features, aspects, or embodiments of the invention, and should not be taken as limiting in their scope. With this understanding, the features, aspects, or embodiments of the invention will be described and explained with specificity and details through the use of the accompanying drawings in which:
  • FIG. 1A illustrates an example of a surgical stapling device, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 1B illustrates the distal portion of the surgical stapling device which includes an articulation segment that allows an end-effector of the surgical stapling device to articulate, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 1C illustrates a joint portion or section of the end-effector of the surgical stapling device, wherein the joint portion, as illustrated, is located distally to the articulation segment and proximally to the effector, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 1D illustrates one example of a hydraulic drive system positioned distally to the joint portion or articulation portion and within the end-effector which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 2A illustrates a close-up (side) view of the hydraulic drive system positioned distally to the joint portion or articulation portion and within the end-effector which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 2B illustrates a close-up (isometric) view of the hydraulic drive system positioned distally to the joint portion or articulation portion and within the end-effector which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • FIGS. 3A and 3B illustrate the hydraulic drive system that drives the control elements to operate various components in the end-effector of the surgical stapling device, wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 4A illustrates a close-up (side) view of the hydraulic drive system that drives the control elements to operate various components in the end-effector of the surgical stapling device, wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 4B illustrates a close-up (isometric) view of the hydraulic drive system that drives the control elements to operate various components in the end-effector of the surgical stapling device, wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIGS. 5A and 5B illustrate another example of a hydraulic drive system positioned distally to the joint portion or articulation portion (and within the end-effector of the stapling device) which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 6A through FIG. 6G illustrate the close-up views of the hydraulic drive system which drives various control elements to operate various components in the end-effector of the surgical stapling device, wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • FIGS. 7 illustrates yet another example of a hydraulic drive system positioned distally to the joint portion or articulation portion (and within the end-effector of the stapling device) which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention.
  • FIG. 8A through FIG. 8C illustrate the close-up views of the hydraulic drive system which drives various control elements to operate various components in the end-effector of the surgical stapling device, wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention.
  • DETAILED DESCRIPTION
  • In the following detailed description, specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be readily understood by those skilled in the art that the present invention may be practiced without these specific details. Alternatively, some of the well-known parts, components, hardware, methods of operations, and procedures may not be described in detail or elaborated so as to avoid obscuring the present invention; but, nevertheless, they are within the spirit and scope of the present invention.
  • As mentioned, surgical stapling devices, such as endocutters, typically staple and cut tissue to transect that tissue while leaving the cut ends of that tissue hemostatic. More advanced surgical stapling devices typically have end-effectors that are small enough in diameter so that they can be used in minimally invasive surgical procedures where access to a surgical site is obtained through a trocar, port, or small incision in the body of a patient. A typical stapling device holds a disposable single-use cartridge with several rows of staples, and includes an anvil to oppose the staples as the staples are deployed from the cartridge. During operations, the surgeon inserts the stapling device through an opening in the body (typically using a trocar), orients the end of the stapling device around the tissue to be transected, and compresses the anvil and cartridge together to clamp that tissue. Then, a row or rows of staples are deployed on either side of the transection line, and a blade is advanced along the transection line to divide the tissue.
  • As can be appreciated, it would be highly desirable to develop and implement miniaturized mechanisms and features that can drive or operate various functions of a surgical stapling device. Towards that end, this disclosure describes a stapling device with a distally located hydraulic drive system in accordance with features, aspects or embodiments of the present invention.
  • By way of example, FIG. 1A illustrates a surgical stapling device 100 in accordance with features, aspects and embodiments of the present invention. As illustrated, the surgical stapling device 100 includes a body portion 102, a handle portion 104, a trigger member 106, a shaft member 108, and an end-effector 110. FIG. 1B illustrates a close up view of the distal portion of the shaft member 108 along with the end-effector 110. As can be seen, the distal portion of the shaft member 108 may include a flexible segment or flexible region such that the shaft member 108 may be articulated. In some embodiments, the shaft member 108 may include a flexible section (as illustrated), and in some embodiments, the shaft member 108 may be a substantially rigid shaft. Further illustrated in FIG. 1B, the end-effector 110 may include jaw members such as an anvil member 204 and a staple holder channel member 206. The staple holder channel member 206 may be configured to hold a staple cartridge 208. The staple cartridge 208 may include staples and a cutting member for stapling and cutting tissue(s). FIG. 1C illustrates a joint portion or section 210 of the end-effector of the surgical stapling device, wherein the joint portion 210, as illustrated, is located distally to the articulation segment and proximally to the effector. The joint 210 may be a separate component joining, coupling or connecting the shaft member 108 and the end-effector 110. Alternatively, the joint 210 may not be a separate component integral to the shaft member 108 and the end-effector 110. The joint member 210 may be a substantially flexible joint connecting the shaft member 108 and the end-effector 110. FIG. 1D illustrates an example of an embodiment of a rotary hydraulic drive system 140 positioned distally to the joint portion or articulation portion and within the end-effector which allows for direct operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention. The rotary hydraulic drive system 140 is housed or located distally of the joint portion 210 and near the proximal portion of the end-effector 110. The hydraulic drive system 140 is configured to provide the necessary driving force to operate the deployment operations of the staple device 100. The hydraulic drive system 140 as contained within the end-effector is configured to provide “direct drive input” for deployment operations of the stapling device. Such direct drive input provided by the hydraulic drive system enhances mechanical output advantages. In other words, the features, aspects, and embodiments of the present invention implements a “direct drive” system right near the very tip of the end-effector 110, where deployment operations are executed, to provide increased efficient operating or driving force necessary to performance various deployment operations of the stapling device 100.
  • FIG. 2A illustrates a close-up (side) view of the rotary hydraulic drive system 140 positioned distally to the joint portion or articulation portion 210 and within the end-effector 110 which allows for direct operation of the control elements of the end-effector 110. For example, the rotary hydraulic drive system 140 includes input and output hydraulic lines 212 that operate a hydraulic rotary gear or pulley 214 which drives a control element 216, such as a deployment cable. The deployment cable 216 advances or retracts a deployment slide 218. As will be illustrated and discussed in more detail, the deployment slide 218 may be coupled to a staple deployment member and a tissue cutting member (e.g., a staple deployment wedge, a tissue cutting knife, or other similar instruments), such that the deployment cable 216 operatively controls the deployment of staples and cutting of tissue for the stapling device 100. Since the rotary system 140 is located within the end-effector 110, the mechanical advantage of operation is highly efficient as compared to other conventional power supply systems for operating the deployment components of the stapling device. Also illustrated in FIG. 2A is a control member 202 which may be configured to operate the jaw members, e.g., anvil member 204 and staple holder channel 206. FIG. 2B illustrates a close-up (isometric) view of the hydraulic drive system 140 positioned distally to the joint portion or articulation portion 210 and within the end-effector 110 which allows for direct operation of the control elements of the end-effector 110, e.g., staple deployment and tissue cutting members of the stapling device.
  • FIG. 3A and FIG. 3B illustrate the rotary hydraulic drive system 140 that drives the control element 216 to operate various components in the end-effector 110 of the surgical stapling device 100, wherein the components may include a deployment slide 218, a wedge assembly 302 to deploy staples 306 in the staple cartridge 208 and a knife member 304 to cut tissue. FIG. 3A illustrates an enclosed staple cartridge 208. In contrast, FIG. 3B illustrates an exposed staple cartridge 208 with the enclosed staples 306 visible. In addition, the wedge assembly 302 is also visible in this exposed view.
  • FIG. 4A illustrates a close-up (side) view of the hydraulic drive system 140 that drives the control elements 216 and 218 to operate various components 302 and 304 in the end-effector 110 of the surgical stapling device, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue. FIG. 4B illustrates a close-up (isometric) view of the hydraulic drive system 140 that drives the control elements (e.g., deployment cable 216 and deployment slide 218) to operate various components (e.g., wedge assembly 302 and cutting member 304) in the end-effector 110 of the surgical stapling device, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • FIG. 5A and FIG. 5B illustrate another example of a hydraulic drive system 500 positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device) which allows for direct operation of the control elements of the end-effector. As illustrated in 5A, the hydraulic drive system 500 may be comprises of a hydraulic-turbo drive member 502 (e.g., gear, pulley and the like) to operate a drive rod (e.g., a rod screw) 504. The drive rod 504 or rod screw member is coupled to a deployment slide member 506, which is configured to “ride” on the rod screw member 504. When the rod screw member 504 is turned in a first direction by the hydraulic-turbo drive member 502, the deployment slide member 506 may ride forward or advance forward (e.g., distally). When the rod screw member 504 is turned in a second direction by the hydraulic-turbo drive member 502, the deployment slide member 506 may ride backward or retreat backward (e.g., proximally). In a forward deployment mode, the deployment slide member 506 may advance the wedge assembly member 302 and the cutting member 304 to deploy staples 306 in the staple cartridge 208. In a retreat mode, the deployment slide member 506 may retract the wedge assembly member 302 and the cutting member 304 back to a reset position. FIG. 5B illustrates a side view of the hydraulic drive system 500 positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device).
  • FIG. 6A through FIG. 6G illustrate the close-up views of the hydraulic drive system 500 which drives various control elements, e.g., 502, 504 and 506, to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue, in accordance with features, aspects or embodiments of the present invention. For example, FIG. 6A illustrates a close-up side view of the hydraulic drive system 500 which drives various control elements, e.g., 502, 504 and 506, to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue. FIG. 6B illustrates a close-up perspective view of the hydraulic drive system 500 which drives various control elements, e.g., 502, 504 and 506, to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue. FIG. 6C illustrates another close-up perspective view of the hydraulic drive system 500 which drives various control elements, e.g., 502, 504 and 506, to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue. FIG. 6D illustrates a side-view of the hydraulic drive system 500 which drives various control elements, e.g., 502, 504 and 506, to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue. FIG. 6E illustrates a perspective view with a staple cartridge 208 along with the hydraulic drive system 500 which drives various control elements, e.g., 502, 504 and 506, to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue. FIG. 6F illustrates a perspective view with an exposed staple cartridge 208 along with the hydraulic drive system 500 which drives various control elements, e.g., 502, 504 and 506, to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue. FIG. 6G illustrates a close-up side view with an exposed staple cartridge 208 along with the hydraulic drive system 500 which drives various control elements, e.g., 502, 504 and 506, to operate various components, e.g., 302 and 304 in the end-effector 110 of the surgical stapling device 100, wherein the components include a wedge assembly 302 to deploy staples 306 and a knife member 304 to cut tissue.
  • FIG. 7 illustrates yet another example of a hydraulic drive system 700 with dual-hydraulic turbo drive members 702 (e.g., gear, pulley and the like) positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device 100) which allows for direct dual and independent operation of the control elements of the end-effector, in accordance with features, aspects or embodiments of the present invention. As illustrated, the hydraulic drive system 700 operates two hydraulic turbo drive members 702, which each of the turbo drive members 702 may separately and independently operate a deployment control member 504 (such as a direct drive screw rod). Each of the deployment control members 504 may separately and independently operate a deployment slide member 706 to separately and independently advance or retract respective staple deployment wedge member and cutting member to deploy respective staples and cut respective portion or section of target tissue.
  • FIG. 8A through FIG. 8C illustrate the close-up views of the hydraulic drive system 700 the dual control elements, e.g., 702, 504 and 706, to operate various components, e.g., 302 and 304, in the end-effector 110 of the surgical stapling device 100, wherein the components include a wedge assembly to deploy staples and a knife member to cut tissue, in accordance with features, aspects or embodiments of the present invention. For example, FIG. 8A illustrates a close-up top view of the hydraulic drive system 700 with dual-hydraulic turbo drive members 702 positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device 100) which allows for direct dual and independent operation of the control elements of the end-effector. FIG. 8B illustrates a close-up perspective view of the hydraulic drive system 700 with dual-hydraulic turbo drive members 702 positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device 100), with an exposed view of the staple cartridge 208, which allows for direct dual and independent operation of the control elements of the end-effector. FIG. 8C illustrates a close-up perspective view of the hydraulic drive system 700 with dual-hydraulic turbo drive members 702 positioned distally to the joint portion or articulation portion 210 (and within the end-effector 110 of the stapling device 100), with an unexposed view of the staple cartridge 208, which allows for direct dual and independent operation of the control elements of the end-effector.
  • Multiple features, aspects, and embodiments of the invention have been disclosed and described by the illustrated figures. Many combinations and permutations of the disclosed invention may be useful in operating a surgical stapling device, and the invention may be configured to support various surgical procedures. One of ordinary skill in the art having the benefit of this disclosure would appreciate that the foregoing illustrated and described features, aspects, and embodiments of the invention may be modified or altered, and it should be understood that the invention generally, as well as the specific features, aspects, and embodiments described herein, are not limited to the particular forms or methods disclosed, but also cover all modifications, equivalents and alternatives. Further, the various features and aspects of the illustrated embodiments may be incorporated into other embodiments, even if not so described herein, as will be apparent to those ordinary skilled in the art having the benefit of this disclosure.
  • Although particular features, aspects, and embodiments of the present invention have been illustrated and described, it should be understood that the above disclosure is not intended to limit the present invention to these features, aspects, and embodiments. It will be obvious to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present invention. Thus, the present invention is intended to cover alternatives, modifications, and equivalents that may fall within the spirit and scope of the following claims and their equivalents.

Claims (10)

What is claimed:
1. A stapling device, comprising:
an end-effector with an upper jaw member and a lower jaw member;
a deployment assembly member within the end-effector for deploying staples; and
a rotary hydraulic drive system disposed within the end-effector to provide direct driving of the deployment assembly to deploy the staples.
2. The stapling device of claim 1 further comprising a shaft member coupled to the end-effector, wherein the shaft member includes a flexible segment to allow articulation of the end-effector,
wherein hydraulic supply lines are routed from within the shaft member to the end-effector to operate the rotary hydraulic drive system within the end-effector.
3. The stapling device of claim 1, wherein the rotary hydraulic drive system is disposed within the lower jaw member of the end-effector.
4. The stapling device of claim 1, wherein the hydraulic drive system includes a drive power member to operate a drive control member that advances or retracts the deployment assembly member to execute deployment operations or to execute reset operations.
5. The stapling device of claim 4, wherein the drive power member is a drive gear or a drive pulley, and
wherein the drive control member is cable.
6. The stapling device of claim 4, wherein the drive power member is a drive gear, and
wherein the drive control member is screw drive rod.
7. The stapling device of claim 1, wherein the hydraulic drive system includes a pair of drive power members, wherein each of the pair of drive power members operates a respective drive control member that advances or retracts a corresponding sub-assembly member of the deployment assembly member to execute deployment operations or to execute reset operations.
8. The stapling device of claim 7, wherein the corresponding sub-assembly member comprises of a wedge member configured to deploy staples.
9. The stapling device of claim 7, wherein the hydraulic drive system can selectively drive one or both of the pair of drive power members, such that each of the pair of drive power members can be operated separately or independently.
10. The stapling device of claim 7, wherein each of the pair of the drive power members is a drive gear, and
wherein the respective drive control member is screw drive rod.
US14/793,641 2014-12-12 2015-07-07 Stapling device with distally located hydraulic drive- rotary operated system and method Abandoned US20160166253A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/793,641 US20160166253A1 (en) 2014-12-12 2015-07-07 Stapling device with distally located hydraulic drive- rotary operated system and method
PCT/US2015/065459 WO2016094892A1 (en) 2014-12-12 2015-12-14 Stapling device with distally located hydraulic drive - rotary operated system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462091251P 2014-12-12 2014-12-12
US14/793,641 US20160166253A1 (en) 2014-12-12 2015-07-07 Stapling device with distally located hydraulic drive- rotary operated system and method

Publications (1)

Publication Number Publication Date
US20160166253A1 true US20160166253A1 (en) 2016-06-16

Family

ID=56108302

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/793,641 Abandoned US20160166253A1 (en) 2014-12-12 2015-07-07 Stapling device with distally located hydraulic drive- rotary operated system and method

Country Status (2)

Country Link
US (1) US20160166253A1 (en)
WO (1) WO2016094892A1 (en)

Cited By (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170265865A1 (en) * 2016-03-17 2017-09-21 Intuitive Surgical Operations Stapler with cable-driven advanceable clamping element and distal pulley
US10299790B2 (en) 2017-03-03 2019-05-28 Covidien Lp Adapter with centering mechanism for articulation joint
US10390826B2 (en) 2017-05-08 2019-08-27 Covidien Lp Surgical stapling device with elongated tool assembly and methods of use
US10420551B2 (en) 2017-05-30 2019-09-24 Covidien Lp Authentication and information system for reusable surgical instruments
US10463371B2 (en) 2016-11-29 2019-11-05 Covidien Lp Reload assembly with spent reload indicator
US10478185B2 (en) 2017-06-02 2019-11-19 Covidien Lp Tool assembly with minimal dead space
US10492784B2 (en) 2016-11-08 2019-12-03 Covidien Lp Surgical tool assembly with compact firing assembly
US10517589B2 (en) 2017-05-05 2019-12-31 Covidien Lp Surgical staples with expandable backspan
US10561419B2 (en) 2016-05-04 2020-02-18 Covidien Lp Powered end effector assembly with pivotable channel
US10603035B2 (en) 2017-05-02 2020-03-31 Covidien Lp Surgical loading unit including an articulating end effector
US10624636B2 (en) 2017-08-23 2020-04-21 Covidien Lp Surgical stapling device with floating staple cartridge
US10660641B2 (en) 2017-03-16 2020-05-26 Covidien Lp Adapter with centering mechanism for articulation joint
US10660623B2 (en) 2016-01-15 2020-05-26 Covidien Lp Centering mechanism for articulation joint
US10709901B2 (en) 2017-01-05 2020-07-14 Covidien Lp Implantable fasteners, applicators, and methods for brachytherapy
US10736631B2 (en) 2018-08-07 2020-08-11 Covidien Lp End effector with staple cartridge ejector
US10806452B2 (en) 2017-08-24 2020-10-20 Covidien Lp Loading unit for a surgical stapling instrument
US10849621B2 (en) 2017-02-23 2020-12-01 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10849622B2 (en) 2018-06-21 2020-12-01 Covidien Lp Articulated stapling with fire lock
US10849620B2 (en) 2018-09-14 2020-12-01 Covidien Lp Connector mechanisms for surgical stapling instruments
US10863987B2 (en) 2017-11-16 2020-12-15 Covidien Lp Surgical instrument with imaging device
US10912563B2 (en) 2019-01-02 2021-02-09 Covidien Lp Stapling device including tool assembly stabilizing member
US10925603B2 (en) 2017-11-14 2021-02-23 Covidien Lp Reload with articulation stabilization system
US10945732B2 (en) 2018-01-17 2021-03-16 Covidien Lp Surgical stapler with self-returning assembly
US10952767B2 (en) 2017-02-06 2021-03-23 Covidien Lp Connector clip for securing an introducer to a surgical fastener applying apparatus
US10966717B2 (en) 2016-01-07 2021-04-06 Covidien Lp Surgical fastener apparatus
US11090051B2 (en) 2018-10-23 2021-08-17 Covidien Lp Surgical stapling device with floating staple cartridge
US11109862B2 (en) 2019-12-12 2021-09-07 Covidien Lp Surgical stapling device with flexible shaft
US11123068B2 (en) 2019-11-08 2021-09-21 Covidien Lp Surgical staple cartridge
US20210353290A1 (en) * 2020-05-12 2021-11-18 Covidien Lp Active roller assembly for use in articulating stapler
US11191538B1 (en) 2020-06-08 2021-12-07 Covidien Lp Surgical stapling device with parallel jaw closure
US11191537B1 (en) 2020-05-12 2021-12-07 Covidien Lp Stapling device with continuously parallel jaws
US11224424B2 (en) 2019-08-02 2022-01-18 Covidien Lp Linear stapling device with vertically movable knife
US11241228B2 (en) 2019-04-05 2022-02-08 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11246593B2 (en) 2020-03-06 2022-02-15 Covidien Lp Staple cartridge
US11259808B2 (en) 2019-03-13 2022-03-01 Covidien Lp Tool assemblies with a gap locking member
US11266402B2 (en) 2020-07-30 2022-03-08 Covidien Lp Sensing curved tip for surgical stapling instruments
US11278282B2 (en) 2020-01-31 2022-03-22 Covidien Lp Stapling device with selective cutting
US11284892B2 (en) 2019-04-01 2022-03-29 Covidien Lp Loading unit and adapter with modified coupling assembly
US11284893B2 (en) 2019-04-02 2022-03-29 Covidien Lp Stapling device with articulating tool assembly
US11317911B2 (en) 2020-03-10 2022-05-03 Covidien Lp Tool assembly with replaceable cartridge assembly
US11324500B2 (en) 2020-06-30 2022-05-10 Covidien Lp Surgical stapling device
US11324502B2 (en) 2017-05-02 2022-05-10 Covidien Lp Surgical loading unit including an articulating end effector
US11331098B2 (en) 2020-04-01 2022-05-17 Covidien Lp Sled detection device
US11344297B2 (en) 2019-02-28 2022-05-31 Covidien Lp Surgical stapling device with independently movable jaws
US11344302B2 (en) 2020-03-05 2022-05-31 Covidien Lp Articulation mechanism for surgical stapling device
US11344301B2 (en) 2020-03-02 2022-05-31 Covidien Lp Surgical stapling device with replaceable reload assembly
US11350915B2 (en) 2017-02-23 2022-06-07 Covidien Lp Surgical stapler with small diameter endoscopic portion
US11357505B2 (en) 2020-03-10 2022-06-14 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US11369371B2 (en) 2018-03-02 2022-06-28 Covidien Lp Surgical stapling instrument
US11395654B2 (en) 2020-08-07 2022-07-26 Covidien Lp Surgical stapling device with articulation braking assembly
US11406384B2 (en) 2020-10-05 2022-08-09 Covidien Lp Stapling device with drive assembly stop member
US11406383B2 (en) 2020-03-17 2022-08-09 Covidien Lp Fire assisted powered EGIA handle
US11406387B2 (en) 2020-05-12 2022-08-09 Covidien Lp Surgical stapling device with replaceable staple cartridge
US11406385B2 (en) 2019-10-11 2022-08-09 Covidien Lp Stapling device with a gap locking member
US11426159B2 (en) 2020-04-01 2022-08-30 Covidien Lp Sled detection device
US11439392B2 (en) 2020-08-03 2022-09-13 Covidien Lp Surgical stapling device and fastener for pathological exam
US11446028B2 (en) 2020-07-09 2022-09-20 Covidien Lp Tool assembly with pivotable clamping beam
US11452524B2 (en) 2020-01-31 2022-09-27 Covidien Lp Surgical stapling device with lockout
US11497495B2 (en) 2021-03-31 2022-11-15 Covidien Lp Continuous stapler strip for use with a surgical stapling device
US11504117B2 (en) 2020-04-02 2022-11-22 Covidien Lp Hand-held surgical instruments
US11510669B2 (en) 2020-09-29 2022-11-29 Covidien Lp Hand-held surgical instruments
US11510673B1 (en) 2021-05-25 2022-11-29 Covidien Lp Powered stapling device with manual retraction
US11517305B2 (en) 2020-07-09 2022-12-06 Covidien Lp Contoured staple pusher
US11517313B2 (en) 2021-01-27 2022-12-06 Covidien Lp Surgical stapling device with laminated drive member
US11534167B2 (en) 2020-05-28 2022-12-27 Covidien Lp Electrotaxis-conducive stapling
US11540831B1 (en) 2021-08-12 2023-01-03 Covidien Lp Staple cartridge with actuation sled detection
US11553914B2 (en) 2020-12-22 2023-01-17 Covidien Lp Surgical stapling device with parallel jaw closure
US11576670B2 (en) 2021-05-06 2023-02-14 Covidien Lp Surgical stapling device with optimized drive assembly
US11576671B1 (en) 2021-08-20 2023-02-14 Covidien Lp Small diameter linear surgical stapling apparatus
US11576675B2 (en) 2021-06-07 2023-02-14 Covidien Lp Staple cartridge with knife
US11576674B2 (en) 2020-10-06 2023-02-14 Covidien Lp Surgical stapling device with articulation lock assembly
US11602342B2 (en) 2020-08-27 2023-03-14 Covidien Lp Surgical stapling device with laser probe
US11602344B2 (en) 2021-06-30 2023-03-14 Covidien Lp Surgical stapling apparatus with firing lockout assembly
US11617579B2 (en) 2021-06-29 2023-04-04 Covidien Lp Ultra low profile surgical stapling instrument for tissue resections
US11653922B2 (en) 2021-09-29 2023-05-23 Covidien Lp Surgical stapling device with firing lockout mechanism
US11660094B2 (en) 2021-09-29 2023-05-30 Covidien Lp Surgical fastening instrument with two-part surgical fasteners
US11660092B2 (en) 2020-09-29 2023-05-30 Covidien Lp Adapter for securing loading units to handle assemblies of surgical stapling instruments
US11666330B2 (en) 2021-04-05 2023-06-06 Covidien Lp Surgical stapling device with lockout mechanism
US11678878B2 (en) 2020-09-16 2023-06-20 Covidien Lp Articulation mechanism for surgical stapling device
US11696755B2 (en) 2021-05-19 2023-07-11 Covidien Lp Surgical stapling device with reload assembly removal lockout
US11701119B2 (en) 2021-05-26 2023-07-18 Covidien Lp Powered stapling device with rack release
US11707275B2 (en) 2021-06-29 2023-07-25 Covidien Lp Asymmetrical surgical stapling device
US11707278B2 (en) 2020-03-06 2023-07-25 Covidien Lp Surgical stapler tool assembly to minimize bleeding
US11707277B2 (en) 2021-08-20 2023-07-25 Covidien Lp Articulating surgical stapling apparatus with pivotable knife bar guide assembly
US11707274B2 (en) 2019-12-06 2023-07-25 Covidien Lp Articulating mechanism for surgical instrument
US11717300B2 (en) 2021-03-11 2023-08-08 Covidien Lp Surgical stapling apparatus with integrated visualization
US11737774B2 (en) 2020-12-04 2023-08-29 Covidien Lp Surgical instrument with articulation assembly
US11737747B2 (en) 2019-12-17 2023-08-29 Covidien Lp Hand-held surgical instruments
US11744582B2 (en) 2021-01-05 2023-09-05 Covidien Lp Surgical stapling device with firing lockout mechanism
US11759206B2 (en) 2021-01-05 2023-09-19 Covidien Lp Surgical stapling device with firing lockout mechanism
US11759207B2 (en) 2021-01-27 2023-09-19 Covidien Lp Surgical stapling apparatus with adjustable height clamping member
US11771423B2 (en) 2021-05-25 2023-10-03 Covidien Lp Powered stapling device with manual retraction
US11779334B2 (en) 2021-08-19 2023-10-10 Covidien Lp Surgical stapling device including a manual retraction assembly
US11812956B2 (en) 2021-05-18 2023-11-14 Covidien Lp Dual firing radial stapling device
US11819200B2 (en) 2020-12-15 2023-11-21 Covidien Lp Surgical instrument with articulation assembly
US11844517B2 (en) 2020-06-25 2023-12-19 Covidien Lp Linear stapling device with continuously parallel jaws
US11849949B2 (en) 2021-09-30 2023-12-26 Covidien Lp Surgical stapling device with firing lockout member
US11864761B2 (en) 2021-09-14 2024-01-09 Covidien Lp Surgical instrument with illumination mechanism
US11890014B2 (en) 2020-02-14 2024-02-06 Covidien Lp Cartridge holder for surgical staples and having ridges in peripheral walls for gripping tissue
US11890007B2 (en) 2020-11-18 2024-02-06 Covidien Lp Stapling device with flex cable and tensioning mechanism
US11937794B2 (en) 2020-05-11 2024-03-26 Covidien Lp Powered handle assembly for surgical devices
US11944304B2 (en) 2017-02-22 2024-04-02 Covidien Lp Loading unit for surgical instruments with low profile pushers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485817A (en) * 1982-05-28 1984-12-04 United States Surgical Corporation Surgical stapler apparatus with flexible shaft
US4488523A (en) * 1982-09-24 1984-12-18 United States Surgical Corporation Flexible, hydraulically actuated device for applying surgical fasteners
US5197649A (en) * 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
US5759151A (en) * 1995-06-07 1998-06-02 Carnegie Mellon University Flexible steerable device for conducting exploratory procedures
US6830174B2 (en) * 2000-08-30 2004-12-14 Cerebral Vascular Applications, Inc. Medical instrument
US6964363B2 (en) * 2003-07-09 2005-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having articulation joint support plates for supporting a firing bar
US20070027469A1 (en) * 2005-07-26 2007-02-01 Kms Medical Llc Surgical stapling and cutting device and method for using the device
US8011551B2 (en) * 2008-07-01 2011-09-06 Tyco Healthcare Group Lp Retraction mechanism with clutch-less drive for use with a surgical apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070175950A1 (en) * 2006-01-31 2007-08-02 Shelton Frederick E Iv Disposable staple cartridge having an anvil with tissue locator for use with a surgical cutting and fastening instrument and modular end effector system therefor
US7950560B2 (en) * 2007-04-13 2011-05-31 Tyco Healthcare Group Lp Powered surgical instrument

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485817A (en) * 1982-05-28 1984-12-04 United States Surgical Corporation Surgical stapler apparatus with flexible shaft
US4488523A (en) * 1982-09-24 1984-12-18 United States Surgical Corporation Flexible, hydraulically actuated device for applying surgical fasteners
US5197649A (en) * 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
US5759151A (en) * 1995-06-07 1998-06-02 Carnegie Mellon University Flexible steerable device for conducting exploratory procedures
US6830174B2 (en) * 2000-08-30 2004-12-14 Cerebral Vascular Applications, Inc. Medical instrument
US7503474B2 (en) * 2000-08-30 2009-03-17 Cerebral Vascular Applications, Inc. Medical instrument
US7922742B2 (en) * 2000-08-30 2011-04-12 Hillstead Richard A Medical instrument
US8308757B2 (en) * 2000-08-30 2012-11-13 Richard A. Hillstead, Inc. Hydraulically actuated robotic medical instrument
US6964363B2 (en) * 2003-07-09 2005-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having articulation joint support plates for supporting a firing bar
US20070027469A1 (en) * 2005-07-26 2007-02-01 Kms Medical Llc Surgical stapling and cutting device and method for using the device
US8011551B2 (en) * 2008-07-01 2011-09-06 Tyco Healthcare Group Lp Retraction mechanism with clutch-less drive for use with a surgical apparatus

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10966717B2 (en) 2016-01-07 2021-04-06 Covidien Lp Surgical fastener apparatus
US10660623B2 (en) 2016-01-15 2020-05-26 Covidien Lp Centering mechanism for articulation joint
US10631858B2 (en) * 2016-03-17 2020-04-28 Intuitive Surgical Operations, Inc. Stapler with cable-driven advanceable clamping element and distal pulley
US20170265865A1 (en) * 2016-03-17 2017-09-21 Intuitive Surgical Operations Stapler with cable-driven advanceable clamping element and distal pulley
US10561419B2 (en) 2016-05-04 2020-02-18 Covidien Lp Powered end effector assembly with pivotable channel
US11534161B2 (en) 2016-11-08 2022-12-27 Covidien Lp Surgical tool assembly with compact firing assembly
US10492784B2 (en) 2016-11-08 2019-12-03 Covidien Lp Surgical tool assembly with compact firing assembly
US10463371B2 (en) 2016-11-29 2019-11-05 Covidien Lp Reload assembly with spent reload indicator
US11324505B2 (en) 2016-11-29 2022-05-10 Covidien Lp Reload assembly with spent reload indicator
US10709901B2 (en) 2017-01-05 2020-07-14 Covidien Lp Implantable fasteners, applicators, and methods for brachytherapy
US11559700B2 (en) 2017-01-05 2023-01-24 Covidien Lp Implantable fasteners, applicators, and methods for brachytherapy
US10952767B2 (en) 2017-02-06 2021-03-23 Covidien Lp Connector clip for securing an introducer to a surgical fastener applying apparatus
US11944304B2 (en) 2017-02-22 2024-04-02 Covidien Lp Loading unit for surgical instruments with low profile pushers
US11786247B2 (en) 2017-02-23 2023-10-17 Covidien Lp Surgical stapler with small diameter endoscopic portion
US11350915B2 (en) 2017-02-23 2022-06-07 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10849621B2 (en) 2017-02-23 2020-12-01 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10667813B2 (en) 2017-03-03 2020-06-02 Covidien Lp Adapter with centering mechanism for articulation joint
US10299790B2 (en) 2017-03-03 2019-05-28 Covidien Lp Adapter with centering mechanism for articulation joint
US11337697B2 (en) 2017-03-03 2022-05-24 Covidien Lp Adapter with centering mechanism for articulation joint
US10660641B2 (en) 2017-03-16 2020-05-26 Covidien Lp Adapter with centering mechanism for articulation joint
US11324502B2 (en) 2017-05-02 2022-05-10 Covidien Lp Surgical loading unit including an articulating end effector
US10603035B2 (en) 2017-05-02 2020-03-31 Covidien Lp Surgical loading unit including an articulating end effector
US11723660B2 (en) 2017-05-02 2023-08-15 Covidien Lp Surgical loading unit including an articulating end effector
US10517589B2 (en) 2017-05-05 2019-12-31 Covidien Lp Surgical staples with expandable backspan
US11324498B2 (en) 2017-05-05 2022-05-10 Covidien Lp Surgical staples with expandable backspan
US10524784B2 (en) 2017-05-05 2020-01-07 Covidien Lp Surgical staples with expandable backspan
US10390826B2 (en) 2017-05-08 2019-08-27 Covidien Lp Surgical stapling device with elongated tool assembly and methods of use
US11317916B2 (en) 2017-05-08 2022-05-03 Covidien Lp Surgical stapling device with elongated tool assembly and methods of use
US10420551B2 (en) 2017-05-30 2019-09-24 Covidien Lp Authentication and information system for reusable surgical instruments
US11185323B2 (en) 2017-05-30 2021-11-30 Covidien Lp Authentication and information system for reusable surgical instruments
US10478185B2 (en) 2017-06-02 2019-11-19 Covidien Lp Tool assembly with minimal dead space
US11617581B2 (en) 2017-06-02 2023-04-04 Covidien Lp Tool assembly with minimal dead space
US10624636B2 (en) 2017-08-23 2020-04-21 Covidien Lp Surgical stapling device with floating staple cartridge
US10806452B2 (en) 2017-08-24 2020-10-20 Covidien Lp Loading unit for a surgical stapling instrument
US10925603B2 (en) 2017-11-14 2021-02-23 Covidien Lp Reload with articulation stabilization system
US11744586B2 (en) 2017-11-16 2023-09-05 Covidien Lp Surgical instrument with imaging device
US10863987B2 (en) 2017-11-16 2020-12-15 Covidien Lp Surgical instrument with imaging device
US10945732B2 (en) 2018-01-17 2021-03-16 Covidien Lp Surgical stapler with self-returning assembly
US11369371B2 (en) 2018-03-02 2022-06-28 Covidien Lp Surgical stapling instrument
US10849622B2 (en) 2018-06-21 2020-12-01 Covidien Lp Articulated stapling with fire lock
US11864759B2 (en) 2018-06-21 2024-01-09 Covidien Lp Articulated stapling with fire lock
US11547406B2 (en) 2018-08-07 2023-01-10 Covidien Lp End effector with staple cartridge ejector
US10736631B2 (en) 2018-08-07 2020-08-11 Covidien Lp End effector with staple cartridge ejector
US11504121B2 (en) 2018-09-14 2022-11-22 Covidien Lp Connector mechanisms for surgical stapling instruments
US10849620B2 (en) 2018-09-14 2020-12-01 Covidien Lp Connector mechanisms for surgical stapling instruments
US11090051B2 (en) 2018-10-23 2021-08-17 Covidien Lp Surgical stapling device with floating staple cartridge
US11806014B2 (en) 2018-10-23 2023-11-07 Covidien Lp Surgical stapling device with floating staple cartridge
US10912563B2 (en) 2019-01-02 2021-02-09 Covidien Lp Stapling device including tool assembly stabilizing member
US11344297B2 (en) 2019-02-28 2022-05-31 Covidien Lp Surgical stapling device with independently movable jaws
US11259808B2 (en) 2019-03-13 2022-03-01 Covidien Lp Tool assemblies with a gap locking member
US11890011B2 (en) 2019-03-13 2024-02-06 Covidien Lp Tool assemblies with a gap locking member
US11284892B2 (en) 2019-04-01 2022-03-29 Covidien Lp Loading unit and adapter with modified coupling assembly
US11890009B2 (en) 2019-04-01 2024-02-06 Covidien Lp Loading unit and adapter with modified coupling assembly
US11284893B2 (en) 2019-04-02 2022-03-29 Covidien Lp Stapling device with articulating tool assembly
US11241228B2 (en) 2019-04-05 2022-02-08 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11925348B2 (en) 2019-04-05 2024-03-12 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11224424B2 (en) 2019-08-02 2022-01-18 Covidien Lp Linear stapling device with vertically movable knife
US11793517B2 (en) 2019-08-02 2023-10-24 Covidien Lp Linear stapling device with vertically movable knife
US11406385B2 (en) 2019-10-11 2022-08-09 Covidien Lp Stapling device with a gap locking member
US11123068B2 (en) 2019-11-08 2021-09-21 Covidien Lp Surgical staple cartridge
US11707274B2 (en) 2019-12-06 2023-07-25 Covidien Lp Articulating mechanism for surgical instrument
US11109862B2 (en) 2019-12-12 2021-09-07 Covidien Lp Surgical stapling device with flexible shaft
US11779335B2 (en) 2019-12-12 2023-10-10 Covidien Lp Surgical stapling device with flexible shaft
US11737747B2 (en) 2019-12-17 2023-08-29 Covidien Lp Hand-held surgical instruments
US11278282B2 (en) 2020-01-31 2022-03-22 Covidien Lp Stapling device with selective cutting
US11696758B2 (en) 2020-01-31 2023-07-11 Covidien Lp Stapling device with selective cutting
US11452524B2 (en) 2020-01-31 2022-09-27 Covidien Lp Surgical stapling device with lockout
US11890014B2 (en) 2020-02-14 2024-02-06 Covidien Lp Cartridge holder for surgical staples and having ridges in peripheral walls for gripping tissue
US11944298B2 (en) 2020-03-02 2024-04-02 Covidien Lp Surgical stapling device with replaceable reload assembly
US11344301B2 (en) 2020-03-02 2022-05-31 Covidien Lp Surgical stapling device with replaceable reload assembly
US11344302B2 (en) 2020-03-05 2022-05-31 Covidien Lp Articulation mechanism for surgical stapling device
US11684364B2 (en) 2020-03-05 2023-06-27 Covidien Lp Articulation mechanism for surgical stapling device
US11246593B2 (en) 2020-03-06 2022-02-15 Covidien Lp Staple cartridge
US11707278B2 (en) 2020-03-06 2023-07-25 Covidien Lp Surgical stapler tool assembly to minimize bleeding
US11737753B2 (en) 2020-03-10 2023-08-29 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US11723656B2 (en) 2020-03-10 2023-08-15 Covidien Lp Tool assembly with replaceable cartridge assembly
US11317911B2 (en) 2020-03-10 2022-05-03 Covidien Lp Tool assembly with replaceable cartridge assembly
US11357505B2 (en) 2020-03-10 2022-06-14 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US11406383B2 (en) 2020-03-17 2022-08-09 Covidien Lp Fire assisted powered EGIA handle
US11426159B2 (en) 2020-04-01 2022-08-30 Covidien Lp Sled detection device
US11331098B2 (en) 2020-04-01 2022-05-17 Covidien Lp Sled detection device
US11701108B2 (en) 2020-04-01 2023-07-18 Covidien Lp Sled detection device
US11504117B2 (en) 2020-04-02 2022-11-22 Covidien Lp Hand-held surgical instruments
US11937794B2 (en) 2020-05-11 2024-03-26 Covidien Lp Powered handle assembly for surgical devices
US20210353290A1 (en) * 2020-05-12 2021-11-18 Covidien Lp Active roller assembly for use in articulating stapler
US11406387B2 (en) 2020-05-12 2022-08-09 Covidien Lp Surgical stapling device with replaceable staple cartridge
US11191537B1 (en) 2020-05-12 2021-12-07 Covidien Lp Stapling device with continuously parallel jaws
US11771422B2 (en) * 2020-05-12 2023-10-03 Covidien Lp Active roller assembly for use in articulating stapler
US11832815B2 (en) 2020-05-12 2023-12-05 Covidien Lp Stapling device with continuously parallel jaws
US11534167B2 (en) 2020-05-28 2022-12-27 Covidien Lp Electrotaxis-conducive stapling
US11191538B1 (en) 2020-06-08 2021-12-07 Covidien Lp Surgical stapling device with parallel jaw closure
US11766256B2 (en) 2020-06-08 2023-09-26 Covidien Lp Surgical stapling device with parallel jaw closure
US11844517B2 (en) 2020-06-25 2023-12-19 Covidien Lp Linear stapling device with continuously parallel jaws
US11324500B2 (en) 2020-06-30 2022-05-10 Covidien Lp Surgical stapling device
US11446028B2 (en) 2020-07-09 2022-09-20 Covidien Lp Tool assembly with pivotable clamping beam
US11517305B2 (en) 2020-07-09 2022-12-06 Covidien Lp Contoured staple pusher
US11849942B2 (en) 2020-07-30 2023-12-26 Covidien Lp Sensing curved tip for surgical stapling instruments
US11266402B2 (en) 2020-07-30 2022-03-08 Covidien Lp Sensing curved tip for surgical stapling instruments
US11439392B2 (en) 2020-08-03 2022-09-13 Covidien Lp Surgical stapling device and fastener for pathological exam
US11395654B2 (en) 2020-08-07 2022-07-26 Covidien Lp Surgical stapling device with articulation braking assembly
US11602342B2 (en) 2020-08-27 2023-03-14 Covidien Lp Surgical stapling device with laser probe
US11678878B2 (en) 2020-09-16 2023-06-20 Covidien Lp Articulation mechanism for surgical stapling device
US11660092B2 (en) 2020-09-29 2023-05-30 Covidien Lp Adapter for securing loading units to handle assemblies of surgical stapling instruments
US11510669B2 (en) 2020-09-29 2022-11-29 Covidien Lp Hand-held surgical instruments
US11406384B2 (en) 2020-10-05 2022-08-09 Covidien Lp Stapling device with drive assembly stop member
US11576674B2 (en) 2020-10-06 2023-02-14 Covidien Lp Surgical stapling device with articulation lock assembly
US11890007B2 (en) 2020-11-18 2024-02-06 Covidien Lp Stapling device with flex cable and tensioning mechanism
US11737774B2 (en) 2020-12-04 2023-08-29 Covidien Lp Surgical instrument with articulation assembly
US11819200B2 (en) 2020-12-15 2023-11-21 Covidien Lp Surgical instrument with articulation assembly
US11553914B2 (en) 2020-12-22 2023-01-17 Covidien Lp Surgical stapling device with parallel jaw closure
US11759206B2 (en) 2021-01-05 2023-09-19 Covidien Lp Surgical stapling device with firing lockout mechanism
US11744582B2 (en) 2021-01-05 2023-09-05 Covidien Lp Surgical stapling device with firing lockout mechanism
US11517313B2 (en) 2021-01-27 2022-12-06 Covidien Lp Surgical stapling device with laminated drive member
US11759207B2 (en) 2021-01-27 2023-09-19 Covidien Lp Surgical stapling apparatus with adjustable height clamping member
US11717300B2 (en) 2021-03-11 2023-08-08 Covidien Lp Surgical stapling apparatus with integrated visualization
US11497495B2 (en) 2021-03-31 2022-11-15 Covidien Lp Continuous stapler strip for use with a surgical stapling device
US11666330B2 (en) 2021-04-05 2023-06-06 Covidien Lp Surgical stapling device with lockout mechanism
US11576670B2 (en) 2021-05-06 2023-02-14 Covidien Lp Surgical stapling device with optimized drive assembly
US11812956B2 (en) 2021-05-18 2023-11-14 Covidien Lp Dual firing radial stapling device
US11696755B2 (en) 2021-05-19 2023-07-11 Covidien Lp Surgical stapling device with reload assembly removal lockout
US11771423B2 (en) 2021-05-25 2023-10-03 Covidien Lp Powered stapling device with manual retraction
US11510673B1 (en) 2021-05-25 2022-11-29 Covidien Lp Powered stapling device with manual retraction
US11701119B2 (en) 2021-05-26 2023-07-18 Covidien Lp Powered stapling device with rack release
US11576675B2 (en) 2021-06-07 2023-02-14 Covidien Lp Staple cartridge with knife
US11707275B2 (en) 2021-06-29 2023-07-25 Covidien Lp Asymmetrical surgical stapling device
US11617579B2 (en) 2021-06-29 2023-04-04 Covidien Lp Ultra low profile surgical stapling instrument for tissue resections
US11602344B2 (en) 2021-06-30 2023-03-14 Covidien Lp Surgical stapling apparatus with firing lockout assembly
US11540831B1 (en) 2021-08-12 2023-01-03 Covidien Lp Staple cartridge with actuation sled detection
US11779334B2 (en) 2021-08-19 2023-10-10 Covidien Lp Surgical stapling device including a manual retraction assembly
US11576671B1 (en) 2021-08-20 2023-02-14 Covidien Lp Small diameter linear surgical stapling apparatus
US11707277B2 (en) 2021-08-20 2023-07-25 Covidien Lp Articulating surgical stapling apparatus with pivotable knife bar guide assembly
US11896220B2 (en) 2021-08-20 2024-02-13 Covidien Lp Small diameter linear surgical stapling apparatus
US11864761B2 (en) 2021-09-14 2024-01-09 Covidien Lp Surgical instrument with illumination mechanism
US11660094B2 (en) 2021-09-29 2023-05-30 Covidien Lp Surgical fastening instrument with two-part surgical fasteners
US11653922B2 (en) 2021-09-29 2023-05-23 Covidien Lp Surgical stapling device with firing lockout mechanism
US11849949B2 (en) 2021-09-30 2023-12-26 Covidien Lp Surgical stapling device with firing lockout member

Also Published As

Publication number Publication date
WO2016094892A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
US20160166253A1 (en) Stapling device with distally located hydraulic drive- rotary operated system and method
US20160166249A1 (en) Stapling device with distally located hydraulic drive- reciprocally operated system and method
US11382628B2 (en) Articulatable surgical instrument system
US20210244406A1 (en) Articulatable surgical instrument comprising a firing drive
US10736630B2 (en) Staple cartridge
JP6938486B2 (en) End effector for surgical staplers with fluctuating bends and tips
JP6862438B2 (en) Surgical stapler with gradually driven asymmetric alternating stapler driver
JP6840748B2 (en) Surgical stapler with terminal staple orientation crossing the centerline
JP6946283B2 (en) Surgical stapler end effector with multiple staple drivers crossing the centerline
JP6862436B2 (en) Surgical staple actuating thread with actuation stroke having minimum distance to distal staple
US9687233B2 (en) Surgical stapling and cutting apparatus—deployment mechanisms, systems and methods
ES2588240T3 (en) Surgical instrument to join tissue
US9232944B2 (en) Surgical instrument and bushing
US8628544B2 (en) Knife bar for surgical instrument
EP2996579B1 (en) Surgical stapling and cutting apparatus
EP3235449A1 (en) Surgical staple cartridge with hydraulic staple deployment
JP2017508590A (en) Convertible surgical tissue stapler and application method thereof
JP2009112782A (en) Anvil-mounted dissecting tip for surgical stapling device
JP6957457B2 (en) Surgical staple cartridge with staple width that varies along the bend
US11744586B2 (en) Surgical instrument with imaging device
US10653420B2 (en) Compliant compensation features for end effector of surgical stapling instrument

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEXTERA SURGICAL INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:CARDICA, INC.;REEL/FRAME:040590/0152

Effective date: 20160518

AS Assignment

Owner name: DEXTERA SURGICAL INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:CARDICA, INC.;REEL/FRAME:040866/0224

Effective date: 20160518

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: AESCULAP AG, GERMANY

Free format text: ASSET PURCHASE AGREEMENT;ASSIGNOR:AESDEX, LLC;REEL/FRAME:045870/0567

Effective date: 20180220

Owner name: AESDEX, LLC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEXTERA SURGICAL INC.;REEL/FRAME:045870/0478

Effective date: 20180214