US20150045060A1 - Determining proximity of user equipment for device-to-device communication - Google Patents

Determining proximity of user equipment for device-to-device communication Download PDF

Info

Publication number
US20150045060A1
US20150045060A1 US14/525,100 US201414525100A US2015045060A1 US 20150045060 A1 US20150045060 A1 US 20150045060A1 US 201414525100 A US201414525100 A US 201414525100A US 2015045060 A1 US2015045060 A1 US 2015045060A1
Authority
US
United States
Prior art keywords
request
location
smlc
location change
enb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/525,100
Other versions
US9270400B2 (en
Inventor
Mo-Han Fong
Muthaiah Venkatachalam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to US14/525,100 priority Critical patent/US9270400B2/en
Publication of US20150045060A1 publication Critical patent/US20150045060A1/en
Priority to US14/993,818 priority patent/US20160127870A1/en
Application granted granted Critical
Publication of US9270400B2 publication Critical patent/US9270400B2/en
Assigned to APPLE INC. reassignment APPLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTEL CORPORATION
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication
    • H04B1/56Circuits using the same frequency for two directions of communication with provision for simultaneous communication in two directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/0647Variable feedback rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/24Time-division multiplex systems in which the allocation is indicated by an address the different channels being transmitted sequentially
    • H04J3/26Time-division multiplex systems in which the allocation is indicated by an address the different channels being transmitted sequentially in which the information and the address are simultaneously transmitted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/16Communication-related supplementary services, e.g. call-transfer or call-hold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W76/023
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1803Stop-and-wait protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate generally to the technical field of data processing, and more particularly, to determining proximity of user equipment (“UE”) for device-to-device (“D2D”) communication.
  • UE user equipment
  • D2D device-to-device
  • Wireless mobile devices may communicate with each other over a wireless wide area network (“WWAN”), e.g., using radio access technologies (“RAT”) such as the 3GPP Long Term Evolution (“LTE”) Advanced Release 10 (March 2011) (the “LTE-A Standard”), the IEEE 802.16 standard, IEEE Std. 802.16-2009, published May 29, 2009 (“WiMAX”), as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond.
  • RAT radio access technologies
  • LTE Long Term Evolution
  • WiMAX IEEE Std. 802.16-2009, published May 29, 2009
  • Some UEs also may be configured to communicate directly with other UEs, e.g., using device-to-device (“D2D”) communication.
  • D2D communication may be used, e.g., when UEs initiate communication with each other while within direct wireless range of each other.
  • RATs that may be used in this manner may include 802.11 (“WiFi”), BlueTooth, near field communication (“NFC”), FlashLinq by Qualcomm®, and so forth.
  • UEs may initiate communication with each other over a WWAN, but may be in, or move into, sufficient proximity to exchange data directly, e.g., using WiFi Direct, BlueTooth, Flashlinq, NFC, etc.
  • WWAN resources may drain WWAN resources that may be put to better use for communications between UEs that are remote from each other.
  • FIG. 1 schematically illustrates various network entities configured with applicable portions of the present disclosure to facilitate commencement of device-to-device (“D2D”) communication between user equipment (“UE”), in accordance with various embodiments of the present disclosure.
  • D2D device-to-device
  • UE user equipment
  • FIG. 2 schematically depicts an example of communications that may be exchanged between various network entities configured with applicable portions of the teachings of the present disclosure, in accordance with various embodiments of the present disclosure.
  • FIG. 3 schematically depicts an example method that may be implemented by a traffic detection function (“TDF”), in accordance with various embodiments of the present disclosure.
  • TDF traffic detection function
  • FIG. 4 schematically depicts an example method that may be implemented by an evolved serving mobile location center (“E-SMLC”), in accordance with various embodiments.
  • E-SMLC evolved serving mobile location center
  • FIG. 5 schematically depicts an example of communications, similar to those shown in FIG. 2 , that may be exchanged between various network entities configured with applicable portions of the teachings of the present disclosure, in accordance with various embodiments of the present disclosure.
  • FIG. 6 schematically depicts an example method that may be implemented by an evolved Node B (“eNB”), in accordance with various embodiments.
  • eNB evolved Node B
  • FIG. 7 schematically depicts an example method that may be implemented by a UE, in accordance with various embodiments.
  • FIG. 8 schematically depicts an example computing device on which disclosed methods and computer-readable media may be implemented, in accordance with various embodiments.
  • phrases “A or B” and “A and/or B” mean (A), (B), or (A and B).
  • phrase “A, B, and/or C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C).
  • module and/or “logic” may refer to, be part of, or include an Application Specific Integrated Circuit (“ASIC”), an electronic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • FIG. 1 An example wireless wide area network (“WWAN”) 100 is depicted in FIG. 1 .
  • a first mobile device in the form of a first user equipment (“UE”) 102 (configured with applicable portions of the teachings of the present disclosure) and a second mobile device in the form of a second UE 104 (configured with applicable portions of the teachings of the present disclosure) may be in wireless communication with each other via WWAN 100 .
  • first UE 102 and second UE 104 may be in direct communication with a radio access network (“RAN”) via an access point in the form of an evolved Node B (“eNB”) 106 .
  • RAN radio access network
  • eNB evolved Node B
  • first UE 102 is depicted as a touch screen smart phone
  • second UE 104 is depicted as a laptop computer
  • mobile devices e.g., UEs
  • UEs may be any type of data processing device, including but not limited to a tablet computer, a personal digital assistant (“PDA”), a portable gaming device, and so forth.
  • PDA personal digital assistant
  • eNB 106 may be in network communication with various components of an Evolved Packet Core (“EPC”).
  • EPC Evolved Packet Core
  • eNB 106 may be in network communication with a mobility management entity (“MME”) 108 .
  • MME 108 may be configured to perform various functions, including but not limited to non-access stratum (“NAS”) signaling and NAS signaling security, idle mode UE reachability, public data network (“PDN”) and serving gateway selection, MME selection for handoffs, authentication, bearer management functions, and so forth.
  • NAS non-access stratum
  • PDN public data network
  • serving gateway selection MME selection for handoffs, authentication, bearer management functions, and so forth.
  • MME 108 may itself be in network communication with various other nodes.
  • MME 108 may be in network communication with an evolved serving mobile location center (“E-SMLC”) 110 .
  • E-SMLC 110 may be configured to perform various functions related to location services (“LCS”).
  • LCS location services
  • E-SMLC 110 may manage the support of different location services for target UEs, e.g., including positioning of UEs and delivery of assistance data to UEs.
  • E-SMLC 110 may interact with the serving eNB (e.g., 106 ) for a target UE (e.g., 102 , 104 ) in order to obtain position measurements for the target UE.
  • the serving eNB e.g., 106
  • target UE e.g., 102 , 104
  • E-SMLC 110 may interact with a target UE (e.g., 102 , 104 ) in order to deliver assistance data if requested for a particular location service, or to obtain a location estimate if that was requested.
  • a gateway mobile location center (“G-MLC”) 111 may perform similar functions as E-SMLC 110 .
  • E-SMLC 110 For positioning of a target UE (e.g., 102 , 104 ), E-SMLC 110 (or G-MLC 111 ) may determine the positioning method to be used, based on factors such as LCS client type, a required quality of service (“QoS”), UE positioning capabilities, and/or eNB positioning capabilities. E-SMLC 110 may invoke these positioning methods in the target UE and/or serving eNB. UE-based positioning methods may yield a location estimate. UE-assisted and network-based positioning methods may yield positioning measurements. E-SMLC 110 may combine received results and, based on those results, determine a single location estimate for the target UE, as well as other information such as an accuracy of the estimate.
  • QoS quality of service
  • E-SMLC 110 may be in network communication with various other network entities.
  • E-SMLC 110 may be in network communication with a traffic detection function (“TDF”) 112 .
  • TDF 112 is depicted in FIG. 1 as operating on a separate server computer, this is not meant to be limiting.
  • TDF 112 may be implemented using any combination of hardware and software on any network computing device, such as those shown in FIG. 1 and others that are not shown but are often found in wireless communication networks.
  • one or more of the entities depicted in FIG. 1 may be implemented on the same or different computing devices.
  • first UE 102 and second UE 104 are sufficiently proximate, and assuming both first UE 102 and second UE 104 are equipped with the same direct radio access technology (“RAT”), e.g., WiFi Direct, Bluetooth, near field communication (“NFC”), Flashlinq, etc. then first UE device 102 and second UE device 104 may be able to exchange data directly.
  • RAT direct radio access technology
  • FIG. 1 assume first UE 102 and second UE 104 are in communication already via WWAN 100 and are separated by a distance D.
  • first UE 102 and second UE 104 may be able to communicate directly, e.g., using device-to-device (“D2D”) communication, rather than through WWAN 100 .
  • D2D device-to-device
  • first UE 102 and second UE 104 may momentarily be within sufficient proximity to commence D2D communication, they might not necessarily remain in sufficient proximity for long enough to justify a transition to D2D communication. For instance, a user of first UE 102 may be moving in one direction, and a user of second UE 104 may be moving in a different direction.
  • the WWAN resources gained by commencing D2D communication between first UE 102 and second UE 104 may not be worth the network resources expended to implement the transition if the D2D communication will be short-lived.
  • various network entities may be configured to determine not only whether first UE 102 and second UE 104 are sufficiently proximate to exchange data directly, but also whether they will remain proximate for an amount of time that justifies commencing D2D communication between the UEs.
  • TDF 112 may be configured to ascertain that first UE 102 and second UE 104 are, potentially, sufficiently proximate to each other to wirelessly exchange data directly.
  • Various events may cause TDF 112 to make this ascertainment.
  • eNB 106 may determine that it is serving both first UE 102 and second UE 104 .
  • eNB 106 may be configured to transmit a request (e.g., an LCS request) to TDF 112 to determine whether first UE 102 and second UE 104 are sufficiently proximate to exchange data directly, e.g., using D2D communication.
  • a request e.g., an LCS request
  • first UE 102 or second UE 104 may itself determine that there is a possibility that the other is, potentially, sufficiently proximate to commence D2D communication.
  • the UE device may transmit a request (e.g., an LCS request) to TDF 112 to determine whether first UE 102 and second UE 104 are sufficiently proximate to exchange data directly.
  • TDF 112 may instruct E-SMLC 110 (or G-MLC 111 ) to obtain location change data associated with the first UE 102 and/or second UE 104 .
  • location change data may include any data that demonstrates a change of location of a UE.
  • location change data may include a velocity of a UE. Being a vector, a UE velocity may include a both speed component and a direction component.
  • Location change data may include any other indications of movement of UEs, such as acceleration.
  • TDF 112 may instruct E-SMLC 110 (or G-MLC 111 ) to obtain location change data associated with one or more UEs via a direct signaling interface. In other embodiments, such as the example shown in FIG. 2 , this may be done through other nodes.
  • TDF 112 may send a request for location change information associated with the first UE 102 and/or second UE 104 to MME 108 .
  • MME 108 may forward this request to E-SMLC 112 (or G-MLC 111 ).
  • TDF 112 may transmit this instruction via other nodes. For example, TDF 112 may transmit the instruction to E-SMLC 110 (or G-MLC 111 ) through MME 108 , e.g., using a logical tunnel.
  • E-SMLC 110 may instigate location procedures with serving eNB 106 .
  • E-SMLC 110 may request that eNB 108 provide location change data associated with first UE 102 and/or second UE 104 .
  • E-SMLC 110 may also obtain assistance data from eNB 106 , for provision to a target UE such as 102 or 104 .
  • E-SMLC 110 may instigate location procedures with UE 102 or 104 .
  • E-SMLC 110 may obtain a location estimate (e.g., a GPS coordinate) or location change data from UE 102 or 104 .
  • E-SMLC 110 may transfer, to UE 102 or 104 , the assistance data obtained from eNB 106 at block 224 . This assistance data may be used to assist with UE-based and/or UE-assisted positioning methods.
  • UE 102 or 104 may transmit location change data associated with first UE 102 or second UE 104 to E-SMLC 110 (or G-MLC 111 ), e.g., through eNB 106 and/or MME 108 .
  • E-SMLC 110 may provide the location change data to TDF.
  • this communication may be sent directly.
  • E-SMLC 110 may forward the location change data to MME 108 .
  • MME 108 may in turn forward the location change data to TDF 112 at arrow 232 .
  • TDF 112 may determine, based on the location change data, whether first UE 102 and second UE 104 are sufficiently proximate to exchange data directly, and whether they are likely to remain proximate for at least a predetermined time interval.
  • the predetermined time interval may be selected to be long enough so that the benefits of commencing D2D communication (e.g., reduced WWAN network traffic) outweigh the costs of the transition.
  • This predetermined time interval may be set, e.g., by a network administrator, or may be dynamic, e.g., based on current network traffic.
  • the determination as to whether the UEs will remain proximate for a sufficient time may be made based on various laws of physics and motion. For instance, relative velocities and/or accelerations of two UEs reveal, e.g., as input in standard physics/motion equations, that the UEs will be within direct wireless range for a sufficient amount of time to justify commencement of D2D communication.
  • TDF 112 may cause first UE 102 and second UE 104 to commence D2D communication. For example, in various embodiments, TDF 112 may instruct MME 108 to cause first UE 102 and second UE 104 to commence D2D communication. In various embodiments, MME 108 may utilize NAS signaling to instruct first UE 102 and second UE 104 to commence D2D communication.
  • FIG. 3 depicts an example method 300 that may be implemented by a computing device as part of operating a TDF such as TDF 112 .
  • TDF 112 may await a request to instigate and/or perform location services.
  • TDF 112 may receive, from various network nodes, a request to determine whether two or more UEs , e.g., first UE 102 and second UE 104 , exchanging data indirectly through a WWAN are in sufficient proximity to exchange data directly, e.g., using D2D communication.
  • the request may also seek to have TDF 112 determine whether the first and second UEs will be proximate for a sufficient amount of time, such as a predetermined time interval, to warrant commencement of D2D communication.
  • TDF 112 may instruct an E-SMLC or G-MLC, e.g., E-SMLC 110 , to obtain location change data associated with the first and second UEs (e.g., 102 and 104 ).
  • E-SMLC 110 may have a direct signaling interface with E-SMLC 110 , and therefore may transmit this instruction directly, e.g., bypassing MME 108 .
  • TDF 112 may transmit this instruction to MME 108 , which in turn may forward the instruction to E-SMLC 110 .
  • TDF 112 may receive location change data, e.g., from E-SMLC 110 by way of MME 108 .
  • TDF 112 may determine, based on the received location change data, whether the first and second UEs are sufficiently proximate to exchange data directly. If the answer is yes, then at block 312 , TDF 112 may determine whether the first and second UEs are likely to remain proximate for at least a predetermined time interval (e.g., based on standard laws of physics/motion). If the answer is yes, then at block 314 , TDF 112 may cause first UE 102 and second UE 104 to commence D2D communication. If the answer at either block 310 or block 312 is no, then method 300 may proceed back to block 302 .
  • a predetermined time interval e.g., based on standard laws of physics/motion
  • FIG. 4 depicts an example method 400 that may be implemented by, e.g., E-SMLC 110 or G-MLC 111 , in accordance with various embodiments.
  • E-SMLC 110 /G-MLC 111 may receive, e.g., from TDF 112 , a request for location change data associated with first UE 102 or second UE 104 .
  • E-SMLC 110 /G-MLC 111 may request, e.g., from first UE 102 , second UE 104 , or eNB 106 serving first UE 102 or second UE 104 , the location change data.
  • E-SMLC 110 /G-MLC 111 may transmit the location change data, e.g., to TDF 112 .
  • FIG. 5 depicts a slight variation of the data exchange shown in FIG. 2 .
  • arrows 520 , 522 524 , 530 and 532 represent data exchanges similar to those represented by arrows 220 , 222 , 224 , 230 and 232 in FIG. 2 , respectively.
  • FIG. 5 differs from FIG. 2 at arrows 526 and 528 .
  • eNB 106 may instigate (e.g., at the request of E-SMLC 110 ) location procedures with UE 102 or 104 .
  • eNB 106 may encapsulate a request for location services in an radio resource control (“RRC”) and/or NAS signal to UE 102 or UE 104 .
  • RRC radio resource control
  • UE 102 or 104 may encapsulate a response in an RRC and/or NAS signal back to eNB 106 .
  • eNB 106 may then forward the UE location data to E-SMLC 110 at arrow 528 .
  • FIG. 6 depicts an example method 600 that may be implemented by, e.g., eNB 106 , to exchange communications as shown in FIG. 5 .
  • eNB 106 may receive, e.g., from E-SMLC 110 (or G-MLC 111 ), a request for location change data associated with first UE 102 or a second UE 104 .
  • eNB 106 may obtain, e.g., from first UE 102 or second UE 104 , e.g., on a control plane over an air interface using RRC and/or NAS signaling, the location change data.
  • eNB 106 may encapsulate a location message (e.g., a request) into an RRC and/or NAS message and send it first UE 102 using RRC.
  • First UE 102 may decapsulate the RRC and/or NAS message and consume the contents (e.g., the request).
  • First UE 102 may likewise encapsulate location change data into a return RRC and/or NAS message, and send it back to eNB 106 using RRC and/or NAS signaling.
  • eNB 106 may decapsulate the message and provide the contents, e.g., the location change data, to E-SMLC 110 (or G-MLC 111 ).
  • FIG. 7 depicts an example method 700 that may be implemented by, e.g., first UE 102 or second UE 104 .
  • a UE e.g., first UE 102
  • the UE may provide, to the eNB on a control plane using at least one of RRC and NAS signaling, the location change data.
  • the UE may receive, e.g., from a TDF (e.g., TDF 112 ), a command to commence D2D communication with another UE (e.g., second UE 104 ) served by the eNB, e.g., upon the TDF determining that the UE and the another UE are sufficiently proximate to exchange data directly and are likely to remain proximate for at least a predetermined time interval.
  • the UE may commence D2D with the another UE served by the eNB
  • FIG. 8 illustrates an example computing device 800 , in accordance with various embodiments.
  • UE e.g., 102 , 104
  • another network entity e.g., 108 , 110 , 112
  • Computing device 800 may include a number of components, one or more processor(s) 804 and at least one communication chip 806 .
  • the one or more processor(s) 804 each may be a processor core.
  • the at least one communication chip 806 may also be physically and electrically coupled to the one or more processors 804 .
  • the communication chip 806 may be part of the one or more processors 804 .
  • computing device 800 may include printed circuit board (“PCB”) 802 .
  • PCB printed circuit board
  • the one or more processors 804 and communication chip 806 may be disposed thereon.
  • the various components may be coupled without the employment of PCB 802 .
  • computing device 800 may include other components that may or may not be physically and electrically coupled to the PCB 802 .
  • these other components include, but are not limited to, volatile memory (e.g., dynamic random access memory 808 , also referred to as “DRAM”), non-volatile memory (e.g., read only memory 810 , also referred to as “ROM”), flash memory 812 , an input/output controller 814 , a digital signal processor (not shown), a crypto processor (not shown), a graphics processor 816 , one or more antenna 818 , a display (not shown), a touch screen display 820 , a touch screen controller 822 , a battery 824 , an audio codec (not shown), a video codec (not shown), a global positioning system (“GPS”) device 828 , a compass 830 , an accelerometer (not shown), a gyroscope (not shown), a speaker 832 , a camera 834 , and a mass
  • volatile memory e.g., DRAM 808
  • non-volatile memory e.g., ROM 810
  • flash memory 812 may include programming instructions configured to enable computing device 800 , in response to execution by one or more processors 804 , to practice all or selected aspects of methods 300 , 400 , 600 or 700 , depending on whether computing device 800 is used to implement first UE 102 , second UE 104 , TDF 112 , eNB 106 , E-SMLC 110 , or G-MLC 111 .
  • one or more of the memory components such as volatile memory (e.g., DRAM 808 ), non-volatile memory (e.g., ROM 810 ), flash memory 812 , and the mass storage device may include temporal and/or persistent copies of instructions that, when executed, by one or more processors 804 , enable computing device 800 to operate one or more modules 836 configured to practice all or selected aspects of methods 300 , 400 , 600 or 700 , depending on whether computing device 800 is used to implement first UE 102 , second UE 104 , TDF 112 , eNB 106 , E-SMLC 110 , or G-MLC 111 .
  • volatile memory e.g., DRAM 808
  • non-volatile memory e.g., ROM 810
  • flash memory 812 e.g., and the mass storage device
  • the mass storage device may include temporal and/or persistent copies of instructions that, when executed, by one or more processors 804 , enable computing device 800 to operate one or more modules
  • the communication chips 806 may enable wired and/or wireless communications for the transfer of data to and from the computing device 800 .
  • the term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not.
  • the communication chip 806 may implement any of a number of wireless standards or protocols, including but not limited to IEEE 802.20, General Packet Radio Service (“GPRS”), Evolution Data Optimized (“Ev-DO”), Evolved High Speed Packet Access (“HSPA+”), Evolved High Speed Downlink Packet Access (“HSDPA+”), Evolved High Speed Uplink Packet Access (“HSUPA+”), Global System for Mobile Communications (“GSM”), Enhanced Data rates for GSM Evolution (“EDGE”), Code Division Multiple Access (“CDMA”), Time Division Multiple Access (“TDMA”), Digital Enhanced Cordless Telecommunications (“DECT”), Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond.
  • GPRS General Packet Radio Service
  • Ev-DO Evolution Data Optimized
  • HSPA+ High Speed Packet Access
  • HSDPA+ Evolved High Speed Downlink Packet Access
  • HSUPA+ Evolved High Speed Uplink Pack
  • the computing device 800 may include a plurality of communication chips 806 .
  • a first communication chip 806 may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 806 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
  • the computing device 800 may be a laptop, a netbook, a notebook, an ultrabook, a smart phone, a computing tablet, a personal digital assistant (“PDA”), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit (e.g., a gaming console), a digital camera, a portable music player, or a digital video recorder.
  • the computing device 800 may be any other electronic device that processes data.
  • Embodiments of apparatus, packages, computer-implemented methods, systems, devices, and computer-readable media are described herein for a TDF configured to ascertain that a first UE and a second UE are, potentially, sufficiently proximate to each other to wirelessly exchange data directly.
  • the TDF may instruct an E-SMLC to obtain location change data associated with the first and second UEs.
  • the TDF may determine, based on the location change data, whether the first and second UEs are sufficiently proximate to exchange data directly, and whether the first and second UEs are likely to remain proximate for at least a predetermined time interval.
  • the TDF may cause the first and second UEs to commence D2D communication based on the determination.
  • the location change data may include information about a velocity and/or acceleration of the first or second UE. In various embodiments, the location change data may include comprises information about a rate of change of relative locations of the first and second UEs.
  • the TDF may instruct the E-SMLC to obtain the location change data via at least one of RRC or NAS signaling over a control plane of a RAN.
  • the TDF may instruct an MME to cause the first and second UEs to commence D2D communication.
  • the TDF may instruct the MME to use NAS signaling to instruct the first and second UEs to commence D2D communication.
  • the TDF may instruct the E-SMLC using a direct signaling interface.
  • the TDF may ascertain that the first and second UEs are, potentially, sufficiently proximate to each other to wirelessly exchange data directly based on a request from the first or second UE. In various embodiments, the TDF may ascertain that the first and second UEs are, potentially, sufficiently proximate to each other to wirelessly exchange data directly based on a request for location services from an eNB in communication with and/or serving the first or second UE.
  • an eNB may be configured to obtain, from an E-SMLC, a request for location change data associated with a first UE or a second UE.
  • the eNB may obtain, from the first or second UE using RRC and/or NAS signaling, the location change data.
  • the eNB may provide the location change data to the E-SMLC.
  • receipt of the request for location change data and provision of the location change data are direct to the E-SMLC, bypassing a MME.
  • a system may include one or more processors, memory operably coupled to the one or more processors, and instructions in the memory that, when executed by the one or more processors, cause the one or more processors to operate an E-SMLC.
  • the E-SMLC may be configured to receive, from a TDF, a request for location change data associated with a first UE or a second UE.
  • the E-SMLC may be configured to request, from the first UE, the second UE, or an eNB serving the first or second UE, the location change data.
  • the E-SMLC may be configured to transmit the location change data to the TDF.
  • the location change data may include information about a velocity of the first or second UE.
  • the E-SMLC may be further configured to cause the eNB to obtain the location change data from the first or second UE using radio resource control signaling.
  • the E-SMLC may be configured to receive the request from the TDF via an MME.
  • the E-SMLC may be configured to receive the request directly from the TDF, bypassing an MME.
  • the E-SMLC may include a Bluetooth transceiver.
  • a UE may include processing circuitry to receive, from an eNB serving the UE, using at least one of RRC and NAS signaling, a request for location change data.
  • the processing circuitry may be configured to provide, to the eNB using at least one of RRC and NAS signaling, the location change data.
  • the processing circuitry may be configured to commence D2D communication with another UE served by the eNB responsive to a determination that the UE and the another UE are sufficiently proximate to exchange data directly and are likely to remain proximate for at least a predetermined time interval.
  • the processing circuitry may be configured to commence the D2D communication with the another UE responsive to a command from a TDF.

Abstract

Embodiments of apparatus, packages, computer-implemented methods, systems, devices, and computer-readable media (transitory and non-transitory) are described herein for ascertaining, e.g., by a traffic detection function (“TDF”), that a first user equipment (“UE”) and a second UE are, potentially, sufficiently proximate to each other to wirelessly exchange data directly. In various embodiments, an evolved serving mobile location center (“E-SMLC”) may be instructed, e.g., by the TDF, to obtain location change data associated with the first and second UEs. In various embodiments, a determination may be made, e.g., by the TDF, based on the location change data, whether the first and second UEs are sufficiently proximate to exchange data directly, and whether the first and second UEs are likely to remain proximate for at least a predetermined time interval. In various embodiments, the first and second UEs may be caused to commence device-to-device (“D2D”) communication based on the determination.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. patent application Ser. No. 13/681,361 entitled “DETERMINING PROXIMITY OF USER EQUIPMENT FOR DEVICE-TO-DEVICE COMMUNICATION,” filed Nov. 19, 2012, which claims priority to U.S. Provisional Patent Application No. 61/646,223 entitled “ADVANCED WIRELESS COMMUNICATION SYSTEMS AND TECHNIQUES,” filed May 11, 2012, both disclosures of which are incorporated herein by their references.
  • FIELD
  • Embodiments of the present invention relate generally to the technical field of data processing, and more particularly, to determining proximity of user equipment (“UE”) for device-to-device (“D2D”) communication.
  • BACKGROUND
  • The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure. Unless otherwise indicated herein, the approaches described in this section are not prior art to the claims in the present disclosure and are not admitted to be prior art by inclusion in this section.
  • Wireless mobile devices (e.g., user equipment, or “UE”) may communicate with each other over a wireless wide area network (“WWAN”), e.g., using radio access technologies (“RAT”) such as the 3GPP Long Term Evolution (“LTE”) Advanced Release 10 (March 2011) (the “LTE-A Standard”), the IEEE 802.16 standard, IEEE Std. 802.16-2009, published May 29, 2009 (“WiMAX”), as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond.
  • Some UEs also may be configured to communicate directly with other UEs, e.g., using device-to-device (“D2D”) communication. D2D communication may be used, e.g., when UEs initiate communication with each other while within direct wireless range of each other. RATs that may be used in this manner may include 802.11 (“WiFi”), BlueTooth, near field communication (“NFC”), FlashLinq by Qualcomm®, and so forth.
  • UEs may initiate communication with each other over a WWAN, but may be in, or move into, sufficient proximity to exchange data directly, e.g., using WiFi Direct, BlueTooth, Flashlinq, NFC, etc. Continuing to using WWAN resources to communicate in such a situation may drain WWAN resources that may be put to better use for communications between UEs that are remote from each other.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
  • FIG. 1 schematically illustrates various network entities configured with applicable portions of the present disclosure to facilitate commencement of device-to-device (“D2D”) communication between user equipment (“UE”), in accordance with various embodiments of the present disclosure.
  • FIG. 2 schematically depicts an example of communications that may be exchanged between various network entities configured with applicable portions of the teachings of the present disclosure, in accordance with various embodiments of the present disclosure.
  • FIG. 3 schematically depicts an example method that may be implemented by a traffic detection function (“TDF”), in accordance with various embodiments of the present disclosure.
  • FIG. 4 schematically depicts an example method that may be implemented by an evolved serving mobile location center (“E-SMLC”), in accordance with various embodiments.
  • FIG. 5 schematically depicts an example of communications, similar to those shown in FIG. 2, that may be exchanged between various network entities configured with applicable portions of the teachings of the present disclosure, in accordance with various embodiments of the present disclosure.
  • FIG. 6 schematically depicts an example method that may be implemented by an evolved Node B (“eNB”), in accordance with various embodiments.
  • FIG. 7 schematically depicts an example method that may be implemented by a UE, in accordance with various embodiments.
  • FIG. 8 schematically depicts an example computing device on which disclosed methods and computer-readable media may be implemented, in accordance with various embodiments.
  • DETAILED DESCRIPTION
  • In the following detailed description, reference is made to the accompanying drawings which form a part hereof wherein like numerals designate like parts throughout, and in which is shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.
  • Various operations may be described as multiple discrete actions or operations in turn, in a manner that is most helpful in understanding the claimed subject matter. However, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations may not be performed in the order of presentation. Operations described may be performed in a different order than the described embodiment. Various additional operations may be performed and/or described operations may be omitted in additional embodiments.
  • For the purposes of the present disclosure, the phrases “A or B” and “A and/or B” mean (A), (B), or (A and B). For the purposes of the present disclosure, the phrase “A, B, and/or C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C).
  • The description may use the phrases “in an embodiment,” or “in embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present disclosure, are synonymous.
  • As used herein, the terms “module” and/or “logic” may refer to, be part of, or include an Application Specific Integrated Circuit (“ASIC”), an electronic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
  • An example wireless wide area network (“WWAN”) 100 is depicted in FIG. 1. A first mobile device in the form of a first user equipment (“UE”) 102 (configured with applicable portions of the teachings of the present disclosure) and a second mobile device in the form of a second UE 104 (configured with applicable portions of the teachings of the present disclosure) may be in wireless communication with each other via WWAN 100. In particular, first UE 102 and second UE 104 may be in direct communication with a radio access network (“RAN”) via an access point in the form of an evolved Node B (“eNB”) 106.
  • Although first UE 102 is depicted as a touch screen smart phone, and second UE 104 is depicted as a laptop computer, this is not meant to be limiting. As discussed below, mobile devices (e.g., UEs) described herein may be any type of data processing device, including but not limited to a tablet computer, a personal digital assistant (“PDA”), a portable gaming device, and so forth.
  • eNB 106 may be in network communication with various components of an Evolved Packet Core (“EPC”). For example, eNB 106 may be in network communication with a mobility management entity (“MME”) 108. MME 108 may be configured to perform various functions, including but not limited to non-access stratum (“NAS”) signaling and NAS signaling security, idle mode UE reachability, public data network (“PDN”) and serving gateway selection, MME selection for handoffs, authentication, bearer management functions, and so forth.
  • MME 108 may itself be in network communication with various other nodes. For instance, MME 108 may be in network communication with an evolved serving mobile location center (“E-SMLC”) 110. E-SMLC 110 may be configured to perform various functions related to location services (“LCS”). For example, E-SMLC 110 may manage the support of different location services for target UEs, e.g., including positioning of UEs and delivery of assistance data to UEs. In various embodiments, E-SMLC 110 may interact with the serving eNB (e.g., 106) for a target UE (e.g., 102, 104) in order to obtain position measurements for the target UE. These position measurements may include but are not limited to uplink measurements made by the serving eNB and downlink measurements made by the target UE. The downlink measurements may have been provided to the serving eNB as part of other functions, such as support of handover. E-SMLC 110 may interact with a target UE (e.g., 102, 104) in order to deliver assistance data if requested for a particular location service, or to obtain a location estimate if that was requested. In various embodiments, in addition to or instead of E-SMLC 110, a gateway mobile location center (“G-MLC”) 111 may perform similar functions as E-SMLC 110.
  • For positioning of a target UE (e.g., 102, 104), E-SMLC 110 (or G-MLC 111) may determine the positioning method to be used, based on factors such as LCS client type, a required quality of service (“QoS”), UE positioning capabilities, and/or eNB positioning capabilities. E-SMLC 110 may invoke these positioning methods in the target UE and/or serving eNB. UE-based positioning methods may yield a location estimate. UE-assisted and network-based positioning methods may yield positioning measurements. E-SMLC 110 may combine received results and, based on those results, determine a single location estimate for the target UE, as well as other information such as an accuracy of the estimate.
  • E-SMLC 110 (or G-MLC 111) may be in network communication with various other network entities. For instance, E-SMLC 110 may be in network communication with a traffic detection function (“TDF”) 112. While TDF 112 is depicted in FIG. 1 as operating on a separate server computer, this is not meant to be limiting. TDF 112 may be implemented using any combination of hardware and software on any network computing device, such as those shown in FIG. 1 and others that are not shown but are often found in wireless communication networks. Moreover, in various embodiments, one or more of the entities depicted in FIG. 1 may be implemented on the same or different computing devices.
  • In various embodiments, if first UE 102 and second UE 104 are sufficiently proximate, and assuming both first UE 102 and second UE 104 are equipped with the same direct radio access technology (“RAT”), e.g., WiFi Direct, Bluetooth, near field communication (“NFC”), Flashlinq, etc. then first UE device 102 and second UE device 104 may be able to exchange data directly. For example, in FIG. 1, assume first UE 102 and second UE 104 are in communication already via WWAN 100 and are separated by a distance D. If D is less than a particular threshold, such as a maximum range of a particular RAT, then first UE 102 and second UE 104 may be able to communicate directly, e.g., using device-to-device (“D2D”) communication, rather than through WWAN 100.
  • However, while first UE 102 and second UE 104 may momentarily be within sufficient proximity to commence D2D communication, they might not necessarily remain in sufficient proximity for long enough to justify a transition to D2D communication. For instance, a user of first UE 102 may be moving in one direction, and a user of second UE 104 may be moving in a different direction. The WWAN resources gained by commencing D2D communication between first UE 102 and second UE 104 may not be worth the network resources expended to implement the transition if the D2D communication will be short-lived.
  • Accordingly, in various embodiments, various network entities may be configured to determine not only whether first UE 102 and second UE 104 are sufficiently proximate to exchange data directly, but also whether they will remain proximate for an amount of time that justifies commencing D2D communication between the UEs.
  • In various embodiments, TDF 112 may be configured to ascertain that first UE 102 and second UE 104 are, potentially, sufficiently proximate to each other to wirelessly exchange data directly. Various events may cause TDF 112 to make this ascertainment. As one non-limiting example, eNB 106 may determine that it is serving both first UE 102 and second UE 104. In such case, eNB 106 may be configured to transmit a request (e.g., an LCS request) to TDF 112 to determine whether first UE 102 and second UE 104 are sufficiently proximate to exchange data directly, e.g., using D2D communication. As another non-limiting example, first UE 102 or second UE 104 may itself determine that there is a possibility that the other is, potentially, sufficiently proximate to commence D2D communication. In such case, the UE device may transmit a request (e.g., an LCS request) to TDF 112 to determine whether first UE 102 and second UE 104 are sufficiently proximate to exchange data directly.
  • Upon ascertaining that first UE 102 and second UE 104 are, potentially, sufficiently proximate to exchange data directly, TDF 112 may instruct E-SMLC 110 (or G-MLC 111) to obtain location change data associated with the first UE 102 and/or second UE 104. As used herein, the term “location change data” may include any data that demonstrates a change of location of a UE. For instance, location change data may include a velocity of a UE. Being a vector, a UE velocity may include a both speed component and a direction component. For instance, if the distance D between first UE 102 and second UE is growing at a particular rate over time, that may indicate that first UE 102 and second UE 104 are moving away from each other. Location change data may include any other indications of movement of UEs, such as acceleration.
  • In some embodiments, TDF 112 may instruct E-SMLC 110 (or G-MLC 111) to obtain location change data associated with one or more UEs via a direct signaling interface. In other embodiments, such as the example shown in FIG. 2, this may be done through other nodes. Referring now to FIG. 2, at arrow 220, TDF 112 may send a request for location change information associated with the first UE 102 and/or second UE 104 to MME 108. At arrow 222, MME 108 may forward this request to E-SMLC 112 (or G-MLC 111). In other embodiments, TDF 112 may transmit this instruction via other nodes. For example, TDF 112 may transmit the instruction to E-SMLC 110 (or G-MLC 111) through MME 108, e.g., using a logical tunnel.
  • At arrow 224, E-SMLC 110 (or G-MLC 111) may instigate location procedures with serving eNB 106. For example, E-SMLC 110 (or G-MLC 111) may request that eNB 108 provide location change data associated with first UE 102 and/or second UE 104. In various embodiments, E-SMLC 110 (or G-MLC 111) may also obtain assistance data from eNB 106, for provision to a target UE such as 102 or 104.
  • Additionally or alternatively to arrow 224, at arrow 226, E-SMLC 110 (or G-MLC 111) may instigate location procedures with UE 102 or 104. In various embodiments, E-SMLC 110 (or G-MLC 111) may obtain a location estimate (e.g., a GPS coordinate) or location change data from UE 102 or 104. In various embodiments, E-SMLC 110 (or G-MLC 111) may transfer, to UE 102 or 104, the assistance data obtained from eNB 106 at block 224. This assistance data may be used to assist with UE-based and/or UE-assisted positioning methods. At arrow 228, UE 102 or 104 may transmit location change data associated with first UE 102 or second UE 104 to E-SMLC 110 (or G-MLC 111), e.g., through eNB 106 and/or MME 108.
  • Upon receiving location change data associated with first UE 102 and/or second UE 104, E-SMLC 110 (or G-MLC 111) may provide the location change data to TDF. In some embodiments, e.g., where TDF 112 and E-SMLC 110 (or G-MLC 111) establish a direct signaling interface, this communication may be sent directly. In other embodiments, such as the one depicted in FIG. 2, at arrow 230, E-SMLC 110 (or G-MLC 111) may forward the location change data to MME 108. MME 108 may in turn forward the location change data to TDF 112 at arrow 232.
  • Once it receives the location change data, TDF 112 may determine, based on the location change data, whether first UE 102 and second UE 104 are sufficiently proximate to exchange data directly, and whether they are likely to remain proximate for at least a predetermined time interval. In various embodiments, the predetermined time interval may be selected to be long enough so that the benefits of commencing D2D communication (e.g., reduced WWAN network traffic) outweigh the costs of the transition. This predetermined time interval may be set, e.g., by a network administrator, or may be dynamic, e.g., based on current network traffic. In various embodiments, the determination as to whether the UEs will remain proximate for a sufficient time may be made based on various laws of physics and motion. For instance, relative velocities and/or accelerations of two UEs reveal, e.g., as input in standard physics/motion equations, that the UEs will be within direct wireless range for a sufficient amount of time to justify commencement of D2D communication.
  • If TDF 112 determines that first UE 102 and second UE 104 will be in proximity for at least the predetermined time interval, TDF 112 may cause first UE 102 and second UE 104 to commence D2D communication. For example, in various embodiments, TDF 112 may instruct MME 108 to cause first UE 102 and second UE 104 to commence D2D communication. In various embodiments, MME 108 may utilize NAS signaling to instruct first UE 102 and second UE 104 to commence D2D communication.
  • FIG. 3 depicts an example method 300 that may be implemented by a computing device as part of operating a TDF such as TDF 112. At block 302, TDF 112 may await a request to instigate and/or perform location services. At block 304, TDF 112 may receive, from various network nodes, a request to determine whether two or more UEs , e.g., first UE 102 and second UE 104, exchanging data indirectly through a WWAN are in sufficient proximity to exchange data directly, e.g., using D2D communication. The request may also seek to have TDF 112 determine whether the first and second UEs will be proximate for a sufficient amount of time, such as a predetermined time interval, to warrant commencement of D2D communication.
  • At 306, TDF 112 may instruct an E-SMLC or G-MLC, e.g., E-SMLC 110, to obtain location change data associated with the first and second UEs (e.g., 102 and 104). In some embodiments, TDF 112 may have a direct signaling interface with E-SMLC 110, and therefore may transmit this instruction directly, e.g., bypassing MME 108. In other embodiments, TDF 112 may transmit this instruction to MME 108, which in turn may forward the instruction to E-SMLC 110. At block 308, TDF 112 may receive location change data, e.g., from E-SMLC 110 by way of MME 108.
  • At block 310, TDF 112 may determine, based on the received location change data, whether the first and second UEs are sufficiently proximate to exchange data directly. If the answer is yes, then at block 312, TDF 112 may determine whether the first and second UEs are likely to remain proximate for at least a predetermined time interval (e.g., based on standard laws of physics/motion). If the answer is yes, then at block 314, TDF 112 may cause first UE 102 and second UE 104 to commence D2D communication. If the answer at either block 310 or block 312 is no, then method 300 may proceed back to block 302.
  • FIG. 4 depicts an example method 400 that may be implemented by, e.g., E-SMLC 110 or G-MLC 111, in accordance with various embodiments. At block 402, E-SMLC 110/G-MLC 111 may receive, e.g., from TDF 112, a request for location change data associated with first UE 102 or second UE 104. At block 404, E-SMLC 110/G-MLC 111 may request, e.g., from first UE 102, second UE 104, or eNB106 serving first UE 102 or second UE 104, the location change data. At block 406, E-SMLC 110/G-MLC 111 may transmit the location change data, e.g., to TDF 112.
  • FIG. 5 depicts a slight variation of the data exchange shown in FIG. 2. In this example, arrows 520, 522 524, 530 and 532 represent data exchanges similar to those represented by arrows 220, 222, 224, 230 and 232 in FIG. 2, respectively. However, FIG. 5 differs from FIG. 2 at arrows 526 and 528. Rather than E-SMLC 110 (or G-MLC 111) instigating location procedures with UE 102 or 104, at arrow 626, eNB 106 may instigate (e.g., at the request of E-SMLC 110) location procedures with UE 102 or 104. For example, eNB 106 may encapsulate a request for location services in an radio resource control (“RRC”) and/or NAS signal to UE 102 or UE 104. UE 102 or 104 may encapsulate a response in an RRC and/or NAS signal back to eNB 106. eNB 106 may then forward the UE location data to E-SMLC 110 at arrow 528.
  • FIG. 6 depicts an example method 600 that may be implemented by, e.g., eNB 106, to exchange communications as shown in FIG. 5. At block 602, eNB 106 may receive, e.g., from E-SMLC 110 (or G-MLC 111), a request for location change data associated with first UE 102 or a second UE 104. At block 604, eNB 106 may obtain, e.g., from first UE 102 or second UE 104, e.g., on a control plane over an air interface using RRC and/or NAS signaling, the location change data. For example, eNB 106 may encapsulate a location message (e.g., a request) into an RRC and/or NAS message and send it first UE 102 using RRC. First UE 102 may decapsulate the RRC and/or NAS message and consume the contents (e.g., the request). First UE 102 may likewise encapsulate location change data into a return RRC and/or NAS message, and send it back to eNB 106 using RRC and/or NAS signaling. At block 606, eNB 106 may decapsulate the message and provide the contents, e.g., the location change data, to E-SMLC 110 (or G-MLC 111).
  • FIG. 7 depicts an example method 700 that may be implemented by, e.g., first UE 102 or second UE 104. At block 702, a UE (e.g., first UE 102) may receive, from an eNB (e.g., eNB 106) serving the UE, on a control plane using at least one of RRC and NAS signaling, a request for location change data. At block 704, the UE may provide, to the eNB on a control plane using at least one of RRC and NAS signaling, the location change data. At block 706, the UE may receive, e.g., from a TDF (e.g., TDF 112), a command to commence D2D communication with another UE (e.g., second UE 104) served by the eNB, e.g., upon the TDF determining that the UE and the another UE are sufficiently proximate to exchange data directly and are likely to remain proximate for at least a predetermined time interval. At block 708, the UE may commence D2D with the another UE served by the eNB
  • FIG. 8 illustrates an example computing device 800, in accordance with various embodiments. UE (e.g., 102, 104) or another network entity (e.g., 108, 110, 112) as described herein may be implemented on a computing device such as computing device 800. Computing device 800 may include a number of components, one or more processor(s) 804 and at least one communication chip 806. In various embodiments, the one or more processor(s) 804 each may be a processor core. In various embodiments, the at least one communication chip 806 may also be physically and electrically coupled to the one or more processors 804. In further implementations, the communication chip 806 may be part of the one or more processors 804. In various embodiments, computing device 800 may include printed circuit board (“PCB”) 802. For these embodiments, the one or more processors 804 and communication chip 806 may be disposed thereon. In alternate embodiments, the various components may be coupled without the employment of PCB 802.
  • Depending on its applications, computing device 800 may include other components that may or may not be physically and electrically coupled to the PCB 802. These other components include, but are not limited to, volatile memory (e.g., dynamic random access memory 808, also referred to as “DRAM”), non-volatile memory (e.g., read only memory 810, also referred to as “ROM”), flash memory 812, an input/output controller 814, a digital signal processor (not shown), a crypto processor (not shown), a graphics processor 816, one or more antenna 818, a display (not shown), a touch screen display 820, a touch screen controller 822, a battery 824, an audio codec (not shown), a video codec (not shown), a global positioning system (“GPS”) device 828, a compass 830, an accelerometer (not shown), a gyroscope (not shown), a speaker 832, a camera 834, and a mass storage device (such as hard disk drive, a solid state drive, compact disk (“CD”), digital versatile disk (“DVD”))(not shown), and so forth. In various embodiments, the processor 804 may be integrated on the same die with other components to form a System on Chip (“SoC”).
  • In various embodiments, volatile memory (e.g., DRAM 808), non-volatile memory (e.g., ROM 810), flash memory 812, and the mass storage device may include programming instructions configured to enable computing device 800, in response to execution by one or more processors 804, to practice all or selected aspects of methods 300, 400, 600 or 700, depending on whether computing device 800 is used to implement first UE 102, second UE 104, TDF 112, eNB 106, E-SMLC 110, or G-MLC 111. More specifically, one or more of the memory components such as volatile memory (e.g., DRAM 808), non-volatile memory (e.g., ROM 810), flash memory 812, and the mass storage device may include temporal and/or persistent copies of instructions that, when executed, by one or more processors 804, enable computing device 800 to operate one or more modules 836 configured to practice all or selected aspects of methods 300, 400, 600 or 700, depending on whether computing device 800 is used to implement first UE 102, second UE 104, TDF 112, eNB 106, E-SMLC 110, or G-MLC 111.
  • The communication chips 806 may enable wired and/or wireless communications for the transfer of data to and from the computing device 800. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 806 may implement any of a number of wireless standards or protocols, including but not limited to IEEE 802.20, General Packet Radio Service (“GPRS”), Evolution Data Optimized (“Ev-DO”), Evolved High Speed Packet Access (“HSPA+”), Evolved High Speed Downlink Packet Access (“HSDPA+”), Evolved High Speed Uplink Packet Access (“HSUPA+”), Global System for Mobile Communications (“GSM”), Enhanced Data rates for GSM Evolution (“EDGE”), Code Division Multiple Access (“CDMA”), Time Division Multiple Access (“TDMA”), Digital Enhanced Cordless Telecommunications (“DECT”), Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 800 may include a plurality of communication chips 806. For instance, a first communication chip 806 may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 806 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
  • In various implementations, the computing device 800 may be a laptop, a netbook, a notebook, an ultrabook, a smart phone, a computing tablet, a personal digital assistant (“PDA”), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit (e.g., a gaming console), a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 800 may be any other electronic device that processes data.
  • Embodiments of apparatus, packages, computer-implemented methods, systems, devices, and computer-readable media (transitory and non-transitory) are described herein for a TDF configured to ascertain that a first UE and a second UE are, potentially, sufficiently proximate to each other to wirelessly exchange data directly. In various embodiments, the TDF may instruct an E-SMLC to obtain location change data associated with the first and second UEs. In various embodiments, the TDF may determine, based on the location change data, whether the first and second UEs are sufficiently proximate to exchange data directly, and whether the first and second UEs are likely to remain proximate for at least a predetermined time interval. In various embodiments, the TDF may cause the first and second UEs to commence D2D communication based on the determination.
  • In various embodiments, the location change data may include information about a velocity and/or acceleration of the first or second UE. In various embodiments, the location change data may include comprises information about a rate of change of relative locations of the first and second UEs.
  • In various embodiments, the TDF may instruct the E-SMLC to obtain the location change data via at least one of RRC or NAS signaling over a control plane of a RAN. In various embodiments, the TDF may instruct an MME to cause the first and second UEs to commence D2D communication. In various embodiments, the TDF may instruct the MME to use NAS signaling to instruct the first and second UEs to commence D2D communication. In various embodiments, the TDF may instruct the E-SMLC using a direct signaling interface.
  • In various embodiments, the TDF may ascertain that the first and second UEs are, potentially, sufficiently proximate to each other to wirelessly exchange data directly based on a request from the first or second UE. In various embodiments, the TDF may ascertain that the first and second UEs are, potentially, sufficiently proximate to each other to wirelessly exchange data directly based on a request for location services from an eNB in communication with and/or serving the first or second UE.
  • In various embodiments, an eNB may be configured to obtain, from an E-SMLC, a request for location change data associated with a first UE or a second UE. In various embodiments, the eNB may obtain, from the first or second UE using RRC and/or NAS signaling, the location change data. In various embodiments, the eNB may provide the location change data to the E-SMLC. In various embodiments, receipt of the request for location change data and provision of the location change data are direct to the E-SMLC, bypassing a MME.
  • In various embodiments, a system may include one or more processors, memory operably coupled to the one or more processors, and instructions in the memory that, when executed by the one or more processors, cause the one or more processors to operate an E-SMLC. In various embodiments, the E-SMLC may be configured to receive, from a TDF, a request for location change data associated with a first UE or a second UE. In various embodiments, the E-SMLC may be configured to request, from the first UE, the second UE, or an eNB serving the first or second UE, the location change data. In various embodiments, the E-SMLC may be configured to transmit the location change data to the TDF. In various embodiments, the location change data may include information about a velocity of the first or second UE. In various embodiments, the E-SMLC may be further configured to cause the eNB to obtain the location change data from the first or second UE using radio resource control signaling. In various embodiments, the E-SMLC may be configured to receive the request from the TDF via an MME. In various embodiments, the E-SMLC may be configured to receive the request directly from the TDF, bypassing an MME. In various embodiments, the E-SMLC may include a Bluetooth transceiver.
  • In various embodiments, a UE may include processing circuitry to receive, from an eNB serving the UE, using at least one of RRC and NAS signaling, a request for location change data. In various embodiments, the processing circuitry may be configured to provide, to the eNB using at least one of RRC and NAS signaling, the location change data. In various embodiments, the processing circuitry may be configured to commence D2D communication with another UE served by the eNB responsive to a determination that the UE and the another UE are sufficiently proximate to exchange data directly and are likely to remain proximate for at least a predetermined time interval. In various embodiments, the processing circuitry may be configured to commence the D2D communication with the another UE responsive to a command from a TDF.
  • Although certain embodiments have been illustrated and described herein for purposes of description, this application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments described herein be limited only by the claims.
  • Where the disclosure recites “a” or “a first” element or the equivalent thereof, such disclosure includes one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal indicators (e.g., first, second or third) for identified elements are used to distinguish between the elements, and do not indicate or imply a required or limited number of such elements, nor do they indicate a particular position or order of such elements unless otherwise specifically stated.

Claims (20)

What is claimed is:
1. An apparatus to be included in a network entity, the apparatus comprising:
receiver circuitry to receive information associated with a location change over time for at least one of a first user equipment (“UE”) or a second UE;
processing circuitry, coupled with the receiver circuitry, to determine that the first UE and the second UE are to be proximate with one another for a predetermined period of time based on the received information; and
transmitter circuitry, coupled with the processing circuitry, to transmit, based on the determination that the first UE and the second UE are to be proximate with one another for the predetermined period of time, an instruction to cause the first UE and the second UE to establish a direct wireless connection with one another.
2. The apparatus of claim 1, wherein the information associated with the location change over time comprises at least one of a velocity of the first or second UE, an acceleration of the first or second UE, or a rate of change of relative locations of the first and second UEs.
3. The apparatus of claim 1, wherein the receiver circuitry is to receive a first location associated with the first UE and a second location associated with the second UE, and further wherein the determination, by the processing circuitry, that the first UE and the second UE are to be proximate with one another is based on the first and second locations.
4. The apparatus of claim 1, wherein the transmitter circuitry is to transmit an instruction to an evolved serving mobile location center (“E-SMLC”) to obtain the information associated with the location change over time.
5. The apparatus of claim 4, wherein the instruction to the E-SMLC indicates use of one of radio resource control (“RRC”) or non-access stratum (“NAS”) signaling over a control plane of a radio access network (“RAN”).
6. The apparatus of claim 1, wherein the transmitter circuitry is to transmit the instruction to a mobility management entity (“MME”).
7. The apparatus of claim 1, wherein the receiver circuity is to receive a request associated with the first UE or the second UE, and further wherein the determination, by the processing circuitry, that the first UE and the second UE are to be proximate with one another is based on the request.
8. The apparatus of claim 7, wherein the request comprises a request for location services from an evolved Node B (“eNB”) that is to serve at least one of the first or the second UEs.
9. A method to be performed by a traffic detection function (“TDF”), the method comprising:
instructing an evolved serving mobile location center (“E-SMLC”) to obtain information associated with a location change over time associated with at least one of a first user equipment (“UE”) or a second UE;
determining, based on the information associated with a location change over time, that the first UE and the second UE are to be proximate with one another for a predetermined period of time; and
transmitting an instruction that is to cause the first and second UEs to establish a direct wireless connection based on the determining.
10. The method of claim 9, wherein the information associated with the location change over time comprises at least one of a velocity of the first or second UE, an acceleration of the first or second UE, or a rate of change of relative locations of the first and second UEs.
11. The method of claim 9, wherein the instructing of the E-SMLC to obtain the information associated with the location change over time includes an indication of whether to use radio resource control (“RRC”) or non-access stratum (“NAS”) signaling over a control plane of a radio access network (“RAN”).
12. The method of claim 9, further comprising:
instructing a mobility management entity (“MME”) to cause the first and second UEs to establish the direct wireless connection.
13. The method of claim 9, further comprising:
receiving a request associated with the first UE or the second UE;
determining that the first UE and the second UE are to be proximate with one another based on the request.
14. The apparatus of claim 13, wherein the request comprises a request for location services from an evolved Node B (“eNB”) that is to serve at least one of the first or the second UEs.
15. Evolved Node B (“eNB”) circuitry comprising:
receiver circuitry to receive, from an evolved mobile location center (“E-SMLC”), a first request for information associated with the location change over time and to receive location information from a first UE based on a second request;
transmitter circuitry to transmit the second request to the first UE using radio resource control (“RRC”) or non-access stratum (“NAS”) signaling and to transmit the information associated with the location change over time to the E-SMLC based on the first request; and
processing circuitry, coupled with the receiver circuitry and the transmitter circuitry, to serve the first UE and to determine the information associated with the location change over time based on the location information received from the first UE.
16. The eNB circuitry of claim 15, wherein the information associated with the location change over time comprises at least one of a velocity of the first UE, an acceleration of the first UE, or a rate of change of relative locations of the first UE to a second UE that is also served by the eNB circuitry.
17. The eNB circuitry of claim 15, wherein the request for the information associated with the location change over time is received directly from the E-SMLC and not from a mobility management entity (“MME”).
18. At least one non-transitory computer-readable medium comprising instructions that, in response to execution of the instructions by a user equipment (“UE”), enable the UE to:
receive, via radio resource control (“RRC”) or non-access stratum (“NAS”) signaling, a request for information associated with the location change over time from an evolved Node B (“eNB”) that is to serve the UE; and
transmit, via the RRC or the NAS signaling, the information associated with the location change over time to the eNB based on the request.
19. The at least one non-transitory computer-readable medium of claim 18, wherein the instructions further enable the UE to:
establish a direct wireless connection with another UE.
20. The at least one non-transitory computer-readable medium of claim 19, wherein the instructions further enable the UE to:
receive, from a traffic detection function (“TDF”), an instruction to establish the direct wireless connection with the other UE.
US14/525,100 2012-05-11 2014-10-27 Determining proximity of user equipment for device-to-device communication Active US9270400B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/525,100 US9270400B2 (en) 2012-05-11 2014-10-27 Determining proximity of user equipment for device-to-device communication
US14/993,818 US20160127870A1 (en) 2012-05-11 2016-01-12 Determining proximity of user equipment for device-to-device communication

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261646223P 2012-05-11 2012-05-11
US13/681,361 US8874103B2 (en) 2012-05-11 2012-11-19 Determining proximity of user equipment for device-to-device communication
US14/525,100 US9270400B2 (en) 2012-05-11 2014-10-27 Determining proximity of user equipment for device-to-device communication

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/681,361 Continuation US8874103B2 (en) 2012-05-11 2012-11-19 Determining proximity of user equipment for device-to-device communication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/993,818 Continuation US20160127870A1 (en) 2012-05-11 2016-01-12 Determining proximity of user equipment for device-to-device communication

Publications (2)

Publication Number Publication Date
US20150045060A1 true US20150045060A1 (en) 2015-02-12
US9270400B2 US9270400B2 (en) 2016-02-23

Family

ID=48875716

Family Applications (16)

Application Number Title Priority Date Filing Date
US13/681,361 Active US8874103B2 (en) 2012-05-11 2012-11-19 Determining proximity of user equipment for device-to-device communication
US13/735,952 Active US9246618B2 (en) 2012-05-11 2013-01-07 Selective joinder of machine-type communication user equipment with wireless cell
US14/124,536 Active US9444569B2 (en) 2012-05-11 2013-05-10 Method to identify and differentiate background traffic
US14/054,200 Active US9154251B2 (en) 2012-05-11 2013-10-15 Signaling for downlink coordinated multipoint in a wireless communication system
US14/525,100 Active US9270400B2 (en) 2012-05-11 2014-10-27 Determining proximity of user equipment for device-to-device communication
US14/525,927 Abandoned US20150043515A1 (en) 2012-05-11 2014-10-28 Radio coexistence in wireless networks
US14/528,747 Active US10327207B2 (en) 2012-05-11 2014-10-30 Selective joinder of machine-type communication user equipment with wireless cell
US14/800,150 Active US9496973B2 (en) 2012-05-11 2015-07-15 User equipment and methods for handover enhancement using reference signal received quality (RSRQ)
US14/834,292 Active US9356724B2 (en) 2012-05-11 2015-08-24 Signaling for downlink coordinated multipoint in a wireless communication system
US14/887,103 Active 2033-07-13 US10057855B2 (en) 2012-05-11 2015-10-19 Scheduling synchronization signals in a new carrier type
US14/993,818 Abandoned US20160127870A1 (en) 2012-05-11 2016-01-12 Determining proximity of user equipment for device-to-device communication
US15/144,117 Active US9736780B2 (en) 2012-05-11 2016-05-02 Signaling for downlink coordinated multipoint in a wireless communication system
US15/225,483 Abandoned US20170013554A1 (en) 2012-05-11 2016-08-01 User equipment power savings for machine type communications
US15/276,427 Active US10129830B2 (en) 2012-05-11 2016-09-26 Systems and methods for enhanced user equipment assistance information in wireless communication systems
US15/614,189 Active US10433254B2 (en) 2012-05-11 2017-06-05 Method, system and apparatus of time-division-duplex (TDD) uplink-downlink (UL-DL) configuration management
US15/633,511 Abandoned US20170294998A1 (en) 2012-05-11 2017-06-26 Signaling for downlink coordinated multipoint in a wireless communication system

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US13/681,361 Active US8874103B2 (en) 2012-05-11 2012-11-19 Determining proximity of user equipment for device-to-device communication
US13/735,952 Active US9246618B2 (en) 2012-05-11 2013-01-07 Selective joinder of machine-type communication user equipment with wireless cell
US14/124,536 Active US9444569B2 (en) 2012-05-11 2013-05-10 Method to identify and differentiate background traffic
US14/054,200 Active US9154251B2 (en) 2012-05-11 2013-10-15 Signaling for downlink coordinated multipoint in a wireless communication system

Family Applications After (11)

Application Number Title Priority Date Filing Date
US14/525,927 Abandoned US20150043515A1 (en) 2012-05-11 2014-10-28 Radio coexistence in wireless networks
US14/528,747 Active US10327207B2 (en) 2012-05-11 2014-10-30 Selective joinder of machine-type communication user equipment with wireless cell
US14/800,150 Active US9496973B2 (en) 2012-05-11 2015-07-15 User equipment and methods for handover enhancement using reference signal received quality (RSRQ)
US14/834,292 Active US9356724B2 (en) 2012-05-11 2015-08-24 Signaling for downlink coordinated multipoint in a wireless communication system
US14/887,103 Active 2033-07-13 US10057855B2 (en) 2012-05-11 2015-10-19 Scheduling synchronization signals in a new carrier type
US14/993,818 Abandoned US20160127870A1 (en) 2012-05-11 2016-01-12 Determining proximity of user equipment for device-to-device communication
US15/144,117 Active US9736780B2 (en) 2012-05-11 2016-05-02 Signaling for downlink coordinated multipoint in a wireless communication system
US15/225,483 Abandoned US20170013554A1 (en) 2012-05-11 2016-08-01 User equipment power savings for machine type communications
US15/276,427 Active US10129830B2 (en) 2012-05-11 2016-09-26 Systems and methods for enhanced user equipment assistance information in wireless communication systems
US15/614,189 Active US10433254B2 (en) 2012-05-11 2017-06-05 Method, system and apparatus of time-division-duplex (TDD) uplink-downlink (UL-DL) configuration management
US15/633,511 Abandoned US20170294998A1 (en) 2012-05-11 2017-06-26 Signaling for downlink coordinated multipoint in a wireless communication system

Country Status (14)

Country Link
US (16) US8874103B2 (en)
EP (1) EP2847950B1 (en)
JP (1) JP5905160B2 (en)
KR (1) KR101604207B1 (en)
CN (1) CN104303468B (en)
AU (1) AU2013259165B2 (en)
BE (1) BE1021379B1 (en)
BR (1) BR112014028165A2 (en)
CA (1) CA2871107C (en)
HU (1) HUE039146T2 (en)
MX (1) MX342526B (en)
MY (1) MY174530A (en)
RU (1) RU2595512C2 (en)
WO (1) WO2013170194A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10667322B2 (en) 2016-05-03 2020-05-26 Kt Corporation Method and apparatus for changing connection state of terminal

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232962B2 (en) 2004-06-21 2012-07-31 Trading Technologies International, Inc. System and method for display management based on user attention inputs
US7844726B2 (en) * 2008-07-28 2010-11-30 Trading Technologies International, Inc. System and method for dynamically managing message flow
CN102123477B (en) * 2010-01-08 2015-06-10 中兴通讯股份有限公司 Access realization method and device of M2M (Machine to Machine) core network
CN103875285B (en) * 2011-10-05 2018-05-08 三星电子株式会社 Method and apparatus for reselecting cell in heterogeneous network in a wireless communication system
US8874103B2 (en) * 2012-05-11 2014-10-28 Intel Corporation Determining proximity of user equipment for device-to-device communication
KR102055332B1 (en) * 2012-05-17 2019-12-12 삼성전자 주식회사 Channel measuring method and device for cooperative communication in a cellular mobile communication system
TWI505726B (en) * 2012-05-18 2015-10-21 Innovative Sonic Corp Method and apparatus for improving frequency prioritization in a wireless communication network
US9485794B2 (en) * 2012-05-23 2016-11-01 Qualcomm Incorporated Methods and apparatus for using device to device communications to support IMS based services
EP2672756B1 (en) * 2012-06-05 2020-02-19 Telefonaktiebolaget LM Ericsson (publ) Improved cell selection
US10645599B2 (en) 2012-07-02 2020-05-05 Lg Electronics Inc. Method and device for reporting channel state information in wireless communication system
DK3169100T3 (en) * 2012-07-06 2021-10-04 Samsung Electronics Co Ltd METHOD AND DEVICE FOR DETERMINING TDD-UL / DL CONFIGURATION FOR USE IN RADIO FRAMES
GB2504701A (en) * 2012-08-06 2014-02-12 Nec Corp Determining current state of a mobile device
US9179244B2 (en) * 2012-08-31 2015-11-03 Apple Inc. Proximity and tap detection using a wireless system
US10467691B2 (en) 2012-12-31 2019-11-05 Trading Technologies International, Inc. User definable prioritization of market information
MX342867B (en) * 2013-01-25 2016-10-17 Lg Electronics Inc Method and apparatus for performing initial access procedure in wireless communication system.
FR3002066B1 (en) * 2013-02-08 2015-02-20 Thales Sa EXTENDED AND INTEGRATED SYSTEM OF SAFETY AND AERONAUTICAL MONITORING
US9615201B2 (en) * 2013-03-04 2017-04-04 T-Mobile Usa, Inc. Closed communication system
CN105706033B (en) 2013-03-05 2019-05-10 法斯埃托股份有限公司 System and method for cube graphic user interface
US9306725B2 (en) * 2013-03-13 2016-04-05 Samsung Electronics Co., Ltd. Channel state information for adaptively configured TDD communication systems
US10051507B2 (en) * 2013-07-03 2018-08-14 Mediatek Inc. Traffic shaping mechanism for UE power saving in idle mode
DK3022638T3 (en) 2013-07-18 2018-07-23 Fasetto L L C SYSTEM AND PROCEDURE FOR MULTIPLINE VIDEOS
EP3042539B1 (en) * 2013-09-03 2018-11-07 Telefonaktiebolaget LM Ericsson (publ) Radio base station and method therein
JP6196103B2 (en) * 2013-09-13 2017-09-13 株式会社Nttドコモ Mobile communication system, network node, and mobile communication method
US10095873B2 (en) 2013-09-30 2018-10-09 Fasetto, Inc. Paperless application
US9667386B2 (en) * 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
TWI484850B (en) * 2013-11-14 2015-05-11 Univ Nat Chiao Tung Power-saving data scheduling system in lte and method thereof
US10460387B2 (en) 2013-12-18 2019-10-29 Trading Technologies International, Inc. Dynamic information configuration and display
US9584402B2 (en) 2014-01-27 2017-02-28 Fasetto, Llc Systems and methods for peer to peer communication
GB2523773A (en) * 2014-03-04 2015-09-09 Nec Corp Communication system
CN106105316A (en) * 2014-03-25 2016-11-09 索尼公司 Device
CN106134282B (en) * 2014-04-28 2020-02-07 英特尔Ip公司 Communication via dedicated network nodes
WO2015165069A1 (en) * 2014-04-30 2015-11-05 华为技术有限公司 Method for transmitting downlink data, mobility management network element, access network device, and serving gateway
WO2015180025A1 (en) * 2014-05-26 2015-12-03 Nec Corporation Methods and devices for vertical domain channel state information transmission/reception in wireless communication networks
EP4322496A2 (en) 2014-07-10 2024-02-14 Fasetto, Inc. Systems and methods for message editing
US9900074B2 (en) * 2014-08-12 2018-02-20 Qualcomm Incorporated CSI request procedure in LTE/LTE-A with unlicensed spectrum
US10425211B2 (en) * 2014-09-01 2019-09-24 Lg Electronics Inc. Method for measuring and reporting channel state in wireless access system supporting unlicensed band
US10437288B2 (en) 2014-10-06 2019-10-08 Fasetto, Inc. Portable storage device with modular power and housing system
KR20220143963A (en) 2014-10-06 2022-10-25 파세토, 인크. Systems and methods for portable storage devices
WO2016064048A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for monitoring downlink control channel in wireless communication system and apparatus for the same
CN104410975B (en) * 2014-11-06 2018-06-15 东莞宇龙通信科技有限公司 Resource allocation method, system, the equipment and terminal with base station functions
US9730258B2 (en) * 2014-11-18 2017-08-08 Intel Corporation Apparatus configured to report aperiodic channel state information for dual connectivity
US20160157193A1 (en) * 2014-12-01 2016-06-02 Emily Qi Exchanging ranging and location information among peer-to-peer devices
WO2016111565A1 (en) * 2015-01-07 2016-07-14 Lg Electronics Inc. Method and apparatus for optimizing load re-balancing for dedicated core network in wireless communication system
NZ734213A (en) * 2015-01-13 2019-03-29 Ericsson Telefon Ab L M Wireless terminals, nodes of wireless communication networks, and methods of operating the same
US10034277B2 (en) 2015-01-16 2018-07-24 Intel Corporation User equipment and base station for dynamic CSI-RS and CSI-IM transmission in LTE systems
US9883491B2 (en) * 2015-01-29 2018-01-30 Intel Corporation Aperiodic channel state information (CSI) reporting for carrier aggregation
JPWO2016135791A1 (en) * 2015-02-26 2017-12-07 日本電気株式会社 Apparatus and method for proximity service communication
EP3253132B1 (en) * 2015-03-03 2023-02-15 Kyocera Corporation Communication method, processor for controlling a radio terminal and user terminal
WO2016140273A1 (en) * 2015-03-03 2016-09-09 京セラ株式会社 Base station, wireless terminal, and network device
KR102308140B1 (en) 2015-03-11 2021-10-05 파세토, 인크. Systems and methods for web API communication
US9762368B2 (en) * 2015-04-10 2017-09-12 Motorola Mobility Llc In-device coexistence with other technologies in LTE license assisted access operation
US11218261B2 (en) * 2015-06-01 2022-01-04 Qualcomm Incorporated Channel state information reference signals in contention-based spectrum
WO2016204678A1 (en) * 2015-06-15 2016-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for half-duplex communication
CN112073942B (en) * 2015-07-27 2021-12-10 华为技术有限公司 Method and equipment for transmitting information
US10608725B2 (en) * 2015-09-09 2020-03-31 Lg Electronics Inc. Method for reporting channel state and apparatus therefor
US10993131B2 (en) * 2015-09-24 2021-04-27 Lg Electronics Inc. Method for performing logging by terminal in wireless communication system and terminal using same
US20170118269A1 (en) * 2015-10-21 2017-04-27 Qualcomm Incorporated Dynamic adjustment of connection settings based on per-ue system status and usage information
US10929071B2 (en) 2015-12-03 2021-02-23 Fasetto, Inc. Systems and methods for memory card emulation
CN108029132B (en) * 2016-03-18 2021-02-23 联发科技股份有限公司 Method for deciding frame structure of OFDM symbol, user equipment and related memory
CA3017741C (en) * 2016-03-27 2020-01-28 Ofinno Technologies, Llc Channel state information transmission in a wireless network
US11102024B2 (en) * 2016-03-30 2021-08-24 Qualcomm Incorporated Standalone multicast broadcast single frequency network cell acquisition
US11277223B2 (en) * 2016-05-20 2022-03-15 Apple Inc. Control channel design for category-A devices
US11563505B2 (en) 2016-06-01 2023-01-24 Qualcomm Incorporated Time division multiplexing of synchronization channels
US11218236B2 (en) * 2016-06-01 2022-01-04 Qualcomm Incorporated Time division multiplexing of synchronization channels
JP6903690B2 (en) 2016-07-15 2021-07-14 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method based on wireless network, terminal equipment and network equipment
WO2018068817A1 (en) * 2016-10-10 2018-04-19 Huawei Technologies Co., Ltd. Communication nodes and methods for implementing a positioning-related signalling exchange
US10110284B2 (en) 2016-11-03 2018-10-23 At&T Intellectual Property I, L.P. Providing a format indicator comprising rank indication and channel state information spatial domain resolution type
US10440693B2 (en) 2016-11-04 2019-10-08 At&T Intellectual Property I, L.P. Asynchronous multi-point transmission schemes
US11696250B2 (en) * 2016-11-09 2023-07-04 Intel Corporation UE and devices for detach handling
US10938545B2 (en) * 2016-11-14 2021-03-02 Qualcomm Incorporated Synchronization signal transmission techniques for peak-to-average power ratio reduction
CA3044665A1 (en) 2016-11-23 2018-05-31 Fasetto, Inc. Systems and methods for streaming media
US10492184B2 (en) * 2016-12-09 2019-11-26 Samsung Electronics Co., Ltd. Multiplexing control information in a physical uplink data channel
WO2018144833A1 (en) 2017-02-03 2018-08-09 Fasetto, Llc Systems and methods for data storage in keyed devices
US10362166B2 (en) 2017-03-01 2019-07-23 At&T Intellectual Property I, L.P. Facilitating software downloads to internet of things devices via a constrained network
WO2018195787A1 (en) * 2017-04-26 2018-11-01 Qualcomm Incorporated Enhanced machine type communications quick idle transition after connection release
US11184878B2 (en) * 2017-05-05 2021-11-23 Beijing Xiaomi Mobile Software Co., Ltd. Signal transmission method, signal transmission apparatus, electronic device and computer-readable storage medium
WO2018223349A1 (en) * 2017-06-08 2018-12-13 Qualcomm Incorporated Collision handling mechanisms for dynamic tdd systems
US11218262B2 (en) * 2017-06-15 2022-01-04 Ntt Docomo, Inc. User terminal and wireless communication method
CN110622546B (en) * 2017-06-15 2021-01-01 Oppo广东移动通信有限公司 Method and apparatus for radio resource management measurements
US11304157B2 (en) * 2017-06-21 2022-04-12 Apple Inc. Collision handling of synchronization signal (SS) blocks
US9936453B1 (en) 2017-07-24 2018-04-03 Qualcomm Incorporated Dynamic timing update techniques for wireless devices
US10425208B2 (en) 2017-09-08 2019-09-24 At&T Intellectual Property I, L.P. Unified indexing framework for reference signals
US10856230B2 (en) 2017-09-13 2020-12-01 Apple Inc. Low power measurements mode
WO2019079628A1 (en) 2017-10-19 2019-04-25 Fasetto, Inc. Portable electronic device connection systems
JP7347417B2 (en) * 2017-11-15 2023-09-20 ソニーグループ株式会社 Base station and user equipment
CN109802985B (en) * 2017-11-17 2021-01-29 北京金山云网络技术有限公司 Data transmission method, device, equipment and readable storage medium
US10893571B2 (en) * 2017-11-17 2021-01-12 Qualcomm Incorporated Radio link monitoring based on discontinuous reception mode
CN110011706B (en) * 2018-01-05 2022-08-19 深圳市中兴微电子技术有限公司 Method and device for optimizing cooperative transmission
WO2019136645A1 (en) * 2018-01-10 2019-07-18 Oppo广东移动通信有限公司 Method for determining state of a terminal device, terminal device, and access network device
CN110324390A (en) * 2018-03-30 2019-10-11 京东方科技集团股份有限公司 A kind of cut-in method, platform of internet of things, application apparatus, service equipment
CN108768599B (en) * 2018-04-02 2022-08-19 中兴通讯股份有限公司 Method and device for sending and receiving uplink signal, storage medium and electronic equipment
KR20210018217A (en) 2018-04-17 2021-02-17 파세토, 인크. Device presentation with real-time feedback
US10328947B1 (en) 2018-04-20 2019-06-25 Lyft, Inc. Transmission schedule segmentation and prioritization
US10750501B2 (en) 2018-05-04 2020-08-18 At&T Intellectual Property I, L.P. Carrier aggregation and dual connectivity capability exchange
CN110881203A (en) * 2018-09-05 2020-03-13 电信科学技术研究院有限公司 Positioning resource coordination method, device, network node, terminal and base station
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
US11812478B2 (en) * 2018-09-29 2023-11-07 Beijing Xiaomi Mobile Software Co., Ltd. Network access method and apparatus
CN109496448B (en) * 2018-10-24 2022-05-10 北京小米移动软件有限公司 Network parameter configuration method, device and computer readable storage medium
US10887046B2 (en) 2018-11-02 2021-01-05 At&T Intellectual Property I, L.P. Performance based on inferred user equipment device speed for advanced networks
CN111162825B (en) * 2018-11-07 2023-12-29 华为技术有限公司 Channel state information of feedback method device and method for controlling the operation of a device
CN111106885A (en) * 2018-11-12 2020-05-05 维沃移动通信有限公司 Measurement method, indication method, device, terminal, network equipment and medium
KR20210111790A (en) * 2019-01-08 2021-09-13 오피노 엘엘씨 power saving mechanism
WO2020164697A1 (en) * 2019-02-13 2020-08-20 Huawei Technologies Co., Ltd. Devices for radio access network resource optimization
US11258656B2 (en) * 2019-02-19 2022-02-22 Cisco Technology, Inc. Optimizing management entity selection resiliency for geo-redundancy and load balancing in mobile core network
US10848284B2 (en) 2019-04-16 2020-11-24 At&T Intellectual Property I, L.P. Agile transport for background traffic in cellular networks
US11140086B2 (en) 2019-08-15 2021-10-05 At&T Intellectual Property I, L.P. Management of background data traffic for 5G or other next generations wireless network
WO2021117242A1 (en) * 2019-12-13 2021-06-17 株式会社Nttドコモ Terminal and measurement method
EP4104529A1 (en) * 2020-02-14 2022-12-21 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for reducing ue energy consumption
CN111343710B (en) 2020-02-26 2023-04-25 维沃移动通信有限公司 Power adjustment method and electronic equipment
US20220225265A1 (en) * 2021-01-08 2022-07-14 Samsung Electronics Co., Ltd. Method and apparatus for measurement of tai updates in an ntn
US11889578B2 (en) * 2021-03-26 2024-01-30 Qualcomm Incorporated UE assisted CDRX fallback
US11483721B1 (en) * 2021-05-11 2022-10-25 Nokia Technologies Oy Apparatus and method for beam management
US11716641B1 (en) 2022-01-24 2023-08-01 Rohde & Schwarz Gmbh & Co. Kg Systems and methods for generating synthetic wireless channel data

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781393B2 (en) * 2009-09-30 2014-07-15 Ebay Inc. Network updates of time and location
US8874103B2 (en) * 2012-05-11 2014-10-28 Intel Corporation Determining proximity of user equipment for device-to-device communication

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970000665B1 (en) 1994-09-30 1997-01-16 재단법인 한국전자통신연구소 Local radio communication system
US5697055A (en) 1994-10-16 1997-12-09 Qualcomm Incorporated Method and apparatus for handoff between different cellular communications systems
US6167445A (en) * 1998-10-26 2000-12-26 Cisco Technology, Inc. Method and apparatus for defining and implementing high-level quality of service policies in computer networks
US6820042B1 (en) 1999-07-23 2004-11-16 Opnet Technologies Mixed mode network simulator
JP3465228B2 (en) 2000-02-24 2003-11-10 日本電気エンジニアリング株式会社 Mobile communication system and direct communication method used therefor
US6973384B2 (en) 2001-12-06 2005-12-06 Bellsouth Intellectual Property Corporation Automated location-intelligent traffic notification service systems and methods
US6760388B2 (en) 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US6957067B1 (en) * 2002-09-24 2005-10-18 Aruba Networks System and method for monitoring and enforcing policy within a wireless network
KR20040061705A (en) 2002-12-31 2004-07-07 삼성전자주식회사 Method for transmitting the paging message of multimedia broadcast/multicast service in mobile communication system
US7318111B2 (en) * 2003-09-16 2008-01-08 Research In Motion Limited Methods and apparatus for selecting a wireless network based on quality of service (QoS) criteria associated with an application
US7277889B2 (en) 2003-10-07 2007-10-02 Louis Salvatore Addonisio Asset management and status system
JP2005223722A (en) 2004-02-06 2005-08-18 Matsushita Electric Ind Co Ltd Mobile terminal and on-vehicle terminal
AU2005226671B8 (en) * 2004-03-19 2008-05-08 Arbitron Inc. Gathering data concerning publication usage
US7668141B2 (en) * 2004-07-06 2010-02-23 Motorola, Inc. Method and apparatus for managing packet data loss in a wireless network
US20060026681A1 (en) 2004-07-29 2006-02-02 Zakas Phillip H System and method of characterizing and managing electronic traffic
EP1892901A3 (en) * 2004-10-01 2011-07-13 Panasonic Corporation Quality-of-service (qos)-aware scheduling for uplink transmission on dedicated channels
TWI382713B (en) * 2005-01-21 2013-01-11 Koninkl Philips Electronics Nv Measuring and monitoring qos in service differentiated wireless networks
US20060256008A1 (en) 2005-05-13 2006-11-16 Outland Research, Llc Pointing interface for person-to-person information exchange
US7583984B2 (en) 2005-08-12 2009-09-01 Lg Electronics Inc. Method of providing notification for battery power conservation in a wireless system
KR100824239B1 (en) * 2005-11-07 2008-04-24 삼성전자주식회사 Apparatus and method for processing handover of mobile relay station in a multi-hop relay broadband wireless access communication system
EP2205027B1 (en) 2005-12-22 2011-11-09 Electronics and Telecommunications Research Institute Method for discontinuous transmission/reception operation for reducing power consumption in cellular system
US20070155390A1 (en) 2006-01-04 2007-07-05 Ipwireless, Inc. Initial connection establishment in a wireless communication system
KR101162384B1 (en) 2006-08-09 2012-07-04 엘지전자 주식회사 Apparatus for controlling a communication unit and method for controlling thereof
US7769894B2 (en) * 2006-10-13 2010-08-03 At&T Intellectual Property I, L.P. Determining and presenting communication device proximity information
KR100957348B1 (en) 2006-10-16 2010-05-12 삼성전자주식회사 Method and arrartus for handover completing during drx in mobile telecommunication system
US7957360B2 (en) 2007-01-09 2011-06-07 Motorola Mobility, Inc. Method and system for the support of a long DRX in an LTE—active state in a wireless network
ES2520441T3 (en) 2007-02-05 2014-11-11 Nec Corporation Transfer method between base stations and communication terminal
GB2447299A (en) 2007-03-09 2008-09-10 Nec Corp Control of discontinuous Rx/Tx in a mobile communication system
US20080225772A1 (en) 2007-03-12 2008-09-18 Shugong Xu Explicit layer two signaling for discontinuous reception
US20080232310A1 (en) 2007-03-19 2008-09-25 Shugong Xu Flexible user equipment-specified discontinuous reception
CN101272614B (en) 2007-03-20 2010-12-08 华为技术有限公司 Method, system and device for selecting network equipment
CA2821614C (en) 2007-03-21 2016-08-23 Interdigital Technology Corporation Mimo wireless communication method and apparatus for transmitting and decoding resource block structures based on a dedicated reference signal mode
US8799968B2 (en) * 2007-04-20 2014-08-05 Samsung Information Systems America, Inc. Method and apparatus for tracking user location within video or audio content streamed to a mobile handset
US20090067386A1 (en) 2007-06-19 2009-03-12 Qualcomm Incorporated Method and apparatus for cell reselection enhancement for e-utran
US20080318592A1 (en) 2007-06-22 2008-12-25 International Business Machines Corporation Delivering telephony communications to devices proximate to a recipient after automatically determining the recipient's location
US8588738B2 (en) 2007-10-01 2013-11-19 Qualcomm Incorporated Mobile access in a diverse access point network
WO2009067227A1 (en) 2007-11-21 2009-05-28 Nortel Networks Limited Support for continuity of tunnel communications for mobile nodes having multiple care of addressing
JP5251191B2 (en) * 2008-03-19 2013-07-31 富士通株式会社 Mobile communication terminal device and communication control method
US8712415B2 (en) 2008-03-20 2014-04-29 Interdigital Patent Holdings, Inc. Timing and cell specific system information handling for handover in evolved UTRA
US8289891B2 (en) 2008-05-09 2012-10-16 Samsung Electronics Co., Ltd. Flexible sleep mode for advanced wireless systems
FI20085676A0 (en) 2008-06-30 2008-06-30 Nokia Corp Transmission of delay tolerant data
US20100029295A1 (en) 2008-07-31 2010-02-04 Assaf Touboul Gps synchronization method for wireless cellular networks
US9693184B2 (en) 2008-08-18 2017-06-27 Qualcomm Incorporated Control plane location solution to support wireless access
US8737989B2 (en) 2008-08-29 2014-05-27 Apple Inc. Methods and apparatus for machine-to-machine based communication service classes
KR100917832B1 (en) 2008-09-19 2009-09-18 엘지전자 주식회사 Method for transmitting and receiving signals considering the time alignment timer and user equipment for the same
US8107422B2 (en) 2008-09-25 2012-01-31 Qualcomm Incorporated Method and apparatus for uplink and downlink channel alignments for 3GPP continuous packet data connection (CPC) channels
DE102008052718A1 (en) 2008-10-22 2010-04-29 Rohde & Schwarz Gmbh & Co. Kg Self-organizing communication network and method of its scope
US8340199B2 (en) * 2008-10-27 2012-12-25 Samsung Electronics Co., Ltd. 8-transmit antenna reference signal design for downlink communications in a wireless system
KR101546751B1 (en) * 2008-11-05 2015-08-24 삼성전자주식회사 An efficient RLF detection mechanism in a wireless system
CN101742618B (en) 2008-11-14 2013-04-24 华为技术有限公司 Method and base station for determining discontinuous transmission mode
WO2010072020A1 (en) 2008-12-22 2010-07-01 Huawei Technologies Co., Ltd. Method for signalling in a wireless communication system
WO2010074620A1 (en) 2008-12-23 2010-07-01 Telefonaktiebolaget Lm Ericsson (Publ) A method and an arrangement of identifying traffic flows in a communication network
CN103874169B (en) 2008-12-23 2017-05-10 Tcl通讯科技控股有限公司 Mobile communication system, cell and mobile terminal
CN102239647A (en) 2009-02-01 2011-11-09 华为技术有限公司 Method for transmitting reference signals
KR101559799B1 (en) 2009-03-04 2015-10-26 엘지전자 주식회사 The method for performing CoMP operation and transmitting feedback information in wireless communication system
US8023522B2 (en) 2009-03-30 2011-09-20 Intel Corporation Enabling long-term communication idleness for energy efficiency
WO2010126842A1 (en) * 2009-04-27 2010-11-04 Interdigital Patent Holdings, Inc. Reference signals for positioning measurements
CN101877852B (en) 2009-04-29 2013-08-07 中兴通讯股份有限公司 User access control method and system
JPWO2010143428A1 (en) * 2009-06-12 2012-11-22 パナソニック株式会社 Base station control device and portable terminal
US8150446B2 (en) * 2009-06-17 2012-04-03 Telefonaktiebolaget L M Ericsson (Publ) Thermal energy control in a mobile transceiver
JP5101568B2 (en) 2009-06-23 2012-12-19 株式会社エヌ・ティ・ティ・ドコモ Radio base station apparatus, mobile terminal apparatus, and transmission power control method
CN101938773B (en) 2009-06-30 2014-11-05 中兴通讯股份有限公司 Initial transmitting power acquisition method and base station
US9191179B2 (en) 2009-10-01 2015-11-17 Electronics And Telecommunications Research Institute Method for reducing power consumption of terminal in mobile communication system using multi-carrier structure
WO2011041753A2 (en) 2009-10-02 2011-04-07 Research In Motion Limited System and method for performing measurement reporting
WO2011041751A2 (en) 2009-10-02 2011-04-07 Research In Motion Limited Measurement reporting in a wireless network
US20110086635A1 (en) 2009-10-09 2011-04-14 Alcatel-Lucent Usa Inc. Method And Apparatus For Utilizing Mobility State Information
WO2011054149A1 (en) 2009-11-06 2011-05-12 华为技术有限公司 Method, device and communication system for load control
US9185673B2 (en) 2009-11-25 2015-11-10 Interdigital Patent Holdings, Inc. Machine type communication preregistration
KR101754447B1 (en) 2009-12-22 2017-07-05 인터디지탈 패튼 홀딩스, 인크 Group-based machine to machine communication
US8908617B2 (en) 2009-12-31 2014-12-09 Samsung Electronics Co., Ltd. Uplink demodulation reference signal design for MIMO transmission
CN102123477B (en) * 2010-01-08 2015-06-10 中兴通讯股份有限公司 Access realization method and device of M2M (Machine to Machine) core network
US20110171983A1 (en) 2010-01-11 2011-07-14 Kundan Tiwari Apparatuses, systems, and methods for maintaining allowed closed subscriber group (csg) list
KR101761419B1 (en) 2010-01-13 2017-07-26 엘지전자 주식회사 Method and Apparatus for updating location information of User Equipment
JP2011151545A (en) 2010-01-20 2011-08-04 Nec Corp Communication device, receiving method, and program
US8614981B2 (en) 2010-01-29 2013-12-24 Qualcomm Incorporated Reporting of channel information to support coordinated multi-point data transmission
CN102149166B (en) 2010-02-10 2015-08-12 中兴通讯股份有限公司 The system of selection of Radio Access Network and system
US20110196925A1 (en) * 2010-02-11 2011-08-11 Martin Hans Methods and apparatus for providing presence service for contact management representation
KR101792984B1 (en) 2010-02-12 2017-11-02 인터디지탈 패튼 홀딩스, 인크 Method and apparatus for supporting machine-type communications
US8305987B2 (en) 2010-02-12 2012-11-06 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
KR20120017410A (en) * 2010-02-17 2012-02-28 지티이 (유에스에이) 인크. Methods and systems for csi-rs transmission in lte-advance systems
US9001663B2 (en) * 2010-02-26 2015-04-07 Microsoft Corporation Communication transport optimized for data center environment
KR101807732B1 (en) * 2010-03-09 2018-01-18 삼성전자주식회사 Multi-user wireless network for power saving, and communication method of terminal and access point in the multi-user wireless network
CA2784274C (en) 2010-03-17 2016-02-16 Lg Electronics Inc. Method and apparatus for providing channel state information-reference signal (csi-rs) configuration information in a wireless communication system supporting multiple antennas
BR112012023489A2 (en) 2010-03-19 2016-05-24 Alcatel Lucent machine-type communication system and method and cell search method.
US8462722B2 (en) 2010-03-26 2013-06-11 Telefonaktiebolaget L M Ericsson (Publ) Access control for machine-type communication devices
WO2011123755A1 (en) 2010-04-02 2011-10-06 Interdigital Patent Holdings, Inc. Group procedures for machine type communications devices
US8638684B2 (en) 2010-04-05 2014-01-28 Qualcomm Aperiodic channel state information request in wireless communication
CN101969635A (en) 2010-04-30 2011-02-09 中兴通讯股份有限公司 Access control method and system for machine communication
EP2577887A4 (en) 2010-05-26 2016-11-16 Lg Electronics Inc Nas-based signaling protocol for overload protection of random access in massive machine type communication
JP4802289B1 (en) 2010-05-31 2011-10-26 株式会社東芝 Electronic device and communication system
US8971261B2 (en) 2010-06-02 2015-03-03 Samsung Electronics Co., Ltd. Method and system for transmitting channel state information in wireless communication systems
KR20110137652A (en) 2010-06-17 2011-12-23 삼성전자주식회사 Wireless communication system and method for establishing connection between user equipment and mobility management entity
CN102340379B (en) 2010-07-15 2015-04-22 中国移动通信集团公司 CSI-RS (Channel Status Information-Reference Signal) transmission method and detection method, and devices of CSI-RS transmission method and detection method
JP5668139B2 (en) 2010-07-26 2015-02-12 エルジー エレクトロニクス インコーポレイティド Aperiodic channel state information feedback method in wireless access system supporting multi-carrier aggregation
US20120033613A1 (en) 2010-08-04 2012-02-09 National Taiwan University Enhanced rach design for machine-type communications
WO2012021097A2 (en) * 2010-08-11 2012-02-16 Telefonaktiebolaget L M Ericsson (Publ) Methods of providing cell grouping for positioning and related networks and devices
JP5986084B2 (en) * 2010-08-13 2016-09-06 インターデイジタル パテント ホールディングス インコーポレイテッド Method and system for intra-device interference mitigation
US20120040643A1 (en) 2010-08-13 2012-02-16 John Diachina Network access control based on serving node identifiers
EP2606618A4 (en) * 2010-08-16 2014-08-20 Zte Usa Inc Methods and systems for csi-rs resource allocation in lte-advance systems
US8606260B2 (en) 2010-08-18 2013-12-10 Apple Inc. Location-based profile
CN102387563B (en) 2010-08-26 2015-05-27 华为技术有限公司 Service control method of machine type communication equipment, and related device and system
US8606290B2 (en) 2010-09-02 2013-12-10 At&T Intellectual Property I, L.P. Method and apparatus for performing a demotion in a cellular communications network
CN102438277A (en) 2010-09-29 2012-05-02 中兴通讯股份有限公司 Terminal access method and system
CN102448144A (en) 2010-09-30 2012-05-09 电信科学技术研究院 Method and device for accessing MTC equipment into network
JP5005082B2 (en) 2010-10-04 2012-08-22 株式会社エヌ・ティ・ティ・ドコモ Base station apparatus, mobile terminal apparatus and communication control method
US20120083204A1 (en) 2010-10-04 2012-04-05 Nokia Corporation Method and Apparatus for Controlling Access
KR101928448B1 (en) * 2010-10-11 2018-12-13 삼성전자주식회사 Method and appratus for avoiding inteference from in-device communication module using time division multiplexing in wireless communication system
WO2012057590A2 (en) * 2010-10-29 2012-05-03 Samsung Electronics Co., Ltd. Method and apparatus for handling in-device co-existence interference in a user equipment
US9130725B2 (en) 2010-11-02 2015-09-08 Qualcomm Incorporated Interaction of PDSCH resource mapping, CSI-RS, and muting
CN102395209B (en) 2010-11-08 2015-07-29 开曼群岛威睿电通股份有限公司 The classification recognition methods of Machine To Machine application and mobile device and service network
US8654691B2 (en) 2010-11-15 2014-02-18 Blackberry Limited Managing wireless communications
KR101759350B1 (en) * 2010-11-25 2017-07-18 삼성전자주식회사 Method for estimating displacement of user terminal and apparatus for the same
US20120155437A1 (en) * 2010-12-16 2012-06-21 Richard Lee-Chee Kuo Method and apparatus for avoiding in-device coexistence interference in a wireless communication system
US8681740B2 (en) * 2010-12-21 2014-03-25 Tektronix, Inc. LTE network call correlation during User Equipment mobility
US8934362B2 (en) * 2011-01-06 2015-01-13 Mediatek Inc. Power control method to mitigate interference for in-device coexistence
US8675558B2 (en) * 2011-01-07 2014-03-18 Intel Corporation CQI definition for transmission mode 9 in LTE-advanced
EP2475127A1 (en) * 2011-01-10 2012-07-11 Panasonic Corporation Channel state information reporting for component carriers for which no channel state information was calculated
US20120195298A1 (en) * 2011-02-01 2012-08-02 Innovative Sonic Corporation Method and apparatus to avoid in-device coexistence interference in a wireless communication system
US20120207070A1 (en) * 2011-02-10 2012-08-16 Qualcomm Incorporated Mobility enhancements for long term evolution (lte) discontinuous reception (drx) operations
US20130190006A1 (en) * 2011-02-15 2013-07-25 Telefonaktiebolaget L M Ericsson (Publ) Methods and Systems for Enabling User Activity-Aware Positioning
US8805303B2 (en) * 2011-02-18 2014-08-12 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference with preferred frequency notification
WO2012115414A2 (en) 2011-02-21 2012-08-30 Samsung Electronics Co., Ltd. Method and apparatus for saving power of user equipment in wireless communication system
US9264198B2 (en) 2011-02-28 2016-02-16 Qualcomm Incorporated Methods and apparatus for employing different capabilities for different duplexing modes
US9204392B2 (en) * 2011-04-04 2015-12-01 Kyocera Corporation Mobile communication method and radio terminal
US8289917B1 (en) * 2011-05-02 2012-10-16 Renesas Mobile Corporation Method and apparatus for defining resource elements for the provision of channel state information reference signals
JP5325928B2 (en) 2011-05-02 2013-10-23 株式会社エヌ・ティ・ティ・ドコモ Channel state information notification method, radio base station apparatus, user terminal, and radio communication system
EP2525614A1 (en) * 2011-05-20 2012-11-21 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Selective paging of user equipments in cellular mobile networks
GB2490968A (en) 2011-05-20 2012-11-21 Nec Corp Sharing radio access networks fairly between multiple operators
EP2719101B1 (en) 2011-06-10 2017-11-22 LG Electronics Inc. Method and apparatus for transmitting aperiodic channel state information in wireless communication system
US8824301B2 (en) * 2011-06-15 2014-09-02 Innovative Sonic Corporation Method and apparatus to provide assistance information for reconfiguration in a wireless communication system
JP5824154B2 (en) * 2011-08-11 2015-11-25 インターデイジタル パテント ホールディングス インコーポレイテッド Machine type communication connectivity sharing
US8843139B2 (en) * 2011-09-26 2014-09-23 Blackberry Limited Method and system for small cell discovery in heterogeneous cellular networks
US9319909B2 (en) * 2011-09-29 2016-04-19 Sharp Kabushiki Kaisha Devices for radio link monitoring
BR112014007959A2 (en) 2011-10-03 2017-06-13 Intel Corp mechanisms for device to device communication
US20130114514A1 (en) * 2011-11-04 2013-05-09 Nokia Siemens Networks Oy DMRS Arrangements For Coordinated Multi-Point Communication
EP2777358B1 (en) * 2011-11-11 2018-01-10 BlackBerry Limited Method and apparatus for user equipment state transition
US8849253B2 (en) * 2011-12-09 2014-09-30 Verizon Patent And Licensing Inc. Location-based proximity notification
GB2496212B (en) * 2011-12-20 2013-11-27 Renesas Mobile Corp Method and apparatus for traffic offloading between devices
US8874162B2 (en) * 2011-12-23 2014-10-28 Microsoft Corporation Mobile device safe driving
US9036546B2 (en) * 2012-01-04 2015-05-19 Futurewei Technologies, Inc. System and method for device discovery for device-to-device communication in a cellular network
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
CN104285465B (en) 2012-01-30 2018-09-11 爱立信(中国)通信有限公司 Base station, user equipment in communication system and method therein
US20130225123A1 (en) * 2012-02-29 2013-08-29 Interdigital Patent Holdings, Inc. Method and apparatus for seamless delivery of services through a virtualized network
US9461766B2 (en) * 2012-03-09 2016-10-04 Lg Electronics Inc. Method and apparatus for setting reference signal
US9119209B2 (en) 2012-03-30 2015-08-25 Samsung Electronics Co., Ltd. Apparatus and method for channel-state-information pilot design for an advanced wireless network
US9729273B2 (en) * 2012-03-30 2017-08-08 Sharp Kabushiki Kaisha Collision resolution among transmission schedules of uplink control information (UCI)
US9078109B2 (en) * 2012-04-09 2015-07-07 Intel Corporation Frame structure design for new carrier type (NCT)
EP3897016A3 (en) * 2012-04-27 2021-11-24 Interdigital Patent Holdings, Inc. Method and apparatus for provisioning of d2d policies for a wireless transmit receive unit (wtru)
US11546787B2 (en) 2012-05-09 2023-01-03 Samsung Electronics Co., Ltd. CSI definitions and feedback modes for coordinated multi-point transmission
US9515757B2 (en) 2012-05-11 2016-12-06 Intel Corporation Systems and methods for enhanced user equipment assistance information in wireless communication systems
US9083479B2 (en) 2012-05-11 2015-07-14 Intel Corporation Signaling for downlink coordinated multipoint in a wireless communication system
CN103391265B (en) * 2012-05-11 2018-01-19 中兴通讯股份有限公司 The transmission method of primary and secondary synchronization signals in a kind of base station and new carrier wave
US20130301491A1 (en) 2012-05-11 2013-11-14 Shafi Bashar Scheduling synchronization signals in a new carrier type
US9130688B2 (en) 2012-05-11 2015-09-08 Intel Corporation User equipment and methods for handover enhancement using reference signal received quality (RSRQ)
US8982741B2 (en) * 2012-05-11 2015-03-17 Intel Corporation Method, system and apparatus of time-division-duplex (TDD) uplink-downlink (UL-DL) configuration management
TWI573484B (en) 2012-05-11 2017-03-01 英特爾股份有限公司 Selective joinder of machine-type communication user equipment with wireless cell provided by an evolved node b (enb)
US9036578B2 (en) 2012-12-19 2015-05-19 Blackberry Limited Method and apparatus for control channel configuration in a heterogeneous network architecture
US9832717B2 (en) 2012-12-19 2017-11-28 Blackberry Limited Method and apparatus for layer 3 configuration in a heterogeneous network
US9271324B2 (en) 2012-12-19 2016-02-23 Blackberry Limited Method and apparatus for assisted serving cell configuration in a heterogeneous network architecture
US9072021B2 (en) 2012-12-19 2015-06-30 Blackberry Limited Method and apparatus for hybrid automatic repeat request operation in a heterogeneous network architecture
US9084264B2 (en) 2013-02-26 2015-07-14 Blackberry Limited Method and apparatus for small cell configuration in a heterogeneous network architecture
JP6026318B2 (en) 2013-02-27 2016-11-16 クラリオン株式会社 Program expansion system, server used therefor, program expansion method, and program management program
US9264966B2 (en) 2013-03-11 2016-02-16 Alcatel Lucent Method and apparatus for LTE handover reduction
US20140274049A1 (en) 2013-03-12 2014-09-18 Qualcomm Incorporated Method and apparatus for ue measurement assisted handover classification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781393B2 (en) * 2009-09-30 2014-07-15 Ebay Inc. Network updates of time and location
US8874103B2 (en) * 2012-05-11 2014-10-28 Intel Corporation Determining proximity of user equipment for device-to-device communication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10667322B2 (en) 2016-05-03 2020-05-26 Kt Corporation Method and apparatus for changing connection state of terminal

Also Published As

Publication number Publication date
US20160261387A1 (en) 2016-09-08
US9444569B2 (en) 2016-09-13
US20170013557A1 (en) 2017-01-12
US9496973B2 (en) 2016-11-15
US20150365937A1 (en) 2015-12-17
US9270400B2 (en) 2016-02-23
HUE039146T2 (en) 2018-12-28
US20180063792A1 (en) 2018-03-01
US20150056994A1 (en) 2015-02-26
EP2847950A1 (en) 2015-03-18
EP2847950A4 (en) 2016-01-20
US20160044615A1 (en) 2016-02-11
JP2015521426A (en) 2015-07-27
US20170294998A1 (en) 2017-10-12
US9356724B2 (en) 2016-05-31
US20170013554A1 (en) 2017-01-12
US10327207B2 (en) 2019-06-18
US9246618B2 (en) 2016-01-26
US10433254B2 (en) 2019-10-01
US9154251B2 (en) 2015-10-06
RU2014141602A (en) 2016-05-10
CA2871107C (en) 2017-02-28
US20150043515A1 (en) 2015-02-12
BR112014028165A2 (en) 2019-09-24
US8874103B2 (en) 2014-10-28
US20150036569A1 (en) 2015-02-05
AU2013259165B2 (en) 2016-02-04
WO2013170194A1 (en) 2013-11-14
US20130303160A1 (en) 2013-11-14
US20160127870A1 (en) 2016-05-05
BE1021379B1 (en) 2015-11-12
US10129830B2 (en) 2018-11-13
KR20150003294A (en) 2015-01-08
CN104303468B (en) 2017-06-09
JP5905160B2 (en) 2016-04-20
MX2014013756A (en) 2015-08-07
RU2595512C2 (en) 2016-08-27
CN104303468A (en) 2015-01-21
US10057855B2 (en) 2018-08-21
US20160014662A1 (en) 2016-01-14
AU2013259165A1 (en) 2014-11-06
MX342526B (en) 2016-10-03
CA2871107A1 (en) 2013-11-14
US20140044076A1 (en) 2014-02-13
EP2847950B1 (en) 2017-12-13
MY174530A (en) 2020-04-23
US9736780B2 (en) 2017-08-15
KR101604207B1 (en) 2016-03-16
US20130303166A1 (en) 2013-11-14

Similar Documents

Publication Publication Date Title
US9270400B2 (en) Determining proximity of user equipment for device-to-device communication
AU2013259668B2 (en) Determining proximity of user equipment for device-to-device communication
US9351209B2 (en) Opportunistic device-to-device communication
FI129513B (en) Selective joinder of machine-type communication user equipment with wireless cell
US11425676B2 (en) Methods and nodes for managing position information associated with a group of wireless devices
EP3761679B1 (en) Location method and related device
KR20140006978A (en) Network reentry of machine-to-machine devices
US20210219299A1 (en) Communication Method and Device
EP2885944A1 (en) Mobile proxy for cloud radio access network
US20230262691A1 (en) Uplink transmission sending method and apparatus, uplink transmission receiving method and apparatus, communication device, and medium
US20230164584A1 (en) Data transmitting method and apparatus, communication device, and storage medium
US20220408469A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium
WO2023024948A1 (en) Method and apparatus for determining position
RU2776911C2 (en) Positioning method and corresponding device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: APPLE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTEL CORPORATION;REEL/FRAME:052916/0308

Effective date: 20191130

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8