US20150254546A1 - Multiple layer card circuit boards - Google Patents

Multiple layer card circuit boards Download PDF

Info

Publication number
US20150254546A1
US20150254546A1 US14/718,191 US201514718191A US2015254546A1 US 20150254546 A1 US20150254546 A1 US 20150254546A1 US 201514718191 A US201514718191 A US 201514718191A US 2015254546 A1 US2015254546 A1 US 2015254546A1
Authority
US
United States
Prior art keywords
layer
card
magnetic stripe
processor
read
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US14/718,191
Inventor
David Joseph Hartwick
Gautam Batra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamics Inc
Original Assignee
Dynamics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamics Inc filed Critical Dynamics Inc
Priority to US14/718,191 priority Critical patent/US20150254546A1/en
Assigned to DYNAMICS INC. reassignment DYNAMICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BATRA, Gautam, HARTWICK, DAVID J.
Publication of US20150254546A1 publication Critical patent/US20150254546A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/0772Physical layout of the record carrier
    • G06K19/07722Physical layout of the record carrier the record carrier being multilayered, e.g. laminated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/04Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the shape
    • G06K19/041Constructional details
    • G06K19/042Constructional details the record carrier having a form factor of a credit card and including a small sized disc, e.g. a CD or DVD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06187Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with magnetically detectable marking
    • G06K19/06206Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with magnetically detectable marking the magnetic marking being emulated
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0702Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including a battery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07701Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction
    • G06K19/07703Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction the interface being visual
    • G06K19/07707Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction the interface being visual the visual interface being a display, e.g. LCD or electronic ink
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2425/00Cards, e.g. identity cards, credit cards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/15Sheet, web, or layer weakened to permit separation through thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide

Definitions

  • Example embodiments relate to transaction cards, devices and transaction systems.
  • a card may include a dynamic magnetic communications device.
  • a dynamic magnetic communications device may take the form of a magnetic encoder or a magnetic emulator.
  • a magnetic encoder may change the information located on a magnetic medium such that a magnetic stripe reader may read changed magnetic information from the magnetic medium.
  • a magnetic emulator may generate electromagnetic fields that directly communicate data to a magnetic stripe reader. Such a magnetic emulator may communicate data serially to a read-head of the magnetic stripe reader.
  • a magnetic emulator may include one or more coils. Each coil may be utilized to communicate a particular track of magnetic stripe data to a magnetic stripe track read-head of a magnetic stripe reader. For example, two coils may be utilized to communicate two tracks of magnetic stripe data to two read-heads inside a read-head housing.
  • a dynamic magnetic stripe communications device may be fabricated and assembled on one board at one facility (e.g., as a component of a card) while a different facility may fabricate and assemble a different board with, for example, a card's processor, dynamic magnetic communications device driver circuitry, user interfaces, read-head detectors, light emitting devices, displays, batteries, and any other type of sensor, device, or associated circuitry.
  • the facility fabricating the board having a card's primary circuitry may receive the board having the dynamic magnetic stripe communications device from a different facility and a battery, and may assemble the two boards and the battery together.
  • the combined electronics package may then, for example, be provided to a lamination facility for lamination.
  • lamination may occur at the facility that assembled the dynamic magnetic stripe communications device board and the primary circuit board together.
  • the laminated card may then be provided to a personalization facility for personalization.
  • a customer's personal data may be placed on the exterior of the card (e.g., printed, embossed, or laser etched) as well as programmed into a processor's memory.
  • the primary circuit boards for different types of cards may be manufactured independently of the dynamic magnetic communications devices. Accordingly, different facilities may be dedicated to manufacturing different types of cards. One facility, for example, may be dedicated to the manufacture of primary card boards for payment cards having displays. Another facility, for example, may be dedicated to the manufacture of primary card boards for security cards not having any displays. In this manner, dynamic magnetic stripe communications devices may be fabricated at dedicated facilities in high volume. These dynamic magnetic stripe communication devices may then be shipped to the various other facilities fabricating the primary boards for different types of cards.
  • the reliability of the different boards may be tested separately before assembling.
  • the dynamic magnetic communication device boards may be fabricated in a higher volume than the boards for the circuitry of any one card. In doing so, the costs associated with the fabrication of dynamic magnetic communication device boards may be decreased.
  • a primary circuit board may include multiple layers (e.g., three layers) and may be configured to support multiple devices.
  • a multi-layer circuit board may include a processor, a display, driving circuitry, buffer circuitry, buttons, a memory, a battery, a radio frequency identification (RFID) chip (and associated circuitry), an integrated circuit (IC) chip (and associated circuitry), external connectors, ports, antennas, electromagnetic field generators (and associated circuitry), read-head detectors and/or the like.
  • RFID radio frequency identification
  • IC integrated circuit
  • buttons may be part of the primary circuit board and/or may be separate components.
  • the buttons may each be associated with a different transaction account or feature.
  • a card may include a single button, but that single button may be used to, for example, toggle between multiple products.
  • the processor may be any type of processing device and may include on-board memory for storing information. Any number of components may communicate with the processor. For example, one or more displays may be coupled to the processor. A display driver circuit may be coupled between the display and the processor. A memory may be coupled to the processor. The memory may store data such as discretionary data codes associated with buttons of a card. Discretionary data codes may be recognized by remote servers to effect particular actions. For example, a discretionary data code may be stored in the memory and may be used to cause a third party service feature to be performed by a remote server.
  • a card may include any number of reader communication devices.
  • a card may include an IC chip (which may be implemented by the processor), an RFID chip and/or a magnetic stripe communications device.
  • the IC chip e.g., an EMV chip
  • the RFID chip may be used to communicate information to an RFID reader via an antenna.
  • the magnetic stripe communications device may be included to communicate information to a magnetic stripe reader.
  • a magnetic stripe communications device may provide electromagnetic signals to a magnetic stripe reader.
  • the multiple layer circuit board may include read head detectors configured to sense the presence of a magnetic stripe reader (e.g., a read-head housing of a magnetic stripe reader). Information sensed by the read-head detectors may be communicated to the processor to cause the processor to communicate information serially from electromagnetic generators to magnetic stripe track receivers in a read-head housing of a magnetic stripe reader. Driving circuitry may be utilized by the processor, for example, to control the electromagnetic generators.
  • a circuit board with multiple layers may include devices distributed across the layers in order to maintain thickness targets, avoid and/or prevent interference between components, improve device performance and/or the like.
  • a first layer of a circuit board may include an RFID chip, buttons, a processor, an IR transceiver, an application specific integrated circuit associated with a dynamic magnetic stripe communications device, battery pads, a test/communication port (e.g., a JTAG port), an EMV buffer, supporting circuitry, backers and/or the like.
  • a second layer may include copper supports for the port, a copper pad operable as a die foundation for the on-board wire bonded ASIC of the first layer, head readers (e.g., e-sense pads), supporting circuitry, backers and/or the like.
  • a third layer may include an external connector (e.g., an EMV connector), an RFID antenna, supporting circuitry, backers and/or the like.
  • Each of the layers of the circuit board may be differently shaped, include cutouts and/or may be of different sizes.
  • the first layer of the circuit board may be generally sized proportionally to a card and may include cutouts (e.g., cutouts, etched portions, and/or the like) for a magnetic stripe communications device and a battery.
  • a border may remain around the cutout for the magnetic stripe communications device.
  • the cutout for the battery may not include a border and may result in an “L” shaped layer.
  • the second layer may be a middle layer of the circuit board that is generally sized proportionally to a card and may include a cutout for a battery.
  • the second layer may be, for example, “L” shaped layer.
  • the third layer of the circuit board may generally be rectangular and may be sized smaller than a card.
  • the first and second layers may be aligned such that the magnetic stripe communication device cutout of the first layer is aligned to the read head detectors of the second layer, and such that the battery cutouts of the first and second layers are aligned.
  • the third layer may be positioned to overlap the first and second layers including the battery cutout (e.g., may provide a base for the battery), but may not extend into a region including the cutout for the magnetic stripe communication device and the read head detectors.
  • the antenna of the third layer may be along the entire perimeter of the third layer and may be aligned so as not to interfere with the magnetic stripe communication device.
  • the first and second layer may be on opposite sides of a top sheet, for example, a polyimide sheet.
  • the cutout of the first layer may be a removal and/or absence of the first layer such that the sheet is exposed.
  • a magnetic stripe communications device may be on the sheet.
  • the third layer may be on, for example, a separate, bottom sheet (e.g., polyimide sheet).
  • the second layer e.g., a portion of the second layer
  • the third layer may be directly on the bottom sheet surface (e.g., no coverlay and/or the like) and the third layer may be on an opposite side of the bottom sheet from the second layer.
  • the third layer and the bottom sheet may be a size of a portion of a card not including a magnetic stripe communications device.
  • An antenna may occupy some or all of the bottom sheet as part of the third layer.
  • a multiple layer primary circuit board configuration may decrease a circuit board thickness in the magnetic stripe communication device region (which may be designed as thin as possible), may increase and/or maximize an RFID antenna size to improve communication gain, facilitate the inclusion of three or more reader communication devices in a single card, and improve overall communication performance of the reader communication devices.
  • a card may be part of different circuit boards and/or separate components attached to the circuit boards.
  • the separate components of each card may be, for example, assembled onto the boards.
  • a microprocessor die may be coupled to contacts of a portion of a board.
  • the electronics package may then be laminated. Such a lamination may occur, for example, in an injection molding process (e.g., a reaction injection molding process) and/or the like.
  • a laminate may be, for example, a silicon-based material or a polyurethane-based material.
  • a card may include an infrared sensor.
  • a personalization machine may include an IR transmitter.
  • the IR transmitter may communicate personal data, such as one or more credit and/or debit card numbers, to an IR sensor located on the card.
  • a visible light sensor may be provided on a card for receiving visible light pulses from a visible light transmitter that are indicative of personal data for a card.
  • a wire-based signal may be provided to a card for personalization.
  • a card may include an IC chip that has contacts exposed on the surface of the card. Electrical connections may be made to such exposed contacts to provide personal data into the chip. Contacts may be placed on the card and connected to an embedded, non-exposed microprocessor such that the microprocessor may receive programming data from a wire-based connection.
  • An adapter may be provided that includes an infrared or visible light transmitter. Such an adapter may be provided over a contact for an IC chip communications device. Accordingly, an IC chip communications device may provide electronic signals to program, for example, an IC-chip card. However, an adapter may convert, for example, these electronic signals into visible or infrared bursts of light. Accordingly, an IC chip programmer may be utilized to program a card having an infrared or visible light sensor. Furthermore, for example, an adapter may be placed over a magnetic stripe encoder or an RFID signal generator that generates infrared or visible light pulses in response to magnetic stripe encoding signals or RFID programming signals. Where a card uses multiple reader communication devices, a processor may couple each device such that data may be communicated to the card only once during personalization.
  • FIG. 1 shows cards and architectures constructed in accordance with the principles of the present invention
  • FIGS. 2-4 show card layers constructed in accordance with the principles of the present invention.
  • FIG. 5 shows overlaid card layers constructed in accordance with the principles of the present invention.
  • FIGS. 6 and 7 show cards in accordance with the principles of the present invention.
  • FIG. 1 shows cards and architectures according to example embodiments.
  • card 100 may include, for example, dynamic magnetic stripe communications device 105 , one or more displays (e.g., dynamic code display 145 ), permanent information 147 , one or more buttons (e.g., buttons 110 , 120 , 130 and 135 ) and/or information 140 .
  • Information 140 may be, for example, a transaction number (e.g., account number), and may be permanent and/or information in a display. In the case of information 140 that is permanent, information 140 may be, for example, printed, embossed and/or laser etched on card 100 .
  • Permanent information 147 may include, for example, information specific to a user (e.g., a user's name and/or username) and/or information specific to a card (e.g., a card issue date and/or a card expiration date).
  • Buttons 110 - 135 may be mechanical buttons, capacitive buttons, or a combination of mechanical and capacitive buttons.
  • Button 110 may be used, for example, to communicate information through dynamic magnetic stripe communications device 105 indicative of a user's desire to communicate a single track of magnetic stripe information.
  • pressing a button e.g., button 110
  • Buttons 120 , 130 and 135 may be utilized to communicate (e.g., after a button is pressed and after a read-head detects a read-head of a reader) information indicative of a user selection (e.g., to communicate two or more tracks of magnetic stripe data, to communicate different track data, to modify tracks of data and/or the like).
  • buttons 110 - 135 may each be used to associate a feature to a transaction.
  • each of buttons 110 - 135 may be associated to different service provider applications.
  • Each service provider application may be associated to a different service provider feature (e.g., different rewards).
  • a user may, for example, press one or more of buttons 110 - 135 to choose one or more features for a particular transaction.
  • a user may associate applications to buttons and/or features to applications, for example, on a graphical user interface (GUI).
  • GUI graphical user interface
  • the graphical user interface may be, for example, an application manager provided by one or more entities (e.g., an application manager provider).
  • the associations may be changed, for example, at any time, periodically, and/or upon the occurrence of an event.
  • a user may associate applications to buttons and/or features to applications by telephone, by electronic mail and/or any other communication method.
  • buttons and service provider applications may be maintained by an ecosystem provider, for example, within an ecosystem of applications, transactional methods and types of transactions.
  • a transactional method e.g., card 100
  • the ecosystem provider may receive transactional data and information indicative of a button selected by the user.
  • the ecosystem provider may determine the identity of an application associated to the button, and may communicate some or all of the information and/or transactional data to the application and/or the service provider.
  • the service provider and/or the application may provide a feature associated with the application based on the information and/or transactional data.
  • Different features may be provided based on the use of different transactional methods and/or transaction types. For example, suppose a service provider provides a reward feature based on the use of a particular payment method (e.g., a reward for using a particular credit card). A user may purchase an item using the particular payment method (e.g., may select a particular credit account using buttons 110 - 135 ). When the purchase is performed, the reward may be communicated to the user. As another example, suppose a service provider provides a reward feature based on a type of transaction. For example, a reward may be provided for a sale of a commodity using a particular transaction processor (e.g., issuer, acquirer and/or payment network). A user may sell a commodity using a the particular transaction processor (e.g., the ecosystem provider) and upon completion of the sale a reward may be communicated to the user.
  • a particular payment method e.g., a reward for using a particular credit card
  • a user may purchase an item using the particular payment method (e.
  • Selection of a feature may or may not have a cost associated with it. If a cost is associated with the feature, for example, the cost may be added to a customer's statement (e.g., added to a credit or debit purchase) for a particular transaction. A fixed-fee and/or variable-fee (e.g., a percentage of the transaction) may then be removed from the fee charged to the user and distributed among particular parties, for example, distributed among a card issuer, application manager provider, ecosystem provider, device provider, service provider and/or one or more other entities. Persons skilled in the art in possession of example embodiments will appreciate that many different fee arrangements are possible, and that the various providers may be the same and/or different from each other.
  • a cost may be associated to a feature selection, but may not be a cost to a user.
  • the cost may be a cost to a service provider (e.g., a third party service provider).
  • the cost may be provided to other entities, for example, the device provider, card issuer, card processor, and/or any other entity (e.g., a card network).
  • a feature provided to a user acting as a merchant may be an instant rebate provided to the customer of the user, and a cost of the instant rebate may be a cost to the rebate provider.
  • Display 145 may display, for example, a dynamic verification code (e.g., a card verification value (CVV) and/or card identification number (CID)).
  • the dynamic number displayed on display 145 may change according to various schemes as a security measure against fraudulent transactions.
  • Any and/or all of the information provided by a card 100 may be provided via a display.
  • information 140 may be a dynamic number provided via a display.
  • the dynamic numbers may change periodically and/or upon the occurrence of an event such that a previously recorded number may become unusable.
  • one or both sides of a card 100 may be entirely a display.
  • Card 100 and/or a user may communicate a dynamic number to a processing facility.
  • the processing facility may validate the dynamic number (e.g., a dynamic credit card number and/or a dynamic security code).
  • a user may purchase items using a dynamic card and a processing facility may authorize the purchases upon determining that the dynamic number is valid.
  • example embodiments may be described with respect to numbers, the scope of example embodiments includes any distinguishing representation of a security code and/or account, by any sensory method (e.g., sight, sound, touch and/or the like). Characters, images, sounds, textures, letters and/or any other distinguishable representations are contemplated by example embodiments.
  • Architecture 150 may be utilized with any card (e.g., any card 100 ).
  • Architecture 150 may include, for example, processor 155 , display 157 , driving circuitry 167 , memory 153 , battery 160 , radio frequency identification (RFID) 165 , integrated circuit (IC) chip 163 , electromagnetic field generators 173 , 175 , and 177 , read-head detectors 170 and 180 , port 187 (e.g., a joint test action group (JTAG) port), and an RFID antenna 190 .
  • RFID radio frequency identification
  • IC integrated circuit
  • JTAG joint test action group
  • Processor 155 may be any type of processing device, for example, a central processing unit (CPU), an analog signal processor and/or a digital signal processor (DSP). Processor 155 may be, for example, an application specific integrated circuit (ASIC). Processor 155 may include on-board memory for storing information (e.g., drive code). Any number of components may communicate to processor 155 and/or receive communications from processor 155 . For example, one or more displays (e.g., display 157 ) may be coupled to processor 155 . Persons skilled in the art will appreciate that components may be placed between particular components and processor 155 . For example, a display driver circuit may be coupled between display 157 and processor 155 .
  • a display driver circuit may be coupled between display 157 and processor 155 .
  • Memory 153 may be coupled to processor 155 .
  • Memory 153 may store data, for example, data that is unique to a particular card.
  • Memory 153 may store any type of data.
  • memory 153 may store discretionary data codes associated with each of buttons 110 - 135 of card 100 .
  • Discretionary data codes may be recognized by remote servers to effect particular actions.
  • a discretionary data code may be stored in memory 153 and may be used to cause a third party service feature to be performed by a remote server (e.g., a remote server coupled to a third party service such as an online voucher and/or coupon provider).
  • Different third party features may be, for example, associated with different buttons and a particular feature may be selected by pressing an associated button.
  • a user may select a type of payment on card 100 via manual input interfaces.
  • the manual input interfaces may correspond to displayed options (not illustrated) and/or may be independent buttons.
  • Selected information may be communicated to a magnetic stripe reader via a dynamic magnetic stripe communications device, an RFID antenna and/or the like.
  • Selected information may also be communicated to a device (e.g., a mobile telephonic device) including a capacitive sensor and/or other type of touch sensitive sensor.
  • Architecture 150 may include any number of reader communication devices.
  • architecture 150 may include at least one of IC chip 163 , RFID 165 and a magnetic stripe communications device.
  • IC chip 163 may be used to communicate information to an IC chip reader (not illustrated) using, for example, RFID antenna 190 and/or contact conductive fingers (e.g., 6 or 8 contact gold fingers).
  • IC chip 152 may be, for example, an EMV chip.
  • RFID 151 may be used to communicate information to an RFID reader using RFID antenna 190 .
  • RFID 151 may be, for example, a RFID tag.
  • a magnetic stripe communications device may be included to communicate information to a magnetic stripe reader.
  • a magnetic stripe communications device may provide electromagnetic signals to a magnetic stripe reader.
  • architecture 150 may include electromagnetic field generators 173 , 175 and 177 to communicate separate tracks of information to a magnetic stripe reader.
  • Electromagnetic field generators 173 , 175 and 177 may include a coil (e.g., each may include at least one coil) wrapped around one or more materials (e.g., a soft-magnetic material and a non-magnetic material).
  • Each electromagnetic field generator may communicate information, for example, serially and/or in parallel to a receiver of a magnetic stripe reader for a particular magnetic stripe track.
  • Architecture 150 may include read head detectors 170 and 180 .
  • Read-head detectors 170 and 180 may be configured to sense the presence of a magnetic stripe reader (e.g., a read-head housing of a magnetic stripe reader).
  • a read-head detector may include, for example, e-sense pads.
  • Information sensed by the read-head detectors 170 and 180 may be communicated to processor 155 to cause processor 155 to communicate information serially from electromagnetic generators 173 , 175 , and 177 to magnetic stripe track receivers in a read-head housing of a magnetic stripe reader.
  • a magnetic stripe communications device may change the information communicated to a magnetic stripe reader at any time.
  • Processor 155 may, for example, communicate user-specific and card-specific information using RFID 165 , IC chip 163 , and/or electromagnetic generators 173 , 175 , and 177 to card readers coupled to remote information processing servers (e.g., purchase authorization servers).
  • Driving circuitry 167 may be utilized by processor 155 , for example, to control electromagnetic generators 173 , 175 and 177 .
  • Architecture 150 may include, for example, a light sensor (not illustrated). Architecture 150 may receive information from a light sensor. Processor 155 may determine information received by a light sensor.
  • FIGS. 2-4 show card layers constructed in accordance with the principles of the present invention.
  • layer 200 of a printed circuit board may include, for example, RFID antenna 205 and EMV connector 210 .
  • Layer 200 may be about 1-3 mils thick (a mil being 1/1000 of an inch), for example, about 2 mils thick.
  • Persons of ordinary skill in the art will appreciate that layer 200 may also include various circuit traces, fill materials, supports, components, via connections and/or the like which may not be illustrated for clarity of explanation.
  • layer 200 may be one side of a sheet, for example, one side of a polyimide sheet (e.g., a Kapton sheet).
  • a side of a sheet including RFID antenna 205 and EMV connector 210 may be a bottom layer of a printed circuit board.
  • a second side of the sheet may include a different layer.
  • the different layer (not shown) from layer 200 may include routing traces and/or other elements.
  • the second side of the sheet may not include a different layer and/or metallization (e.g., copper), for example, may be bare polyimide.
  • An RFID antenna may, for example, be a series of conductive loops on a border of layer 200 .
  • RFID antenna 205 may be operable to communicate information provided by a processor externally to a distance of about, for example, 100 millimeters.
  • a processor may communicate with an RFID device using RFID antenna 205 .
  • RFID antenna 205 may be utilized to communicate, for example, payment card information (e.g., credit card information) to a reader.
  • payment card information e.g., credit card information
  • RFID antenna 205 may communicate an electromagnetic signal in response to a signal provided by, for example, an RFID chip (e.g., an application specific integrated circuit (ASIC) and/or the like).
  • a size of the conductive loops may be large (e.g., as large as possible) and may be along edge portions of layer 200 to maximize and/or increase a size of RFID antenna 205 .
  • Increase antenna size may correspond to increased gain.
  • RFID antenna 205 may be monostatic and/or bistatic, and may be tuned (or tunable) to a specific range of carrier frequencies.
  • FIG. 2 illustrates a helical antenna, other configurations are contemplated by example embodiments (e.g., patch, crossed dipole and/or the like).
  • EMV connector 210 may be used to connect an EMV chip to an external device (e.g., an EMV device).
  • EMV connector 210 may include contact pads and/or the like used to connect a payment card to an EMV device during a transaction.
  • An EMV chip (e.g., a processor) may be connected to EMV connector 210 via one or more circuit traces and a buffer, for example, a buffer that provides electrostatic discharge (ESD) protection and/or bi-directional control (not illustrated).
  • a card may be operable to provide contactless EMV communications and, for example, an EMV chip may be connected by circuit traces to RFID antenna 205 alternatively to and/or additionally to EMV connector 210 .
  • An EMV chip may be a component added to a circuit board including layer 200 and/or may be part of a circuit board layer.
  • layer 300 may include, for example, read head detectors 305 , pad 310 , supports 315 and/or component cutout 320 .
  • layer 300 may also include various circuit traces, fill materials, supports, components, vias, via connections and/or the like which may not be illustrated for clarity of explanation.
  • a thickness of layer 300 may be, for example, about 1-4 mils (e.g., about 2 mils).
  • a read-head housing of a magnetic stripe reader may be provided with one, two, or three active read-heads that are each operable to couple with a separate magnetic track of information.
  • a reader may also have more than one read-head housing and each read-head housing may be provided with one, two, or three active read-heads that are operable to each couple with a separate magnetic track including information.
  • Such read-head housings may be provided on different surfaces of a magnetic stripe reader.
  • the read-head housings may be provided on opposite walls of a trough sized to accept payment cards. Accordingly, the devices on the opposite sides of the trough may be able to read a credit card regardless of the direction that the credit card was swiped.
  • a magnetic emulator may be provided and may be positioned on card such that when card is swiped through a credit card reader, the magnetic emulator passes underneath, or in the proximity of, a read-head for a particular magnetic track.
  • An emulator may be large enough to simultaneously pass beneath, or in the proximity of, multiple read-heads.
  • Information may be transmitted, for example, serially to one or more read-heads. Information from different tracks of data may also be transmitted serially and the magnetic stripe reader may determine the different data received by utilizing the starting and/or ending sentinels that define the information for each track.
  • a magnetic emulator may also transmit a string of leading and/or ending zeros such that a magnetic reader may utilize such a string of zeros to provide self-clocking. In doing so, for example, information may be transmitted serially at high speeds to a magnetic stripe reader. For example, credit card information may be transmitted to a magnetic stripe reader at speeds up to, and/or greater than, about 30 Khz.
  • Different emulators may be provided, and positioned, on a card to each couple with a different read-head and each emulator may provide different track information to those different read-heads.
  • Read-head detectors may be utilized to detect when a read-head is over an emulator such that an emulator is controlled by a processor to operate when a read-head detector detects the appropriate presence of a read-head. Power may be saved. The read-head detector may detect how many read-heads are reading the card and, accordingly, only communicate with the associated emulators. Power may be conserved.
  • Read-head detectors 305 may be, for example, provided as a circuit that detects changes in capacitance and/or mechanical coupling to a conductive material. Read head detectors 305 may be, for example, e-sense pads and/or the like. A processor may be provided to, for example, receive information from read-head detectors 305 . Read head detectors 305 may be connected to the processor via circuit traces and/or the like.
  • Pad 310 may be, for example, a die foundation of a chip.
  • pad 310 may be a copper pad used to support a wire bonded on-board ASIC chip.
  • Supports 315 may be, for example, supports for an external connector (e.g., a JTAG port).
  • supports 315 may be copper pads.
  • Component cutout 320 may indicate the absence of symmetry in layer 300 .
  • component cutout 320 may be an area not including layer 300 (e.g., not including layer 300 and/or a polyimide support layer).
  • layer 300 may be formed without a portion corresponding to component cutout 320 , may be an etched, milled, and/or ablated portion, and/or the like.
  • a component for example, a battery, may occupy some or all of a space provided by component cutout 320 .
  • layer 300 may be one side of a sheet, for example, one side of a polyimide sheet (e.g., a Kapton sheet). Layer 300 may be a middle layer of a printed circuit board. A different side of the sheet from the layer 300 may include a different layer, for example, a top layer. The different layer (not shown) from layer 300 may include, for example, an infrared (IR) transceiver, a component cutout, buttons, a processor, at least one circuit, leads, an EMV buffer, an RFID chip, a port and/or a component cutout. According to at least one example embodiment, layer 300 may be a standalone layer, for example, the only layer of a sheet.
  • IR infrared
  • layer 300 may be a standalone layer, for example, the only layer of a sheet.
  • layer 400 may include, for example, infrared (IR) transceiver 405 , magnetic stripe region 410 , buttons 415 , processor 420 , circuit 425 , leads 430 , EMV buffer 435 , RFID chip 440 , port 445 and/or component cutout 450 .
  • IR infrared
  • layer 400 may also include various circuit traces, fill materials, supports, components, via connections and/or the like which may not be illustrated for clarity of explanation.
  • a thickness of layer 400 may be, for example, about 1-4 mils (e.g., about 2.7 mils).
  • IR transceiver 405 may include, for example, an IR emitter and an IR receiver.
  • the IR emitter may be, for example, a light emitting diode configured to emit IR light upon excitation (e.g., application of a voltage across the diode).
  • the IR receiver may be, for example, a transistor configured to generate a current in the presence of IR light.
  • the IR receiver may be a bipolar transistor.
  • IR transceiver 405 may not be a transceiver and may be a transmitter-receiver.
  • IR transceiver 405 may be connected to, for example, processor 420 via one or more circuit traces (not illustrated).
  • IR transceiver 405 may communicate information to/from an external IR reader and/or to/from processor 420 .
  • IR transceiver 405 may communicate a card account number to an IR card reader.
  • Magnetic stripe region 410 may indicate the absence of a portion of layer 400 .
  • magnetic stripe region 410 may indicate an area of a sheet (e.g., a polyimide sheet) not including any metallization (e.g., no copper, coverlay and/or the like).
  • magnetic stripe region 410 may indicate the absence of any material.
  • example embodiments may include a component cutout as a magnetic stripe region, layer 400 may be formed without a portion corresponding to magnetic stripe region 410 , an etched, milled, and/or ablated portion, and/or the like.
  • a component for example, a magnetic stripe communication device, may occupy some or all of a space provided by magnetic stripe region 410 (e.g. directly on a polyimide sheet).
  • Buttons 415 may be mechanical buttons, capacitive buttons, or a combination of mechanical and capacitive buttons. Buttons 415 may be connected to processor 420 via one or more circuit traces (not illustrated).
  • Processor 420 may be, for example, a central processing unit.
  • processor 420 may be an ultra-low-power mixed signal microprocessor.
  • Processor 420 may provide various functions to a powered card including a layer 400 .
  • a card EMV protocol may use processor 420 .
  • Processor 420 may include on-board memory for storing information (e.g., drive code). Any number of components may communicate to processor 420 and/or receive communications from processor 420 .
  • one or more displays (not illustrated) and/or one or more memories may be coupled to processor 420 .
  • a buffer circuit may be coupled between processor 420 and an EMV connector.
  • Circuit 425 may be, for example, an ASIC. Circuit 425 may be associated with a magnetic stripe communication device. Leads 430 may be, for example, battery terminal leads to connect a thin film, flexible battery to power various circuits (e.g., circuitry or components of various layers including layer 400 ). EMV buffer 435 may be connected between, for example, an EMV connector and processor 420 . EMV buffer 435 may provide electrostatic discharge (ESD) protection and/or bi-directional control.
  • RFID chip 440 may be, for example, connected to an RFID antenna (not illustrated) and may be operable to communicate, for example, payment card information (e.g., credit card information) to a reader.
  • Port 445 may be, for example, a JTAG port connected to processor 420 and/or leads 430 via circuit traces (not illustrated).
  • Component cutout 450 may indicate the absence of symmetry in layer 400 .
  • component cutout 450 may be an area not including layer 400 .
  • layer 400 may be formed without a portion corresponding to component cutout 450 , may be an etched or otherwise removed portion and/or the like.
  • a component for example, a battery, may occupy some or all of a space provided by component cutout 450 .
  • layer 400 may be one side of a sheet, for example, one side of a polyimide sheet (e.g., a Kapton sheet).
  • Layer 400 may be a top layer of a printed circuit board.
  • a different side of the sheet from the layer 400 may include a different layer, for example, a middle layer.
  • the different layer (not shown) from layer 400 may include, for example, read head detectors, one or more pads, supports and/or component cutouts.
  • layer 400 may be a standalone layer, for example, the only layer of a sheet.
  • FIG. 5 shows overlaid card layers constructed in accordance with the principles of the present invention.
  • a printed circuit board may include multiple layers, for example, three layers including magnetic stripe cutout 505 , read head detectors 510 , antenna 515 , buttons 520 and 535 , processor 525 , circuit 530 , EMV connector 540 , EMV buffer 545 , leads 550 , RFID chip 560 , port 565 and/or component cutouts 555 .
  • circuit board 500 may include various circuit traces, fill materials, supports, components, via connections and/or the like which may not be illustrated for clarity of explanation. Components, such as a magnetic stripe communication device, battery, backers and/or buttons, may or may not be part of circuit board 500 (e.g., may be separate components).
  • a first layer may include, for example, component cutouts 505 and/or 555 , buttons 520 and 535 , processor 525 , circuit 530 , EMV buffer circuit 545 , leads 550 , RFID chip 560 and port 565 .
  • a second layer may include, for example, read head detectors 510 , a connector (not illustrated), supports (not illustrated) and/or component cutout 555 .
  • a third layer may include, for example, RFID antenna 515 and/or EMV connector 540 .
  • the first and second layers may be on opposite sides of a same sheet (e.g., a Kapton sheet).
  • the third layer may be on a different sheet.
  • the different sheet may only include the third layer and an opposite side of the sheet from the third layer may not include metallization (e.g., no coverlay).
  • the opposite side of the sheet from the third layer may include routing traces, elements, and/or the like (e.g., a fourth layer).
  • each layer of a circuit board may be associated with a different substrate layer.
  • Circuit board 500 may include a cutout 555 that may extend through the first and second layers.
  • a component such as a battery may be on the third layer and pass through the first and second layers.
  • the third layer may extend to about a portion of the printed circuit board 500 including read head detectors 510 of the second layer and/or a magnetic stripe communication device (not illustrated).
  • a magnetic stripe communication device may be a component on a polyimide sheet over read head detectors 510 of the second layer and in magnetic stripe cutout 505 of the first layer. Magnetic stripe region 505 may indicate, for example, the absence of elements on the first layer opposite the read head detectors 510 .
  • the third layer may not extend into a region including read head detectors 510 and/or a magnetic stripe communication device.
  • a sheet including the third layer may not extend into a region including read head detectors 510 and/or a magnetic stripe communication device. The sheet may be between the third layer and the second layer.
  • RFID antenna 515 may surround an area of a circuit board 500 not including the magnetic stripe communication device.
  • a thickness of circuit board 500 may be reduced in an area including a magnetic stripe communication device and a size of an RFID antenna increased, as compared to, for example, a circuit board not including three or more layers.
  • Communications using an RFID antenna 515 and/or a magnetic stripe communication device may be improved.
  • circuit board 500 may provide improved gain.
  • FIG. 6 shows a card in accordance with the principles of the present invention.
  • FIG. 6 may be an example cross-sectional representation of a card taken in a thickness direction.
  • a card 600 may include, for example, first exterior layer 610 , magnetic stripe communications device 620 , first layer 630 , second layer 640 , third layer 650 , second exterior layer 660 , battery 670 , region 680 and fill 690 .
  • Magnetic stripe communications device 620 may be on first layer 630 (e.g., on a sheet including layer 630 ).
  • a thickness “g” of card 600 may be, for example, about 25-40 mils (25-40 thousandths of an inch).
  • card 600 may be about 30-33 mils thick.
  • Card 600 may include layers, components and/or the like with thicknesses “a”-“f” and “h”.
  • Each of thicknesses “e” and “f” of exterior layers 610 and 660 may be, for example, about 3-8 mils (e.g., about 6 mils). Exterior layers 610 and 660 may include a polymer, for example, polyethelene terephthalate.
  • a thickness “d” of third layer 650 may be about 1-3 mils (e.g., 2 mils). Thicknesses “b” and “c” of first and second layers 630 and 640 combined may be about 2-7 mils (e.g., about 4.7 mils).
  • a thickness “h” of battery 670 may be about 14-20 mils (e.g., about 17 mils).
  • Region 680 may be a region including a material (e.g., an adhesive) and/or various elements (e.g., wire traces and/or the like). According to some example embodiments, region 680 may not be present or may be present as a fill material, and first layer 630 and/or battery 670 may extend to first exterior layer 610 . Thickness “a” of the magnetic stripe communications device portion 620 may be, for example, a thickness of thickness “g” minus the combined thicknesses “a”-“f” and a thickness (if any) of region 680 . Fill 690 may indicate a region of card 600 into which the third layer 650 does not extend.
  • a material e.g., an adhesive
  • various elements e.g., wire traces and/or the like.
  • first layer 630 and/or battery 670 may extend to first exterior layer 610 .
  • Thickness “a” of the magnetic stripe communications device portion 620 may be, for example, a thickness of thickness “g” minus
  • the third layer 650 may include an RFID antenna and may not extend into a region of card 600 including a magnetic stripe communication device 620 or may only partially extend into a region of card 600 including a magnetic stripe communication device 620 .
  • Fill 690 may include, for example, epoxy.
  • exterior layers 610 and 660 may each be about 4-7 mils (e.g., 5 mils).
  • a magnetic stripe communication device may be about 18-22 mils.
  • a circuit board may be less than about 10-20 mils (e.g., less than about 16 mils).
  • the magnetic stripe communication device may be on a portion of a circuit board layer with a thickness of about 1-3 mils (e.g., about 2 mils).
  • an area of region 680 between a magnetic stripe communications device and an exterior layer may be a thickness such that a magnetic stripe communications device, a circuit board layer (e.g., layer 640 ) on the magnetic stripe communication device, and exterior layers 610 and 660 , are together about 30-33 mils thick.
  • region 680 may be about 0-10 mils thick (e.g., about 2 mils).
  • magnetic stripe component 620 may be thicker than battery 670 . Further, relative dimensioning may not be to scale in order to illustrate relative positioning in FIG. 6 .
  • the volume of the electronics package of a powered card may be, for example, less than about two tenths of a cubic square inch (e.g., about less than one tenth of a cubic square inch).
  • Such an electronics package may include multiple flexible boards, a battery, dynamic magnetic stripe communications device, magnetic stripe communications device drive circuitry, and multiple light emitting diodes, for example.
  • a thickness of card 600 may be uniform or may vary (e.g., a flexible card).
  • a protective layer may be placed over exterior layers 610 and 660 .
  • Such a layer may be about 0.5-2 mils thick (e.g., about 1 mil thick).
  • the combined thickness of two protective layers may be about 2 mils
  • the combined thickness of two exterior layers may be about 8 mils
  • the thickness of a circuit board layer including read heads may be 2 mils
  • the thickness of a magnetic stripe communication device may be about 18 mils.
  • a third layer e.g., including an antenna
  • Card 600 may include a permanent magnet that may be, for example, provided as part of an assembled magnetic stripe communication device 620 .
  • First through third layers 630 - 650 may include, for example, capacitive read-head detectors.
  • Battery 670 may be any type of battery, such as, for example, a flexible lithium polymer battery.
  • Circuitry may be included (not illustrated), for example, one or more driver circuits (e.g., for a magnetic communications device), RFIDs, IC chips, light sensors and light receivers (e.g., for sending and communicating data via optical information signals), sound sensors and sound receivers, or any other component or circuitry for card 600 .
  • Read-head detectors for detecting the read-head of a magnetic stripe reader may be provided, for example, on layer 640 as capacitive touch sensors (e.g., capacitive-sensing contact plates).
  • FIG. 7 shows a card in accordance with the principles of the present invention.
  • FIG. 7 may include an example plan view of card 700 including regions 705 , 710 and 715 , and cross-sections corresponding to the regions.
  • card 700 may include regions 705 , 710 and 715 .
  • Region 705 may include, for example, first mask 720 , first conductor 723 , second conductor 725 , substrate 727 , third conductor 730 and second mask 733 .
  • Substrate 730 may be, for example, polyimide (e.g., Kapton).
  • Second conductor 725 and third conductor 730 may be on opposite sides of substrate layer 730 .
  • Second conductor 725 and third conductor 730 may include, for example, electrically deposited metal (e.g., ED copper).
  • First conductor 723 may be on exposed portions of substrate 727 , second conductor 725 and third conductor 730 , and may fill vias, depressions and/or the like.
  • First conductor 723 may be, for example, metal plating (e.g., copper plating).
  • Mask 720 and mask 733 may be on first conductor 723 .
  • Mask 720 and mask 733 may be, for example, top and bottom solder masks (e.g., coverlay), respectively.
  • Region 710 of card 700 may include, for example, first mask 735 , first conductor 755 , second conductor 740 , first substrate 743 , third conductor 745 , bonding material 747 , second substrate 750 , fourth conductor 753 and second mask 757 .
  • First substrate 743 and second substrate 750 may be, for example, polyimide (e.g., Kapton).
  • Second conductor 740 and third conductor 745 may be on opposite side surfaces of first substrate 743 .
  • Fourth conductor 753 may be on a side surface (e.g., bottom surface) of substrate 750 .
  • Second conductor 740 , third conductor 745 and fourth conductor 753 may include, for example, electrically deposited metal (e.g., ED copper).
  • Bonding material 747 may be between substrate 750 and third conductor 745 .
  • Bonding material 747 may be, for example, a bonding sheet.
  • First conductor 755 may be on exposed portions of substrate second conductor 740 , first substrate 743 , third conductor 745 , bonding material 747 , second substrate 750 and fourth conductor 753 .
  • First conductor 755 may fill vias, depressions and/or the like.
  • First conductor 755 may be, for example, metal plating (e.g., copper plating).
  • First mask 735 and second mask 757 may be on first conductor 755 .
  • First mask 735 and second mask 757 may be, for example, top and bottom solder masks (e.g., coverlay), respectively.
  • Region 715 of card 700 may include, for example, substrate 760 , first conductor 763 , second conductor 765 and mask 767 .
  • a top surface of substrate 760 may be exposed.
  • Substrate 70 may be, for example, a polyimide.
  • First conductor 763 may be on an opposite side of substrate 760 from the exposed top surface.
  • First conductor 763 may be, for example, electrically deposited copper.
  • Second conductor 765 may be on first conductor 763 .
  • Second conductor 765 may be, for example, copper plating.
  • Mask 767 may be on second conductor 765 .
  • Mask 767 may be a solder mask (e.g., coverlay).
  • regions 705 , 710 and 715 may be shown with different conductors, substrates and masks, according to some example embodiments materials may be common between regions. Persons skilled in the art will understand that regions 705 , 710 and 715 may not be internally contiguous. For example, region 705 may include a magnetic stripe communication device cutout, and within such a cutout, substrate 727 may be exposed.

Abstract

A powered card may include a circuit board with multiple layers, and may include multiple reader communication devices. One of the layers may include an RFID antenna. The layer including the RFID antenna may occupy an entire region of a card outside of a region including a magnetic stripe communication device.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Patent Application No. 61/666,553, titled “MULTIPLE LAYER CARD CIRCUIT BOARDS,” filed Jun. 29, 2012 (Attorney Docket No. D/095 PROV), which is hereby incorporated by reference herein in its entirety.
  • BACKGROUND OF THE INVENTION
  • Example embodiments relate to transaction cards, devices and transaction systems.
  • SUMMARY OF THE INVENTION
  • A card may include a dynamic magnetic communications device. Such a dynamic magnetic communications device may take the form of a magnetic encoder or a magnetic emulator. A magnetic encoder may change the information located on a magnetic medium such that a magnetic stripe reader may read changed magnetic information from the magnetic medium. A magnetic emulator may generate electromagnetic fields that directly communicate data to a magnetic stripe reader. Such a magnetic emulator may communicate data serially to a read-head of the magnetic stripe reader. A magnetic emulator may include one or more coils. Each coil may be utilized to communicate a particular track of magnetic stripe data to a magnetic stripe track read-head of a magnetic stripe reader. For example, two coils may be utilized to communicate two tracks of magnetic stripe data to two read-heads inside a read-head housing.
  • A dynamic magnetic stripe communications device may be fabricated and assembled on one board at one facility (e.g., as a component of a card) while a different facility may fabricate and assemble a different board with, for example, a card's processor, dynamic magnetic communications device driver circuitry, user interfaces, read-head detectors, light emitting devices, displays, batteries, and any other type of sensor, device, or associated circuitry. The facility fabricating the board having a card's primary circuitry may receive the board having the dynamic magnetic stripe communications device from a different facility and a battery, and may assemble the two boards and the battery together.
  • The combined electronics package may then, for example, be provided to a lamination facility for lamination. Alternatively, for example, lamination may occur at the facility that assembled the dynamic magnetic stripe communications device board and the primary circuit board together. The laminated card may then be provided to a personalization facility for personalization. During personalization, for example, a customer's personal data may be placed on the exterior of the card (e.g., printed, embossed, or laser etched) as well as programmed into a processor's memory.
  • The primary circuit boards for different types of cards may be manufactured independently of the dynamic magnetic communications devices. Accordingly, different facilities may be dedicated to manufacturing different types of cards. One facility, for example, may be dedicated to the manufacture of primary card boards for payment cards having displays. Another facility, for example, may be dedicated to the manufacture of primary card boards for security cards not having any displays. In this manner, dynamic magnetic stripe communications devices may be fabricated at dedicated facilities in high volume. These dynamic magnetic stripe communication devices may then be shipped to the various other facilities fabricating the primary boards for different types of cards.
  • In manufacturing multiple boards dedicated to particular functions, and later assembling these multiple boards together, for example, the reliability of the different boards may be tested separately before assembling. Additionally, for example, the dynamic magnetic communication device boards may be fabricated in a higher volume than the boards for the circuitry of any one card. In doing so, the costs associated with the fabrication of dynamic magnetic communication device boards may be decreased.
  • A primary circuit board may include multiple layers (e.g., three layers) and may be configured to support multiple devices. For example, a multi-layer circuit board may include a processor, a display, driving circuitry, buffer circuitry, buttons, a memory, a battery, a radio frequency identification (RFID) chip (and associated circuitry), an integrated circuit (IC) chip (and associated circuitry), external connectors, ports, antennas, electromagnetic field generators (and associated circuitry), read-head detectors and/or the like.
  • The buttons (e.g., one or more buttons) may be part of the primary circuit board and/or may be separate components. The buttons may each be associated with a different transaction account or feature. Alternatively, for example, a card may include a single button, but that single button may be used to, for example, toggle between multiple products.
  • The processor may be any type of processing device and may include on-board memory for storing information. Any number of components may communicate with the processor. For example, one or more displays may be coupled to the processor. A display driver circuit may be coupled between the display and the processor. A memory may be coupled to the processor. The memory may store data such as discretionary data codes associated with buttons of a card. Discretionary data codes may be recognized by remote servers to effect particular actions. For example, a discretionary data code may be stored in the memory and may be used to cause a third party service feature to be performed by a remote server.
  • A card may include any number of reader communication devices. For example, a card may include an IC chip (which may be implemented by the processor), an RFID chip and/or a magnetic stripe communications device. The IC chip (e.g., an EMV chip) may be used to communicate information to an IC chip reader through a connector (contact) or antenna (contactless). The RFID chip may be used to communicate information to an RFID reader via an antenna. The magnetic stripe communications device may be included to communicate information to a magnetic stripe reader. For example, a magnetic stripe communications device may provide electromagnetic signals to a magnetic stripe reader.
  • The multiple layer circuit board may include read head detectors configured to sense the presence of a magnetic stripe reader (e.g., a read-head housing of a magnetic stripe reader). Information sensed by the read-head detectors may be communicated to the processor to cause the processor to communicate information serially from electromagnetic generators to magnetic stripe track receivers in a read-head housing of a magnetic stripe reader. Driving circuitry may be utilized by the processor, for example, to control the electromagnetic generators.
  • A circuit board with multiple layers may include devices distributed across the layers in order to maintain thickness targets, avoid and/or prevent interference between components, improve device performance and/or the like. For example, a first layer of a circuit board may include an RFID chip, buttons, a processor, an IR transceiver, an application specific integrated circuit associated with a dynamic magnetic stripe communications device, battery pads, a test/communication port (e.g., a JTAG port), an EMV buffer, supporting circuitry, backers and/or the like. A second layer may include copper supports for the port, a copper pad operable as a die foundation for the on-board wire bonded ASIC of the first layer, head readers (e.g., e-sense pads), supporting circuitry, backers and/or the like. A third layer may include an external connector (e.g., an EMV connector), an RFID antenna, supporting circuitry, backers and/or the like.
  • Each of the layers of the circuit board may be differently shaped, include cutouts and/or may be of different sizes. For example, the first layer of the circuit board may be generally sized proportionally to a card and may include cutouts (e.g., cutouts, etched portions, and/or the like) for a magnetic stripe communications device and a battery. A border may remain around the cutout for the magnetic stripe communications device. The cutout for the battery may not include a border and may result in an “L” shaped layer. The second layer may be a middle layer of the circuit board that is generally sized proportionally to a card and may include a cutout for a battery. The second layer may be, for example, “L” shaped layer. The third layer of the circuit board may generally be rectangular and may be sized smaller than a card.
  • Prior to or during lamination, the first and second layers may be aligned such that the magnetic stripe communication device cutout of the first layer is aligned to the read head detectors of the second layer, and such that the battery cutouts of the first and second layers are aligned. The third layer may be positioned to overlap the first and second layers including the battery cutout (e.g., may provide a base for the battery), but may not extend into a region including the cutout for the magnetic stripe communication device and the read head detectors. The antenna of the third layer may be along the entire perimeter of the third layer and may be aligned so as not to interfere with the magnetic stripe communication device.
  • According to at least one example embodiment, the first and second layer may be on opposite sides of a top sheet, for example, a polyimide sheet. The cutout of the first layer may be a removal and/or absence of the first layer such that the sheet is exposed. A magnetic stripe communications device may be on the sheet. The third layer may be on, for example, a separate, bottom sheet (e.g., polyimide sheet). As one example, the second layer (e.g., a portion of the second layer) may be directly on the bottom sheet surface (e.g., no coverlay and/or the like) and the third layer may be on an opposite side of the bottom sheet from the second layer. The third layer and the bottom sheet may be a size of a portion of a card not including a magnetic stripe communications device. An antenna may occupy some or all of the bottom sheet as part of the third layer.
  • A multiple layer primary circuit board configuration may decrease a circuit board thickness in the magnetic stripe communication device region (which may be designed as thin as possible), may increase and/or maximize an RFID antenna size to improve communication gain, facilitate the inclusion of three or more reader communication devices in a single card, and improve overall communication performance of the reader communication devices.
  • Multiple boards may be soldered together. Different boards may also be mechanically and electrically coupled together, for example, via an epoxy or conductive tape. The various components of a card may be part of different circuit boards and/or separate components attached to the circuit boards. The separate components of each card may be, for example, assembled onto the boards. For example, a microprocessor die may be coupled to contacts of a portion of a board. The electronics package may then be laminated. Such a lamination may occur, for example, in an injection molding process (e.g., a reaction injection molding process) and/or the like. A laminate may be, for example, a silicon-based material or a polyurethane-based material.
  • Cards may be personalized using various types of wireless signals. For example, a card may include an infrared sensor. A personalization machine may include an IR transmitter. The IR transmitter may communicate personal data, such as one or more credit and/or debit card numbers, to an IR sensor located on the card. Similarly, a visible light sensor may be provided on a card for receiving visible light pulses from a visible light transmitter that are indicative of personal data for a card. Alternatively or additionally, for example, a wire-based signal may be provided to a card for personalization. For example, a card may include an IC chip that has contacts exposed on the surface of the card. Electrical connections may be made to such exposed contacts to provide personal data into the chip. Contacts may be placed on the card and connected to an embedded, non-exposed microprocessor such that the microprocessor may receive programming data from a wire-based connection.
  • An adapter may be provided that includes an infrared or visible light transmitter. Such an adapter may be provided over a contact for an IC chip communications device. Accordingly, an IC chip communications device may provide electronic signals to program, for example, an IC-chip card. However, an adapter may convert, for example, these electronic signals into visible or infrared bursts of light. Accordingly, an IC chip programmer may be utilized to program a card having an infrared or visible light sensor. Furthermore, for example, an adapter may be placed over a magnetic stripe encoder or an RFID signal generator that generates infrared or visible light pulses in response to magnetic stripe encoding signals or RFID programming signals. Where a card uses multiple reader communication devices, a processor may couple each device such that data may be communicated to the card only once during personalization.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Principles and advantages of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:
  • FIG. 1 shows cards and architectures constructed in accordance with the principles of the present invention;
  • FIGS. 2-4 show card layers constructed in accordance with the principles of the present invention;
  • FIG. 5 shows overlaid card layers constructed in accordance with the principles of the present invention; and
  • FIGS. 6 and 7 show cards in accordance with the principles of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows cards and architectures according to example embodiments. Referring to FIG. 1, card 100 may include, for example, dynamic magnetic stripe communications device 105, one or more displays (e.g., dynamic code display 145), permanent information 147, one or more buttons (e.g., buttons 110, 120, 130 and 135) and/or information 140. Information 140 may be, for example, a transaction number (e.g., account number), and may be permanent and/or information in a display. In the case of information 140 that is permanent, information 140 may be, for example, printed, embossed and/or laser etched on card 100.
  • Permanent information 147 may include, for example, information specific to a user (e.g., a user's name and/or username) and/or information specific to a card (e.g., a card issue date and/or a card expiration date).
  • Buttons 110-135 may be mechanical buttons, capacitive buttons, or a combination of mechanical and capacitive buttons. Button 110 may be used, for example, to communicate information through dynamic magnetic stripe communications device 105 indicative of a user's desire to communicate a single track of magnetic stripe information. Persons skilled in the art will appreciate that pressing a button (e.g., button 110) may cause information to be communicated through device 105 when an associated read-head detector detects the presence of a read-head of a magnetic stripe reader. Buttons 120, 130 and 135 may be utilized to communicate (e.g., after a button is pressed and after a read-head detects a read-head of a reader) information indicative of a user selection (e.g., to communicate two or more tracks of magnetic stripe data, to communicate different track data, to modify tracks of data and/or the like).
  • Buttons 110-135 may each be used to associate a feature to a transaction. For example, each of buttons 110-135 may be associated to different service provider applications. Each service provider application may be associated to a different service provider feature (e.g., different rewards). A user may, for example, press one or more of buttons 110-135 to choose one or more features for a particular transaction.
  • A user may associate applications to buttons and/or features to applications, for example, on a graphical user interface (GUI). The graphical user interface may be, for example, an application manager provided by one or more entities (e.g., an application manager provider). The associations may be changed, for example, at any time, periodically, and/or upon the occurrence of an event. According to some example embodiments, a user may associate applications to buttons and/or features to applications by telephone, by electronic mail and/or any other communication method.
  • Associations between buttons and service provider applications may be maintained by an ecosystem provider, for example, within an ecosystem of applications, transactional methods and types of transactions. When a transactional method (e.g., card 100) is used by a user, the ecosystem provider may receive transactional data and information indicative of a button selected by the user. The ecosystem provider may determine the identity of an application associated to the button, and may communicate some or all of the information and/or transactional data to the application and/or the service provider. The service provider and/or the application may provide a feature associated with the application based on the information and/or transactional data.
  • Different features may be provided based on the use of different transactional methods and/or transaction types. For example, suppose a service provider provides a reward feature based on the use of a particular payment method (e.g., a reward for using a particular credit card). A user may purchase an item using the particular payment method (e.g., may select a particular credit account using buttons 110-135). When the purchase is performed, the reward may be communicated to the user. As another example, suppose a service provider provides a reward feature based on a type of transaction. For example, a reward may be provided for a sale of a commodity using a particular transaction processor (e.g., issuer, acquirer and/or payment network). A user may sell a commodity using a the particular transaction processor (e.g., the ecosystem provider) and upon completion of the sale a reward may be communicated to the user.
  • Selection of a feature may or may not have a cost associated with it. If a cost is associated with the feature, for example, the cost may be added to a customer's statement (e.g., added to a credit or debit purchase) for a particular transaction. A fixed-fee and/or variable-fee (e.g., a percentage of the transaction) may then be removed from the fee charged to the user and distributed among particular parties, for example, distributed among a card issuer, application manager provider, ecosystem provider, device provider, service provider and/or one or more other entities. Persons skilled in the art in possession of example embodiments will appreciate that many different fee arrangements are possible, and that the various providers may be the same and/or different from each other.
  • A cost may be associated to a feature selection, but may not be a cost to a user. For example, the cost may be a cost to a service provider (e.g., a third party service provider). The cost may be provided to other entities, for example, the device provider, card issuer, card processor, and/or any other entity (e.g., a card network). For example, a feature provided to a user acting as a merchant may be an instant rebate provided to the customer of the user, and a cost of the instant rebate may be a cost to the rebate provider.
  • Display 145 may display, for example, a dynamic verification code (e.g., a card verification value (CVV) and/or card identification number (CID)). The dynamic number displayed on display 145 may change according to various schemes as a security measure against fraudulent transactions. Any and/or all of the information provided by a card 100 may be provided via a display. For example, information 140 may be a dynamic number provided via a display. The dynamic numbers may change periodically and/or upon the occurrence of an event such that a previously recorded number may become unusable. According to at least one example embodiment, one or both sides of a card 100 may be entirely a display.
  • Card 100 and/or a user may communicate a dynamic number to a processing facility. The processing facility may validate the dynamic number (e.g., a dynamic credit card number and/or a dynamic security code). A user may purchase items using a dynamic card and a processing facility may authorize the purchases upon determining that the dynamic number is valid. Although example embodiments may be described with respect to numbers, the scope of example embodiments includes any distinguishing representation of a security code and/or account, by any sensory method (e.g., sight, sound, touch and/or the like). Characters, images, sounds, textures, letters and/or any other distinguishable representations are contemplated by example embodiments.
  • Architecture 150 may be utilized with any card (e.g., any card 100). Architecture 150 may include, for example, processor 155, display 157, driving circuitry 167, memory 153, battery 160, radio frequency identification (RFID) 165, integrated circuit (IC) chip 163, electromagnetic field generators 173, 175, and 177, read- head detectors 170 and 180, port 187 (e.g., a joint test action group (JTAG) port), and an RFID antenna 190.
  • Processor 155 may be any type of processing device, for example, a central processing unit (CPU), an analog signal processor and/or a digital signal processor (DSP). Processor 155 may be, for example, an application specific integrated circuit (ASIC). Processor 155 may include on-board memory for storing information (e.g., drive code). Any number of components may communicate to processor 155 and/or receive communications from processor 155. For example, one or more displays (e.g., display 157) may be coupled to processor 155. Persons skilled in the art will appreciate that components may be placed between particular components and processor 155. For example, a display driver circuit may be coupled between display 157 and processor 155.
  • Memory 153 may be coupled to processor 155. Memory 153 may store data, for example, data that is unique to a particular card. Memory 153 may store any type of data. For example, memory 153 may store discretionary data codes associated with each of buttons 110-135 of card 100. Discretionary data codes may be recognized by remote servers to effect particular actions. For example, a discretionary data code may be stored in memory 153 and may be used to cause a third party service feature to be performed by a remote server (e.g., a remote server coupled to a third party service such as an online voucher and/or coupon provider).
  • Different third party features may be, for example, associated with different buttons and a particular feature may be selected by pressing an associated button. According to at least one example embodiment, a user may select a type of payment on card 100 via manual input interfaces. The manual input interfaces may correspond to displayed options (not illustrated) and/or may be independent buttons. Selected information may be communicated to a magnetic stripe reader via a dynamic magnetic stripe communications device, an RFID antenna and/or the like. Selected information may also be communicated to a device (e.g., a mobile telephonic device) including a capacitive sensor and/or other type of touch sensitive sensor.
  • Architecture 150 may include any number of reader communication devices. For example, architecture 150 may include at least one of IC chip 163, RFID 165 and a magnetic stripe communications device. IC chip 163 may be used to communicate information to an IC chip reader (not illustrated) using, for example, RFID antenna 190 and/or contact conductive fingers (e.g., 6 or 8 contact gold fingers). IC chip 152 may be, for example, an EMV chip. RFID 151 may be used to communicate information to an RFID reader using RFID antenna 190. RFID 151 may be, for example, a RFID tag. A magnetic stripe communications device may be included to communicate information to a magnetic stripe reader. For example, a magnetic stripe communications device may provide electromagnetic signals to a magnetic stripe reader.
  • Different electromagnetic signals may be communicated to a magnetic stripe reader to provide different tracks of data. For example, architecture 150 may include electromagnetic field generators 173, 175 and 177 to communicate separate tracks of information to a magnetic stripe reader. Electromagnetic field generators 173, 175 and 177 may include a coil (e.g., each may include at least one coil) wrapped around one or more materials (e.g., a soft-magnetic material and a non-magnetic material). Each electromagnetic field generator may communicate information, for example, serially and/or in parallel to a receiver of a magnetic stripe reader for a particular magnetic stripe track.
  • Architecture 150 may include read head detectors 170 and 180. Read- head detectors 170 and 180 may be configured to sense the presence of a magnetic stripe reader (e.g., a read-head housing of a magnetic stripe reader). A read-head detector may include, for example, e-sense pads. Information sensed by the read- head detectors 170 and 180 may be communicated to processor 155 to cause processor 155 to communicate information serially from electromagnetic generators 173, 175, and 177 to magnetic stripe track receivers in a read-head housing of a magnetic stripe reader.
  • According to at least one example embodiment, a magnetic stripe communications device may change the information communicated to a magnetic stripe reader at any time. Processor 155 may, for example, communicate user-specific and card-specific information using RFID 165, IC chip 163, and/or electromagnetic generators 173, 175, and 177 to card readers coupled to remote information processing servers (e.g., purchase authorization servers). Driving circuitry 167 may be utilized by processor 155, for example, to control electromagnetic generators 173, 175 and 177.
  • Architecture 150 may include, for example, a light sensor (not illustrated). Architecture 150 may receive information from a light sensor. Processor 155 may determine information received by a light sensor.
  • FIGS. 2-4 show card layers constructed in accordance with the principles of the present invention. Referring to FIG. 2, layer 200 of a printed circuit board may include, for example, RFID antenna 205 and EMV connector 210. Layer 200 may be about 1-3 mils thick (a mil being 1/1000 of an inch), for example, about 2 mils thick. Persons of ordinary skill in the art will appreciate that layer 200 may also include various circuit traces, fill materials, supports, components, via connections and/or the like which may not be illustrated for clarity of explanation.
  • According to at least one example embodiment, layer 200 may be one side of a sheet, for example, one side of a polyimide sheet (e.g., a Kapton sheet). A side of a sheet including RFID antenna 205 and EMV connector 210 may be a bottom layer of a printed circuit board. A second side of the sheet may include a different layer. The different layer (not shown) from layer 200 may include routing traces and/or other elements. According to at least one example embodiment, the second side of the sheet may not include a different layer and/or metallization (e.g., copper), for example, may be bare polyimide.
  • An RFID antenna may, for example, be a series of conductive loops on a border of layer 200. RFID antenna 205 may be operable to communicate information provided by a processor externally to a distance of about, for example, 100 millimeters. For example, a processor may communicate with an RFID device using RFID antenna 205. RFID antenna 205 may be utilized to communicate, for example, payment card information (e.g., credit card information) to a reader. Although RFID antenna is described with respect to RFID, persons of ordinary skill in the art will appreciate that near field communications provided by an antenna may be used for various other technologies, for example, contactless EMV.
  • RFID antenna 205 may communicate an electromagnetic signal in response to a signal provided by, for example, an RFID chip (e.g., an application specific integrated circuit (ASIC) and/or the like). A size of the conductive loops may be large (e.g., as large as possible) and may be along edge portions of layer 200 to maximize and/or increase a size of RFID antenna 205. Persons of ordinary skill in the art in possession of example embodiments will appreciate that increased antenna size may correspond to increased gain. RFID antenna 205 may be monostatic and/or bistatic, and may be tuned (or tunable) to a specific range of carrier frequencies. Although FIG. 2 illustrates a helical antenna, other configurations are contemplated by example embodiments (e.g., patch, crossed dipole and/or the like).
  • EMV connector 210 may be used to connect an EMV chip to an external device (e.g., an EMV device). For example, EMV connector 210 may include contact pads and/or the like used to connect a payment card to an EMV device during a transaction. An EMV chip (e.g., a processor) may be connected to EMV connector 210 via one or more circuit traces and a buffer, for example, a buffer that provides electrostatic discharge (ESD) protection and/or bi-directional control (not illustrated). A card may be operable to provide contactless EMV communications and, for example, an EMV chip may be connected by circuit traces to RFID antenna 205 alternatively to and/or additionally to EMV connector 210. An EMV chip may be a component added to a circuit board including layer 200 and/or may be part of a circuit board layer.
  • Referring to FIG. 3, layer 300 may include, for example, read head detectors 305, pad 310, supports 315 and/or component cutout 320. Persons of ordinary skill in the art will appreciate that layer 300 may also include various circuit traces, fill materials, supports, components, vias, via connections and/or the like which may not be illustrated for clarity of explanation. A thickness of layer 300 may be, for example, about 1-4 mils (e.g., about 2 mils).
  • Persons skilled in the art will appreciate that a read-head housing of a magnetic stripe reader may be provided with one, two, or three active read-heads that are each operable to couple with a separate magnetic track of information. A reader may also have more than one read-head housing and each read-head housing may be provided with one, two, or three active read-heads that are operable to each couple with a separate magnetic track including information. Such read-head housings may be provided on different surfaces of a magnetic stripe reader. For example, the read-head housings may be provided on opposite walls of a trough sized to accept payment cards. Accordingly, the devices on the opposite sides of the trough may be able to read a credit card regardless of the direction that the credit card was swiped.
  • A magnetic emulator may be provided and may be positioned on card such that when card is swiped through a credit card reader, the magnetic emulator passes underneath, or in the proximity of, a read-head for a particular magnetic track. An emulator may be large enough to simultaneously pass beneath, or in the proximity of, multiple read-heads. Information may be transmitted, for example, serially to one or more read-heads. Information from different tracks of data may also be transmitted serially and the magnetic stripe reader may determine the different data received by utilizing the starting and/or ending sentinels that define the information for each track. A magnetic emulator may also transmit a string of leading and/or ending zeros such that a magnetic reader may utilize such a string of zeros to provide self-clocking. In doing so, for example, information may be transmitted serially at high speeds to a magnetic stripe reader. For example, credit card information may be transmitted to a magnetic stripe reader at speeds up to, and/or greater than, about 30 Khz.
  • Different emulators may be provided, and positioned, on a card to each couple with a different read-head and each emulator may provide different track information to those different read-heads. Read-head detectors may be utilized to detect when a read-head is over an emulator such that an emulator is controlled by a processor to operate when a read-head detector detects the appropriate presence of a read-head. Power may be saved. The read-head detector may detect how many read-heads are reading the card and, accordingly, only communicate with the associated emulators. Power may be conserved.
  • Read-head detectors 305 may be, for example, provided as a circuit that detects changes in capacitance and/or mechanical coupling to a conductive material. Read head detectors 305 may be, for example, e-sense pads and/or the like. A processor may be provided to, for example, receive information from read-head detectors 305. Read head detectors 305 may be connected to the processor via circuit traces and/or the like.
  • Pad 310 may be, for example, a die foundation of a chip. For example, pad 310 may be a copper pad used to support a wire bonded on-board ASIC chip. Supports 315 may be, for example, supports for an external connector (e.g., a JTAG port). As one non-limiting example, supports 315 may be copper pads. Component cutout 320 may indicate the absence of symmetry in layer 300. For example, component cutout 320 may be an area not including layer 300 (e.g., not including layer 300 and/or a polyimide support layer). Although example embodiments may describe a component cutout, layer 300 may be formed without a portion corresponding to component cutout 320, may be an etched, milled, and/or ablated portion, and/or the like. A component, for example, a battery, may occupy some or all of a space provided by component cutout 320.
  • According to at least one example embodiment, layer 300 may be one side of a sheet, for example, one side of a polyimide sheet (e.g., a Kapton sheet). Layer 300 may be a middle layer of a printed circuit board. A different side of the sheet from the layer 300 may include a different layer, for example, a top layer. The different layer (not shown) from layer 300 may include, for example, an infrared (IR) transceiver, a component cutout, buttons, a processor, at least one circuit, leads, an EMV buffer, an RFID chip, a port and/or a component cutout. According to at least one example embodiment, layer 300 may be a standalone layer, for example, the only layer of a sheet.
  • Referring to FIG. 4, layer 400 may include, for example, infrared (IR) transceiver 405, magnetic stripe region 410, buttons 415, processor 420, circuit 425, leads 430, EMV buffer 435, RFID chip 440, port 445 and/or component cutout 450. Persons of ordinary skill in the art will appreciate that layer 400 may also include various circuit traces, fill materials, supports, components, via connections and/or the like which may not be illustrated for clarity of explanation. A thickness of layer 400 may be, for example, about 1-4 mils (e.g., about 2.7 mils).
  • IR transceiver 405 may include, for example, an IR emitter and an IR receiver. The IR emitter may be, for example, a light emitting diode configured to emit IR light upon excitation (e.g., application of a voltage across the diode). The IR receiver may be, for example, a transistor configured to generate a current in the presence of IR light. For example, the IR receiver may be a bipolar transistor. According to at least one example embodiment, IR transceiver 405 may not be a transceiver and may be a transmitter-receiver. IR transceiver 405 may be connected to, for example, processor 420 via one or more circuit traces (not illustrated). IR transceiver 405 may communicate information to/from an external IR reader and/or to/from processor 420. For example, IR transceiver 405 may communicate a card account number to an IR card reader.
  • Magnetic stripe region 410 may indicate the absence of a portion of layer 400. For example, magnetic stripe region 410 may indicate an area of a sheet (e.g., a polyimide sheet) not including any metallization (e.g., no copper, coverlay and/or the like). As another example, magnetic stripe region 410 may indicate the absence of any material. Although example embodiments may include a component cutout as a magnetic stripe region, layer 400 may be formed without a portion corresponding to magnetic stripe region 410, an etched, milled, and/or ablated portion, and/or the like. A component, for example, a magnetic stripe communication device, may occupy some or all of a space provided by magnetic stripe region 410 (e.g. directly on a polyimide sheet).
  • Buttons 415 may be mechanical buttons, capacitive buttons, or a combination of mechanical and capacitive buttons. Buttons 415 may be connected to processor 420 via one or more circuit traces (not illustrated).
  • Processor 420 may be, for example, a central processing unit. For example, processor 420 may be an ultra-low-power mixed signal microprocessor. Processor 420 may provide various functions to a powered card including a layer 400. For example, a card EMV protocol may use processor 420. Processor 420 may include on-board memory for storing information (e.g., drive code). Any number of components may communicate to processor 420 and/or receive communications from processor 420. For example, one or more displays (not illustrated) and/or one or more memories may be coupled to processor 420. Persons skilled in the art will appreciate that components may be placed between particular components and processor 420. For example, a buffer circuit may be coupled between processor 420 and an EMV connector.
  • Circuit 425 may be, for example, an ASIC. Circuit 425 may be associated with a magnetic stripe communication device. Leads 430 may be, for example, battery terminal leads to connect a thin film, flexible battery to power various circuits (e.g., circuitry or components of various layers including layer 400). EMV buffer 435 may be connected between, for example, an EMV connector and processor 420. EMV buffer 435 may provide electrostatic discharge (ESD) protection and/or bi-directional control. RFID chip 440 may be, for example, connected to an RFID antenna (not illustrated) and may be operable to communicate, for example, payment card information (e.g., credit card information) to a reader. Port 445 may be, for example, a JTAG port connected to processor 420 and/or leads 430 via circuit traces (not illustrated).
  • Component cutout 450 may indicate the absence of symmetry in layer 400. For example, component cutout 450 may be an area not including layer 400. Although example embodiments may describe a component cutout, layer 400 may be formed without a portion corresponding to component cutout 450, may be an etched or otherwise removed portion and/or the like. A component, for example, a battery, may occupy some or all of a space provided by component cutout 450.
  • Persons skilled in the art in possession of example embodiments will appreciate that components of various layers of a circuit board may be distributed in various ways and remain within the scope of example embodiments.
  • According to at least one example embodiment, layer 400 may be one side of a sheet, for example, one side of a polyimide sheet (e.g., a Kapton sheet). Layer 400 may be a top layer of a printed circuit board. A different side of the sheet from the layer 400 may include a different layer, for example, a middle layer. The different layer (not shown) from layer 400 may include, for example, read head detectors, one or more pads, supports and/or component cutouts. According to at least one example embodiment, layer 400 may be a standalone layer, for example, the only layer of a sheet.
  • FIG. 5 shows overlaid card layers constructed in accordance with the principles of the present invention. Referring to FIG. 5, a printed circuit board may include multiple layers, for example, three layers including magnetic stripe cutout 505, read head detectors 510, antenna 515, buttons 520 and 535, processor 525, circuit 530, EMV connector 540, EMV buffer 545, leads 550, RFID chip 560, port 565 and/or component cutouts 555. Persons of ordinary skill in the art will appreciate that circuit board 500 may include various circuit traces, fill materials, supports, components, via connections and/or the like which may not be illustrated for clarity of explanation. Components, such as a magnetic stripe communication device, battery, backers and/or buttons, may or may not be part of circuit board 500 (e.g., may be separate components).
  • A first layer may include, for example, component cutouts 505 and/or 555, buttons 520 and 535, processor 525, circuit 530, EMV buffer circuit 545, leads 550, RFID chip 560 and port 565. A second layer may include, for example, read head detectors 510, a connector (not illustrated), supports (not illustrated) and/or component cutout 555. A third layer may include, for example, RFID antenna 515 and/or EMV connector 540.
  • According to at least one example embodiment, the first and second layers may be on opposite sides of a same sheet (e.g., a Kapton sheet). The third layer may be on a different sheet. The different sheet may only include the third layer and an opposite side of the sheet from the third layer may not include metallization (e.g., no coverlay). According to at least one other example embodiment the opposite side of the sheet from the third layer may include routing traces, elements, and/or the like (e.g., a fourth layer). According to at least one example embodiment, each layer of a circuit board may be associated with a different substrate layer.
  • Circuit board 500 may include a cutout 555 that may extend through the first and second layers. A component such as a battery may be on the third layer and pass through the first and second layers.
  • The third layer may extend to about a portion of the printed circuit board 500 including read head detectors 510 of the second layer and/or a magnetic stripe communication device (not illustrated). For example, a magnetic stripe communication device may be a component on a polyimide sheet over read head detectors 510 of the second layer and in magnetic stripe cutout 505 of the first layer. Magnetic stripe region 505 may indicate, for example, the absence of elements on the first layer opposite the read head detectors 510. The third layer may not extend into a region including read head detectors 510 and/or a magnetic stripe communication device. According to at least one example embodiment, a sheet including the third layer may not extend into a region including read head detectors 510 and/or a magnetic stripe communication device. The sheet may be between the third layer and the second layer.
  • Accordingly, interference between an RFID antenna 515 and a magnetic stripe communication device and/or read head detectors may be reduced. RFID antenna 515 may surround an area of a circuit board 500 not including the magnetic stripe communication device. A thickness of circuit board 500 may be reduced in an area including a magnetic stripe communication device and a size of an RFID antenna increased, as compared to, for example, a circuit board not including three or more layers. Communications using an RFID antenna 515 and/or a magnetic stripe communication device may be improved. For example, circuit board 500 may provide improved gain.
  • FIG. 6 shows a card in accordance with the principles of the present invention. FIG. 6 may be an example cross-sectional representation of a card taken in a thickness direction. Referring to FIG. 6, a card 600 may include, for example, first exterior layer 610, magnetic stripe communications device 620, first layer 630, second layer 640, third layer 650, second exterior layer 660, battery 670, region 680 and fill 690.
  • Magnetic stripe communications device 620 may be on first layer 630 (e.g., on a sheet including layer 630). A thickness “g” of card 600 may be, for example, about 25-40 mils (25-40 thousandths of an inch). For example, card 600 may be about 30-33 mils thick. Card 600 may include layers, components and/or the like with thicknesses “a”-“f” and “h”.
  • Each of thicknesses “e” and “f” of exterior layers 610 and 660 may be, for example, about 3-8 mils (e.g., about 6 mils). Exterior layers 610 and 660 may include a polymer, for example, polyethelene terephthalate. A thickness “d” of third layer 650 may be about 1-3 mils (e.g., 2 mils). Thicknesses “b” and “c” of first and second layers 630 and 640 combined may be about 2-7 mils (e.g., about 4.7 mils). A thickness “h” of battery 670 may be about 14-20 mils (e.g., about 17 mils).
  • Region 680 may be a region including a material (e.g., an adhesive) and/or various elements (e.g., wire traces and/or the like). According to some example embodiments, region 680 may not be present or may be present as a fill material, and first layer 630 and/or battery 670 may extend to first exterior layer 610. Thickness “a” of the magnetic stripe communications device portion 620 may be, for example, a thickness of thickness “g” minus the combined thicknesses “a”-“f” and a thickness (if any) of region 680. Fill 690 may indicate a region of card 600 into which the third layer 650 does not extend. For example, the third layer 650 may include an RFID antenna and may not extend into a region of card 600 including a magnetic stripe communication device 620 or may only partially extend into a region of card 600 including a magnetic stripe communication device 620. Fill 690 may include, for example, epoxy.
  • As one non-limiting example, to fabricate a card that is about 30-33 mils thick, for example, exterior layers 610 and 660 may each be about 4-7 mils (e.g., 5 mils). A magnetic stripe communication device may be about 18-22 mils. A circuit board may be less than about 10-20 mils (e.g., less than about 16 mils). The magnetic stripe communication device may be on a portion of a circuit board layer with a thickness of about 1-3 mils (e.g., about 2 mils). Accordingly, for example, an area of region 680 between a magnetic stripe communications device and an exterior layer may be a thickness such that a magnetic stripe communications device, a circuit board layer (e.g., layer 640) on the magnetic stripe communication device, and exterior layers 610 and 660, are together about 30-33 mils thick. For example, region 680 may be about 0-10 mils thick (e.g., about 2 mils).
  • Persons of ordinary skill in the art will appreciate that the relative sizes of elements shown in FIG. 6 are representative only and depend on, for example, specific design and/or specific components. For example, magnetic stripe component 620 may be thicker than battery 670. Further, relative dimensioning may not be to scale in order to illustrate relative positioning in FIG. 6.
  • The volume of the electronics package of a powered card may be, for example, less than about two tenths of a cubic square inch (e.g., about less than one tenth of a cubic square inch). Such an electronics package may include multiple flexible boards, a battery, dynamic magnetic stripe communications device, magnetic stripe communications device drive circuitry, and multiple light emitting diodes, for example. There may be no copper pour in card 600. A thickness of card 600 may be uniform or may vary (e.g., a flexible card).
  • Persons skilled in the art will appreciate that a protective layer may be placed over exterior layers 610 and 660. Such a layer may be about 0.5-2 mils thick (e.g., about 1 mil thick). Accordingly, for example, the combined thickness of two protective layers may be about 2 mils, the combined thickness of two exterior layers may be about 8 mils, the thickness of a circuit board layer including read heads may be 2 mils and the thickness of a magnetic stripe communication device may be about 18 mils. In order to maintain a target thickness of about 30 mils (e.g., with a maximum thickness of about 32 mils including personalization) for a card 600, a third layer (e.g., including an antenna) may not overlap a region of card 600 including a magnetic stripe communication device.
  • Persons skilled in the art will appreciate that different components and layers may be of different thicknesses based on the design of a card, and that example embodiments may be applied in a wide variety of scenarios to maintain a critical thickness. Persons skilled in the art will appreciate that an injection molding process of a substance may allow a substance to fill into the groove and gaps of an electronics package such that the laminate may reside, for example, between components of an electronics package.
  • Card 600 may include a permanent magnet that may be, for example, provided as part of an assembled magnetic stripe communication device 620. First through third layers 630-650 may include, for example, capacitive read-head detectors. Battery 670 may be any type of battery, such as, for example, a flexible lithium polymer battery. Circuitry may be included (not illustrated), for example, one or more driver circuits (e.g., for a magnetic communications device), RFIDs, IC chips, light sensors and light receivers (e.g., for sending and communicating data via optical information signals), sound sensors and sound receivers, or any other component or circuitry for card 600. Read-head detectors for detecting the read-head of a magnetic stripe reader may be provided, for example, on layer 640 as capacitive touch sensors (e.g., capacitive-sensing contact plates).
  • FIG. 7 shows a card in accordance with the principles of the present invention. FIG. 7 may include an example plan view of card 700 including regions 705, 710 and 715, and cross-sections corresponding to the regions.
  • Referring to FIG. 7, card 700 may include regions 705, 710 and 715. Region 705 may include, for example, first mask 720, first conductor 723, second conductor 725, substrate 727, third conductor 730 and second mask 733. Substrate 730 may be, for example, polyimide (e.g., Kapton). Second conductor 725 and third conductor 730 may be on opposite sides of substrate layer 730. Second conductor 725 and third conductor 730 may include, for example, electrically deposited metal (e.g., ED copper). First conductor 723 may be on exposed portions of substrate 727, second conductor 725 and third conductor 730, and may fill vias, depressions and/or the like. First conductor 723 may be, for example, metal plating (e.g., copper plating). Mask 720 and mask 733 may be on first conductor 723. Mask 720 and mask 733 may be, for example, top and bottom solder masks (e.g., coverlay), respectively.
  • Region 710 of card 700 may include, for example, first mask 735, first conductor 755, second conductor 740, first substrate 743, third conductor 745, bonding material 747, second substrate 750, fourth conductor 753 and second mask 757. First substrate 743 and second substrate 750 may be, for example, polyimide (e.g., Kapton). Second conductor 740 and third conductor 745 may be on opposite side surfaces of first substrate 743. Fourth conductor 753 may be on a side surface (e.g., bottom surface) of substrate 750. Second conductor 740, third conductor 745 and fourth conductor 753 may include, for example, electrically deposited metal (e.g., ED copper). Bonding material 747 may be between substrate 750 and third conductor 745. Bonding material 747 may be, for example, a bonding sheet.
  • First conductor 755 may be on exposed portions of substrate second conductor 740, first substrate 743, third conductor 745, bonding material 747, second substrate 750 and fourth conductor 753. First conductor 755 may fill vias, depressions and/or the like. First conductor 755 may be, for example, metal plating (e.g., copper plating). First mask 735 and second mask 757 may be on first conductor 755. First mask 735 and second mask 757 may be, for example, top and bottom solder masks (e.g., coverlay), respectively.
  • Region 715 of card 700 may include, for example, substrate 760, first conductor 763, second conductor 765 and mask 767. A top surface of substrate 760 may be exposed. Substrate 70 may be, for example, a polyimide. First conductor 763 may be on an opposite side of substrate 760 from the exposed top surface. First conductor 763 may be, for example, electrically deposited copper. Second conductor 765 may be on first conductor 763. Second conductor 765 may be, for example, copper plating. Mask 767 may be on second conductor 765. Mask 767 may be a solder mask (e.g., coverlay).
  • Persons skilled in the art will understand that although regions 705, 710 and 715 may be shown with different conductors, substrates and masks, according to some example embodiments materials may be common between regions. Persons skilled in the art will understand that regions 705, 710 and 715 may not be internally contiguous. For example, region 705 may include a magnetic stripe communication device cutout, and within such a cutout, substrate 727 may be exposed.
  • Persons skilled in the art will understand that various elements of different example embodiments may be combined in various ways. Persons skilled in the art will also appreciate that the present invention is not limited to only the embodiments described. Instead, the present invention more generally involves multiple layer card circuit boards. Persons skilled in the art will also appreciate that the apparatus of the present invention may be implemented in other ways than those described herein. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.

Claims (15)

1-19. (canceled)
20. A device comprising:
a first layer including
a first area, and
a second area, and
a second layer including
a first electrically non-conductive area, and
a third area,
wherein said third area is aligned with said second area and said first electrically non-conductive area is aligned with said first area.
21. The device of claim 20, wherein at least a portion of said first area includes a first component.
22. The device of claim 20, further comprising an intermediate layer disposed between said first layer and said second layer.
23. The device of claim 20, wherein said first electrically non-conductive area includes an absence of any material.
24. The device of claim 20, wherein said first electrically non-conductive area includes one or more cutouts.
25. The device of claim 20, wherein at least a portion of said first area includes a first component,
said first electrically non-conductive area includes one or more cutouts, and
said one or more cutouts are aligned with said first component.
26. The device of claim 20, wherein said first electrically non-conductive area includes a substrate without metallization.
27. The device of claim 20, wherein said first electrically non-conductive area includes a polyimide sheet.
28. The device of claim 20, wherein at least one of said first area, said second area, and said third area include one or more additional components.
29. The device of claim 20, wherein said first component is a magnetic stripe communication device.
30. The device of claim 20, wherein said first layer and said second layer each independently comprise one or more sublayers.
31. The device of claim 20, further comprising:
an intermediate layer disposed between said first layer and said second layer,
wherein said first layer, said second layer, and said intermediate layer each independently comprise one or more sublayers.
32. A circuit board comprising:
a first layer including a magnetic stripe communication device;
a second layer; and
a third layer,
wherein the second layer is between the first layer and the third layer, and
the third layer does not overlap a region of the circuit board including the magnetic stripe communication device.
33. A device comprising:
a circuit board including a first layer, a second layer, and a third layer,
wherein the second layer is between the first layer and the third layer,
a magnetic strip communication device extends through the first layer, and
the third layer does not overlap a region of the card including the magnetic stripe communication device.
US14/718,191 2012-06-29 2015-05-21 Multiple layer card circuit boards Pending US20150254546A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/718,191 US20150254546A1 (en) 2012-06-29 2015-05-21 Multiple layer card circuit boards

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261666553P 2012-06-29 2012-06-29
US13/770,553 US9064195B2 (en) 2012-06-29 2013-02-19 Multiple layer card circuit boards
US14/718,191 US20150254546A1 (en) 2012-06-29 2015-05-21 Multiple layer card circuit boards

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/770,553 Continuation US9064195B2 (en) 2012-06-29 2013-02-19 Multiple layer card circuit boards

Publications (1)

Publication Number Publication Date
US20150254546A1 true US20150254546A1 (en) 2015-09-10

Family

ID=49777086

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/770,553 Active 2033-06-23 US9064195B2 (en) 2012-06-29 2013-02-19 Multiple layer card circuit boards
US14/718,191 Pending US20150254546A1 (en) 2012-06-29 2015-05-21 Multiple layer card circuit boards

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/770,553 Active 2033-06-23 US9064195B2 (en) 2012-06-29 2013-02-19 Multiple layer card circuit boards

Country Status (1)

Country Link
US (2) US9064195B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160328716A1 (en) * 2013-12-30 2016-11-10 Gemalto Sa Communication device comprising a luminous activation sensor
US9852368B1 (en) 2009-08-17 2017-12-26 Dynamics Inc. Advanced loyalty applications for powered cards and devices
WO2018102134A1 (en) * 2016-12-02 2018-06-07 Applied Materials, Inc. Rfid part authentication and tracking of processing components
US10482363B1 (en) 2010-03-02 2019-11-19 Dynamics Inc. Systems and methods for detection mechanisms for magnetic cards and devices
US10922597B1 (en) 2012-11-05 2021-02-16 Dynamics Inc. Dynamic magnetic stripe communications device with beveled magnetic material for magnetic cards and devices
US10949627B2 (en) 2012-12-20 2021-03-16 Dynamics Inc. Systems and methods for non-time smearing detection mechanisms for magnetic cards and devices
US11023796B1 (en) 2012-11-30 2021-06-01 Dynamics Inc. Dynamic magnetic stripe communications device with stepped magnetic material for magnetic cards and devices
US11062188B1 (en) 2014-03-21 2021-07-13 Dynamics Inc Exchange coupled amorphous ribbons for electronic stripes
US11126997B1 (en) 2012-10-02 2021-09-21 Dynamics Inc. Cards, devices, systems, and methods for a fulfillment system

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011577B2 (en) * 2007-12-24 2011-09-06 Dynamics Inc. Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
US10332102B2 (en) * 2011-10-17 2019-06-25 Capital One Services, Llc System, method, and apparatus for a dynamic transaction card
US10489774B2 (en) 2011-10-17 2019-11-26 Capital One Services, Llc System, method, and apparatus for updating an existing dynamic transaction card
US10510070B2 (en) 2011-10-17 2019-12-17 Capital One Services, Llc System, method, and apparatus for a dynamic transaction card
US9122966B2 (en) 2012-09-07 2015-09-01 Lawrence F. Glaser Communication device
US11593776B2 (en) 2012-09-07 2023-02-28 Studebaker & Brackett PC Communication device to sense one or more biometric characteristics of a user
USD729808S1 (en) * 2013-03-13 2015-05-19 Nagrastar Llc Smart card interface
USD758372S1 (en) 2013-03-13 2016-06-07 Nagrastar Llc Smart card interface
USD759022S1 (en) * 2013-03-13 2016-06-14 Nagrastar Llc Smart card interface
US10380471B2 (en) 2013-07-23 2019-08-13 Capital One Services, Llc Dynamic transaction card power management
US10210505B2 (en) 2013-07-23 2019-02-19 Capital One Services, Llc Dynamic transaction card optimization
US10880741B2 (en) 2013-07-23 2020-12-29 Capital One Services, Llc Automated bluetooth pairing
US9965632B2 (en) 2014-12-22 2018-05-08 Capital One Services, Llc System and methods for secure firmware validation
USD780763S1 (en) * 2015-03-20 2017-03-07 Nagrastar Llc Smart card interface
CA2982770C (en) 2015-04-14 2023-07-04 Capital One Services, Llc Tamper-resistant dynamic transaction card and method of providing a tamper-resistant dynamic transaction card
US9710744B2 (en) 2015-04-14 2017-07-18 Capital One Services, Llc Tamper-resistant dynamic transaction card and method of providing a tamper-resistant dynamic transaction card
US10482453B2 (en) 2015-04-14 2019-11-19 Capital One Services, Llc Dynamic transaction card protected by gesture and voice recognition
US9990795B2 (en) 2015-04-14 2018-06-05 Capital One Services, Llc Dynamic transaction card with EMV interface and method of manufacturing
US10360557B2 (en) 2015-04-14 2019-07-23 Capital One Services, Llc Dynamic transaction card protected by dropped card detection
EP3543892B1 (en) 2015-04-14 2021-05-26 Capital One Services, LLC Systems and methods for secure firmware validation
WO2016168405A1 (en) 2015-04-14 2016-10-20 Capital One Services, LLC. Dynamic transaction card optimization
EP3284049B1 (en) 2015-04-14 2022-01-26 Capital One Services, LLC A system, method, and apparatus for updating an existing dynamic transaction card
CA2982766C (en) 2015-04-14 2023-07-04 Capital One Services, Llc Automated bluetooth pairing
CA2982772A1 (en) * 2015-04-14 2016-10-20 Capital One Services, Llc Dynamic transaction card with emv interface and method of manufacturing
WO2016168394A1 (en) 2015-04-14 2016-10-20 Capital One Services, LLC. A system, method, and apparatus for a dynamic transaction card
US10997588B2 (en) 2015-04-14 2021-05-04 Capital One Services, Llc Dynamic transaction card protected by dropped card detection
US10474941B2 (en) * 2015-04-14 2019-11-12 Capital One Services, Llc Dynamic transaction card antenna mounting
USD864968S1 (en) * 2015-04-30 2019-10-29 Echostar Technologies L.L.C. Smart card interface
WO2016183338A1 (en) * 2015-05-12 2016-11-17 Dynamics Inc. Dynamic security codes, tokens, displays, cards, devices, multi-card devices, systems and methods
FR3052897B1 (en) * 2016-06-21 2018-08-03 Idemia France METHOD IMPLEMENTED IN AN ELECTRONIC ENTITY AND ELECTRONIC ENTITY THEREFOR
US20180079249A1 (en) * 2016-09-20 2018-03-22 Dynamics Inc. Wallet card device and system with dynamic magnetic stripe communications device
CN107145932A (en) * 2017-07-10 2017-09-08 广东楚天龙智能卡有限公司 Based on false proof RFID bank card and its verification method, preparation method
IT201800001694A1 (en) * 2018-01-23 2019-07-23 Datamars Sa RFID tag
US11755872B2 (en) * 2021-10-05 2023-09-12 American Express Travel Related Services Company, Inc Rigid transaction card

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506148A (en) * 1981-11-05 1985-03-19 Brown, Boveri & Cie Ag Identification card
US4621326A (en) * 1984-03-14 1986-11-04 Docutel/Olivetti Corporation Method of reducing customer transaction time in an automatic teller machine by parallel processing of sequence events
US4636947A (en) * 1984-03-14 1987-01-13 Docutel/Olivetti Corporation ATM task scheduling system for simultaneous peripheral device transactions processing
US4707594A (en) * 1985-06-27 1987-11-17 Intellicard International, Inc. Unitary, self-contained consumer transaction card
US4742215A (en) * 1986-05-07 1988-05-03 Personal Computer Card Corporation IC card system
US4792843A (en) * 1983-10-24 1988-12-20 Haghiri Tehrani Yahya Data carrier having an integrated circuit and method for producing same
US5180902A (en) * 1988-04-21 1993-01-19 David Schick Self verifying transaction card with disabling capability
US6241153B1 (en) * 1998-03-17 2001-06-05 Cardxx, Inc. Method for making tamper-preventing, contact-type, smart cards
US6295031B1 (en) * 1993-12-23 2001-09-25 Symbol Technologies, Inc. Memory card assembly having an integral antenna
US20020032657A1 (en) * 2000-01-10 2002-03-14 Singh Kunwar C. Credit card duplication prevention system and method
US20040159709A1 (en) * 2002-02-12 2004-08-19 Eiji Ohta IC card
US20050194453A1 (en) * 2001-07-27 2005-09-08 Storcard, Inc. Enhanced smart card with rotating storage
US20070176273A1 (en) * 2005-12-20 2007-08-02 Visioncard Personalisierungsgmbh Card and Manufacturing Method
US20090250521A1 (en) * 2005-11-16 2009-10-08 Kyodo Printing Co., Ltd. Non-contact type ic card
US20110174874A1 (en) * 2010-01-19 2011-07-21 Poznansky Amir Transaction Card With Improved Security Features
US8282007B1 (en) * 2009-04-06 2012-10-09 Dynamics Inc. Laminated cards with manual input interfaces
US20130134227A1 (en) * 2010-06-18 2013-05-30 Linxens Holding Multi-Layered Flexible Printed Circuit and Method of Manufacture

Family Cites Families (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3014882C2 (en) 1980-04-17 1983-08-11 Porst, Hannsheinz, 8500 Nürnberg Authorization ID
US4353064A (en) 1981-01-14 1982-10-05 Honeywell Inc. Battery operated access control card
US4614861A (en) 1984-11-15 1986-09-30 Intellicard International, Inc. Unitary, self-contained card verification and validation system and method
US4720860A (en) 1984-11-30 1988-01-19 Security Dynamics Technologies, Inc. Method and apparatus for positively identifying an individual
US5168520A (en) 1984-11-30 1992-12-01 Security Dynamics Technologies, Inc. Method and apparatus for personal identification
US4701601A (en) 1985-04-26 1987-10-20 Visa International Service Association Transaction card with magnetic stripe emulator
JPS62179994A (en) 1986-02-04 1987-08-07 カシオ計算機株式会社 Electronic card
US4667087A (en) 1986-03-31 1987-05-19 Max A. Quintana Secure credit card
US4791283A (en) 1986-06-03 1988-12-13 Intellicard International, Inc. Transaction card magnetic stripe emulator
US4786791A (en) 1987-02-10 1988-11-22 Gateway Technology Data processing apparatus with portable card having magnetic strip simulator
KR910004797B1 (en) 1987-04-08 1991-07-13 가시오 게이상기 가부시기가이샤 Mini-electronic device and its manufacturing method
DE3906349A1 (en) 1989-03-01 1990-09-13 Hartmut Hennige METHOD AND DEVICE FOR SIMPLIFYING THE USE OF A VARIETY OF CREDIT CARDS AND THE LIKE
US5479512A (en) 1991-06-07 1995-12-26 Security Dynamics Technologies, Inc. Method and apparatus for performing concryption
US5485519A (en) 1991-06-07 1996-01-16 Security Dynamics Technologies, Inc. Enhanced security for a secure token code
US5657388A (en) 1993-05-25 1997-08-12 Security Dynamics Technologies, Inc. Method and apparatus for utilizing a token for resource access
US5237614A (en) 1991-06-07 1993-08-17 Security Dynamics Technologies, Inc. Integrated network security system
US5585787A (en) 1991-12-09 1996-12-17 Wallerstein; Robert S. Programmable credit card
JPH05210770A (en) 1992-01-31 1993-08-20 Mitsubishi Electric Corp Contactless card and card reader/writer
US6769618B1 (en) 1992-02-12 2004-08-03 Lenscard U.S., Llc Wallet card with a magnifying lens and light
US5412199A (en) 1992-02-12 1995-05-02 Finkelstein; Alan Credit card with magnifying lens
US6176430B1 (en) 1992-02-12 2001-01-23 Lenscard U.S. Llc Method for making a wallet card with an integral magnifying lens
US5856661A (en) 1993-02-12 1999-01-05 Universal Magnifier Llc Credit card with magnifying lens formed with a radiation-curable resin
US5608203A (en) 1992-02-12 1997-03-04 Finkelstein; Alan Credit card with magnifying lens
US6817532B2 (en) 1992-02-12 2004-11-16 Lenscard U.S., Llc Wallet card with built-in light
EP0566811A1 (en) 1992-04-23 1993-10-27 International Business Machines Corporation Authentication method and system with a smartcard
US6130621A (en) 1992-07-09 2000-10-10 Rsa Security Inc. Method and apparatus for inhibiting unauthorized access to or utilization of a protected device
US5361062A (en) 1992-11-25 1994-11-01 Security Dynamics Technologies, Inc. Personal security system
US5484997A (en) 1993-12-07 1996-01-16 Haynes; George W. Identification card with RF downlink capability
US5623552A (en) 1994-01-21 1997-04-22 Cardguard International, Inc. Self-authenticating identification card with fingerprint identification
US5434398A (en) 1994-02-22 1995-07-18 Haim Labenski Magnetic smartcard
US5478994A (en) 1994-07-13 1995-12-26 Rahman; Sam Secure credit card which prevents unauthorized transactions
US5834747A (en) 1994-11-04 1998-11-10 Pixel Instruments Universal credit card apparatus and method
US8280682B2 (en) 2000-12-15 2012-10-02 Tvipr, Llc Device for monitoring movement of shipped goods
US5591949A (en) 1995-01-06 1997-01-07 Bernstein; Robert J. Automatic portable account controller for remotely arranging for payment of debt to a vendor
US5907142A (en) 1995-12-12 1999-05-25 Kelsey; Craig E. Fraud resistant personally activated transaction card
US6085320A (en) 1996-05-15 2000-07-04 Rsa Security Inc. Client/server protocol for proving authenticity
US5834756A (en) 1996-06-03 1998-11-10 Motorola, Inc. Magnetically communicative card
US5864623A (en) 1996-07-15 1999-01-26 Intellicheck Inc. Authentication system for driver licenses
EP0824301A3 (en) * 1996-08-09 1999-08-11 Hitachi, Ltd. Printed circuit board, IC card, and manufacturing method thereof
US5913203A (en) 1996-10-03 1999-06-15 Jaesent Inc. System and method for pseudo cash transactions
US5866949A (en) 1996-12-02 1999-02-02 Minnesota Mining And Manufacturing Company Chip scale ball grid array for integrated circuit packaging
IL119943A (en) 1996-12-31 2000-11-21 On Track Innovations Ltd Contact/contactless data transaction card
US5955021A (en) 1997-05-19 1999-09-21 Cardxx, Llc Method of making smart cards
US6240184B1 (en) 1997-09-05 2001-05-29 Rsa Security Inc. Password synchronization
US6025054A (en) 1997-09-08 2000-02-15 Cardxx, Inc. Smart cards having glue-positioned electronic components
US6076163A (en) 1997-10-20 2000-06-13 Rsa Security Inc. Secure user identification based on constrained polynomials
US6411715B1 (en) 1997-11-10 2002-06-25 Rsa Security, Inc. Methods and apparatus for verifying the cryptographic security of a selected private and public key pair without knowing the private key
US6286022B1 (en) 1997-11-18 2001-09-04 Rsa Security Inc. Efficient finite field basis conversion involving a dual basis
US6157920A (en) 1997-11-19 2000-12-05 Lucent Technologies Inc. Executable digital cash for electronic commerce
AU2085199A (en) 1997-11-19 1999-06-07 Security Dynamics Technologies, Inc. Digital coin tracing using trustee tokens
US6389442B1 (en) 1997-12-30 2002-05-14 Rsa Security Inc. Efficient finite field multiplication in normal basis
US6095416A (en) 1998-02-24 2000-08-01 Privicom, Inc. Method and device for preventing unauthorized use of credit cards
US6145079A (en) 1998-03-06 2000-11-07 Deloitte & Touche Usa Llp Secure electronic transactions using a trusted intermediary to perform electronic services
US6199052B1 (en) 1998-03-06 2001-03-06 Deloitte & Touche Usa Llp Secure electronic transactions using a trusted intermediary with archive and verification request services
US6161181A (en) 1998-03-06 2000-12-12 Deloitte & Touche Usa Llp Secure electronic transactions using a trusted intermediary
US6256873B1 (en) 1998-03-17 2001-07-10 Cardxx, Inc. Method for making smart cards using isotropic thermoset adhesive materials
US7207477B1 (en) 2004-03-08 2007-04-24 Diebold, Incorporated Wireless transfer of account data and signature from hand-held device to electronic check generator
EP0956818B1 (en) 1998-05-11 2004-11-24 Citicorp Development Center, Inc. System and method of biometric smart card user authentication
US6269163B1 (en) 1998-06-15 2001-07-31 Rsa Security Inc. Enhanced block ciphers with data-dependent rotations
US6393447B1 (en) 1998-10-22 2002-05-21 Lucent Technologies Inc. Method and apparatus for extracting unbiased random bits from a potentially biased source of randomness
US6182894B1 (en) 1998-10-28 2001-02-06 American Express Travel Related Services Company, Inc. Systems and methods for authorizing a transaction card
US6460141B1 (en) 1998-10-28 2002-10-01 Rsa Security Inc. Security and access management system for web-enabled and non-web-enabled applications and content on a computer network
US6473740B2 (en) 1998-11-29 2002-10-29 Qpass, Inc. Electronic commerce using a transaction network
US7197639B1 (en) 1999-02-05 2007-03-27 Rsa Security Inc. Cryptographic countermeasures against connection depletion attacks
US7219368B2 (en) 1999-02-11 2007-05-15 Rsa Security Inc. Robust visual passwords
US20040139004A1 (en) 1999-04-08 2004-07-15 Aceinc Pty Ltd. Secure online commerce transactions
US6985583B1 (en) 1999-05-04 2006-01-10 Rsa Security Inc. System and method for authentication seed distribution
US7111172B1 (en) 1999-07-19 2006-09-19 Rsa Security Inc. System and methods for maintaining and distributing personal security devices
US7461250B1 (en) 1999-07-22 2008-12-02 Rsa Security, Inc. System and method for certificate exchange
US6873974B1 (en) 1999-08-17 2005-03-29 Citibank, N.A. System and method for use of distributed electronic wallets
EP1077436A3 (en) 1999-08-19 2005-06-22 Citicorp Development Center, Inc. System and method for performing an on-line transaction using a single-use payment instrument
US7070112B2 (en) * 1999-09-07 2006-07-04 American Express Travel Related Services Company, Inc. Transparent transaction device
AU7621300A (en) 1999-09-28 2001-04-30 Chameleon Network Inc. Portable electronic authorization system and associated method
US6705520B1 (en) 1999-11-15 2004-03-16 Satyan G. Pitroda Point of sale adapter for electronic transaction device
US20010034702A1 (en) 2000-02-04 2001-10-25 Mockett Gregory P. System and method for dynamically issuing and processing transaction specific digital credit or debit cards
US7472093B2 (en) 2000-03-08 2008-12-30 Rsa Security Inc. Targeted delivery of informational content with privacy protection
US6813354B1 (en) 2000-03-09 2004-11-02 Lucent Technologies Inc. Mixing in small batches
US7359507B2 (en) 2000-03-10 2008-04-15 Rsa Security Inc. Server-assisted regeneration of a strong secret from a weak secret
US20010047335A1 (en) 2000-04-28 2001-11-29 Martin Arndt Secure payment method and apparatus
US6755341B1 (en) 2000-05-15 2004-06-29 Jacob Y. Wong Method for storing data in payment card transaction
US6592044B1 (en) 2000-05-15 2003-07-15 Jacob Y. Wong Anonymous electronic card for generating personal coupons useful in commercial and security transactions
US6609654B1 (en) 2000-05-15 2003-08-26 Privasys, Inc. Method for allowing a user to customize use of a payment card that generates a different payment card number for multiple transactions
US6805288B2 (en) 2000-05-15 2004-10-19 Larry Routhenstein Method for generating customer secure card numbers subject to use restrictions by an electronic card
US20030173409A1 (en) 2000-06-28 2003-09-18 Werner Vogt Transport or conveyor unit for a chip, particularly a telephone chip
US7356696B1 (en) 2000-08-01 2008-04-08 Lucent Technologies Inc. Proofs of work and bread pudding protocols
AU2002211424A1 (en) 2000-10-04 2002-04-15 American Express Travel Related Services Company, Inc. System and method for providing feedback in an interactive payment system
US7360688B1 (en) 2000-10-16 2008-04-22 Harris Scott C Intelligent credit card system
US7337326B2 (en) 2002-03-28 2008-02-26 Innovation Connection Corporation Apparatus and method for effecting secure physical and commercial transactions in a contactless manner using biometric identity validation
US8015592B2 (en) 2002-03-28 2011-09-06 Innovation Connection Corporation System, method and apparatus for enabling transactions using a biometrically enabled programmable magnetic stripe
US6980969B1 (en) 2000-11-16 2005-12-27 Sears, Roebuck And Co. Methods and apparatus for allowing internet based purchases based on a temporary credit card number
US7660902B2 (en) 2000-11-20 2010-02-09 Rsa Security, Inc. Dynamic file access control and management
US7602904B2 (en) 2000-11-27 2009-10-13 Rsa Security, Inc. Order invariant fuzzy commitment system
US6681988B2 (en) 2000-11-28 2004-01-27 Citibank, N.A. Method and system for managing a transaction card account
US6631849B2 (en) 2000-12-06 2003-10-14 Bank One, Delaware, National Association Selectable multi-purpose card
WO2002047019A1 (en) 2000-12-08 2002-06-13 Silverman Martin S Dynamic virtual magnetic stripe
US6313724B1 (en) 2000-12-12 2001-11-06 Josef Osterweil Multifaceted balanced magnetic proximity sensor
US7606771B2 (en) 2001-01-11 2009-10-20 Cardinalcommerce Corporation Dynamic number authentication for credit/debit cards
US20020096570A1 (en) 2001-01-25 2002-07-25 Wong Jacob Y. Card with a dynamic embossing apparatus
US7044394B2 (en) 2003-12-17 2006-05-16 Kerry Dennis Brown Programmable magnetic data storage card
US20040177045A1 (en) 2001-04-17 2004-09-09 Brown Kerry Dennis Three-legacy mode payment card with parametric authentication and data input elements
US6607127B2 (en) 2001-09-18 2003-08-19 Jacob Y. Wong Magnetic stripe bridge
US6811082B2 (en) 2001-09-18 2004-11-02 Jacob Y. Wong Advanced magnetic stripe bridge (AMSB)
US7195154B2 (en) 2001-09-21 2007-03-27 Privasys, Inc. Method for generating customer secure card numbers
US6604686B1 (en) 2001-10-09 2003-08-12 Vahid Taban High speed system for embedding wire antennas in an array of smart cards
CA2467540C (en) 2001-11-19 2014-04-01 Robert L. Burchette, Jr. Transaction card system having security against unauthorized usage
US7363494B2 (en) 2001-12-04 2008-04-22 Rsa Security Inc. Method and apparatus for performing enhanced time-based authentication
US20040035942A1 (en) 2001-12-07 2004-02-26 Silverman Martin S. Dynamic virtual magnetic stripe
US7039223B2 (en) 2002-02-14 2006-05-02 Wong Jacob Y Authentication method utilizing a sequence of linear partial fingerprint signatures selected by a personal code
US7013030B2 (en) 2002-02-14 2006-03-14 Wong Jacob Y Personal choice biometric signature
US7035443B2 (en) 2002-03-22 2006-04-25 Wong Jacob Y Personal choice biometric signature
US7562222B2 (en) 2002-05-10 2009-07-14 Rsa Security Inc. System and method for authenticating entities to users
US7100049B2 (en) 2002-05-10 2006-08-29 Rsa Security Inc. Method and apparatus for authentication of users and web sites
US7225994B2 (en) 2002-08-06 2007-06-05 Innovative Card Technologies, Inc. Financial transaction card with sound recording
US7494055B2 (en) 2002-09-17 2009-02-24 Vivotech, Inc. Collaborative negotiation techniques for mobile personal trusted device financial transactions
JP4471563B2 (en) 2002-10-25 2010-06-02 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
EP1570442A2 (en) 2002-11-27 2005-09-07 RSA Security Inc. Identity authentication system and method
US20040162732A1 (en) 2003-02-14 2004-08-19 Rubens Rahim System and method for credit card replenishment of a wireless subscriber's account balance
WO2004095169A2 (en) 2003-04-21 2004-11-04 Josef Osterweil Method and system for data writing/reading onto/from and emulating a magnetic stripe
US7532104B2 (en) 2003-05-06 2009-05-12 Rsa Security, Inc. Low-complexity cryptographic techniques for use with radio frequency identification devices
US6970070B2 (en) 2003-05-08 2005-11-29 Rsa Security Inc. Method and apparatus for selective blocking of radio frequency identification devices
US7100821B2 (en) 2003-05-15 2006-09-05 Mehran Randall Rasti Charge card and debit transactions using a variable charge number
US7761374B2 (en) 2003-08-18 2010-07-20 Visa International Service Association Method and system for generating a dynamic verification value
US7523301B2 (en) 2003-10-28 2009-04-21 Rsa Security Inferring content sensitivity from partial content matching
US7954151B1 (en) 2003-10-28 2011-05-31 Emc Corporation Partial document content matching using sectional analysis
US7298243B2 (en) 2003-11-12 2007-11-20 Rsa Security Inc. Radio frequency identification system with privacy policy implementation based on device classification
US8032416B2 (en) 2003-12-01 2011-10-04 Incard Sa Method for the decomposition in modules of smart-card event-driven applications
US7404087B2 (en) 2003-12-15 2008-07-22 Rsa Security Inc. System and method for providing improved claimant authentication
US7454349B2 (en) 2003-12-15 2008-11-18 Rsa Security Inc. Virtual voiceprint system and method for generating voiceprints
US7641124B2 (en) 2003-12-17 2010-01-05 Qsecure, Inc. Magnetic data recording device
US7543739B2 (en) 2003-12-17 2009-06-09 Qsecure, Inc. Automated payment card fraud detection and location
US20050154643A1 (en) 2004-01-08 2005-07-14 International Business Machines Corporation Purchasing information requested and conveyed on demand
WO2005077066A2 (en) 2004-02-09 2005-08-25 American Express Travel Related Services Company, Inc. System and method to reduce travel-related transaction fraud
US7472829B2 (en) 2004-12-10 2009-01-06 Qsecure, Inc. Payment card with internally generated virtual account numbers for its magnetic stripe encoder and user display
US7580898B2 (en) 2004-03-15 2009-08-25 Qsecure, Inc. Financial transactions with dynamic personal account numbers
US7584153B2 (en) 2004-03-15 2009-09-01 Qsecure, Inc. Financial transactions with dynamic card verification values
US7424570B2 (en) 2004-04-08 2008-09-09 Incard Sa Method for patching ROM instructions in an electronic embedded system including at least a further memory portion
EP1612639A1 (en) 2004-06-30 2006-01-04 ST Incard S.r.l. Method for detecting and reacting against possible attack to security enforcing operation performed by a cryptographic token or card
US7886345B2 (en) 2004-07-02 2011-02-08 Emc Corporation Password-protection module
US7461399B2 (en) 2004-07-30 2008-12-02 Rsa Security Inc. PIN recovery in a smart card
US7591427B2 (en) 2004-09-10 2009-09-22 Josef Osterweil Method and system for a static magnetic read/write head
US7051929B2 (en) 2004-10-18 2006-05-30 Gongling Li Secure credit card having daily changed security number
US7097108B2 (en) 2004-10-28 2006-08-29 Bellsouth Intellectual Property Corporation Multiple function electronic cards
US8224753B2 (en) 2004-12-07 2012-07-17 Farsheed Atef System and method for identity verification and management
EP1828920B1 (en) 2004-12-20 2012-06-13 EMC Corporation Consumer internet authentication service
JP4960883B2 (en) 2004-12-21 2012-06-27 エミュー ホールディングス ピーティワイ リミテッド Authentication device and / or method
US7357319B1 (en) 2005-01-24 2008-04-15 Vivotech, Inc. External adapter for magnetic stripe card reader
US7225537B2 (en) 2005-01-27 2007-06-05 Cardxx, Inc. Method for making memory cards and similar devices using isotropic thermoset materials with high quality exterior surfaces
US8370638B2 (en) 2005-02-18 2013-02-05 Emc Corporation Derivative seeds
US7427033B1 (en) 2005-02-26 2008-09-23 James Roskind Time-varying security code for enabling authorizations and other uses of financial accounts
US7628322B2 (en) 2005-03-07 2009-12-08 Nokia Corporation Methods, system and mobile device capable of enabling credit card personalization using a wireless network
AU2005329469B2 (en) 2005-03-23 2012-02-16 Cardxx, Inc. Method for making Advanced Smart Cards with integrated electronics using isotropic thermoset adhesive materials with high quality exterior surfaces
US20060231611A1 (en) 2005-03-23 2006-10-19 Chakiris Phil M Radio frequency identification purchase transactions
US20080148394A1 (en) 2005-03-26 2008-06-19 Mark Poidomani Electronic financial transaction cards and methods
WO2006116772A2 (en) 2005-04-27 2006-11-02 Privasys, Inc. Electronic cards and methods for making same
US7562221B2 (en) 2005-09-21 2009-07-14 Rsa Security Inc. Authentication method and apparatus utilizing proof-of-authentication module
US7739733B2 (en) 2005-11-02 2010-06-15 Emc Corporation Storing digital secrets in a vault
US7568631B2 (en) 2005-11-21 2009-08-04 Sony Corporation System, apparatus and method for obtaining one-time credit card numbers using a smart card
EP1791055A1 (en) 2005-11-23 2007-05-30 Incard SA IC card file system
US7810147B2 (en) 2005-12-01 2010-10-05 Emc Corporation Detecting and preventing replay in authentication systems
EP1804201B1 (en) 2005-12-30 2009-05-13 Incard SA Module for an IC card
EP1804200B1 (en) 2005-12-30 2009-04-08 Incard SA IC card with improved printed circuit
US8234696B2 (en) 2006-02-10 2012-07-31 Emc Corporation Method and system for providing a one time password to work in conjunction with a browser
US7818264B2 (en) 2006-06-19 2010-10-19 Visa U.S.A. Inc. Track data encryption
US20070241183A1 (en) 2006-04-14 2007-10-18 Brown Kerry D Pin-secured dynamic magnetic stripe payment card
US7380710B2 (en) 2006-04-28 2008-06-03 Qsecure, Inc. Payment card preloaded with unique numbers
US20080059379A1 (en) 2006-05-18 2008-03-06 Icache, Inc. Method and apparatus for biometrically secured encrypted data storage and retrieval
EP1860589B1 (en) 2006-05-26 2013-11-27 Incard SA Method for accessing structured data in IC Cards
EP1860851B1 (en) 2006-05-26 2011-11-09 Incard SA Method for implementing voice over IP through and electronic device connected to a packed switched network
ATE440323T1 (en) 2006-06-29 2009-09-15 Incard Sa TRANSACTION METHOD FOR STORAGE MANAGEMENT OF PERSISTENT DATA IN A TRANSACTION BATCH
EP1873960B1 (en) 2006-06-29 2013-06-05 Incard SA Method for session key derivation in a IC card
EP1873963A1 (en) 2006-06-29 2008-01-02 Incard SA Authentication method for IC cards
EP1873641B1 (en) 2006-06-29 2009-08-19 Incard SA Compression method for managing the storing of persistent data from a non volatile memory to a backup buffer
ATE440417T1 (en) 2006-06-29 2009-09-15 Incard Sa METHOD FOR DIVERSIFYING A KEY ON A CHIP CARD
ATE440336T1 (en) 2006-06-29 2009-09-15 Incard Sa METHOD FOR PROTECTING IC CARDS AGAINST PERFORMANCE ANALYSIS ATTACKS
EP1873728B1 (en) 2006-06-29 2013-11-27 Incard SA Method for configuring an IC Card in order to receive personalization commands
DE602006010204D1 (en) 2006-08-31 2009-12-17 Incard Sa Method for accessing an additional service using an application toolkit of an IC card
WO2008064403A1 (en) 2006-11-27 2008-06-05 Emue Holdings Pty Ltd Remote service authentication method
EP1927956A1 (en) 2006-11-30 2008-06-04 Incard SA Multi-applications IC Card with secure management of applications
US20080201264A1 (en) 2007-02-17 2008-08-21 Brown Kerry D Payment card financial transaction authenticator
ITMI20070997A1 (en) 2007-05-17 2008-11-18 Incard Sa IC CARD WITH LOW PRECISION CLOCK
ITMI20070996A1 (en) 2007-05-17 2008-11-18 Incard Sa METHOD FOR CHECKING THE EXECUTION OF AN APPLICATION FOR AN IC CARD
ITMI20071085A1 (en) 2007-05-28 2008-11-29 Incard Sa INTEGRATED CIRCUIT CARD INCLUDING A MAIN DEVICE AND AN ADDITIONAL DEVICE.
ITMI20071601A1 (en) 2007-08-02 2009-02-03 Incard Sa METHOD OF WRITING DATA INTO A NON-VOLATILE MEMORY UNIT.
ITMI20071607A1 (en) 2007-08-03 2009-02-04 Incard Sa METHOD FOR ACCESSING MULTIMEDIA CONTENT ASSOCIATED WITH A GEOGRAPHICAL AREA.
JP4460015B2 (en) 2007-11-09 2010-05-12 シャープ株式会社 Semiconductor device packaging structure and semiconductor device packaging method
US20090150295A1 (en) 2007-12-09 2009-06-11 Jeffrey Alan Hatch Validation service for payment cards with preloaded dynamic card verification values
US7823794B2 (en) 2007-12-12 2010-11-02 Qsecure, Inc. Stripline magnetic writing of dynamic magnetic data bits in surrounding regions of static magnetic data bits
US8011577B2 (en) 2007-12-24 2011-09-06 Dynamics Inc. Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
ITMI20080537A1 (en) 2008-03-28 2009-09-29 Incard Sa DEVICE AND METHOD OF INITIALIZING AN IC CARD.
ITMI20080536A1 (en) 2008-03-28 2009-09-29 Incard Sa METHOD TO PROTECT A CAP FILE FOR AN INTEGRATED CIRCUIT CARD.
ITMI20080533A1 (en) 2008-03-28 2009-09-29 Incard Sa PROCEDURE FOR TESTING AN IC CARD INCLUDING A ZIGBEE DEVICE
ITMI20080550A1 (en) 2008-03-31 2009-10-01 Incard Sa INTEGRATED CIRCUIT BOARD WITH WIRELESS FUNCTIONS.
ITMI20080543A1 (en) 2008-03-31 2009-10-01 Incard Sa INTEGRATED CIRCUIT CARD INCLUDING REFINED ELECTRICAL CONTACTS.

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506148A (en) * 1981-11-05 1985-03-19 Brown, Boveri & Cie Ag Identification card
US4792843A (en) * 1983-10-24 1988-12-20 Haghiri Tehrani Yahya Data carrier having an integrated circuit and method for producing same
US4621326A (en) * 1984-03-14 1986-11-04 Docutel/Olivetti Corporation Method of reducing customer transaction time in an automatic teller machine by parallel processing of sequence events
US4636947A (en) * 1984-03-14 1987-01-13 Docutel/Olivetti Corporation ATM task scheduling system for simultaneous peripheral device transactions processing
US4707594A (en) * 1985-06-27 1987-11-17 Intellicard International, Inc. Unitary, self-contained consumer transaction card
US4742215A (en) * 1986-05-07 1988-05-03 Personal Computer Card Corporation IC card system
US5180902A (en) * 1988-04-21 1993-01-19 David Schick Self verifying transaction card with disabling capability
US6295031B1 (en) * 1993-12-23 2001-09-25 Symbol Technologies, Inc. Memory card assembly having an integral antenna
US6241153B1 (en) * 1998-03-17 2001-06-05 Cardxx, Inc. Method for making tamper-preventing, contact-type, smart cards
US20020032657A1 (en) * 2000-01-10 2002-03-14 Singh Kunwar C. Credit card duplication prevention system and method
US20050194453A1 (en) * 2001-07-27 2005-09-08 Storcard, Inc. Enhanced smart card with rotating storage
US20040159709A1 (en) * 2002-02-12 2004-08-19 Eiji Ohta IC card
US20090250521A1 (en) * 2005-11-16 2009-10-08 Kyodo Printing Co., Ltd. Non-contact type ic card
US20070176273A1 (en) * 2005-12-20 2007-08-02 Visioncard Personalisierungsgmbh Card and Manufacturing Method
US8282007B1 (en) * 2009-04-06 2012-10-09 Dynamics Inc. Laminated cards with manual input interfaces
US20110174874A1 (en) * 2010-01-19 2011-07-21 Poznansky Amir Transaction Card With Improved Security Features
US20130134227A1 (en) * 2010-06-18 2013-05-30 Linxens Holding Multi-Layered Flexible Printed Circuit and Method of Manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9852368B1 (en) 2009-08-17 2017-12-26 Dynamics Inc. Advanced loyalty applications for powered cards and devices
US10482363B1 (en) 2010-03-02 2019-11-19 Dynamics Inc. Systems and methods for detection mechanisms for magnetic cards and devices
US11126997B1 (en) 2012-10-02 2021-09-21 Dynamics Inc. Cards, devices, systems, and methods for a fulfillment system
US10922597B1 (en) 2012-11-05 2021-02-16 Dynamics Inc. Dynamic magnetic stripe communications device with beveled magnetic material for magnetic cards and devices
US11023796B1 (en) 2012-11-30 2021-06-01 Dynamics Inc. Dynamic magnetic stripe communications device with stepped magnetic material for magnetic cards and devices
US10949627B2 (en) 2012-12-20 2021-03-16 Dynamics Inc. Systems and methods for non-time smearing detection mechanisms for magnetic cards and devices
US20160328716A1 (en) * 2013-12-30 2016-11-10 Gemalto Sa Communication device comprising a luminous activation sensor
US11062188B1 (en) 2014-03-21 2021-07-13 Dynamics Inc Exchange coupled amorphous ribbons for electronic stripes
WO2018102134A1 (en) * 2016-12-02 2018-06-07 Applied Materials, Inc. Rfid part authentication and tracking of processing components
US10930535B2 (en) 2016-12-02 2021-02-23 Applied Materials, Inc. RFID part authentication and tracking of processing components
US11848220B2 (en) 2016-12-02 2023-12-19 Applied Materials, Inc. RFID part authentication and tracking of processing components

Also Published As

Publication number Publication date
US9064195B2 (en) 2015-06-23
US20140001269A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
US9064195B2 (en) Multiple layer card circuit boards
US11023796B1 (en) Dynamic magnetic stripe communications device with stepped magnetic material for magnetic cards and devices
US20140203902A1 (en) Cards, devices, electromagnetic field generators and methods of manufacturing electromagnetic field generators
US20240121299A1 (en) Systems and methods for constructing programmable credential and security cards
US20200082383A1 (en) Systems and methods for cards and devices operable to communicate to touch sensitive displays
US10176423B1 (en) Cards and devices with embedded holograms
US7900843B2 (en) Proximity payment card with user-actuated switch and methods of making the card
US8485446B1 (en) Shielded magnetic stripe for magnetic cards and devices
US20130081127A1 (en) Smart card and communication method thereof
US20120312879A1 (en) PCB Design and Card Assembly for an Active RFID Tag in Credit Card Form Factor
US10022884B1 (en) Systems and methods for alignment techniques for magnetic cards and devices
US10095970B1 (en) Cards including anti-skimming devices
US20140233166A1 (en) Flexible powered cards and devices, and methods of manufacturing flexible powered cards and devices
US10922597B1 (en) Dynamic magnetic stripe communications device with beveled magnetic material for magnetic cards and devices
US20200034578A1 (en) Smartcard with display and energy harvesting
EP2805348B1 (en) Device and method for detecting an external object by means of a capacitive sensor and an inductive sensor in a card
US20240070425A1 (en) Metal card with biometric features
WO2016183338A1 (en) Dynamic security codes, tokens, displays, cards, devices, multi-card devices, systems and methods
US20180232612A1 (en) Dynamic magnetic stripe communications device for cards and devices
US20230136903A1 (en) Smartcard with a coupling frame and a wireless connection between modules
JP2021022086A (en) Medium with ic mounted
WO2023121549A1 (en) Communication arrangement and method of controlling communication in a smartcard comprising a fingerprint sensor module
JP2023039123A (en) Metallic fingerprint authentication card
KR20090002571A (en) Hybrid card, triple card, and quadruple card

Legal Events

Date Code Title Description
AS Assignment

Owner name: DYNAMICS INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARTWICK, DAVID J.;BATRA, GAUTAM;SIGNING DATES FROM 20130213 TO 20130215;REEL/FRAME:035686/0875

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS