US20140294601A1 - Active adaptive hydraulic ripple cancellation algorithm and system - Google Patents

Active adaptive hydraulic ripple cancellation algorithm and system Download PDF

Info

Publication number
US20140294601A1
US20140294601A1 US14/242,636 US201414242636A US2014294601A1 US 20140294601 A1 US20140294601 A1 US 20140294601A1 US 201414242636 A US201414242636 A US 201414242636A US 2014294601 A1 US2014294601 A1 US 2014294601A1
Authority
US
United States
Prior art keywords
ripple
torque
velocity
electric motor
hydraulic pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/242,636
Inventor
Colin Patrick O'Shea
Tyson David Sawyer
Marco Giovanardi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Americas Inc
ClearMotion Inc
Acadia Woods Partners LLC
Franklin Strategic Series Franklin Small Cap Growth Fund
Franklin Strategic Series Franklin Growth Opportunities Fund
Wil Fund I LP
Franklin Templeton Investment Funds Franklin US Opportunities Fund
FHW LP
Microsoft Global Finance ULC
Newview Capital Fund I LP
TEW LP
Private Shares Fund
Brilliance Journey Ltd
Original Assignee
Levant Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Levant Power Corp filed Critical Levant Power Corp
Priority to US14/242,636 priority Critical patent/US20140294601A1/en
Assigned to LEVANT POWER CORPORATION reassignment LEVANT POWER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIOVANARDI, MARCO, O'SHEA, COLIN PATRICK, SAWYER, TYSON DAVID
Publication of US20140294601A1 publication Critical patent/US20140294601A1/en
Assigned to WIL FUND I, L.P., ACADIA WOODS PARTNERS, LLC, FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND, FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U.S. OPPORTUNITIES FUND, NEWVIEW CAPITAL FUND I, L.P., FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND reassignment WIL FUND I, L.P. PATENT SECURITY AGREEMENT Assignors: ClearMotion, Inc.
Assigned to ACADIA WOODS PARTNERS, LLC reassignment ACADIA WOODS PARTNERS, LLC AMENDED & RESTATED PATENT SECURITY AGREEMENT Assignors: CLEARMOTION ACQUISITION I LLC, ClearMotion, Inc.
Assigned to MICROSOFT GLOBAL FINANCE, FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U.S. OPPORTUNITIES FUND, ACADIA WOODS PARTNERS, LLC, THE PRIVATE SHARES FUND, TEW LIMITED PARTNERSHIP, NEWVIEW CAPITAL FUND I, LP, BRILLIANCE JOURNEY LIMITED, BRIDGESTONE AMERICAS, INC., FHW LIMITED PARTNERSHIP, FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND, WIL FUND I, L.P., FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND reassignment MICROSOFT GLOBAL FINANCE CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT. Assignors: CLEARMOTION ACQUISITION I LLC, ClearMotion, Inc.
Assigned to ClearMotion, Inc., CLEARMOTION ACQUISITION I LLC reassignment ClearMotion, Inc. TERMINATION OF AMENDED & RESTATED PATENT SECURITY AGREEMENT Assignors: ACADIA WOODS PARTNERS, LLC
Assigned to ClearMotion, Inc., CLEARMOTION ACQUISITION I LLC reassignment ClearMotion, Inc. TERMINATION OF AMENDED & RESTATED PATENT SECURITY AGREEMENT Assignors: BRIDGESTONE AMERICAS, INC., BRILLIANCE JOURNEY LIMITED, FHW LIMITED PARTNERSHIP, FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND, FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND, FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U.S. OPPORTUNITIES FUND, MICROSOFT GLOBAL FINANCE, NEWVIEW CAPITAL FUND I, LP, TEW LIMITED PARTNERSHIP, THE PRIVATE SHARES FUND, WIL FUND I, L.P.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/26Resilient suspensions characterised by arrangement, location or kind of springs having fluid springs only, e.g. hydropneumatic springs
    • B60G11/265Resilient suspensions characterised by arrangement, location or kind of springs having fluid springs only, e.g. hydropneumatic springs hydraulic springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/14Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers accumulating utilisable energy, e.g. compressing air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/06Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/19Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/10Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using light effect devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • aspects relate to a device and methods for electronically attenuating pressure and or flow ripple in positive displacement hydraulic pumps/motors.
  • pressure differential generated by constant torque application contains pressure ripple that is largely undesirable.
  • This ripple is typically the result of non-constant flow capacity of the hydraulic pump/motor and of the variable leakage path around the pump/motor as a function of the position. It also typically occurs at frequencies related to the speed of the pump. For a rotary pump such as a form of gear pump, this ripple occurs at a frequency that is equal to the rotational frequency of the unit multiplied by the number of teeth or lobes and in integer harmonics thereof. For a piston-type pump the ripple frequency is proportional to the stroke period of individual pistons multiplied by the total number of pistons.
  • Methods of reducing the magnitude of this ripple may commonly include increasing the number of ripple pulses per hydraulic cycle (e.g. number of gear teeth, number of pistons) or dampening the ripple downstream or upstream of the pump/motor by some means such as adding compliance. This may be accomplished by inserting a device such as an accumulator.
  • Other methods of reducing the pressure ripple of hydraulic pumps/motors may include an apparatus for sensing the flow ripple generated by the pump and counteracting this with a negative ripple generator to cancel and eliminate the system flow ripple, where the negative ripple generator consists of a moveable piston controlled by a solid state motor.
  • Another method of reducing the flow ripple in a hydraulic system includes using a hydrostatic motor in fluid communication with a variable displacement pump. In this arrangement a displacement signal is generated and applied to the variable displacement unit in order to reduce the torque ripple of the hydrostatic motor. This arrangement also has the negative attribute of requiring multiple independently controlled hydraulic flow generating devices. It is recognized that the ability to substantially attenuate the ripple of a hydraulic pump/motor without the need for additional flow generating devices, at a broad spectrum of frequencies with minimal cost and minimal efficiency penalties, is highly desirable.
  • aspects of the invention relate to a device and methods to electronically control and improve the ripple characteristics of hydraulic pumps/motors.
  • Subsequent references to a hydraulic pump will be synonymous with a hydraulic pump and with a hydraulic motor.
  • Subsequent references to an electric motor will be synonymous with an electric motor and with an electric generator and with a BLDC motor. References to a rotor and position thereof are synonymous with the entire rotating assembly and therefore with the electric motor position and hydraulic pump position.
  • Subsequent references to ripple torque and ripple velocity are synonymous with a torque signal that is commanded by the controller and with a velocity signal commanded by the controller respectively; both are cancellation signals that are added to a nominal command torque or velocity signal.
  • Subsequent references to steady state conditions are synonymous with a substantially constant hydraulic pump velocity.
  • Subsequent references to displacement flow are synonymous with flow that is transported through the hydraulic pump/motor. This displacement flow may vary with the angular position of the rotor. An operating point may be specified by a combination of pressure differential and pump velocity.
  • a hydraulic pump is coupled to the shaft of an electric motor such that torque applied to the shaft of the electric motor results in torque applied to the hydraulic pump.
  • a method of electric motor position sensing is provided such that accurate control over motor torque with respect to position is achieved.
  • Pressure differential is generated across the hydraulic pump by applying torque to the shaft of the electric motor.
  • This torque can be either a retarding torque, in which case shaft power is extracted from the pressure differential, or a driving torque, in which case power is input to the electric motor to cause a pressure differential.
  • constant application of torque at steady state will generate non-constant and periodic fluctuations in pressure differential due predominately to the geometric nature of the hydraulic pump and non-constant flow capacity therein; this fact is well known by those trained in the art.
  • a non-constant torque, or ripple torque can be carefully applied as a function of rotor position by the electric motor in order to attenuate the magnitude of the generated pressure ripple.
  • This torque may fluctuate above and below the nominal mean constant torque to achieve the same mean pressure as the above-mentioned case of constant torque application.
  • the mean of the ripple torque may be the same value as the constant torque to achieve the same mean pressure differential.
  • one revolution of the hydraulic motor will generate a predetermined and predictable number of periodic fluctuations in pressure and/or flow, which in steady state operation will comprise a periodic waveform with respect to position.
  • the ripple torque may result in a ripple velocity to increase velocity and generate increased displacement flow when the displacement flow is lower than the mean flow, and to decrease velocity and generate decreased displacement flow when the displacement flow is higher than the mean flow.
  • the ripple torque applied is commanded of the controller by a ripple model that includes rotor position.
  • the ripple model specifies the waveform of ripple torque to be applied in order to attenuate pressure ripple at a given operating point.
  • the specification of the torque waveform may include the magnitude of one or more periodic waveforms, relative phase angles between each of the plurality of waveforms, as well as the relative phase angle of the resultant waveform with respect to position of the electric motor.
  • the summation of one or a plurality of waveforms with predominant frequencies with respect to rotor position at any integer harmonic may produce a resultant waveform that serves to attenuate pressure ripple at multiple harmonic frequencies of the primary rotational frequency.
  • the mean ripple torque applied in order to achieve a substantially constant pressure differential value is substantially equal to the constant torque value applied to achieve a mean pressure ripple of the same value.
  • the root mean square value of the ripple torque may be higher than the mean ripple torque. In this manner the additional electric power losses associated with this method of ripple cancellation are a result of the electrical resistance losses due to the difference between the root mean square current and the mean current required to produce the tipple current. This may be considered small in comparison with the overall electrical resistance losses and therefore negligible as a loss of the system.
  • the ripple model takes as direct inputs any of rotor velocity, electric motor torque, hydraulic flow rate, and hydraulic pressure.
  • An operating point may be determined by a combination of rotor velocity or hydraulic flow rate, and motor torque or hydraulic pressure.
  • the model may be a function or a series of functions in which the direct inputs serve as independent variables.
  • the model may otherwise be a multidimensional array indexed by any combination of the direct inputs.
  • the parameters of the ripple model with either of the above detailed formulations are adaptable and or updatable.
  • Sensor input from one or a plurality of secondary sensors that are not used to detect rotor position are used as feedback to the ripple model in order to update model parameters that specify the ripple torque waveform.
  • the model need not account for all effects of externalities and perturbations but rather, may dynamically update its parameters to account for these factors as they relate to the hydraulic pressure ripple and the corresponding cancellation waveform.
  • the ripple model is a feed-forward ripple model of any of torque and velocity.
  • the inputs to the model are based on commanded or sensed parameters while the system response is not monitored as a feedback signal. In this manner the model does not have a measure of its performance and does not dynamically adjust its output accordingly to system response in a time scale on the order of the system time constant.
  • ripple cancellation is carried out in a closed loop feedback based control system.
  • a sensor that correlates with pressure ripple a pressure sensor, a flow sensor, a strain gauge, an accelerometer etc.
  • a desired output which may be based on an input parameter (pressure, flow, force etc.), the difference between the desired and actual being considered the error or ripple.
  • This signal is then fed into the motor controller, which adjusts the applied torque in order to minimize the magnitude of the ripple signal.
  • rotor position may be detected by any of a number of methods including a rotary encoder, a Hall effect sensor, optical sensors, or model-based position estimation that utilize external signals such as phase voltages and phase current signals of the electric motor.
  • a rotary encoder a Hall effect sensor
  • optical sensors or model-based position estimation that utilize external signals such as phase voltages and phase current signals of the electric motor.
  • the latter are known in the field as “sensor-less” algorithms for controlling electric motors.
  • Sensor-less methods may include comparing electric motor parameters to a model of motor back EMF.
  • the output of the ripple model is a specified ripple velocity as opposed to a ripple torque.
  • the displacement flow of the hydraulic pump is non-constant so it may be necessary for the speed to ripple accordingly.
  • the motor controller performs closed-loop velocity control in order to achieve the ripple velocity specified by the ripple model.
  • No ripple torque specification is necessary and no feedback on torque is performed.
  • the output of a ripple velocity has the same attenuation effect on pressure ripple as the model that specifies ripple torque.
  • the factors that influence how ripple torque leads to a ripple velocity primarily include hydraulic drag torque and rotational inertia.
  • the primary difference of a ripple velocity model over a ripple torque model is that these influences and changes therein are external to the model set parameters and are instead accounted for in the closed loop velocity control. Any changes in torque requirements to achieve a specified ripple velocity will be directly handled by the velocity feedback control.
  • the electric motor is immersed in a hydraulic fluid along with the hydraulic pump. In this manner position sensing of the electric motor must be performed inside a pressurized fluid environment.
  • the hydraulic pump is preferably located coaxially with the electric motor.
  • the electric motor and hydraulic pump are contained in an actuator of a vehicle suspension system. Pressure differential generated across the hydraulic pump results in a force on the piston of the actuator.
  • Command torque on the electric motor may be the output of a separate vehicle dynamics model and or feedback control system.
  • the ripple torque may be added to the command torque to impart an overall torque applied to the rotor.
  • the command torque is used to specify the mean pressure, which may be used as an input to the ripple velocity model.
  • operating the electric motor comprises adjusting the current flow through the windings of the electric motor in response to sensed angular position of the rotor.
  • Operating the electric motor may also be accomplished by adjusting the voltage in the windings of the electric motor in response to sensed angular position of the rotor.
  • the electric motor may be a BLDC motor.
  • FIG. 8-1 is a representative plot of hydraulic pump/motor pressure ripple about a nominal average pressure under constant electric motor/generator torque.
  • FIG. 8-2A is a representative plot of hydraulic pump/motor pressure ripple about a nominal average pressure under constant electric motor/generator torque over one repeating hydraulic pump/motor cycle.
  • FIG. 8-2B is a representative plot of hydraulic pump/motor pressure ripple about a nominal average pressure under fluctuating and controlled motor/generator torque over the same repeating hydraulic pump/motor cycle as 8 - 2 A.
  • the fluctuating torque compensates natural pressure variations in the hydraulic system thereby attenuating the resulting system pressure fluctuations.
  • FIG. 8-3A is a representative plot of the necessary electric motor/generator torque to produce the pressure ripple shown in FIG. 1A .
  • FIG. 8-3B is a representative plot of the necessary electric motor/generator torque to produce the attenuated pressure ripple shown in FIG. 1B .
  • FIG. 8-4 is an embodiment of the control block diagram of a model-based feed-forward ripple cancelling control system for a hydraulic pump/motor with rotor position sensing.
  • the nominal torque command may be the output of a vehicle control model.
  • FIG. 8-5 is an embodiment of the control block diagram of a feedback based ripple cancelling torque control system for a hydraulic pump/motor based on load feedback (pressure, force, acceleration etc.).
  • the nominal pressure/force/acceleration command may be the output of a vehicle control model.
  • FIG. 8-6 is an embodiment of the control block diagram of an adaptable model-based feed-forward torque ripple canceling control system for a hydraulic pump/motor. External sensors provide input to the controller and the model is updated semi-continuously during the course of operation. Direct feedback control is not implemented.
  • Some aspects relate to a system and feed-forward control method of electronically attenuating pressure ripple in a positive displacement pump/motor. Other aspects relate to a method of adapting a model based feed-forward control on the basis of output sensor information.
  • FIG. 8-1 a representative plot of steady state pressure ripple in the time domain is shown for a hydraulic pump/motor operating at constant frequency under a constant torque application.
  • a generated pressure differential signal 8 - 102 fluctuates in time about a mean pressure differential 8 - 104 which is substantially constant throughout time.
  • the peak-to-peak amplitude 8 - 106 of this fluctuating pressure differential signal 8 - 102 is substantially consistent throughout time as the geometric pattern of the hydraulic pump/motor is symmetric.
  • the peak-to-peak amplitude 8 - 106 is determined by many characteristics of the hydraulic pump.
  • FIG. 8-2A a representative plot of steady state pressure ripple in the position domain is shown for a hydraulic pump operating at constant frequency under a constant torque application.
  • the position theta 8 - 202 defines the geometric period in position over which the pump is geometrically repeating; the average periodic pressure ripple 8 - 204 over this position period is consistent.
  • the mean pressure differential 8 - 206 is substantially constant over one periodic cycle and therefore constant throughout operation.
  • the peak-to-peak amplitude 8 - 106 of the fluctuating pressure signal is consistent from cycle to cycle as the system is nominally periodic in geometry.
  • FIG. 8-2B a representative plot of pressure ripple in the position domain is shown for a pump/motor under torque application from a model based feed forward torque controller.
  • the mean pressure differential 8 - 206 remains at the same value as in FIG. 8-2A .
  • the peak-to-peak amplitude 8 - 108 of the fluctuating pressure signal 8 - 210 is consistent from cycle to cycle and is considerably smaller than the peak-to-peak amplitude 8 - 106 in the constant torque application case of FIG. 8-2A .
  • the average repeating pressure ripple 8 - 210 retains periodicity over the same geometric period theta 8 - 202 .
  • FIG. 8-3A a steady state time domain representation of the constant torque application to achieve the pressure ripple in FIG. 8-2A is shown.
  • the torque value 8 - 302 is constant throughout time and is a DC value with some offset from zero.
  • FIG. 8-3B a steady state time domain representation of a fluctuating torque output from a model-based feed forward controller is shown.
  • the mean torque 8 - 304 is constant throughout time and equal to the constant torque 8 - 302 from the case shown in FIG. 8-3A .
  • the torque signal 8 - 306 fluctuates above and below the mean torque 8 - 304 .
  • the peak-to-peak amplitude 8 - 308 of the torque signal has a magnitude that is an output of the ripple model.
  • FIG. 8-4 a control block diagram of a model-based feed-forward ripple cancelling torque control system for a hydraulic pump is shown.
  • a nominal torque command 8 - 402 which is an output of a separate system level control system, is an input to the feed-forward ripple model 8 - 404 .
  • the rotational speed of the hydraulic pump 8 - 424 is fed into the feed-forward ripple model 8 - 404 which in turn outputs a ripple torque magnitude 8 - 406 and a ripple torque phase offset 8 - 408 with respect to rotor position 8 - 422 .
  • the ripple torque magnitude 8 - 406 and ripple torque phase offset 8 - 408 are fed into the motor controller 8 - 410 which also takes as input the nominal torque command 8 - 402 and in turn outputs an overall applied torque 8 - 412 to the system 8 - 414 which refers to the hydraulic pump.
  • the applied torque 8 - 412 results in a generated pressure differential 8 - 416 across the hydraulic pump 8 - 414 as well as a rotational speed 8 - 418 of the hydraulic pump.
  • a position sensor 8 - 420 monitors the position 8 - 422 of the pump 8 - 414 from which rotor speed 8 - 424 can be derived.
  • the resulting rotor speed 8 - 424 is again fed into the feed-forward ripple model 8 - 404 . Note that the control variable of interest in this system is pressure differential 8 - 416 yet there is no corresponding pressure sensor or feedback on this signal.
  • FIG. 8-5 a control block diagram of a closed-loop feedback based ripple cancelling torque control system is shown.
  • the motor controller 8 - 502 outputs an applied torque 8 - 504 , which acts on the system 8 - 506 , which refers to the hydraulic pump.
  • the torque applied 8 - 504 results in a rotational speed 8 - 508 of the hydraulic pump system 8 - 506 as well as a generated pressure differential 8 - 510 across the pump 8 - 506 .
  • a pressure sensor 8 - 512 feeds the pressure differential signal 8 - 510 into a block where it is summed with a nominal pressure differential command 8 - 514 which itself is an output of a separate system level control system.
  • This ripple 8 - 516 is fed into the motor controller 8 - 502 which in turn adjusts its applied torque 8 - 504 in order to minimize the magnitude of the ripple 8 - 516 .
  • FIG. 8-6 a control block diagram of an adaptive mode-based feed-forward ripple cancelling torque control system for a hydraulic pump is shown.
  • a nominal torque command 8 - 602 which is an output of a separate system level control system, is an input to the feed-forward ripple model 8 - 604 .
  • the rotational speed of the pump 8 - 624 is fed into the feed-forward ripple model 8 - 604 which in turn outputs a ripple torque magnitude 8 - 606 and a ripple torque phase offset 8 - 608 with respect to pump position.
  • the ripple torque magnitude 8 - 606 and ripple torque phase offset 8 - 608 are fed into the motor controller 8 - 610 which also takes as input the nominal torque command 8 - 602 and the motor position 8 - 622 and in turn outputs an overall torque applied 8 - 612 to the system 8 - 614 which refers to the hydraulic pump.
  • the torque applied 8 - 612 results in a generated pressure differential 8 - 616 across the hydraulic pump system 8 - 614 as well as a rotational speed 8 - 618 of the hydraulic pump 8 - 614 .
  • a position sensor 8 - 620 monitors the position 8 - 622 of the pump/motor 8 - 614 from which rotor speed 8 - 624 can be calculated.
  • the resulting speed 8 - 624 is again fed into the feed-forward ripple model 8 - 604 .
  • External sensors 8 - 626 which monitor system, ripple response but are not directly used in closed-loop feedback are fed into and used to update and adapt the feed-forward ripple model 8 - 604 . This updating may generally occur over a time period that is substantially longer than the time constant of the system.

Abstract

Hydraulic pumps/motors are used to convert between rotational motion/power and fluid motion/power. Pressure differential is achieved across the pump/motor by applying torque to either aid or impede rotation which generally results in either a pressure rise or pressure drop respectively across the unit. This torque is often supplied by an electric motor/generator. Especially in positive displacement pumps/motors this pressure differential is not a smooth value but rather it contains high frequency fluctuations known as pressure ripple that are largely undesirable. With thorough analysis it can be discovered that these fluctuations occur in a predictable manner with respect to the position (angular or linear) of the pump/motor. Using a model that contains this information, a feed-forward method of high-frequency motor torque control is implemented directly on the hydraulic pump/motor by adding to the nominal torque, a model-based torque signal that is linked to rotor position. This high-frequency signal acts directly on the hydraulic pump/motor to reduce or cancel the pressure/flow ripple of the pump/motor itself without the need for any secondary flow generating devices.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to PCT application serial number PCT/US2014/029654, entitled “ACTIVE VEHICLE SUSPENSION IMPROVEMENTS”, filed Mar. 14, 2014, which claims the priority under 35 U.S.C. §119(e) of U.S. provisional application Ser. No. 61/913,644, entitled “WIDE BAND HYDRAULIC RIPPLE NOISE BUFFER”, filed Dec. 9, 2013, U.S. provisional application Ser. No. 61/865,970, entitled “MULTI-PATH FLUID DIVERTER VALVE”, filed Aug. 14, 2013, U.S. provisional application Ser. No. 61/815,251, entitled “METHOD AND ACTIVE SUSPENSION”, filed Apr. 23, 2013, and U.S. provisional application Ser. No. 61/789,600, entitled “IMPROVEMENTS IN ACTIVE SUSPENSION”, filed Mar. 15, 2013 , the disclosures of which are incorporated by reference in their entirety.
  • BACKGROUND
  • 1. Field
  • Aspects relate to a device and methods for electronically attenuating pressure and or flow ripple in positive displacement hydraulic pumps/motors.
  • 2. Discussion of Related Art
  • Typically in positive displacement hydraulic pumps/motors pressure differential generated by constant torque application contains pressure ripple that is largely undesirable. This ripple is typically the result of non-constant flow capacity of the hydraulic pump/motor and of the variable leakage path around the pump/motor as a function of the position. It also typically occurs at frequencies related to the speed of the pump. For a rotary pump such as a form of gear pump, this ripple occurs at a frequency that is equal to the rotational frequency of the unit multiplied by the number of teeth or lobes and in integer harmonics thereof. For a piston-type pump the ripple frequency is proportional to the stroke period of individual pistons multiplied by the total number of pistons.
  • Methods of reducing the magnitude of this ripple may commonly include increasing the number of ripple pulses per hydraulic cycle (e.g. number of gear teeth, number of pistons) or dampening the ripple downstream or upstream of the pump/motor by some means such as adding compliance. This may be accomplished by inserting a device such as an accumulator. Other methods of reducing the pressure ripple of hydraulic pumps/motors may include an apparatus for sensing the flow ripple generated by the pump and counteracting this with a negative ripple generator to cancel and eliminate the system flow ripple, where the negative ripple generator consists of a moveable piston controlled by a solid state motor.
  • These arrangements require a second flow control source (e.g. the piston) in order to function, resulting in a complex system with multiple electronically controlled devices. This arrangement also requires direct measurements of the flow or pressure ripple to perform closed loop feedback control of the secondary flow source, resulting in a more expensive system. Another method of reducing the flow ripple in a hydraulic system includes using a hydrostatic motor in fluid communication with a variable displacement pump. In this arrangement a displacement signal is generated and applied to the variable displacement unit in order to reduce the torque ripple of the hydrostatic motor. This arrangement also has the negative attribute of requiring multiple independently controlled hydraulic flow generating devices. It is recognized that the ability to substantially attenuate the ripple of a hydraulic pump/motor without the need for additional flow generating devices, at a broad spectrum of frequencies with minimal cost and minimal efficiency penalties, is highly desirable.
  • SUMMARY
  • Aspects of the invention relate to a device and methods to electronically control and improve the ripple characteristics of hydraulic pumps/motors. Subsequent references to a hydraulic pump will be synonymous with a hydraulic pump and with a hydraulic motor. Subsequent references to an electric motor will be synonymous with an electric motor and with an electric generator and with a BLDC motor. References to a rotor and position thereof are synonymous with the entire rotating assembly and therefore with the electric motor position and hydraulic pump position. Subsequent references to ripple torque and ripple velocity are synonymous with a torque signal that is commanded by the controller and with a velocity signal commanded by the controller respectively; both are cancellation signals that are added to a nominal command torque or velocity signal. Subsequent references to steady state conditions are synonymous with a substantially constant hydraulic pump velocity. Subsequent references to displacement flow are synonymous with flow that is transported through the hydraulic pump/motor. This displacement flow may vary with the angular position of the rotor. An operating point may be specified by a combination of pressure differential and pump velocity.
  • According to one aspect, a hydraulic pump is coupled to the shaft of an electric motor such that torque applied to the shaft of the electric motor results in torque applied to the hydraulic pump. A method of electric motor position sensing is provided such that accurate control over motor torque with respect to position is achieved. Pressure differential is generated across the hydraulic pump by applying torque to the shaft of the electric motor. This torque can be either a retarding torque, in which case shaft power is extracted from the pressure differential, or a driving torque, in which case power is input to the electric motor to cause a pressure differential. Normally, constant application of torque at steady state will generate non-constant and periodic fluctuations in pressure differential due predominately to the geometric nature of the hydraulic pump and non-constant flow capacity therein; this fact is well known by those trained in the art. With proper analysis it can be discovered that these fluctuations occur in a predictable manner with respect to the position (angular or linear) of the pump and at a frequency proportional to the rotational speed of the pump. To counteract these natural fluctuations in pressure, a non-constant torque, or ripple torque, can be carefully applied as a function of rotor position by the electric motor in order to attenuate the magnitude of the generated pressure ripple. This torque may fluctuate above and below the nominal mean constant torque to achieve the same mean pressure as the above-mentioned case of constant torque application. In this manner the mean of the ripple torque may be the same value as the constant torque to achieve the same mean pressure differential. Typically, one revolution of the hydraulic motor will generate a predetermined and predictable number of periodic fluctuations in pressure and/or flow, which in steady state operation will comprise a periodic waveform with respect to position. In order to correctly apply torque to achieve this behavior, the position dependent nature of the ripple and therefore the position dependent requirements of ripple torque application must be known or discovered. The ripple torque may result in a ripple velocity to increase velocity and generate increased displacement flow when the displacement flow is lower than the mean flow, and to decrease velocity and generate decreased displacement flow when the displacement flow is higher than the mean flow.
  • According to one aspect the ripple torque applied is commanded of the controller by a ripple model that includes rotor position. The ripple model specifies the waveform of ripple torque to be applied in order to attenuate pressure ripple at a given operating point. The specification of the torque waveform may include the magnitude of one or more periodic waveforms, relative phase angles between each of the plurality of waveforms, as well as the relative phase angle of the resultant waveform with respect to position of the electric motor. The summation of one or a plurality of waveforms with predominant frequencies with respect to rotor position at any integer harmonic may produce a resultant waveform that serves to attenuate pressure ripple at multiple harmonic frequencies of the primary rotational frequency.
  • In one embodiment the mean ripple torque applied in order to achieve a substantially constant pressure differential value is substantially equal to the constant torque value applied to achieve a mean pressure ripple of the same value. The root mean square value of the ripple torque may be higher than the mean ripple torque. In this manner the additional electric power losses associated with this method of ripple cancellation are a result of the electrical resistance losses due to the difference between the root mean square current and the mean current required to produce the tipple current. This may be considered small in comparison with the overall electrical resistance losses and therefore negligible as a loss of the system.
  • In one embodiment the ripple model takes as direct inputs any of rotor velocity, electric motor torque, hydraulic flow rate, and hydraulic pressure. An operating point may be determined by a combination of rotor velocity or hydraulic flow rate, and motor torque or hydraulic pressure. The model may be a function or a series of functions in which the direct inputs serve as independent variables. The model may otherwise be a multidimensional array indexed by any combination of the direct inputs.
  • In one embodiment the parameters of the ripple model with either of the above detailed formulations are adaptable and or updatable. Sensor input from one or a plurality of secondary sensors that are not used to detect rotor position are used as feedback to the ripple model in order to update model parameters that specify the ripple torque waveform. In this manner the model need not account for all effects of externalities and perturbations but rather, may dynamically update its parameters to account for these factors as they relate to the hydraulic pressure ripple and the corresponding cancellation waveform.
  • In one embodiment, the ripple model is a feed-forward ripple model of any of torque and velocity. The inputs to the model are based on commanded or sensed parameters while the system response is not monitored as a feedback signal. In this manner the model does not have a measure of its performance and does not dynamically adjust its output accordingly to system response in a time scale on the order of the system time constant.
  • In one embodiment ripple cancellation is carried out in a closed loop feedback based control system. A sensor that correlates with pressure ripple (a pressure sensor, a flow sensor, a strain gauge, an accelerometer etc.) is used to feed back the ripple response and compare it to a desired output, which may be based on an input parameter (pressure, flow, force etc.), the difference between the desired and actual being considered the error or ripple. This signal is then fed into the motor controller, which adjusts the applied torque in order to minimize the magnitude of the ripple signal.
  • In one embodiment rotor position may be detected by any of a number of methods including a rotary encoder, a Hall effect sensor, optical sensors, or model-based position estimation that utilize external signals such as phase voltages and phase current signals of the electric motor. The latter are known in the field as “sensor-less” algorithms for controlling electric motors. Sensor-less methods may include comparing electric motor parameters to a model of motor back EMF.
  • In one embodiment the output of the ripple model is a specified ripple velocity as opposed to a ripple torque. At constant velocity the displacement flow of the hydraulic pump is non-constant so it may be necessary for the speed to ripple accordingly. In this manner the motor controller performs closed-loop velocity control in order to achieve the ripple velocity specified by the ripple model. No ripple torque specification is necessary and no feedback on torque is performed. The output of a ripple velocity has the same attenuation effect on pressure ripple as the model that specifies ripple torque. The factors that influence how ripple torque leads to a ripple velocity primarily include hydraulic drag torque and rotational inertia. The primary difference of a ripple velocity model over a ripple torque model is that these influences and changes therein are external to the model set parameters and are instead accounted for in the closed loop velocity control. Any changes in torque requirements to achieve a specified ripple velocity will be directly handled by the velocity feedback control.
  • In one embodiment the electric motor is immersed in a hydraulic fluid along with the hydraulic pump. In this manner position sensing of the electric motor must be performed inside a pressurized fluid environment. The hydraulic pump is preferably located coaxially with the electric motor.
  • In one embodiment the electric motor and hydraulic pump are contained in an actuator of a vehicle suspension system. Pressure differential generated across the hydraulic pump results in a force on the piston of the actuator. Command torque on the electric motor may be the output of a separate vehicle dynamics model and or feedback control system. The ripple torque may be added to the command torque to impart an overall torque applied to the rotor. In the event that a ripple velocity model is used, the command torque is used to specify the mean pressure, which may be used as an input to the ripple velocity model.
  • In one embodiment, operating the electric motor comprises adjusting the current flow through the windings of the electric motor in response to sensed angular position of the rotor. Operating the electric motor may also be accomplished by adjusting the voltage in the windings of the electric motor in response to sensed angular position of the rotor. The electric motor may be a BLDC motor.
  • It should be appreciated that the foregoing concepts, and additional concepts discussed below, may be arranged in any suitable combination, as the present disclosure is not limited in this respect. Further, other advantages and novel features of the present disclosure will become apparent from the following detailed description of various non-limiting embodiments when considered in conjunction with the accompanying figures.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing, and some similar components may have different numbers. In the drawings:
  • FIG. 8-1 is a representative plot of hydraulic pump/motor pressure ripple about a nominal average pressure under constant electric motor/generator torque.
  • FIG. 8-2A is a representative plot of hydraulic pump/motor pressure ripple about a nominal average pressure under constant electric motor/generator torque over one repeating hydraulic pump/motor cycle.
  • FIG. 8-2B is a representative plot of hydraulic pump/motor pressure ripple about a nominal average pressure under fluctuating and controlled motor/generator torque over the same repeating hydraulic pump/motor cycle as 8-2A. The fluctuating torque compensates natural pressure variations in the hydraulic system thereby attenuating the resulting system pressure fluctuations.
  • FIG. 8-3A is a representative plot of the necessary electric motor/generator torque to produce the pressure ripple shown in FIG. 1A.
  • FIG. 8-3B is a representative plot of the necessary electric motor/generator torque to produce the attenuated pressure ripple shown in FIG. 1B.
  • FIG. 8-4 is an embodiment of the control block diagram of a model-based feed-forward ripple cancelling control system for a hydraulic pump/motor with rotor position sensing. (The nominal torque command may be the output of a vehicle control model.)
  • FIG. 8-5 is an embodiment of the control block diagram of a feedback based ripple cancelling torque control system for a hydraulic pump/motor based on load feedback (pressure, force, acceleration etc.). (The nominal pressure/force/acceleration command may be the output of a vehicle control model.)
  • FIG. 8-6 is an embodiment of the control block diagram of an adaptable model-based feed-forward torque ripple canceling control system for a hydraulic pump/motor. External sensors provide input to the controller and the model is updated semi-continuously during the course of operation. Direct feedback control is not implemented.
  • DETAILED DESCRIPTION
  • Some aspects relate to a system and feed-forward control method of electronically attenuating pressure ripple in a positive displacement pump/motor. Other aspects relate to a method of adapting a model based feed-forward control on the basis of output sensor information.
  • Regarding FIG. 8-1, a representative plot of steady state pressure ripple in the time domain is shown for a hydraulic pump/motor operating at constant frequency under a constant torque application. A generated pressure differential signal 8-102 fluctuates in time about a mean pressure differential 8-104 which is substantially constant throughout time. The peak-to-peak amplitude 8-106 of this fluctuating pressure differential signal 8-102 is substantially consistent throughout time as the geometric pattern of the hydraulic pump/motor is symmetric. The peak-to-peak amplitude 8-106 is determined by many characteristics of the hydraulic pump.
  • In FIG. 8-2A a representative plot of steady state pressure ripple in the position domain is shown for a hydraulic pump operating at constant frequency under a constant torque application. The position theta 8-202 defines the geometric period in position over which the pump is geometrically repeating; the average periodic pressure ripple 8-204 over this position period is consistent. The mean pressure differential 8-206 is substantially constant over one periodic cycle and therefore constant throughout operation. The peak-to-peak amplitude 8-106 of the fluctuating pressure signal is consistent from cycle to cycle as the system is nominally periodic in geometry.
  • In FIG. 8-2B a representative plot of pressure ripple in the position domain is shown for a pump/motor under torque application from a model based feed forward torque controller. The mean pressure differential 8-206 remains at the same value as in FIG. 8-2A. The peak-to-peak amplitude 8-108 of the fluctuating pressure signal 8-210 is consistent from cycle to cycle and is considerably smaller than the peak-to-peak amplitude 8-106 in the constant torque application case of FIG. 8-2A. The average repeating pressure ripple 8-210 retains periodicity over the same geometric period theta 8-202.
  • In FIG. 8-3A a steady state time domain representation of the constant torque application to achieve the pressure ripple in FIG. 8-2A is shown. The torque value 8-302 is constant throughout time and is a DC value with some offset from zero.
  • In FIG. 8-3B a steady state time domain representation of a fluctuating torque output from a model-based feed forward controller is shown. The mean torque 8-304 is constant throughout time and equal to the constant torque 8-302 from the case shown in FIG. 8-3A. The torque signal 8-306 fluctuates above and below the mean torque 8-304. The peak-to-peak amplitude 8-308 of the torque signal has a magnitude that is an output of the ripple model.
  • In FIG. 8-4 a control block diagram of a model-based feed-forward ripple cancelling torque control system for a hydraulic pump is shown. A nominal torque command 8-402, which is an output of a separate system level control system, is an input to the feed-forward ripple model 8-404. Along with the nominal torque command 8-402, the rotational speed of the hydraulic pump 8-424 is fed into the feed-forward ripple model 8-404 which in turn outputs a ripple torque magnitude 8-406 and a ripple torque phase offset 8-408 with respect to rotor position 8-422. The ripple torque magnitude 8-406 and ripple torque phase offset 8-408 are fed into the motor controller 8-410 which also takes as input the nominal torque command 8-402 and in turn outputs an overall applied torque 8-412 to the system 8-414 which refers to the hydraulic pump. The applied torque 8-412 results in a generated pressure differential 8-416 across the hydraulic pump 8-414 as well as a rotational speed 8-418 of the hydraulic pump. A position sensor 8-420 monitors the position 8-422 of the pump 8-414 from which rotor speed 8-424 can be derived. The resulting rotor speed 8-424 is again fed into the feed-forward ripple model 8-404. Note that the control variable of interest in this system is pressure differential 8-416 yet there is no corresponding pressure sensor or feedback on this signal.
  • In FIG. 8-5 a control block diagram of a closed-loop feedback based ripple cancelling torque control system is shown. The motor controller 8-502 outputs an applied torque 8-504, which acts on the system 8-506, which refers to the hydraulic pump. The torque applied 8-504 results in a rotational speed 8-508 of the hydraulic pump system 8-506 as well as a generated pressure differential 8-510 across the pump 8-506. A pressure sensor 8-512 feeds the pressure differential signal 8-510 into a block where it is summed with a nominal pressure differential command 8-514 which itself is an output of a separate system level control system. The result of this summation or subtraction is the error of the system or the hydraulic ripple 8-516. This ripple 8-516 is fed into the motor controller 8-502 which in turn adjusts its applied torque 8-504 in order to minimize the magnitude of the ripple 8-516.
  • In FIG. 8-6 a control block diagram of an adaptive mode-based feed-forward ripple cancelling torque control system for a hydraulic pump is shown. A nominal torque command 8-602, which is an output of a separate system level control system, is an input to the feed-forward ripple model 8-604. Along with the nominal torque command 8-602, the rotational speed of the pump 8-624 is fed into the feed-forward ripple model 8-604 which in turn outputs a ripple torque magnitude 8-606 and a ripple torque phase offset 8-608 with respect to pump position. The ripple torque magnitude 8-606 and ripple torque phase offset 8-608 are fed into the motor controller 8-610 which also takes as input the nominal torque command 8-602 and the motor position 8-622 and in turn outputs an overall torque applied 8-612 to the system 8-614 which refers to the hydraulic pump. The torque applied 8-612 results in a generated pressure differential 8-616 across the hydraulic pump system 8-614 as well as a rotational speed 8-618 of the hydraulic pump 8-614. A position sensor 8-620 monitors the position 8-622 of the pump/motor 8-614 from which rotor speed 8-624 can be calculated. The resulting speed 8-624 is again fed into the feed-forward ripple model 8-604. External sensors 8-626, which monitor system, ripple response but are not directly used in closed-loop feedback are fed into and used to update and adapt the feed-forward ripple model 8-604. This updating may generally occur over a time period that is substantially longer than the time constant of the system.

Claims (88)

1. A method of hydraulic ripple cancellation, comprising:
sensing an angular position of a rotor of an electric motor;
operatively coupling the electric motor to a hydraulic pump; and
operating the electric motor to impart at least one of a command torque and a command velocity on the hydraulic pump and to impart at least one of a ripple torque and a ripple velocity on the hydraulic pump based at least in part on the sensed angular position of the rotor.
2. The method of claim 1, wherein the hydraulic ripple is at least one of pressure ripple and fluid flow ripple.
3. The method of claim 1, wherein the at least one of ripple torque and ripple velocity is a variable at least one of torque and velocity that is imparted based on at least one of current electric motor torque and speed.
4. The method of claim 1, wherein the at least one of ripple torque and ripple velocity substantially comprises a periodic waveform.
5. The method of claim 4, wherein the periodic waveform comprises one or more sine waves.
6. The method of claim 4, wherein the periodic waveform comprises a plurality of waveforms, each having a period, magnitude, and shape.
7. The method of claim 4, wherein the periodic waveform at least partially cancels one or more harmonics of the hydraulic ripple.
8. The method of claim 1, wherein the electric motor velocity is electrically varied based at least in part on the sensed angular position of the rotor.
9. The method of claim 1, wherein the hydraulic pump at a constant speed is characterized by a varying flow rate with respect to angular position, and wherein at least one of torque and velocity of the electric motor is electrically controlled to compensate for this non-constant flow property.
10. The method of claim 1, wherein sensing of angular rotor position is accomplished by one of a rotary encoder, hall effect sensor, and sensorless control using phase voltages and currents of the electric motor.
11. The method of claim 1, wherein the at least one of ripple torque and ripple velocity is imparted based on a model of at least one of torque and velocity control that includes rotor position.
12. The method of claim 11, wherein the model of at least one of torque and velocity is feed-forward.
13. The method of claim 11, wherein the model of at least one of torque and velocity adapts parameters based on one or more feedback sensors.
14. The method of claim 13, wherein the feedback sensor is one of an accelerometer and a pressure sensor.
15. The method of claim 11, wherein the model of at least one of torque and velocity control comprises one of a function and a multidimensional array.
16. The method of claim 11, wherein independent variables in the model comprise of at least one of rotor velocity, motor torque, and hydraulic pressure.
17. The method of claim 11, wherein the model of at least one of torque and velocity control outputs one or more magnitude and phase values that specify the ripple cancellation waveform.
18. The method of claim 11, wherein the model of at least one of torque and velocity control comprises a multidimensional array that represents at least one of ripple torque and ripple velocity parameters for a plurality of rotor speeds.
19. The method of claim 1, wherein operating the electric motor includes receiving input from a second sensor that detects conditions other than an angular position of the rotor and factoring that input from the second sensor into imparting at least one of the command at least one of torque and velocity and the at least one of ripple torque and ripple velocity.
20. The method of claim 1, wherein the electric motor is a BLDC motor.
21. The method of claim 1, wherein the electric motor is immersed in a hydraulic fluid with the hydraulic pump.
22. The method of claim 1, wherein coupling the electric motor to the hydraulic pump comprises disposing the electric motor coaxially with the hydraulic pump.
23. The method of claim 1, wherein operating the electric motor comprises adjusting current flow through windings of the electric motor in response to the sensed angular position of the rotor of the electric motor.
24. The method of claim 1, wherein operating the electric motor comprises adjusting voltage in the windings of the electric motor in response to the sensed angular position of the rotor of the electric motor.
25. The method of claim 1, wherein operating the electric motor comprises receiving input from a plurality of feedback sensors that sense impact of the imparted at least one of torque and velocity on a hydraulic fluid that engages the hydraulic pump.
26. A method of hydraulic ripple cancellation, comprising:
sensing an angular position of a rotor of an electric motor;
operatively coupling the electric motor to a hydraulic pump; and
operating the electric motor to comply with a at least one of torque and velocity control model of hydraulic pump that facilitates mitigation of hydraulic ripple associated with fluid flow and pressure changes during rotation of the hydraulic pump, based on the sensed angular position of the rotor.
27. The method of claim 26, wherein operating the electric motor comprises imparting a command at least one of torque and velocity on the hydraulic pump and imparting a at least one of ripple torque and ripple velocity on the hydraulic pump based at least in part on the sensed angular position of the rotor.
28. The method of claim 27, wherein the at least one of ripple torque and ripple velocity at least partially cancels hydraulic ripple associated with fluid flow and pressure changes.
29. The method of claim 26, wherein the control model comprises one of a function and a multidimensional array.
30. The method of claim 26, wherein the control model includes motor torque and speed as inputs.
31. The method of claim 26, wherein the control model adapts parameters based on one or more feedback sensors.
32. The method of claim 31, wherein the one or more feedback sensors comprises one of an accelerometer and a pressure sensor.
33. A system comprising:
a motor controller adapted to dynamically control an electric motor that is operatively coupled to a hydraulic pump and adapted to receive a command input; and
a control algorithm that facilitates the motor controller determining a at least one of ripple torque and ripple velocity factor based on a detected position of a rotor of the electric motor, wherein the motor controller imparts at least one of torque and velocity control on the hydraulic pump through the electric motor, the at least one of torque and velocity control comprising a command input component and a at least one of ripple torque and ripple velocity component.
34. The system of claim 33, wherein the ripple component is at least one of a torque component and a velocity component.
35. The system of claim 33, wherein the command input component is at least one of a torque component and a velocity component.
36. The system of claim 33, wherein the hydraulic pump creates a hydraulic ripple comprising at least one of a pressure ripple and a fluid flow ripple, and the at least one of ripple torque and ripple velocity imparted on the hydraulic pump is substantially out of phase with the hydraulic ripple.
37. The system of claim 33, wherein the hydraulic pump is at a constant speed and is characterized by a varying flow rate with respect to angular position, and wherein at least one of torque and velocity of the electric motor is electrically controlled to compensate for this non-constant flow property.
38. The system of claim 33, wherein the at least one of ripple torque and ripple velocity is a variable of at least one of torque and velocity that is imparted based on at least one of current electric motor torque and current electric motor speed.
39. The system of claim 33, wherein the at least one of ripple torque and ripple velocity substantially comprises a periodic waveform.
40. The system of claim 39, wherein the periodic waveform comprises one or more sine waves.
41. The system of claim 39, wherein the periodic waveform comprises a plurality of waveforms, each having a period, magnitude, and shape.
42. The system of claim 39, wherein the periodic waveform at least partially cancels one or more harmonics of the hydraulic ripple.
43. The system of claim 33, wherein electric motor velocity is electrically varied based at least in part on the sensed angular position of the rotor.
44. The system of claim 33, further comprising a rotor position sensor that is one of a rotary magnetic/optical encoder and a Hall effect sensor.
45. The system of claim 33, further comprising a plurality of voltage and current sensors measuring currents and voltages of the electric motor, with an algorithm detecting rotor position using sensorless control.
46. The system of claim 33, wherein the at least one of ripple torque and ripple velocity is imparted based on a model of at least one of torque and velocity control.
47. The system of claim 46, wherein the model of at least one of torque and velocity is feed-forward.
48. The system of claim 46, wherein the model of at least one of torque and velocity adapts parameters based on one or more feedback sensors.
49. The system of claim 48, wherein the feedback sensor is one of an accelerometer and a pressure sensor.
50. The system of claim 46, wherein the model of at least one of torque and velocity control comprises one of a function and a multidimensional array.
51. The system of claim 46, wherein independent variables in the model comprise of at least one of rotor velocity, motor torque, and hydraulic pressure.
52. The system of claim 46, wherein the model of at least one of torque and velocity control outputs one or more magnitude and phase values that specify the ripple cancellation waveform.
53. The system of claim 46, wherein the model of at least one of torque and velocity control comprises a multidimensional array that represents at least one of ripple torque and ripple velocity parameters for a plurality of rotor speeds.
54. The system of claim 33, wherein operating the electric motor includes receiving input from a second sensor that detects conditions other than an angular position of the rotor and factoring that input from the second sensor into imparting at least one of the command at least one of torque and velocity and the at least one of ripple torque and ripple velocity.
55. The system of claim 33, wherein the electric motor is a BLDC motor.
56. The system of claim 33, wherein the electric motor is immersed in a hydraulic fluid with the hydraulic pump.
57. The system of claim 33, wherein coupling the electric motor to the hydraulic pump comprises disposing the electric motor coaxially with the hydraulic pump.
58. The system of claim 33, wherein operating the electric motor comprises receiving input from a plurality of feedback sensors that sense impact of the imparted at least one of torque and velocity on a hydraulic fluid that engages the hydraulic pump.
59. A system comprising:
an electro-hydraulic actuator of a vehicle suspension system comprising a motor controller adapted to dynamically control an electric motor that is operatively coupled to a hydraulic pump and adapted to receive a command input; and
a control algorithm that facilitates the motor controller determining a ripple torque factor based on a detected position of a rotor of the electric motor, wherein the motor controller imparts at least one of torque and velocity control on the hydraulic pump through the electric motor, the at least one of torque and velocity control comprising a command component and a at least one of ripple torque and ripple velocity component.
60. The system of claim 59, wherein the command component is at least one of a torque component and velocity component.
61. The system of claim 59, wherein the ripple component is at least one of a torque component and a velocity component.
62. The system of claim 59, wherein the hydraulic pump creates a hydraulic ripple comprising at least one of a pressure ripple and a fluid flow ripple, and the at least one of ripple torque and ripple velocity imparted on the hydraulic pump is substantially out of phase with the hydraulic ripple.
63. The system of claim 59, wherein the hydraulic pump is at a constant speed and is characterized by a varying flow rate with respect to angular position, and wherein at least one of torque and velocity of the electric motor is electrically controlled to compensate for this non-constant flow property.
64. The system of claim 59, wherein the at least one of ripple torque and ripple velocity is a variable of at least one of torque and velocity that is imparted based on at least one of current electric motor torque and speed.
65. The system of claim 59, wherein the at least one of ripple torque and ripple velocity substantially comprises a periodic waveform.
66. The system of claim 65, wherein the periodic waveform comprises one or more sine waves.
67. The system of claim 65, wherein the periodic waveform comprises a plurality of waveforms, each having a period, magnitude, and shape.
68. The system of claim 65, wherein the periodic waveform at least partially cancels one or more harmonics of the hydraulic ripple.
69. The system of claim 59, wherein electric motor velocity is electrically varied based at least in part on the sensed angular position of the rotor.
70. The system of claim 59, further comprising a rotor position sensor that is one of a rotary magnetic/optical encoder and a Hall effect sensor.
71. The system of claim 59, further comprising a plurality of voltage and current sensors measuring currents and voltages of the electric motor, with an algorithm detecting rotor position using sensorless control.
72. The system of claim 59, wherein the at least one of ripple torque and ripple velocity is imparted based on a model of at least one of torque and velocity control.
73. The system of claim 72, wherein the model of at least one of torque and velocity is feed-forward.
74. The system of claim 72, wherein the model of at least one of torque and velocity adapts parameters based on one or more feedback sensors.
75. The system of claim 74, wherein the one or more feedback sensors comprises one of an accelerometer and a pressure sensor.
76. The system of claim 72, wherein the model of at least one of torque and velocity control comprises one of a function and a multidimensional array.
77. The system of claim 72, wherein independent variables in the model comprise of at least one of rotor velocity, motor torque, and hydraulic pressure.
78. The system of claim 72, wherein the model of at least one of torque and velocity control outputs one or more magnitude and phase values that specify the ripple cancellation waveform.
79. The system of claim 72, wherein the model of at least one of torque and velocity control comprises a multidimensional array that represents at least one of ripple torque and ripple velocity parameters for a plurality of rotor speeds.
80. The system of claim 59, wherein operating the electric motor includes receiving input from a second sensor that detects conditions other than an angular position of the rotor and factoring that input from the second sensor into imparting at least one of the command at least one of torque and velocity and the at least one of ripple torque and ripple velocity.
81. The system of claim 59, wherein the electric motor is a BLDC motor.
82. The system of claim, wherein the electric motor is immersed in a hydraulic fluid with the hydraulic pump.
83. The system of claim 59, wherein coupling the electric motor to the hydraulic pump comprises disposing the electric motor coaxially with the hydraulic pump.
84. The system of claim 59, wherein operating the electric motor comprises receiving input from a plurality of feedback sensors that sense impact of the imparted at least one of torque and velocity on a hydraulic fluid that engages the hydraulic pump.
85. A method of hydraulic ripple cancellation, comprising:
measuring a sensor that correlates with pressure ripple in a hydraulic system;
operatively coupling an electric motor to a hydraulic pump that induces the hydraulic ripple; and
operating the electric motor to impart a command at least one of torque and velocity component on the hydraulic pump and to impart a at least one of ripple torque and ripple velocity component on the hydraulic pump based at least in part on the sensed pressure ripple in the hydraulic system.
86. The method of claim 85, wherein the command component is at least one of a torque component and velocity component.
87. The method of claim 85, wherein the ripple component is at least one of a torque component and a velocity component.
88. The method of claim 85, wherein the sensor that correlates with pressure ripple comprises at least one of a pressure sensor, a flow rate sensor, a strain gauge, and an accelerometer disposed on the hydraulic system.
US14/242,636 2013-03-15 2014-04-01 Active adaptive hydraulic ripple cancellation algorithm and system Abandoned US20140294601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/242,636 US20140294601A1 (en) 2013-03-15 2014-04-01 Active adaptive hydraulic ripple cancellation algorithm and system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361789600P 2013-03-15 2013-03-15
US201361815251P 2013-04-23 2013-04-23
US201361865970P 2013-08-14 2013-08-14
US201361913644P 2013-12-09 2013-12-09
PCT/US2014/029654 WO2014145018A2 (en) 2013-03-15 2014-03-14 Active vehicle suspension improvements
US14/242,636 US20140294601A1 (en) 2013-03-15 2014-04-01 Active adaptive hydraulic ripple cancellation algorithm and system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/029654 Continuation WO2014145018A2 (en) 2013-03-15 2014-03-14 Active vehicle suspension improvements

Publications (1)

Publication Number Publication Date
US20140294601A1 true US20140294601A1 (en) 2014-10-02

Family

ID=51538406

Family Applications (6)

Application Number Title Priority Date Filing Date
US14/242,612 Active 2035-11-17 US10160276B2 (en) 2013-03-15 2014-04-01 Contactless sensing of a fluid-immersed electric motor
US14/242,658 Active US9707814B2 (en) 2013-03-15 2014-04-01 Active stabilization system for truck cabins
US14/242,705 Active 2034-04-26 US9694639B2 (en) 2013-03-15 2014-04-01 Distributed active suspension control system
US14/242,636 Abandoned US20140294601A1 (en) 2013-03-15 2014-04-01 Active adaptive hydraulic ripple cancellation algorithm and system
US14/242,691 Abandoned US20140297116A1 (en) 2013-03-15 2014-04-01 Self-driving vehicle with integrated active suspension
US15/832,517 Active 2034-11-10 US10828953B2 (en) 2013-03-15 2017-12-05 Self-driving vehicle with integrated active suspension

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/242,612 Active 2035-11-17 US10160276B2 (en) 2013-03-15 2014-04-01 Contactless sensing of a fluid-immersed electric motor
US14/242,658 Active US9707814B2 (en) 2013-03-15 2014-04-01 Active stabilization system for truck cabins
US14/242,705 Active 2034-04-26 US9694639B2 (en) 2013-03-15 2014-04-01 Distributed active suspension control system

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/242,691 Abandoned US20140297116A1 (en) 2013-03-15 2014-04-01 Self-driving vehicle with integrated active suspension
US15/832,517 Active 2034-11-10 US10828953B2 (en) 2013-03-15 2017-12-05 Self-driving vehicle with integrated active suspension

Country Status (3)

Country Link
US (6) US10160276B2 (en)
EP (2) EP3626485A1 (en)
WO (1) WO2014145018A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035477B2 (en) 2010-06-16 2015-05-19 Levant Power Corporation Integrated energy generating damper
US9174508B2 (en) 2013-03-15 2015-11-03 Levant Power Corporation Active vehicle suspension
US9260011B2 (en) 2008-04-17 2016-02-16 Levant Power Corporation Hydraulic energy transfer
US9440507B2 (en) 2013-03-15 2016-09-13 Levant Power Corporation Context aware active suspension control system
US9694639B2 (en) 2013-03-15 2017-07-04 ClearMotion, Inc. Distributed active suspension control system
US9702424B2 (en) 2014-10-06 2017-07-11 ClearMotion, Inc. Hydraulic damper, hydraulic bump-stop and diverter valve
US9702349B2 (en) 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
US9855814B2 (en) 2013-04-23 2018-01-02 ClearMotion, Inc. Active suspension with structural actuator
US10317894B2 (en) 2015-02-13 2019-06-11 Fluid Handling Llc No flow detection means for sensorless pumping control applications
US10465612B2 (en) 2017-04-03 2019-11-05 Hamilton Sundstrand Corporation Aircraft fluid control system having a pressure sensor
CN111016567A (en) * 2019-12-30 2020-04-17 东风小康汽车有限公司重庆分公司 Automatic switching method and device for automobile driving modes
US10907631B2 (en) * 2018-08-01 2021-02-02 Rolls-Royce Corporation Pump ripple pressure monitoring for incompressible fluid systems
US10954935B2 (en) 2016-04-19 2021-03-23 ClearMotion, Inc. Active hydraulic ripple cancellation methods and systems
US10987617B2 (en) 2016-04-05 2021-04-27 Hamilton Sundstrand Corporation Pressure detection system immune to pressure ripple effects
US11480199B2 (en) 2016-06-02 2022-10-25 ClearMotion, Inc. Systems and methods for managing noise in compact high speed and high force hydraulic actuators
US11619560B2 (en) 2019-10-18 2023-04-04 Hamilton Sundstrand Corporation Pressure ripple mitigation in pressure sensors
EP4299904A1 (en) * 2022-06-28 2024-01-03 Robert Bosch GmbH Method for controlling variable-speed fluid pumps

Families Citing this family (242)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8616351B2 (en) 2009-10-06 2013-12-31 Tenneco Automotive Operating Company Inc. Damper with digital valve
WO2013052540A2 (en) * 2011-10-04 2013-04-11 Parker-Hannifin Corporation Method and system for controlling electric actuators
DE102012022207B3 (en) * 2012-11-13 2014-01-09 Audi Ag A method for providing route information by means of at least one motor vehicle
US9884533B2 (en) * 2013-02-28 2018-02-06 Tenneco Automotive Operating Company Inc. Autonomous control damper
US9399383B2 (en) 2013-02-28 2016-07-26 Tenneco Automotive Operating Company Inc. Damper with integrated electronics
US9217483B2 (en) 2013-02-28 2015-12-22 Tenneco Automotive Operating Company Inc. Valve switching controls for adjustable damper
US20140265560A1 (en) * 2013-03-15 2014-09-18 Levant Power Corporation System and method for using voltage bus levels to signal system conditions
US9879746B2 (en) 2013-03-15 2018-01-30 Tenneco Automotive Operating Company Inc. Rod guide system and method with multiple solenoid valve cartridges and multiple pressure regulated valve assemblies
US9879748B2 (en) 2013-03-15 2018-01-30 Tenneco Automotive Operating Company Inc. Two position valve with face seal and pressure relief port
CA2902430C (en) 2013-03-15 2020-09-01 Uber Technologies, Inc. Methods, systems, and apparatus for multi-sensory stereo vision for robotics
US10465925B2 (en) * 2013-12-17 2019-11-05 Belimo Holding Ag Systems and methods for fault detection using smart valves
US9733643B2 (en) 2013-12-20 2017-08-15 Agjunction Llc Hydraulic interrupter safety system and method
EP3126167A1 (en) 2014-04-02 2017-02-08 Levant Power Corporation Active safety suspension system
DE102015205369B4 (en) * 2014-04-04 2019-08-22 Ford Global Technologies, Llc Method for operating a suspension system
US11635075B1 (en) 2014-06-25 2023-04-25 ClearMotion, Inc. Gerotor pump with bearing
WO2016019091A1 (en) * 2014-07-31 2016-02-04 Cnh Industrial America Llc Active force/vibration feedback control method and apparatus for a movable machine
US10851816B1 (en) 2014-08-19 2020-12-01 ClearMotion, Inc. Apparatus and method for active vehicle suspension
JP6482789B2 (en) * 2014-08-19 2019-03-13 Kyb株式会社 Suspension control device
DE102014219977A1 (en) * 2014-10-01 2016-04-07 Bayerische Motoren Werke Aktiengesellschaft Method and system for controlling an actuator of an active damper system
US9892296B2 (en) 2014-11-12 2018-02-13 Joseph E. Kovarik Method and system for autonomous vehicles
WO2016080070A1 (en) * 2014-11-17 2016-05-26 日立オートモティブシステムズ株式会社 Automatic driving system
US9440508B2 (en) * 2014-11-25 2016-09-13 Seth M. LACHICA Active vehicle suspension system and method for managing drive energy
US10246094B2 (en) * 2014-12-09 2019-04-02 Ford Global Technologies, Llc Autonomous vehicle cornering maneuver
US10308352B2 (en) * 2014-12-12 2019-06-04 Borealis Technical Limited Monitoring system for aircraft drive wheel system
EP3247577B1 (en) 2015-01-23 2020-03-04 Clearmotion, Inc. Method and apparatus for controlling an actuator
DE102015201411A1 (en) * 2015-01-28 2016-07-28 Robert Bosch Gmbh Motor-pump unit for a brake system
DE102015101248A1 (en) * 2015-01-28 2016-07-28 Fraba B.V. Magnet-based rotation angle measuring system
CN107206860B (en) 2015-02-06 2020-03-10 伯恩斯公司 Vehicle chassis level sensor
KR20160117894A (en) * 2015-04-01 2016-10-11 현대자동차주식회사 Device and method for controlling air suspension system
US9505404B2 (en) * 2015-04-10 2016-11-29 Jaguar Land Rover Limited Collision avoidance system
US9937765B2 (en) * 2015-04-28 2018-04-10 Ram Sivaraman Method of adapting an automobile suspension in real-time
DE102015005964A1 (en) * 2015-05-08 2016-11-10 Man Truck & Bus Ag Method for controlling or controlling the damper force of adjustable dampers in motor vehicles, in particular in commercial vehicles
DE102015208787B4 (en) * 2015-05-12 2018-10-04 Zf Friedrichshafen Ag Adjustable spring carrier
KR102373365B1 (en) * 2015-05-29 2022-03-11 주식회사 만도 Electronic control suspension apparatus having multiple stage switch and method for controlling damping force thereof
KR102096334B1 (en) 2015-06-03 2020-04-02 클리어모션, 아이엔씨. Methods and systems for controlling body motion and passenger experience
US10131446B1 (en) * 2015-07-16 2018-11-20 Near Earth Autonomy, Inc. Addressing multiple time around (MTA) ambiguities, particularly for lidar systems, and particularly for autonomous aircraft
KR20170015115A (en) 2015-07-30 2017-02-08 삼성전자주식회사 Autonomous vehicle and method for controlling the autonomous vehicle
KR20170015114A (en) 2015-07-30 2017-02-08 삼성전자주식회사 Autonomous vehicle and method for controlling the autonomous vehicle
US9869560B2 (en) 2015-07-31 2018-01-16 International Business Machines Corporation Self-driving vehicle's response to a proximate emergency vehicle
US9785145B2 (en) 2015-08-07 2017-10-10 International Business Machines Corporation Controlling driving modes of self-driving vehicles
US9483948B1 (en) 2015-08-07 2016-11-01 International Business Machines Corporation Automated control of interactions between self-driving vehicles and pedestrians
US9721397B2 (en) 2015-08-11 2017-08-01 International Business Machines Corporation Automatic toll booth interaction with self-driving vehicles
US9718471B2 (en) 2015-08-18 2017-08-01 International Business Machines Corporation Automated spatial separation of self-driving vehicles from manually operated vehicles
US9481366B1 (en) 2015-08-19 2016-11-01 International Business Machines Corporation Automated control of interactions between self-driving vehicles and animals
US10564297B2 (en) * 2015-08-20 2020-02-18 Trimble Inc. Cordless inertial vehicle navigation with elevation data input
US9896100B2 (en) 2015-08-24 2018-02-20 International Business Machines Corporation Automated spatial separation of self-driving vehicles from other vehicles based on occupant preferences
US10235817B2 (en) 2015-09-01 2019-03-19 Ford Global Technologies, Llc Motion compensation for on-board vehicle sensors
JP6555474B2 (en) * 2015-09-01 2019-08-07 三菱自動車工業株式会社 In-vehicle information processing equipment
US9731726B2 (en) 2015-09-02 2017-08-15 International Business Machines Corporation Redirecting self-driving vehicles to a product provider based on physiological states of occupants of the self-driving vehicles
DE102015011517B3 (en) * 2015-09-03 2016-09-08 Audi Ag Method for determining a current level position of a vehicle
EP3352402B1 (en) * 2015-09-15 2021-01-20 LG Electronics Inc. Resource selection method for v2x operation of terminal in wireless communication system, and terminal using method
US9513632B1 (en) 2015-09-16 2016-12-06 International Business Machines Corporation Driving mode alerts from self-driving vehicles
US9566986B1 (en) 2015-09-25 2017-02-14 International Business Machines Corporation Controlling driving modes of self-driving vehicles
DE202015105246U1 (en) * 2015-10-05 2017-01-09 Ebm-Papst St. Georgen Gmbh & Co. Kg Electric motor with control electronics
US9723473B2 (en) * 2015-10-14 2017-08-01 Toyota Jidosha Kabushiki Kaisha Millimeter wave communication system
US9481367B1 (en) 2015-10-14 2016-11-01 International Business Machines Corporation Automated control of interactions between self-driving vehicles and animals
US9834224B2 (en) 2015-10-15 2017-12-05 International Business Machines Corporation Controlling driving modes of self-driving vehicles
US9944291B2 (en) 2015-10-27 2018-04-17 International Business Machines Corporation Controlling driving modes of self-driving vehicles
US9751532B2 (en) 2015-10-27 2017-09-05 International Business Machines Corporation Controlling spacing of self-driving vehicles based on social network relationships
US10607293B2 (en) 2015-10-30 2020-03-31 International Business Machines Corporation Automated insurance toggling for self-driving vehicles
US10176525B2 (en) 2015-11-09 2019-01-08 International Business Machines Corporation Dynamically adjusting insurance policy parameters for a self-driving vehicle
US9791861B2 (en) 2015-11-12 2017-10-17 International Business Machines Corporation Autonomously servicing self-driving vehicles
US10030961B2 (en) 2015-11-27 2018-07-24 General Electric Company Gap measuring device
US9681568B1 (en) 2015-12-02 2017-06-13 Ge Energy Power Conversion Technology Ltd Compact stacked power modules for minimizing commutating inductance and methods for making the same
US10243604B2 (en) 2015-12-08 2019-03-26 Uber Technologies, Inc. Autonomous vehicle mesh networking configuration
US10036642B2 (en) 2015-12-08 2018-07-31 Uber Technologies, Inc. Automated vehicle communications system
US9603158B1 (en) 2015-12-08 2017-03-21 Uber Technologies, Inc. Optimizing communication for automated vehicles
US9432929B1 (en) 2015-12-08 2016-08-30 Uber Technologies, Inc. Communication configuration system for a fleet of automated vehicles
US9879621B2 (en) * 2015-12-08 2018-01-30 Ford Global Technologies, Llc Fuel vapor flow based on road conditions
US10050760B2 (en) 2015-12-08 2018-08-14 Uber Technologies, Inc. Backend communications system for a fleet of autonomous vehicles
US10061326B2 (en) 2015-12-09 2018-08-28 International Business Machines Corporation Mishap amelioration based on second-order sensing by a self-driving vehicle
DE102015016555B4 (en) 2015-12-18 2020-06-04 Audi Ag Method for operating a damper of a motor vehicle
GB2545652B (en) * 2015-12-18 2019-06-05 Jaguar Land Rover Ltd Control unit for an active suspension system
US10906371B2 (en) 2015-12-24 2021-02-02 ClearMotion, Inc. Integrated multiple actuator electro-hydraulic units
US10315578B2 (en) * 2016-01-14 2019-06-11 Faraday&Future Inc. Modular mirror assembly
US9836973B2 (en) 2016-01-27 2017-12-05 International Business Machines Corporation Selectively controlling a self-driving vehicle's access to a roadway
JP6531839B2 (en) * 2016-01-29 2019-06-26 日産自動車株式会社 Driving control method for vehicle and driving control device for vehicle
US9902311B2 (en) 2016-02-22 2018-02-27 Uber Technologies, Inc. Lighting device for a vehicle
US9969326B2 (en) 2016-02-22 2018-05-15 Uber Technologies, Inc. Intention signaling for an autonomous vehicle
US10239529B2 (en) 2016-03-01 2019-03-26 Ford Global Technologies, Llc Autonomous vehicle operation based on interactive model predictive control
LU92990B1 (en) 2016-03-09 2017-09-19 Ovalo Gmbh Actuator system for a motor vehicle
US10077007B2 (en) * 2016-03-14 2018-09-18 Uber Technologies, Inc. Sidepod stereo camera system for an autonomous vehicle
US10389202B2 (en) * 2016-03-22 2019-08-20 American Precision Industries, Inc. Contaminant-resistant motors for surgical instruments
JP7055105B2 (en) 2016-04-22 2022-04-15 クリアモーション,インコーポレイテッド Methods and equipment for on-center steering and fast reaction vehicles
DE102016207659A1 (en) * 2016-05-03 2017-11-09 Robert Bosch Gmbh Actuator device for a vehicle, brake system
US9849883B2 (en) * 2016-05-04 2017-12-26 Ford Global Technologies, Llc Off-road autonomous driving
US10685391B2 (en) 2016-05-24 2020-06-16 International Business Machines Corporation Directing movement of a self-driving vehicle based on sales activity
DE102016009081A1 (en) * 2016-07-26 2018-02-01 Man Truck & Bus Ag Method and device for controlling or regulating a cab storage
DE102016116856A1 (en) 2016-09-08 2018-03-08 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH System and method for adjusting a height of at least a part of a commercial vehicle
US10093322B2 (en) 2016-09-15 2018-10-09 International Business Machines Corporation Automatically providing explanations for actions taken by a self-driving vehicle
US10643256B2 (en) 2016-09-16 2020-05-05 International Business Machines Corporation Configuring a self-driving vehicle for charitable donations pickup and delivery
US20180079272A1 (en) * 2016-09-20 2018-03-22 Apple Inc. Motion minimization systems and methods
US10191493B2 (en) * 2016-09-27 2019-01-29 Baidu Usa Llc Vehicle position point forwarding method for autonomous vehicles
KR102518534B1 (en) * 2016-11-30 2023-04-07 현대자동차주식회사 Apparatus and mehtod for recognizing position of vehicle
DE102016225253A1 (en) * 2016-12-16 2018-06-21 Robert Bosch Gmbh Method for detecting the rack position in a steering system with electric servomotor
US10906545B2 (en) 2016-12-22 2021-02-02 Blackberry Limited Adjusting mechanical elements of cargo transportation units
WO2018125848A1 (en) * 2016-12-30 2018-07-05 DeepMap Inc. Route generation using high definition maps for autonomous vehicles
US10259452B2 (en) 2017-01-04 2019-04-16 International Business Machines Corporation Self-driving vehicle collision management system
US10363893B2 (en) 2017-01-05 2019-07-30 International Business Machines Corporation Self-driving vehicle contextual lock control system
US10529147B2 (en) 2017-01-05 2020-01-07 International Business Machines Corporation Self-driving vehicle road safety flare deploying system
CN110168879B (en) * 2017-01-13 2021-08-10 日本电产株式会社 Sensor magnet assembly and motor
JP2018114819A (en) * 2017-01-18 2018-07-26 Ntn株式会社 Suspension device for vehicle
US10480552B2 (en) 2017-01-27 2019-11-19 ClearMotion, Inc. Accumulator with secondary gas chamber
US10703359B2 (en) * 2017-01-27 2020-07-07 Ford Global Technologies, Llc Controlling vehicle orientation
EP3580075A4 (en) 2017-02-12 2021-01-20 Clearmotion, Inc. Hydraulic actuator with a frequency dependent relative pressure ratio
US10293818B2 (en) 2017-03-07 2019-05-21 Uber Technologies, Inc. Teleassistance data prioritization for self-driving vehicles
US10202126B2 (en) 2017-03-07 2019-02-12 Uber Technologies, Inc. Teleassistance data encoding for self-driving vehicles
US10152060B2 (en) 2017-03-08 2018-12-11 International Business Machines Corporation Protecting contents of a smart vault being transported by a self-driving vehicle
US11009875B2 (en) 2017-03-09 2021-05-18 Waymo Llc Preparing autonomous vehicles for turns
EP3606772A4 (en) * 2017-04-05 2021-05-19 ClearMotion, Inc. Active force cancellation at structural interfaces
CA3058715C (en) 2017-04-06 2022-07-19 Kongsberg Inc. Power steering system and a method of operating same
US11491841B2 (en) 2017-05-05 2022-11-08 Fox Factory, Inc. System for minimizing data transmission latency between a sensor and a suspension controller of a vehicle
US10543836B2 (en) * 2017-05-22 2020-01-28 Ford Global Technologies, Llc Torque converter control for a variable displacement engine
US10588233B2 (en) 2017-06-06 2020-03-10 Tenneco Automotive Operating Company Inc. Damper with printed circuit board carrier
US10479160B2 (en) 2017-06-06 2019-11-19 Tenneco Automotive Operating Company Inc. Damper with printed circuit board carrier
CN111132856A (en) * 2017-06-30 2020-05-08 超级高铁技术公司 Active control system
US10493622B2 (en) 2017-07-14 2019-12-03 Uatc, Llc Systems and methods for communicating future vehicle actions to be performed by an autonomous vehicle
US10737544B2 (en) 2017-07-24 2020-08-11 Ford Global Technologies, Llc Systems and methods to control a suspension of a vehicle
IT201700101028A1 (en) * 2017-09-08 2019-03-08 Magneti Marelli Spa BIDIRECTIONAL ENERGY CONVERSION SYSTEM OF DC-DC TYPE OPERATING BETWEEN A LOW VOLTAGE SYSTEM AND A HIGH VOLTAGE SYSTEM OF A VEHICLE INCLUDING A STAGE OF ENERGY RECOVERY AND ITS PROCEDURE
IT201700101020A1 (en) * 2017-09-08 2019-03-08 Magneti Marelli Spa CONVERSION SYSTEM OF DC-DC TYPE ENERGY OPERATING BETWEEN A LOW VOLTAGE SYSTEM AND A HIGH VOLTAGE SYSTEM OF A VEHICLE INCLUDING AN ENERGY RECOVERY STAGE AND ITS PROCEDURE
EP3534113B1 (en) 2017-09-13 2022-11-02 ClearMotion, Inc. Road surface-based vehicle control
RU175985U1 (en) * 2017-09-27 2017-12-26 Акционерное общество "Электромашиностроительный завод "ЛЕПСЕ" CONTACTLESS ELECTRIC MACHINE
US10933710B2 (en) 2017-09-29 2021-03-02 Fox Factory, Inc. Modular electronic damping control
US10692377B1 (en) * 2017-10-06 2020-06-23 Zoox, Inc. Enhanced travel modes for vehicles
DE102017218648A1 (en) * 2017-10-19 2019-04-25 Robert Bosch Gmbh Drive unit, in particular hydraulic unit of an electronically slip-controllable vehicle brake system
DE102017219585A1 (en) * 2017-11-03 2019-05-09 Zf Friedrichshafen Ag Method for adjusting a comfort of a vehicle, control device and vehicle
US10967862B2 (en) 2017-11-07 2021-04-06 Uatc, Llc Road anomaly detection for autonomous vehicle
US10802932B2 (en) 2017-12-04 2020-10-13 Nxp Usa, Inc. Data processing system having lockstep operation
US10493990B2 (en) * 2017-12-15 2019-12-03 Tenneco Automotive Operating Company Inc. Systems and methods for ride control blending in electric vehicles
DE102017223331A1 (en) * 2017-12-20 2019-06-27 Audi Ag Control of a chassis component of a vehicle
GB2571100A (en) * 2018-02-15 2019-08-21 Airbus Operations Ltd Controller for an aircraft braking system
EP3759373A4 (en) 2018-02-27 2022-03-16 ClearMotion, Inc. Through tube active suspension actuator
US10757340B2 (en) 2018-03-09 2020-08-25 Pony Ai Inc. Adaptive filter system for self-driving vehicle
GB201803947D0 (en) * 2018-03-12 2018-04-25 Evectek Ltd Electric vehicle with an electro-hydraulic propulsion system
US11104345B2 (en) 2018-04-18 2021-08-31 Rivian Ip Holdings, Llc Methods, systems, and media for determining characteristics of roads
US10800403B2 (en) * 2018-05-14 2020-10-13 GM Global Technology Operations LLC Autonomous ride dynamics comfort controller
US20200001914A1 (en) * 2018-06-27 2020-01-02 GM Global Technology Operations LLC Test method and metrics to evaluate quality of road feedback to driver in a steer-by-wire system
CN108832760B (en) * 2018-07-09 2024-01-23 天津市拓达车辆配件有限公司 Fine-tuning damping equipment for brushless direct-current motor
US11535159B2 (en) 2018-07-18 2022-12-27 Faraday & Future Inc. System and methods for mounting a peripheral vehicular device
EP3626489A1 (en) 2018-09-19 2020-03-25 Thermo King Corporation Methods and systems for energy management of a transport climate control system
EP3626490A1 (en) 2018-09-19 2020-03-25 Thermo King Corporation Methods and systems for power and load management of a transport climate control system
US11034213B2 (en) 2018-09-29 2021-06-15 Thermo King Corporation Methods and systems for monitoring and displaying energy use and energy cost of a transport vehicle climate control system or a fleet of transport vehicle climate control systems
US11273684B2 (en) 2018-09-29 2022-03-15 Thermo King Corporation Methods and systems for autonomous climate control optimization of a transport vehicle
US11440366B1 (en) 2018-10-03 2022-09-13 ClearMotion, Inc. Frequency dependent pressure and/or flow fluctuation mitigation in hydraulic systems
US10843700B2 (en) 2018-10-17 2020-11-24 Aptiv Technologies Limited Vehicle system and method for steep slope site avoidance
US11186273B2 (en) * 2018-10-30 2021-11-30 Toyota Motor North America, Inc. Vehicle data processing systems and methods using one or more local processors
US11059352B2 (en) 2018-10-31 2021-07-13 Thermo King Corporation Methods and systems for augmenting a vehicle powered transport climate control system
US10926610B2 (en) 2018-10-31 2021-02-23 Thermo King Corporation Methods and systems for controlling a mild hybrid system that powers a transport climate control system
US10875497B2 (en) 2018-10-31 2020-12-29 Thermo King Corporation Drive off protection system and method for preventing drive off
US11022451B2 (en) 2018-11-01 2021-06-01 Thermo King Corporation Methods and systems for generation and utilization of supplemental stored energy for use in transport climate control
WO2020095768A1 (en) 2018-11-09 2020-05-14 Kyb株式会社 Electric pump
US10432127B1 (en) 2018-11-15 2019-10-01 Goodrich Corporation Method of dissipating regenerative energy in cargo handling systems
WO2020142829A1 (en) * 2018-11-29 2020-07-16 Isabrem Ltd. Fuel efficiency optimization apparatus and method for hybrid tractor trailer vehicles
US11428536B2 (en) * 2018-12-19 2022-08-30 Nvidia Corporation Navigable boundary generation for autonomous vehicles
US11709231B2 (en) * 2018-12-21 2023-07-25 Infineon Technologies Ag Real time gating and signal routing in laser and detector arrays for LIDAR application
US11554638B2 (en) 2018-12-28 2023-01-17 Thermo King Llc Methods and systems for preserving autonomous operation of a transport climate control system
US11072321B2 (en) 2018-12-31 2021-07-27 Thermo King Corporation Systems and methods for smart load shedding of a transport vehicle while in transit
US11421656B2 (en) * 2019-01-03 2022-08-23 Lucomm Technologies, Inc. Generative system
US11635734B2 (en) * 2019-01-10 2023-04-25 Dalian University Of Technology Interval error observer-based aircraft engine active fault tolerant control method
FR3092010B1 (en) * 2019-01-25 2021-01-22 Zodiac Fluid Equipment Magnetic head for magnetic detector of metal particles and magnetic detector provided with such a head.
US11285844B2 (en) 2019-01-31 2022-03-29 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle seat with morphing portions
US11084349B2 (en) 2019-01-31 2021-08-10 Tenneco Automotive Operating Company Inc. Leaf spring and actuator control systems and methods
US11370330B2 (en) * 2019-03-22 2022-06-28 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle seat with morphing portions
FI129942B (en) * 2019-03-25 2022-11-15 Eee Innovations Oy Enhancement of map data
FI129920B (en) * 2019-03-25 2022-10-31 Eee Innovations Oy Vehicle positioning
CN113646194A (en) * 2019-03-27 2021-11-12 日立安斯泰莫株式会社 Suspension control device
US11752901B2 (en) 2019-03-28 2023-09-12 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle seat with tilting seat portion
AU2020202306A1 (en) * 2019-04-02 2020-10-22 The Raymond Corporation Systems and methods for an arbitration controller to arbitrate multiple automation requests on a material handling device
US11560185B2 (en) * 2019-04-12 2023-01-24 Honda Motor Co., Ltd. System and method for controlling deployment of a vehicle air dam
US11286925B2 (en) * 2019-04-23 2022-03-29 Peopleflo Manufacturing, Inc. Electronic apparatus and method for optimizing the use of motor-driven equipment in a control loop system
CN110138246B (en) * 2019-05-30 2020-11-13 东北电力大学 Impedance remodeling method based on three-level Dual-Buck circuit
DE102019116086A1 (en) * 2019-06-13 2020-12-17 WABCO Global GmbH Device and method for braking a vehicle with a front load-bearing device
US20200408533A1 (en) * 2019-06-28 2020-12-31 DeepMap Inc. Deep learning-based detection of ground features using a high definition map
DE102019118384A1 (en) * 2019-07-08 2021-01-14 Rapa Automotive Gmbh & Co. Kg MPE AXLE SET WITH A COMMON ECU
US20210031760A1 (en) * 2019-07-31 2021-02-04 Nissan North America, Inc. Contingency Planning and Safety Assurance
US11001267B2 (en) 2019-08-01 2021-05-11 Lear Corporation Method and system for proactively adjusting vehicle occupant biometric monitor in view of upcoming road conditions
DE102019122907A1 (en) * 2019-08-27 2021-03-04 Bayerische Motoren Werke Aktiengesellschaft Operating assistance procedures for a vehicle, control unit and vehicle
US11135894B2 (en) 2019-09-09 2021-10-05 Thermo King Corporation System and method for managing power and efficiently sourcing a variable voltage for a transport climate control system
US11420495B2 (en) 2019-09-09 2022-08-23 Thermo King Corporation Interface system for connecting a vehicle and a transport climate control system
EP3789221A1 (en) 2019-09-09 2021-03-10 Thermo King Corporation Prioritized power delivery for facilitating transport climate control
CN112467720A (en) 2019-09-09 2021-03-09 冷王公司 Optimized power distribution for a transport climate control system between one or more power supply stations
US11376922B2 (en) 2019-09-09 2022-07-05 Thermo King Corporation Transport climate control system with a self-configuring matrix power converter
US11203262B2 (en) 2019-09-09 2021-12-21 Thermo King Corporation Transport climate control system with an accessory power distribution unit for managing transport climate control loads
US11214118B2 (en) 2019-09-09 2022-01-04 Thermo King Corporation Demand-side power distribution management for a plurality of transport climate control systems
US11458802B2 (en) 2019-09-09 2022-10-04 Thermo King Corporation Optimized power management for a transport climate control energy source
US10985511B2 (en) 2019-09-09 2021-04-20 Thermo King Corporation Optimized power cord for transferring power to a transport climate control system
US11541882B2 (en) * 2019-09-24 2023-01-03 Volvo Car Corporation Low-impact collision detection
US20210107650A1 (en) * 2019-10-15 2021-04-15 Mike Elias Bandak Aerial firefighting system
CN114466764A (en) * 2019-10-31 2022-05-10 康明斯公司 Method and system for controlling pole switches in an electric motor
TWI716175B (en) * 2019-10-31 2021-01-11 東元電機股份有限公司 Current response compensating system and method thereof
US11305602B2 (en) * 2019-11-04 2022-04-19 GM Global Technology Operations LLC Vehicle detection and isolation system for detecting spring and stabilizing bar associated degradation and failures
US11207937B2 (en) 2019-11-20 2021-12-28 DRiV Automotive Inc. Suspension system for a vehicle
CN110962519B (en) * 2019-11-25 2022-11-25 福建省汽车工业集团云度新能源汽车股份有限公司 Active suspension control method with intelligent adjusting function for electric automobile
CN110861462B (en) * 2019-12-02 2022-10-04 西安科技大学 Image recognition-based whole vehicle intelligent hybrid suspension coordination control system
KR20210076289A (en) * 2019-12-13 2021-06-24 현대자동차주식회사 Electronic control suspension control method and apparatus
US11489431B2 (en) 2019-12-30 2022-11-01 Thermo King Corporation Transport climate control system power architecture
WO2021138700A1 (en) * 2020-01-05 2021-07-08 Eva, Llc Automated steering control mechanism and system for wheeled vehicles
JP7298515B2 (en) 2020-03-04 2023-06-27 トヨタ自動車株式会社 Vehicle preview damping control device and vehicle preview damping control method
DE102020106642B4 (en) 2020-03-11 2022-12-22 Ford Global Technologies, Llc Method for controlling vertical vibration damping of at least one wheel of a vehicle and vehicle with vertical vibration damping of at least one wheel
US11830302B2 (en) 2020-03-24 2023-11-28 Uatc, Llc Computer system for utilizing ultrasonic signals to implement operations for autonomous vehicles
DE102021105566A1 (en) 2020-03-24 2021-09-30 Honeywell International Inc. ROTARY ENCODER
JP7354916B2 (en) 2020-04-28 2023-10-03 トヨタ自動車株式会社 Vehicle vibration damping control device, vibration damping control system, vibration damping control method, and data providing device.
US11529953B2 (en) 2020-04-30 2022-12-20 Ford Global Technologies, Llc Adjust operational parameters based on identified roadway irregularities
JP7188413B2 (en) * 2020-06-04 2022-12-13 トヨタ自動車株式会社 Vehicle damping control device and method
JP7180638B2 (en) 2020-06-08 2022-11-30 トヨタ自動車株式会社 VEHICLE RUNNING STATE CONTROL DEVICE AND METHOD
JP7180640B2 (en) * 2020-06-10 2022-11-30 トヨタ自動車株式会社 Vehicle damping control device and damping control method
KR20210156885A (en) * 2020-06-17 2021-12-28 현대자동차주식회사 Control system when Brake-By-wire device
JP7314869B2 (en) * 2020-06-24 2023-07-26 トヨタ自動車株式会社 Vehicle damping control device and method
JP7252521B2 (en) 2020-06-29 2023-04-05 トヨタ自動車株式会社 Vehicle damping control device and method
US11772496B2 (en) * 2020-08-26 2023-10-03 Anusheel Nahar Regenerative braking system of an automobile and a method to operate
US11605249B2 (en) 2020-09-14 2023-03-14 Dish Wireless L.L.C. Using automatic road hazard detection to categorize automobile collision
JP7314897B2 (en) 2020-10-07 2023-07-26 トヨタ自動車株式会社 VEHICLE PREVIEW DAMAGE CONTROL DEVICE AND METHOD
JP7307404B2 (en) * 2020-10-07 2023-07-12 トヨタ自動車株式会社 Damping control device and data management device
JP7367652B2 (en) 2020-10-07 2023-10-24 トヨタ自動車株式会社 Vehicle preview vibration damping control device and method
JP7314899B2 (en) 2020-10-14 2023-07-26 トヨタ自動車株式会社 Vibration control device
JP7306362B2 (en) 2020-10-19 2023-07-11 トヨタ自動車株式会社 Database creation method for vehicle preview damping control
JP7251538B2 (en) * 2020-10-19 2023-04-04 トヨタ自動車株式会社 VEHICLE CONTROL METHOD AND CONTROL DEVICE
JP7322855B2 (en) 2020-10-23 2023-08-08 トヨタ自動車株式会社 Road surface information creation device and vehicle control system
US20220212678A1 (en) * 2020-10-27 2022-07-07 ClearMotion, Inc. Systems and methods for vehicle control using terrain-based localization
JP7314902B2 (en) * 2020-10-29 2023-07-26 トヨタ自動車株式会社 VEHICLE CONTROL METHOD AND CONTROL DEVICE
JP7314904B2 (en) 2020-10-30 2023-07-26 トヨタ自動車株式会社 Vibration control device
JP7328626B2 (en) 2020-10-30 2023-08-17 トヨタ自動車株式会社 Vehicle damping control system
CN112417619B (en) * 2020-11-23 2021-10-08 江苏大学 Pump unit optimal operation adjusting system and method based on digital twinning
JP7406182B2 (en) 2020-12-11 2023-12-27 トヨタ自動車株式会社 Related value information update system and related value information update method
CN113014462A (en) * 2021-02-22 2021-06-22 上海节卡机器人科技有限公司 Data conversion method, device, controller and circuit thereof
US11932072B2 (en) * 2021-03-08 2024-03-19 DRiV Automotive Inc. Suspension control system and method with event detection based on unsprung mass acceleration data and pre-emptive road data
DE202021101206U1 (en) 2021-03-10 2022-06-15 Dana Italia S.R.L. Hydraulically suspended vehicle axle assembly and vehicle axle assembly incorporating this assembly
JP2022147002A (en) * 2021-03-23 2022-10-06 本田技研工業株式会社 Damper control device
CN115520193A (en) * 2021-06-10 2022-12-27 罗伯特·博世有限公司 Method, device and computer program product for operating a vehicle
FR3124437B1 (en) * 2021-06-25 2023-10-13 Renault Sas Method for controlling a vehicle equipped with at least one suspension controlled by learning.
DE102021116460A1 (en) * 2021-06-25 2022-12-29 Bühler Motor GmbH Bearing arrangement for a pump motor
US11859571B2 (en) 2021-07-21 2024-01-02 Ford Global Technologies, Llc Methods for a road surface metric
JP2023037113A (en) 2021-09-03 2023-03-15 トヨタ自動車株式会社 Vehicle and control method of vehicular suspension
DE102021123306B3 (en) 2021-09-09 2023-01-05 Audi Ag Vehicle with a curve tilting function
DE102021210043A1 (en) 2021-09-10 2023-03-16 Vitesco Technologies Germany Gmbh Pump, in particular gear oil pump with a modular structure
JP2023042372A (en) * 2021-09-14 2023-03-27 トヨタ自動車株式会社 Map data, map update method, vehicle control method and vehicle control system
JP2023042329A (en) * 2021-09-14 2023-03-27 トヨタ自動車株式会社 Map data, map update method, vehicle control method and vehicle control system
US11897379B2 (en) 2021-10-20 2024-02-13 Toyota Motor Engineering & Manufacturing North America, Inc. Seat with shape memory material member actuation
DE102021211978A1 (en) 2021-10-25 2023-04-27 Continental Automotive Technologies GmbH SYSTEM AND METHOD FOR STABILIZING ONE OR MORE SENSORS ON A VEHICLE
US11959448B2 (en) 2022-02-04 2024-04-16 Toyota Motor Engineering & Manufacturing North America, Inc. Trail driving engine start-stop judgment systems and methods
WO2024059522A1 (en) * 2022-09-12 2024-03-21 ClearMotion, Inc. Dynamic groundhook control in a vehicle using an active suspension system
KR102616457B1 (en) * 2023-06-16 2023-12-21 에이디어스 주식회사 Air Suspension Operation Planning Generation Device for Autonomous Vehicles

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868477A (en) * 1987-06-23 1989-09-19 The Superior Electric Company Method and apparatus for controlling torque and torque ripple in a variable reluctance motor
US4992715A (en) * 1987-08-04 1991-02-12 Hitachi, Ltd. Torque control apparatus for rotating motor machine
US5616999A (en) * 1994-02-10 1997-04-01 Nippondenso Co., Ltd. Torque detecting apparatus for reducing torque ripple in an AC motor
US5844388A (en) * 1996-03-29 1998-12-01 Sgs-Thomson Microelectronics S.R.L. Drive systems for a brushless motor employing predefined driving profiles stored in a nonvolatile memory
US5852355A (en) * 1996-05-23 1998-12-22 Switched Reluctance Drives Limited Output smoothing in a switched reluctance machine
US5962999A (en) * 1997-07-30 1999-10-05 Matsushita Electric Industrial Method of controlling a torque ripple of a motor having interior permanent magnets and a controller using the same method
US20080265808A1 (en) * 2004-07-10 2008-10-30 Malcolm Eric Sparey Motor Drive Voltage-Boost Control
US20110062904A1 (en) * 2009-09-11 2011-03-17 Denso Corporation Alternating current motor control system
US20120063922A1 (en) * 2010-09-14 2012-03-15 Jatco Ltd Motor control apparatus/method for electric oil pump

Family Cites Families (295)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US998128A (en) 1910-02-03 1911-07-18 Thomas C Neal Combined air pump and cushion.
US1116293A (en) 1914-02-02 1914-11-03 Joseph G Waters Apparatus for transforming energy.
US1290293A (en) 1918-04-15 1919-01-07 American Motor Spring Patents Company Shock-absorber and suspension for vehicles.
US2194530A (en) 1938-01-05 1940-03-26 Servel Inc Vehicle refrigeration
GB652732A (en) 1943-04-16 1951-05-02 British Thomson Houston Co Ltd Improvements relating to regulators for dynamo electric machines
FR1089112A (en) 1952-12-08 1955-03-15 Siegener Eisenbahnbedarf Ag Vehicle suspension
US2958292A (en) 1956-10-22 1960-11-01 Allis Chalmers Mfg Co Canned motor
US2942581A (en) 1958-03-12 1960-06-28 Fisher Governor Co Hydraulic operator
GB1070783A (en) 1963-06-17 1967-06-01 Ass Elect Ind Improvements relating to power transfer circuit arrangements
US3507580A (en) 1967-05-12 1970-04-21 Landon H Howard Energy generator
US3515889A (en) 1967-08-14 1970-06-02 Lamphere Jean K Power generation apparatus
US3540482A (en) 1967-09-25 1970-11-17 Bendix Corp Accumulator inlet fitting
US3559027A (en) 1967-09-27 1971-01-26 Harold B Arsem Electric shock absorber
US3610611A (en) * 1970-03-13 1971-10-05 Gen Motors Corp Automatic vehicle leveling system with electronic time delay
US3688859A (en) 1970-10-08 1972-09-05 Fma Inc Vehicular air compression system
US3805833A (en) 1971-10-20 1974-04-23 G Teed Back-suction diverter valve
DE2217536C2 (en) 1972-04-12 1974-05-09 Carl Schenck Maschinenfabrik Gmbh, 6100 Darmstadt Arrangement for regulating a dynamic test system, in particular for a hydraulically driven one
US3800202A (en) 1972-04-24 1974-03-26 J Oswald Cemf dependent regenerative braking for dc motor
FR2152111A6 (en) 1972-09-05 1973-04-20 Ferrara Guy
US3921746A (en) 1972-12-28 1975-11-25 Alexander J Lewus Auxiliary power system for automotive vehicle
US4295538A (en) 1974-03-21 1981-10-20 Lewus Alexander J Auxiliary power system for automotive vehicle
US3947004A (en) 1974-12-23 1976-03-30 Tayco Developments, Inc. Liquid spring, vehicle suspension system and method for producing a low variance in natural frequency over a predetermined load range
US4032829A (en) 1975-08-22 1977-06-28 Schenavar Harold E Road shock energy converter for charging vehicle batteries
FR2346176A1 (en) 1975-10-31 1977-10-28 Milleret Michel Vehicle braking energy recovery system - has hydraulic or pneumatic recuperator supplying fluid to motor which drives generator
US4033580A (en) 1976-01-15 1977-07-05 Paris Irwin S Elastic type exercising
IT1093284B (en) 1977-02-11 1985-07-19 Cableform Ltd IMPROVEMENTS RELATED TO PULSE CHECKS
JPS586364B2 (en) 1977-08-10 1983-02-04 株式会社日立製作所 Braking control system for chopper electric cars
US5794439A (en) 1981-11-05 1998-08-18 Lisniansky; Robert Moshe Regenerative adaptive fluid control
US4480709A (en) 1982-05-12 1984-11-06 Commanda Ephrem E Fluid powered generator
US4625993A (en) 1983-01-21 1986-12-02 Group Lotus Public Limited Company Vehicle suspension system
JPS59187124A (en) 1983-04-06 1984-10-24 Chiyoda Chem Eng & Constr Co Ltd Vibration damping device
IT1164365B (en) 1983-08-04 1987-04-08 Alfa Romeo Auto Spa OSCILLATION SHOCK ABSORBER DEVICE FOR A VEHICLE
US4770438A (en) 1984-01-20 1988-09-13 Nissan Motor Co., Ltd. Automotive suspension control system with road-condition-dependent damping characteristics
US4500827A (en) 1984-06-11 1985-02-19 Merritt Thomas D Linear reciprocating electrical generator
US4729459A (en) 1984-10-01 1988-03-08 Nippon Soken, Inc. Adjustable damping force type shock absorber
DE3524862A1 (en) 1985-04-12 1986-10-30 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR DAMPING MOTION PROCESSES
JPS61287808A (en) 1985-06-14 1986-12-18 Nissan Motor Co Ltd Suspension control device for vehicle
US4740711A (en) 1985-11-29 1988-04-26 Fuji Electric Co., Ltd. Pipeline built-in electric power generating set
US5657840A (en) 1986-06-05 1997-08-19 Lizell; Magnus B. Method and apparatus for absorbing mechanical shock
JP2575379B2 (en) 1987-03-24 1997-01-22 日産自動車株式会社 Active suspension device
JPS6430816A (en) 1987-07-24 1989-02-01 Toyota Motor Corp Active suspension for vehicle
JPH0192526A (en) * 1987-09-30 1989-04-11 Isuzu Motors Ltd Turbocharger provided with electric rotary machine
US4815575A (en) 1988-04-04 1989-03-28 General Motors Corporation Electric, variable damping vehicle suspension
US4857755A (en) 1988-09-27 1989-08-15 Comstock W Kenneth Constant power system and method
CA1336616C (en) 1988-10-05 1995-08-08 I. Davis Roy Electrically powered active suspension for a vehicle
US5060959A (en) 1988-10-05 1991-10-29 Ford Motor Company Electrically powered active suspension for a vehicle
US4908553A (en) 1988-12-20 1990-03-13 Eaton Corporation Magnetic regenerative braking system
US4887699A (en) 1989-02-10 1989-12-19 Lord Corporation Vibration attenuating method utilizing continuously variable semiactive damper
US4921080A (en) 1989-05-08 1990-05-01 Lin Chien H Hydraulic shock absorber
US4981309A (en) 1989-08-31 1991-01-01 Bose Corporation Electromechanical transducing along a path
EP0417695B1 (en) 1989-09-11 1997-12-10 Toyota Jidosha Kabushiki Kaisha Suspension control system
US5183127A (en) * 1989-09-13 1993-02-02 Mazda Motor Corporation Suspension-traction total control system
DE3937987A1 (en) 1989-11-15 1991-05-16 Bosch Gmbh Robert VEHICLE SUSPENSION I
US5046309A (en) 1990-01-22 1991-09-10 Shin Caterpillar Mitsubishi Ltd. Energy regenerative circuit in a hydraulic apparatus
JPH03123981U (en) 1990-03-30 1991-12-17
DE4014466A1 (en) 1990-05-07 1991-11-14 Bosch Gmbh Robert VEHICLE SUSPENSION
KR100201267B1 (en) 1990-05-16 1999-06-15 가와모토 노부히코 Regeneration braking apparatus of an electric car
NL9001394A (en) 1990-06-19 1992-01-16 P G Van De Veen Consultancy B CONTROLLED SILENCER.
US5091679A (en) 1990-06-20 1992-02-25 General Motors Corporation Active vehicle suspension with brushless dynamoelectric actuator
US5203199A (en) 1990-10-12 1993-04-20 Teledyne Industries, Inc. Controlled acceleration platform
US5102161A (en) 1991-03-07 1992-04-07 Trw Inc. Semi-active suspension system with energy saving valve
US5145206A (en) 1991-03-07 1992-09-08 Trw Inc. Semi-active suspension system with energy saving actuator
US5098119A (en) 1991-03-22 1992-03-24 Trw Inc. Semi-active suspension system with energy saving
US5497324A (en) 1991-05-20 1996-03-05 General Motors Corporation Vehicle suspension system with gain scheduling
US5572425A (en) 1991-06-18 1996-11-05 Ford Motor Company Powered active suspension system responsive to anticipated power demand
US5232242A (en) 1991-06-18 1993-08-03 Ford Motor Company Power consumption limiting means for an active suspension system
US5205326A (en) 1991-08-23 1993-04-27 Hydraulic Power Systems, Inc. Pressure response type pulsation damper noise attenuator and accumulator
US5276622A (en) 1991-10-25 1994-01-04 Lord Corporation System for reducing suspension end-stop collisions
US5360445A (en) * 1991-11-06 1994-11-01 International Business Machines Corporation Blood pump actuator
JP3049136B2 (en) 1991-12-09 2000-06-05 マツダ株式会社 Vehicle suspension device
JPH0550195U (en) 1991-12-09 1993-07-02 株式会社昭和製作所 Hydraulic shock absorber with power generation function
US5337560A (en) 1992-04-02 1994-08-16 Abdelmalek Fawzy T Shock absorber and a hermetically sealed scroll gas expander for a vehicular gas compression and expansion power system
US5425436A (en) 1992-08-26 1995-06-20 Nippondenso Co., Ltd. Automotive suspension control system utilizing variable damping force shock absorber
US5291960A (en) 1992-11-30 1994-03-08 Ford Motor Company Hybrid electric vehicle regenerative braking energy recovery system
US5295563A (en) 1993-03-01 1994-03-22 General Motors Corporation Active suspension actuator with control flow through the piston rod
US5570286A (en) 1993-12-23 1996-10-29 Lord Corporation Regenerative system including an energy transformer which requires no external power source to drive same
US5529152A (en) 1994-07-08 1996-06-25 Aimrite Systems International, Inc. Variable constant force hydraulic components and systems
JP2738819B2 (en) 1994-08-22 1998-04-08 本田技研工業株式会社 Power generation control device for hybrid vehicle
JPH0865809A (en) 1994-08-25 1996-03-08 Yamaha Motor Co Ltd Motor controller for motor driven vehicle
JP3125603B2 (en) 1994-10-07 2001-01-22 トヨタ自動車株式会社 Suspension control device
EP0706906A3 (en) 1994-10-12 1997-07-02 Unisia Jecs Corp Apparatus and method for controlling damping force characteristic of vehicular suspension system
JP3089958B2 (en) 1994-12-06 2000-09-18 三菱自動車工業株式会社 Electric vehicle braking control device
JPH08226377A (en) 1994-12-09 1996-09-03 Fuotsukusu Hetsudo:Kk Surge generator
US5590734A (en) 1994-12-22 1997-01-07 Caires; Richard Vehicle and method of driving the same
US5480186A (en) 1994-12-23 1996-01-02 Ford Motor Company Dynamic roll control system for a motor vehicle
US7085637B2 (en) * 1997-10-22 2006-08-01 Intelligent Technologies International, Inc. Method and system for controlling a vehicle
JP3387287B2 (en) 1995-09-19 2003-03-17 日産自動車株式会社 Regenerative charging control device
DE19535752A1 (en) 1995-09-26 1997-03-27 Peter Dipl Ing Mumm Control of independent power generation system
JP3454036B2 (en) 1995-11-13 2003-10-06 トヨタ自動車株式会社 Hybrid drive
US5659205A (en) 1996-01-11 1997-08-19 Ebara International Corporation Hydraulic turbine power generator incorporating axial thrust equalization means
IT1289322B1 (en) 1996-01-19 1998-10-02 Carlo Alberto Zenobi DEVICE FOR OBTAINING ELECTRICITY FROM THE DYNAMIC ACTIONS ARISING FROM THE RELATIVE MOTION BETWEEN VEHICLES AND THE GROUND
US5682980A (en) 1996-02-06 1997-11-04 Monroe Auto Equipment Company Active suspension system
AU2055697A (en) 1996-02-26 1997-09-10 Board Of Regents, The University Of Texas System Constant force suspension, near constant force suspension, and associated control algorithms
US5717303A (en) 1996-03-04 1998-02-10 Tenergy, L.L.C. DC motor drive assembly including integrated charger/controller/regenerator circuit
JP3118414B2 (en) 1996-05-22 2000-12-18 株式会社豊田中央研究所 Vehicle sprung unsprung relative speed calculation device
JP3689829B2 (en) 1996-10-04 2005-08-31 株式会社日立製作所 Suspension control device
US5892293A (en) 1997-01-15 1999-04-06 Macrosonix Corporation RMS energy conversion
US6025665A (en) * 1997-02-21 2000-02-15 Emerson Electric Co. Rotating machine for use in a pressurized fluid system
ES2206785T3 (en) * 1997-05-16 2004-05-16 Conception Et Developpement Michelin SUSPENSION DEVICE INCLUDING A SPRING CORRECTOR.
US6092618A (en) 1997-10-31 2000-07-25 General Motors Corporation Electro-hydraulic power steering control with fluid temperature and motor speed compensation of power steering load signal
US5941328A (en) 1997-11-21 1999-08-24 Lockheed Martin Corporation Electric vehicle with variable efficiency regenerative braking depending upon battery charge state
JPH11166474A (en) 1997-12-01 1999-06-22 Kotou Unyu Kk Generator using reciprocating motion
US6049746A (en) 1998-04-01 2000-04-11 Lord Corporation End stop control method
DE29809485U1 (en) 1998-05-28 1998-09-10 Kraemer & Grebe Kg Wolf for chopping frozen and fresh meat
US5925951A (en) * 1998-06-19 1999-07-20 Sundstrand Fluid Handling Corporation Electromagnetic shield for an electric motor
US6349543B1 (en) 1998-06-30 2002-02-26 Robert Moshe Lisniansky Regenerative adaptive fluid motor control
JP3787038B2 (en) 1998-09-10 2006-06-21 トヨタ自動車株式会社 Elastic support device, vehicle elastic support device, and control device for vehicle suspension device
US6502837B1 (en) * 1998-11-11 2003-01-07 Kenmar Company Trust Enhanced computer optimized adaptive suspension system and method
US6282453B1 (en) 1998-12-02 2001-08-28 Caterpillar Inc. Method for controlling a work implement to prevent interference with a work machine
US6575264B2 (en) * 1999-01-29 2003-06-10 Dana Corporation Precision electro-hydraulic actuator positioning system
AU757591B2 (en) 1999-04-12 2003-02-27 Kinetic Pty Limited Active ride control for a vehicle suspension system
US6190319B1 (en) * 1999-06-21 2001-02-20 International Business Machines Corporation Self calibrating linear position sensor
CA2279435A1 (en) 1999-07-30 2001-01-30 Michael Alexander Duff Linear actuator
US6227817B1 (en) * 1999-09-03 2001-05-08 Magnetic Moments, Llc Magnetically-suspended centrifugal blood pump
US7195250B2 (en) 2000-03-27 2007-03-27 Bose Corporation Surface vehicle vertical trajectory planning
DE10019532C2 (en) 2000-04-20 2002-06-27 Zf Sachs Ag Suspension system for motor vehicles
JP2001311452A (en) 2000-04-28 2001-11-09 Tokico Ltd Electromagnetic suspension control system
WO2001089066A1 (en) 2000-05-17 2001-11-22 Kabushiki Kaisha Sankyo Seiki Seisakusho Small power generating device and water faucet device
US6394238B1 (en) 2000-05-25 2002-05-28 Husco International, Inc. Regenerative suspension for an off-road vehicle
EP1188587B1 (en) 2000-05-25 2008-04-16 Husco International, Inc. Regenerative suspension for an off-road vehicle
US6731019B2 (en) 2000-08-07 2004-05-04 Ocean Power Technologies, Inc. Apparatus and method for optimizing the power transfer produced by a wave energy converter (WEC)
US6467748B1 (en) * 2000-09-05 2002-10-22 Deere & Company Hydraulic circuit for active suspension system
CN100341227C (en) 2000-09-06 2007-10-03 日本电产三协株式会社 Small-sized hydroelectric power generating apparatus
US6915600B2 (en) 2000-09-12 2005-07-12 Yanmar Co., Ltd. Hydraulic circuit of excavating and slewing working vehicle
US6397134B1 (en) 2000-09-13 2002-05-28 Delphi Technologies, Inc. Vehicle suspension control with enhanced body control in steering crossover
US6644590B2 (en) 2000-09-15 2003-11-11 General Dynamics Advanced Information Systems, Inc. Active system and method for vibration and noise reduction
US6834737B2 (en) 2000-10-02 2004-12-28 Steven R. Bloxham Hybrid vehicle and energy storage system and method
JP3582479B2 (en) 2000-11-21 2004-10-27 日産自動車株式会社 Vehicle battery charge control device
US6441508B1 (en) 2000-12-12 2002-08-27 Ebara International Corporation Dual type multiple stage, hydraulic turbine power generator including reaction type turbine with adjustable blades
US6573675B2 (en) 2000-12-27 2003-06-03 Transportation Techniques Llc Method and apparatus for adaptive energy control of hybrid electric vehicle propulsion
DE10104851A1 (en) * 2001-02-03 2002-08-22 Zf Lenksysteme Gmbh Pump system with a hydraulic pump, in particular for a steering system
US7571683B2 (en) 2001-03-27 2009-08-11 General Electric Company Electrical energy capture system with circuitry for blocking flow of undesirable electrical currents therein
US6973880B2 (en) 2001-03-27 2005-12-13 General Electric Company Hybrid energy off highway vehicle electric power storage system and method
CA2343489C (en) 2001-04-05 2007-05-22 Electrofuel, Inc. Energy storage device for loads having variable power rates
US6952060B2 (en) 2001-05-07 2005-10-04 Trustees Of Tufts College Electromagnetic linear generator and shock absorber
DE10126933B4 (en) 2001-06-01 2004-08-26 Continental Aktiengesellschaft Method for regulating or controlling the damper force of adjustable dampers on vehicles
US6575484B2 (en) 2001-07-20 2003-06-10 Husco International, Inc. Dual mode regenerative suspension for an off-road vehicle
JP2003035254A (en) 2001-07-24 2003-02-07 Sony Corp Power source device
US6752250B2 (en) * 2001-09-27 2004-06-22 Northrop Grumman Corporation Shock, vibration and acoustic isolation system
US6679504B2 (en) 2001-10-23 2004-01-20 Liquidspring Technologies, Inc. Seamless control of spring stiffness in a liquid spring system
FR2831226B1 (en) * 2001-10-24 2005-09-23 Snecma Moteurs AUTONOMOUS ELECTROHYDRAULIC ACTUATOR
US6631960B2 (en) 2001-11-28 2003-10-14 Ballard Power Systems Corporation Series regenerative braking torque control systems and methods
US6650985B2 (en) * 2001-12-28 2003-11-18 Case, Llc Skid steer vehicle having anti-rolling system
US6452535B1 (en) 2002-01-29 2002-09-17 Ford Global Technologies, Inc. Method and apparatus for impact crash mitigation
CN1370926A (en) 2002-02-01 2002-09-25 张玉森 Electrically driven vehicle device to collecting vibration-reducing energy and converting inti electric energy and its method
US7008200B2 (en) 2002-02-05 2006-03-07 The Texas A&M University System Gerotor apparatus for a quasi-isothermal brayton cycle engine
KR100427364B1 (en) 2002-03-06 2004-04-14 현대자동차주식회사 Battery system current measuring system of electric vehicle
DE20209120U1 (en) 2002-06-12 2003-10-16 Hemscheidt Fahrwerktech Gmbh Suspension device for motor vehicles
US7156406B2 (en) 2002-10-25 2007-01-02 Ina- Schaeffler Kg Anti-roll bar for the chassis of a motor vehicle
US6886650B2 (en) 2002-11-13 2005-05-03 Deere & Company Active seat suspension control system
GB0226843D0 (en) 2002-11-16 2002-12-24 Cnh Uk Ltd cab support system for an agricultural vehicle
JP2004190845A (en) 2002-12-13 2004-07-08 Shin Caterpillar Mitsubishi Ltd Drive device for working machine
US6841970B2 (en) 2002-12-20 2005-01-11 Mark Zabramny Dual-use generator and shock absorber assistant system
CN100444495C (en) 2003-01-24 2008-12-17 三菱电机株式会社 Battery power circuit
EP2154028B8 (en) 2003-02-17 2015-12-09 Denso Corporation Vehicle power supply system
JP4131395B2 (en) 2003-02-21 2008-08-13 株式会社デンソー Regenerative braking device for vehicle
US7087342B2 (en) 2003-04-15 2006-08-08 Visteon Global Technologies, Inc. Regenerative passive and semi-active suspension
US6920951B2 (en) 2003-04-17 2005-07-26 Visteon Global Technologies, Inc. Regenerative damping method and apparatus
US20040212273A1 (en) 2003-04-24 2004-10-28 Gould Len Charles Heat engine and generator set incorporating multiple generators for synchronizing and balancing
US20040211631A1 (en) 2003-04-24 2004-10-28 Hsu William W. Hydraulic damper
US6765389B1 (en) 2003-06-12 2004-07-20 Delphi Technologies, Inc. Method of computing AC impedance of an energy system
US20050017462A1 (en) * 2003-07-23 2005-01-27 Kroppe William J. Suspension system
NZ547034A (en) 2003-08-12 2008-03-28 Graeme Kershaw Robertson Shock absorber assembly
DE10337620B4 (en) 2003-08-16 2017-09-28 Daimler Ag Motor vehicle with a pre-safe system
US6964325B2 (en) 2003-09-15 2005-11-15 Tenneco Automotive Operating Company Inc. Integrated tagging system for an electronic shock absorber
US20060090462A1 (en) 2003-11-14 2006-05-04 Kazunori Yoshino Energy regeneration system for working machinery
US7438164B2 (en) 2003-12-08 2008-10-21 Tenneco Automotive Operating Company Inc. Solenoid actuated continuously variable servo valve for adjusting damping in shock absorbers and struts
US7333882B2 (en) 2004-02-12 2008-02-19 Hitachi, Ltd. Suspension control apparatus
JP2005253126A (en) 2004-03-01 2005-09-15 Nissan Motor Co Ltd Brake controller of hybrid vehicle and vehicle mounting that controller
US8380416B2 (en) 2004-03-18 2013-02-19 Ford Global Technologies Method and apparatus for controlling brake-steer in an automotive vehicle in reverse
CN2707546Y (en) 2004-04-16 2005-07-06 江苏大学 Energy feeding back type semi-active suspension
GB0410355D0 (en) * 2004-05-10 2004-06-09 Delphi Tech Inc Vehicle roll control system
US7335999B2 (en) 2004-06-15 2008-02-26 Honeywell International, Inc. Fluid actuated rotating device including a low power generator
US7202577B2 (en) 2004-06-17 2007-04-10 Bose Corporation Self-cooling actuator
US7421954B2 (en) 2004-06-18 2008-09-09 Bose Corporation Active suspension controller
US7427072B2 (en) 2004-06-18 2008-09-23 Bose Corporation Active vehicle suspension
JP4134964B2 (en) 2004-08-02 2008-08-20 株式会社デンソー Power generation control device
US6944544B1 (en) 2004-09-10 2005-09-13 Ford Global Technologies, Llc Adaptive vehicle safety system for collision compatibility
US7051526B2 (en) 2004-10-01 2006-05-30 Moog Inc. Closed-system electrohydraulic actuator
WO2006047353A2 (en) 2004-10-25 2006-05-04 Davis Family Irrevocable Trust, With A Trustee Of Richard Mccown Compressible fluid independent active suspension
US7983813B2 (en) 2004-10-29 2011-07-19 Bose Corporation Active suspending
US20060108860A1 (en) 2004-11-23 2006-05-25 Delaware Capital Formation Brake energy recovery system
AU2005311758B2 (en) * 2004-12-01 2011-11-10 Concentric Rockford Inc. Hydraulic drive system
US7702440B2 (en) 2005-02-08 2010-04-20 Ford Global Technologies Method and apparatus for detecting rollover of an automotive vehicle based on a lateral kinetic energy rate threshold
GB2425160B (en) 2005-04-12 2010-11-17 Perpetuum Ltd An Electromechanical Generator for, and method of, Converting Mechanical Vibrational Energy into Electrical Energy
JP4525918B2 (en) 2005-04-15 2010-08-18 トヨタ自動車株式会社 Damping force generating system and vehicle suspension system including the same
JP4114679B2 (en) 2005-05-24 2008-07-09 トヨタ自動車株式会社 Vehicle damping force control device
TWI279970B (en) 2005-07-20 2007-04-21 Delta Electronics Inc Configuration and controlling method of boost circuit having pulse-width modulation limiting controller
JP4852919B2 (en) 2005-07-25 2012-01-11 アイシン・エィ・ダブリュ株式会社 Vehicle ride control system and vehicle ride control method
US20070045067A1 (en) * 2005-08-26 2007-03-01 Husco International, Inc. Hydraulic circuit with a pilot operated check valve for an active vehicle suspension system
US7286919B2 (en) 2005-10-17 2007-10-23 Gm Global Technology Operations, Inc. Method and apparatus for controlling damping of a vehicle suspension
US7261171B2 (en) 2005-10-24 2007-08-28 Towertech Research Group Apparatus and method for converting movements of a vehicle wheel to electricity for charging a battery of the vehicle
US20070089924A1 (en) 2005-10-24 2007-04-26 Towertech Research Group Apparatus and method for hydraulically converting movement of a vehicle wheel to electricity for charging a vehicle battery
US7823891B2 (en) 2005-11-29 2010-11-02 Bose Corporation Active vehicle suspension system
DE102006010508A1 (en) 2005-12-20 2007-08-09 Robert Bosch Gmbh Vehicle with a drive motor for driving a traction drive and a working hydraulics
US8269359B2 (en) 2006-01-17 2012-09-18 Uusi, Llc Electronic control for a hydraulically driven generator
US8269360B2 (en) 2006-01-17 2012-09-18 Uusi, Llc Electronic control for a hydraulically driven auxiliary power source
DE102006002983B4 (en) * 2006-01-21 2016-09-15 Bayerische Motoren Werke Aktiengesellschaft Active chassis system of a vehicle
JP4380640B2 (en) * 2006-02-09 2009-12-09 トヨタ自動車株式会社 Vehicle stabilizer system
AU2007223733B2 (en) 2006-03-09 2013-01-10 The Regents Of The University Of California Power generating leg
TWM299089U (en) 2006-04-28 2006-10-11 Shui-Chuan Chiao Wireless adjustment controller for damping of shock absorber on a vehicle
US7887033B2 (en) 2006-06-06 2011-02-15 Deere & Company Suspension system having active compensation for vibration
ES2315965T3 (en) 2006-06-23 2009-04-01 Fondazione Torino Wireless SUSPENSION TILT MODULE FOR WHEELED VEHICLES AND A WHEEL VEHICLE EQUIPPED WITH SUCH SUSPENSION Tilt MODULE.
JP4828325B2 (en) 2006-07-03 2011-11-30 カヤバ工業株式会社 Shock absorber controller
EP1878598A1 (en) 2006-07-13 2008-01-16 Fondazione Torino Wireless Regenerative suspension for a vehicle
CN201002520Y (en) 2006-11-09 2008-01-09 宋杨 Hydraulic energy-feeding type vibration damping suspension for vehicle
US8067863B2 (en) 2007-01-18 2011-11-29 Bose Corporation Detent force correcting
US8448432B2 (en) * 2007-02-13 2013-05-28 The Board Of Regents Of The University Of Texas System Actuators
DE102007008736A1 (en) * 2007-02-22 2008-08-28 Wabco Gmbh Method for controlling a compressor and device for carrying out the method
JP5129493B2 (en) * 2007-03-12 2013-01-30 日立建機株式会社 Travel control device for work vehicle
JP5046690B2 (en) 2007-03-12 2012-10-10 日立建機株式会社 Control device for work vehicle
US8285447B2 (en) * 2007-03-20 2012-10-09 Enpulz, L.L.C. Look ahead vehicle suspension system
EP1974965A1 (en) 2007-03-26 2008-10-01 C.R.F. Società Consortile per Azioni System for controlling damping and roll and pitch body movements of a motor vehicle, having adjustable hydraulic actuators
US8032281B2 (en) 2007-03-29 2011-10-04 Ford Global Technologies Vehicle control system with advanced tire monitoring
US7948224B2 (en) 2007-03-30 2011-05-24 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Feedback controller having multiple feedback paths
US7656055B2 (en) 2007-04-12 2010-02-02 Rosalia Torres Hydro-wind power generating turbine system and retrofitting method
BRPI0704656A2 (en) 2007-04-19 2008-12-02 Seahorse Wave Energy Hybrid plant for the generation of electricity by sea waves
DE102007026956A1 (en) * 2007-06-12 2008-12-18 Kuka Innotec Gmbh Method and system for robot-guided depalletizing of tires
US20100217491A1 (en) 2007-07-02 2010-08-26 Equos Research Co., Ltd. Camber angle controlling device
US8022674B2 (en) 2007-07-10 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. State of charge control method and systems for vehicles
US8323008B2 (en) * 2007-08-30 2012-12-04 Micropump, Inc., A Unit Of Idex Corporation Pumps and pump-heads comprising internal pressure-absorbing member
JP2009115301A (en) 2007-11-09 2009-05-28 Toyota Motor Corp Shock absorber controlling device
JP4968005B2 (en) * 2007-11-13 2012-07-04 トヨタ自動車株式会社 Suspension control device
EP2065295A1 (en) * 2007-11-27 2009-06-03 TNO Bedrijven B.V. Suspension assembly for suspending a cabin of a truck or the like vehicle
US8589049B2 (en) * 2007-12-03 2013-11-19 Lockheed Martin Corporation GPS-based system and method for controlling vehicle characteristics based on terrain
US20090192674A1 (en) 2008-01-24 2009-07-30 Gerald Frank Simons Hydraulically propelled - gryoscopically stabilized motor vehicle
US7847444B2 (en) 2008-02-26 2010-12-07 Gm Global Technology Operations, Inc. Electric motor assembly with stator mounted in vehicle powertrain housing and method
US7938217B2 (en) 2008-03-11 2011-05-10 Physics Lab Of Lake Havasu, Llc Regenerative suspension with accumulator systems and methods
US8392030B2 (en) 2008-04-17 2013-03-05 Levant Power Corporation System and method for control for regenerative energy generators
US8376100B2 (en) 2008-04-17 2013-02-19 Levant Power Corporation Regenerative shock absorber
US8839920B2 (en) 2008-04-17 2014-09-23 Levant Power Corporation Hydraulic energy transfer
DE102009002849A1 (en) * 2008-07-11 2010-01-14 Deere & Company, Moline Drive system for a feed conveyor of a harvester
EP2156970A1 (en) 2008-08-12 2010-02-24 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Multi-point hydraulic suspension system for a land vehicle
US8080888B1 (en) 2008-08-12 2011-12-20 Sauer-Danfoss Inc. Hydraulic generator drive system
US7963529B2 (en) 2008-09-08 2011-06-21 Bose Corporation Counter-rotating motors with linear output
US8453441B2 (en) * 2008-11-06 2013-06-04 Purdue Research Foundation System and method for pump-controlled cylinder cushioning
US8075002B1 (en) * 2008-11-18 2011-12-13 Am General Llc Semi-active suspension system
WO2010067682A1 (en) * 2008-12-08 2010-06-17 Ntn株式会社 Centrifugal pump device
DE102009022328A1 (en) 2008-12-10 2010-06-17 Daimler Ag damper device
DE102009027939A1 (en) 2009-02-03 2010-08-05 Robert Bosch Gmbh Method for suspension control of a motor vehicle, and device for implementation
US8063498B2 (en) 2009-02-27 2011-11-22 GM Global Technology Operations LLC Harvesting energy from vehicular vibrations
US8143766B2 (en) 2009-02-27 2012-03-27 GM Global Technology Operations LLC Harvesting energy from vehicular vibrations using piezoelectric devices
US7936113B2 (en) 2009-02-27 2011-05-03 GM Global Technology Operations LLC Harvesting energy from vehicular vibrations using piezoelectric devices
US8253281B2 (en) 2009-02-27 2012-08-28 GM Global Technology Operations LLC Energy harvesting apparatus incorporated into shock absorber
WO2010111376A1 (en) 2009-03-25 2010-09-30 Nikhil Bhat Energy harvesting system
EP2415621B1 (en) 2009-03-31 2015-03-25 Toyota Jidosha Kabushiki Kaisha Damping force control apparatus
JP5115625B2 (en) 2009-04-06 2013-01-09 トヨタ自動車株式会社 Vehicle stabilizer device
US8453809B2 (en) 2009-04-16 2013-06-04 Oneiric Systems, Inc. Shock absorber having unidirectional fluid flow
US9222538B2 (en) 2009-04-16 2015-12-29 Oneiric Systems, Inc. Shock absorber having unidirectional fluid flow
US20100308589A1 (en) 2009-05-27 2010-12-09 Rohrer Technologies, Inc. Heaving ocean wave energy converter
JP5463263B2 (en) 2009-11-30 2014-04-09 日立オートモティブシステムズ株式会社 Suspension control device for vehicle
JP5306974B2 (en) 2009-12-02 2013-10-02 日立オートモティブシステムズ株式会社 Electric oil pump
US8356861B2 (en) 2010-01-26 2013-01-22 Bose Corporation Active suspension seat skirt
CN101749353B (en) 2010-01-27 2011-10-19 武汉理工大学 Electrohydraulic energy-regenerative type shock absorber
JP2011174494A (en) 2010-02-23 2011-09-08 Takeuchi Seisakusho:Kk Hydraulic control device
JP5287787B2 (en) * 2010-04-16 2013-09-11 株式会社デンソー Electric device
US20110293450A1 (en) * 2010-06-01 2011-12-01 Micropump, Inc. Pump magnet housing with integrated sensor element
US8844392B2 (en) * 2010-06-09 2014-09-30 Gm Global Technology Operations, Llc Electro-hydraulic and electro-mechanical control system for a dual clutch transmission
US9035477B2 (en) 2010-06-16 2015-05-19 Levant Power Corporation Integrated energy generating damper
JP5571519B2 (en) 2010-09-27 2014-08-13 日立オートモティブシステムズ株式会社 Body posture control device
JP5692588B2 (en) * 2010-12-28 2015-04-01 株式会社デンソー Drive device
JP5927766B2 (en) 2011-03-11 2016-06-01 株式会社ジェイテクト Electric pump unit
US20120233991A1 (en) 2011-03-16 2012-09-20 Purdue Research Foundtion Multi-function machines, hydraulic systems therefor, and methods for their operation
JP5969979B2 (en) * 2011-03-28 2016-08-17 ソーラテック コーポレイション Rotation drive device and centrifugal pump device using the same
US9067501B2 (en) * 2011-04-01 2015-06-30 Caterpillar Inc. System and method for adjusting balance of operation of hydraulic and electric actuators
DE102011100307A1 (en) * 2011-05-03 2012-11-08 Daimler Ag Land bound passenger vehicle with a decoupling device and method for decoupling a body of the land-based passenger vehicle
JP5789131B2 (en) 2011-05-31 2015-10-07 日立オートモティブシステムズ株式会社 Shock absorber and suspension device
TWI558066B (en) * 2011-06-10 2016-11-11 艾克西弗洛克斯控股私營有限公司 Electric machine
US8616563B2 (en) 2011-08-25 2013-12-31 Stealth Innovative Systems, Llc Device for adjusting the height of a vehicle
JP2014531357A (en) * 2011-09-06 2014-11-27 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited Suspension control device
US20130081382A1 (en) * 2011-09-30 2013-04-04 Bryan E. Nelson Regeneration configuration for closed-loop hydraulic systems
US8966889B2 (en) 2011-11-01 2015-03-03 Tenneco Automotive Operating Company Inc. Energy harvesting passive and active suspension
US8641053B2 (en) 2012-02-27 2014-02-04 Bose Corporation Actuator assembly
US8744694B2 (en) 2012-04-17 2014-06-03 Bose Corporation Active suspension seat and vehicle operation interlocks
US8938333B2 (en) 2012-06-27 2015-01-20 Bose Corporation Active wheel damping
US9102209B2 (en) 2012-06-27 2015-08-11 Bose Corporation Anti-causal vehicle suspension
DE102012013462A1 (en) 2012-07-09 2014-01-09 Zf Friedrichshafen Ag Energy recuperating fluid vibration damper
US20140012468A1 (en) 2012-07-09 2014-01-09 Ford Global Technologies, Llc Real-Time Center-of-Gravity Height Estimation
US20140095022A1 (en) 2012-10-03 2014-04-03 Thomas J. Cashman Active Suspension System
US8820064B2 (en) 2012-10-25 2014-09-02 Tenneco Automotive Operating Company Inc. Recuperating passive and active suspension
EP2933161B1 (en) * 2012-12-11 2019-09-25 Toyota Jidosha Kabushiki Kaisha Vehicle state detection device
US8892304B2 (en) 2013-01-08 2014-11-18 Ford Global Technologies, Llc Adaptive crash height adjustment using active suspensions
US8788146B1 (en) * 2013-01-08 2014-07-22 Ford Global Technologies, Llc Adaptive active suspension system with road preview
US8825292B2 (en) 2013-01-10 2014-09-02 Ford Global Technologies, Llc Suspension control system to facilitate wheel motions during parking
WO2014145018A2 (en) 2013-03-15 2014-09-18 Levant Power Corporation Active vehicle suspension improvements
US9174508B2 (en) 2013-03-15 2015-11-03 Levant Power Corporation Active vehicle suspension
US9145905B2 (en) 2013-03-15 2015-09-29 Oshkosh Corporation Independent load sensing for a vehicle hydraulic system
US9702349B2 (en) 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
US9809078B2 (en) 2013-03-15 2017-11-07 ClearMotion, Inc. Multi-path fluid diverter valve
WO2014176371A2 (en) 2013-04-23 2014-10-30 Levant Power Corporation Active suspension with structural actuator
US9199563B2 (en) 2013-06-04 2015-12-01 Bose Corporation Active suspension of a motor vehicle passenger seat
US9108484B2 (en) 2013-07-25 2015-08-18 Tenneco Automotive Operating Company Inc. Recuperating passive and active suspension
US20150059325A1 (en) * 2013-09-03 2015-03-05 Caterpillar Inc. Hybrid Apparatus and Method for Hydraulic Systems
US20150114739A1 (en) 2013-10-31 2015-04-30 Curtis Arnold Newman Hydraulic Hybrid Vehicle
US9702424B2 (en) 2014-10-06 2017-07-11 ClearMotion, Inc. Hydraulic damper, hydraulic bump-stop and diverter valve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868477A (en) * 1987-06-23 1989-09-19 The Superior Electric Company Method and apparatus for controlling torque and torque ripple in a variable reluctance motor
US4992715A (en) * 1987-08-04 1991-02-12 Hitachi, Ltd. Torque control apparatus for rotating motor machine
US5616999A (en) * 1994-02-10 1997-04-01 Nippondenso Co., Ltd. Torque detecting apparatus for reducing torque ripple in an AC motor
US5844388A (en) * 1996-03-29 1998-12-01 Sgs-Thomson Microelectronics S.R.L. Drive systems for a brushless motor employing predefined driving profiles stored in a nonvolatile memory
US5852355A (en) * 1996-05-23 1998-12-22 Switched Reluctance Drives Limited Output smoothing in a switched reluctance machine
US5962999A (en) * 1997-07-30 1999-10-05 Matsushita Electric Industrial Method of controlling a torque ripple of a motor having interior permanent magnets and a controller using the same method
US20080265808A1 (en) * 2004-07-10 2008-10-30 Malcolm Eric Sparey Motor Drive Voltage-Boost Control
US20110062904A1 (en) * 2009-09-11 2011-03-17 Denso Corporation Alternating current motor control system
US20120063922A1 (en) * 2010-09-14 2012-03-15 Jatco Ltd Motor control apparatus/method for electric oil pump

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9597939B2 (en) 2008-04-17 2017-03-21 ClearMotion, Inc. Hydraulic energy transfer
US9260011B2 (en) 2008-04-17 2016-02-16 Levant Power Corporation Hydraulic energy transfer
US9035477B2 (en) 2010-06-16 2015-05-19 Levant Power Corporation Integrated energy generating damper
US9689382B2 (en) 2010-06-16 2017-06-27 ClearMotion, Inc. Integrated energy generating damper
US9597940B2 (en) 2013-03-15 2017-03-21 ClearMotion, Inc. Active vehicle suspension
US9550404B2 (en) 2013-03-15 2017-01-24 Levant Power Corporation Active suspension with on-demand energy flow
US10029534B2 (en) 2013-03-15 2018-07-24 ClearMotion, Inc. Hydraulic actuator with on-demand energy flow
US9676244B2 (en) 2013-03-15 2017-06-13 ClearMotion, Inc. Integrated active suspension smart valve
US9440507B2 (en) 2013-03-15 2016-09-13 Levant Power Corporation Context aware active suspension control system
US9694639B2 (en) 2013-03-15 2017-07-04 ClearMotion, Inc. Distributed active suspension control system
US10160276B2 (en) 2013-03-15 2018-12-25 ClearMotion, Inc. Contactless sensing of a fluid-immersed electric motor
US9702349B2 (en) 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
US9707814B2 (en) 2013-03-15 2017-07-18 ClearMotion, Inc. Active stabilization system for truck cabins
US9809078B2 (en) 2013-03-15 2017-11-07 ClearMotion, Inc. Multi-path fluid diverter valve
US9174508B2 (en) 2013-03-15 2015-11-03 Levant Power Corporation Active vehicle suspension
US9855814B2 (en) 2013-04-23 2018-01-02 ClearMotion, Inc. Active suspension with structural actuator
US9702424B2 (en) 2014-10-06 2017-07-11 ClearMotion, Inc. Hydraulic damper, hydraulic bump-stop and diverter valve
US10317894B2 (en) 2015-02-13 2019-06-11 Fluid Handling Llc No flow detection means for sensorless pumping control applications
US10987617B2 (en) 2016-04-05 2021-04-27 Hamilton Sundstrand Corporation Pressure detection system immune to pressure ripple effects
US10954935B2 (en) 2016-04-19 2021-03-23 ClearMotion, Inc. Active hydraulic ripple cancellation methods and systems
US11879451B2 (en) 2016-04-19 2024-01-23 ClearMotion, Inc. Active hydraulic ripple cancellation methods and systems
US11480199B2 (en) 2016-06-02 2022-10-25 ClearMotion, Inc. Systems and methods for managing noise in compact high speed and high force hydraulic actuators
US11815110B2 (en) 2016-06-02 2023-11-14 ClearMotion, Inc. Systems and methods for managing noise in compact high speed and high force hydraulic actuators
US10465612B2 (en) 2017-04-03 2019-11-05 Hamilton Sundstrand Corporation Aircraft fluid control system having a pressure sensor
US10907631B2 (en) * 2018-08-01 2021-02-02 Rolls-Royce Corporation Pump ripple pressure monitoring for incompressible fluid systems
US11619560B2 (en) 2019-10-18 2023-04-04 Hamilton Sundstrand Corporation Pressure ripple mitigation in pressure sensors
CN111016567A (en) * 2019-12-30 2020-04-17 东风小康汽车有限公司重庆分公司 Automatic switching method and device for automobile driving modes
EP4299904A1 (en) * 2022-06-28 2024-01-03 Robert Bosch GmbH Method for controlling variable-speed fluid pumps

Also Published As

Publication number Publication date
US9694639B2 (en) 2017-07-04
US20140294625A1 (en) 2014-10-02
US20180154723A1 (en) 2018-06-07
WO2014145018A2 (en) 2014-09-18
US20140297117A1 (en) 2014-10-02
US9707814B2 (en) 2017-07-18
US20140297113A1 (en) 2014-10-02
EP2968709B1 (en) 2019-10-02
US10828953B2 (en) 2020-11-10
US20140297116A1 (en) 2014-10-02
EP3626485A1 (en) 2020-03-25
EP2968709A2 (en) 2016-01-20
WO2014145018A3 (en) 2015-01-29
EP2968709A4 (en) 2017-08-09
US10160276B2 (en) 2018-12-25

Similar Documents

Publication Publication Date Title
US20140294601A1 (en) Active adaptive hydraulic ripple cancellation algorithm and system
KR101521487B1 (en) Dynamometer system
EP2485388B1 (en) Reduction of noise and vibrations of an electromechanical transducer by using a modified stator coil drive signal comprising harmonic components
CN109219922B (en) Speed estimation device for AC motor, driving device for AC motor, refrigerant compressor, and refrigeration cycle device
US10199976B2 (en) Vibration and noise manipulation in switched reluctance machine drivetrains
CN106030080B (en) For operating the method and apparatus for carrying out the method that are attached to the internal combustion engine of generator
US8800302B2 (en) Driving an active vibration balancer to minimize vibrations at the fundamental and harmonic frequencies
US20140015497A1 (en) Balancing Vibrations At Harmonic Frequencies By Injecting Harmonic Balancing Signals Into The Armature Of A Linear Motor/Alternator Coupled To A Stirling Machine
EP2912335B1 (en) Mechanical devices and method of creating prescribed vibration
JP5800108B2 (en) Periodic disturbance automatic suppression device
CN110959071B (en) Method for regulating the output pressure of a hydraulic drive system, use of the method and hydraulic drive system
CN103452773B (en) Method for the torsional oscillation vibration damping in transmission components
CN107210697B (en) The drive dynamic control device of multiple winding motor
EP2552012A1 (en) Reduction of noise and vibrations of an electromechanical transducer by using a modified stator coil drive signal comprising harmonic components
CN104251201A (en) Pump control system based on frequency converter, pump control method based on frequency converter and pump system
EP2851586B1 (en) Hydraulic transmission
CN106655958A (en) Permanent magnet motor torque compensation method and device
CN114123895B (en) Vibration suppression method and device, servo driver and servo driving system
JP2015170208A (en) Control device, control method and control program
JP6809958B2 (en) Electric motor control device
CN102331716B (en) Method for regulating control parameters of electrohydraulic linear velocity servo system
JP7012901B2 (en) AC motor speed estimation device, AC motor drive device, refrigerant compressor and refrigeration cycle device
CN102563182B (en) Method for adjusting control parameters of servo controller for electro-hydraulic linear displacement servo system
KR102228592B1 (en) Positioning control device of actuator with wave gear device by H∞ control
JP6640659B2 (en) Control device for power converter, power conversion system, compressor drive system, flywheel power generation system, and control method for power converter

Legal Events

Date Code Title Description
AS Assignment

Owner name: LEVANT POWER CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:O'SHEA, COLIN PATRICK;SAWYER, TYSON DAVID;GIOVANARDI, MARCO;REEL/FRAME:032614/0669

Effective date: 20140402

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND, CALIFORNIA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007

Effective date: 20211221

Owner name: FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U.S. OPPORTUNITIES FUND, CALIFORNIA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007

Effective date: 20211221

Owner name: FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND, CALIFORNIA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007

Effective date: 20211221

Owner name: WIL FUND I, L.P., CALIFORNIA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007

Effective date: 20211221

Owner name: ACADIA WOODS PARTNERS, LLC, NEW YORK

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007

Effective date: 20211221

Owner name: NEWVIEW CAPITAL FUND I, L.P., CALIFORNIA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007

Effective date: 20211221

AS Assignment

Owner name: ACADIA WOODS PARTNERS, LLC, NEW YORK

Free format text: AMENDED & RESTATED PATENT SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:059361/0433

Effective date: 20220310

AS Assignment

Owner name: BRILLIANCE JOURNEY LIMITED, VIRGIN ISLANDS, BRITISH

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

Owner name: THE PRIVATE SHARES FUND, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

Owner name: TEW LIMITED PARTNERSHIP, MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

Owner name: FHW LIMITED PARTNERSHIP, MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

Owner name: MICROSOFT GLOBAL FINANCE, WASHINGTON

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

Owner name: BRIDGESTONE AMERICAS, INC., TENNESSEE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

Owner name: WIL FUND I, L.P., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

Owner name: NEWVIEW CAPITAL FUND I, LP, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

Owner name: FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

Owner name: FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U.S. OPPORTUNITIES FUND, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

Owner name: FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

Owner name: ACADIA WOODS PARTNERS, LLC, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001

Effective date: 20220310

AS Assignment

Owner name: CLEARMOTION ACQUISITION I LLC, MASSACHUSETTS

Free format text: TERMINATION OF AMENDED & RESTATED PATENT SECURITY AGREEMENT;ASSIGNOR:ACADIA WOODS PARTNERS, LLC;REEL/FRAME:062687/0713

Effective date: 20220906

Owner name: CLEARMOTION, INC., MASSACHUSETTS

Free format text: TERMINATION OF AMENDED & RESTATED PATENT SECURITY AGREEMENT;ASSIGNOR:ACADIA WOODS PARTNERS, LLC;REEL/FRAME:062687/0713

Effective date: 20220906

AS Assignment

Owner name: CLEARMOTION ACQUISITION I LLC, MASSACHUSETTS

Free format text: TERMINATION OF AMENDED & RESTATED PATENT SECURITY AGREEMENT;ASSIGNORS:FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND ;FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND ;FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U.S. OPPORTUNITIES FUND ;AND OTHERS;REEL/FRAME:062705/0684

Effective date: 20220906

Owner name: CLEARMOTION, INC., MASSACHUSETTS

Free format text: TERMINATION OF AMENDED & RESTATED PATENT SECURITY AGREEMENT;ASSIGNORS:FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND ;FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND ;FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U.S. OPPORTUNITIES FUND ;AND OTHERS;REEL/FRAME:062705/0684

Effective date: 20220906