US20140271504A1 - Composition and method of producing personal care compositions with improved deposition properties - Google Patents

Composition and method of producing personal care compositions with improved deposition properties Download PDF

Info

Publication number
US20140271504A1
US20140271504A1 US13/833,330 US201313833330A US2014271504A1 US 20140271504 A1 US20140271504 A1 US 20140271504A1 US 201313833330 A US201313833330 A US 201313833330A US 2014271504 A1 US2014271504 A1 US 2014271504A1
Authority
US
United States
Prior art keywords
composition
polymer
nonionic
hydrophobically modified
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/833,330
Inventor
Stephen Hugo Hurkens
Gijsbert Kroon
Thi Hong Lan Le-Pham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hercules LLC
Original Assignee
Hercules LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2015144100A priority Critical patent/RU2671577C2/en
Application filed by Hercules LLC filed Critical Hercules LLC
Priority to EP13720626.4A priority patent/EP2969019A1/en
Priority to BR112015023765A priority patent/BR112015023765B1/en
Priority to CN201380076549.2A priority patent/CN105209122B/en
Priority to PCT/US2013/031974 priority patent/WO2014149019A1/en
Priority to US13/833,330 priority patent/US20140271504A1/en
Priority to MX2015012366A priority patent/MX366869B/en
Priority to KR1020157028434A priority patent/KR102066476B1/en
Priority to JP2016500057A priority patent/JP6284616B2/en
Assigned to HERCULES INCORPORATED reassignment HERCULES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HURKENS, STEPHEN HUGO, KROON, GIJSBERT, LE-PHAM, THI HONG LAN
Publication of US20140271504A1 publication Critical patent/US20140271504A1/en
Priority to US14/881,584 priority patent/US10058498B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/361Carboxylic acids having more than seven carbon atoms in an unbroken chain; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • A61K8/447Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof containing sulfur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/466Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfonic acid derivatives; Salts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • A61K8/4946Imidazoles or their condensed derivatives, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/63Steroids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/123Sulfonic acids or sulfuric acid esters; Salts thereof derived from carboxylic acids, e.g. sulfosuccinates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/225Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/30Characterized by the absence of a particular group of ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/49Solubiliser, Solubilising system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/524Preservatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5422Polymers characterized by specific structures/properties characterized by the charge nonionic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/596Mixtures of surface active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/87Application Devices; Containers; Packaging
    • A61K2800/874Roll-on

Definitions

  • the presently disclosed and/or claimed inventive concept(s) relates generally to the use of nonionic hydrophobically modified polysaccharides in personal care and household care compositions. More specifically, but not by way of limitation, the presently disclosed and/or claimed inventive concept(s) relates to the use of hydrophobically-modified cellulose ethers, such as hydrophobically-modified hydroxyethylcellulose (HMHEC) polymers in personal care and household care compositions. These compositions show pronounced syneresis in aqueous solutions or in the presence of surfactants, including nonionic surfactants and anionic surfactants such as lauryl sulfate (LS) and lauryl ether sulfate (LES). It is also contemplated that the surfactants used in the compositions be sulfate free and/or multi-tailed.
  • HHEC hydrophobically-modified cellulose ethers
  • LS lauryl sulfate
  • LES lauryl ether sul
  • a coating onto the substrate (e.g., hair, skin, fabric, etc.) that reduces the energy needed to move a comb through the hair in the wet or dry state or delivers a silky, soft feel to the skin or fabric.
  • This coating can also act to improve the luster and moisture retention of the hair and skin, as well as their manageability and feel.
  • conditioners containing cationic polymers can irritate skin and are considered to be harmful to the environment despite providing good cleansing and detangling properties for hair.
  • attempts at replacing the cationic polymers in these compositions have been found lacking in terms of their ability to confer significant and predictable conditioning to keratin substrates as compared to the environmentally harmful, cationically charged polymers.
  • a need remains in the industry to provide an environmentally friendly conditioner capable of providing the same or better conditioning performances as those containing cationic polymers but with less aqua toxicity (i.e., less environmentally harmful water soluble or waterborne components) and less skin irritancy.
  • compositions having an improved overall conditioning performance combined with other desirable attributes such as improved hair volume and manageability, hair repair, hair color retention, skin moisturization and moisture retention, fragrance retention, sunscreen longevity on hair, skin, and fabrics, flavor enhancement and antimicrobial performance in oral care applications, and fabric abrasion resistance and colorfastness in household applications.
  • water soluble polysaccharides Prior to the presently disclosed and/or claimed inventive concept(s) invention, water soluble polysaccharides have been used in personal care applications, such as cleansing and cosmetic skin care, hair care, and oral care applications, and in household applications such as cleaning, sanitizing, polishing, toilet preparations, and pesticide preparations. Water soluble polysaccharides have additionally been used in applications such as air deodorants/fresheners, rug and upholstery shampoos, insect repellent lotions, all purpose kitchen cleaner and disinfectants, toilet bowl cleaners, fabric softener-detergent combinations, fabric softeners, fabric sizing agents, dishwashing detergents, and vehicle cleaners and shampoos.
  • personal care applications such as cleansing and cosmetic skin care, hair care, and oral care applications
  • household applications such as cleaning, sanitizing, polishing, toilet preparations, and pesticide preparations.
  • Water soluble polysaccharides have additionally been used in applications such as air deodorants/fresheners, rug and upholstery shampoos, insect repellent lotions
  • polysaccharides include water soluble polysaccharide ethers such as methyl cellulose (MC), hydroxypropylmethylcellulose (HPMC), hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), ethylhydroxyethylcellulose (EHEC), hydroxypropyl (HP) guar, hydroxyethyl guar, guar, starch, and other nonionic starch and guar derivatives.
  • MC methyl cellulose
  • HPMC hydroxypropylmethylcellulose
  • HEC hydroxyethylcellulose
  • HPC hydroxypropylcellulose
  • EHEC ethylhydroxyethylcellulose
  • HP hydroxypropyl
  • U.S. Pat. Nos. 5,106,609, 5,104,646, 6,905,694, and 5,100,658 are examples of patents that disclose the use of hydrophobically modified cellulose ethers in cosmetic products. These patents disclose the use of high weight average molecular weight (i.e., 300,000 to 700,000) and alkyl carbon substitution in the hydrophobe (i.e., 3 to 24 carbons) for use in cosmetic compositions.
  • U.S. Pat. No. 4,243,802 discloses a hydrophobically modified nonionic, water-insoluble, surfactant-soluble cellulose ether composition. The use of this material to increase the viscosity of an acidic shampoo composition and to emulsify oil in water emulsions is mentioned.
  • U.S. Pat. Nos. 4,228,277 and 4,352,916 describe hydrophobically modified cellulose ether derivatives modified with long chain alkyl group substitution in the hydrophobe.
  • U.S. Pat. No. 5,512,091 discloses hydrogel compositions containing water-insoluble hydrophobically modified cellulose ethers.
  • Publication US2001/0043912 discloses anti-frizz hair care compositions containing a hydrophobically modified cellulose ether thickener.
  • U.S. Pat. No. 4,845,207 discloses a hydrophobically modified nonionic, water-soluble cellulose ether and U.S. Pat. No. 4,939,192 discloses the use of such ether in building compositions.
  • U.S. Pat. No. 4,870,167 discloses hydrophobically modified nonionic polygalactomannan ethers prepared from long-chain aliphatic epoxides, and suggests their possible use in cosmetics, including hand lotions, shampoos, hair treatment compounds, toothpastes, and gels for cleaning teeth.
  • U.S. Pat. No. 6,387,855 discloses aqueous compositions containing silicone, a surfactant, and a hydrophobic galactomannan gum for washing and conditioning keratin.
  • U.S. Pat. Nos. 6,284,230 and 7,470,651 and Publication No. 2006/0293197 disclose the deposition of active ingredients to hair through the well-known process of forming a coacervate complex.
  • U.S. Pat. No. 4,892,589 discloses the combination of water-soluble, nonionic hydrophobically modified hydroxyethylcellulose and water-soluble, nonionic hydroxyethylcellulose composition used for cement.
  • U.S. Pat. No. 4,902,499 discloses a hair care composition containing a rigid silicone polymer, and U.S. Publication No.
  • 2004/0076595 discloses a hair care composition containing a cationic thickener, nonionic thickener, or mixtures thereof, and at least one cationic surfactant, wherein the composition preferably also contains a silicone compound.
  • U.S. Pat. No. 6,589,517 discloses a leave on conditioner, i.e., a hair conditioner that is intended to be used without a rinsing step.
  • U.S. Pat. Nos. 6,074,996 and 6,191,083 disclose the use of cationic polymeric agents. Also, U.S. Pat. No.
  • 5,855,878 discloses a cosmetic composition containing a hydrophobically modified nonionic polymer and an unsaturated quaternary ammonium surfactant, however, such composition is incapable of providing adequate performance for conditioning hair due to the surfactants claimed therein being incompatible with typical shampoo compositions.
  • nonionic hydrophobically modified polysaccharides have also been found lacking in terms of their ability to confer significant and predictable conditioning to keratin substrates without using environmentally harmful cationically charged polymers.
  • the presently disclosed and/or claimed inventive concept(s) is directed to a method of conditioning a functional system substrate, comprising the steps of:
  • the presently disclosed and/or claimed inventive concept(s) is further directed to an improved method of conditioning a functional system substrate, comprising the steps of:
  • the presently disclosed and/or claimed inventive concept(s) is also directed to a process of conditioning an aqueous based functional system selected from the group consisting of personal care and household care products comprising adding and mixing a sufficient amount of a hydrophobically modified cellulose ether that is compatible with the aqueous based functional system to thicken the functional system wherein the hydrophobically modified cellulose ether is a nonionic hydrophobically modified cellulose ether (HMCE) having a weight average molecular weight (Mw) of from 100,000 to 2,000,000 and is hydrophobically substituted, wherein the amount of the hydrophobic substitution of the nonionic hydrophobically modified cellulose ether is in a range from a lower limit of 0.8 weight percent to an upper limit rendering the nonionic hydrophobically modified cellulose ether soluble in a five weight percent solution of surfactant, and at least one of (1) less than 0.05 percent by weight soluble in water, and (2) less than 0.05 percent by weight soluble in a one percent surfactant solution, and
  • hydrophobically modified polysaccharide polymers of the presently disclosed and/or claimed inventive concept(s) can be either water-soluble with the formation of a homogeneous gel above a certain polymer concentration in water (i.e., the critical concentration) or partially soluble in water (i.e., reaching a solution by dissolving the hydrophobically modified polysaccharide by dissolving with the help of at least one surfactant).
  • the significant feature of this polymer is the ability to undergo syneresis when diluted to a concentration below a certain critical polymer concentration.
  • Such polymers are useful as conditioning agents in 2-in-1 shampoos, in body cleansing formulations, in oral care cleansing systems such as dentifrices, and in fabric cleansing-conditioning systems due to their unique mechanism of activity and dilution-deposition upon rinsing.
  • syneresis and dilution-deposition it is meant that the hydrophobically modified polysaccharide, whose original concentration is between 0.05%-10% by weight, undergoes liquid-gel phase separation (i.e., syneresis) in aqueous solutions when diluted to a final concentration with a lower limit of 0.01% by weight in solution.
  • the discussed polymers are water-soluble with the formation of a homogeneous gel above a concentration in water of 0.1%-1%. The significant and unique requirement of these gels is the ability to undergo syneresis upon dilution with water below a certain concentration in the personal care composition.
  • These polymers can be synthesized by methods known in the prior art.
  • the aqueous solution can include surfactant/water mixtures, cyclodextrin/surfactant/water mixtures, water-miscible solvents, salts, water soluble nonionic, cationic, or anionic polymers, and a combination of any of these.
  • the aqueous solution can also include multi-tail surfactant/water mixtures, cyclodextrin/multi-tail surfactant/water mixtures, water-miscible solvents, salts, water soluble nonionic, cationic, or anionic polymers, and a combination of any of these.
  • Multi-tail surfactants have been found to improve the conditioning benefits provided by nonionic hydrophobically modified polymer-containing compositions such that they provide similar, if not better, conditioning benefits to substrates than those compositions containing cationic polymers and/or silicones and/or emollients.
  • the nonionic hydrophobically modified polysaccharides When combined with at least one multi-tail surfactant in solution, the nonionic hydrophobically modified polysaccharides have been found to interact with the hydrophobic chains, or “tails”, of the multi-tail surfactants to form more stable and denser hydrophobic structures on keratin substrates, thereby improving the conditioning benefits provided thereon.
  • the combination of multi-tail surfactants and nonionic hydrophobically modified polysaccharides in shampoo compositions provides similar or better results than their cationic polymer counterparts for both sodium laureth sulfate/cocamidopropyl betain (SLES/CAPB) systems and sulfate-free systems.
  • SLES/CAPB sodium laureth sulfate/cocamidopropyl betain
  • the designation value may vary by plus or minus twelve percent, or eleven percent, or ten percent, or nine percent, or eight percent, or seven percent, or six percent, or five percent, or four percent, or three percent, or two percent, or one percent.
  • the use of the term “at least one” will be understood to include one as well as any quantity more than one, including but not limited to, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 100, etc.
  • the term “at least one” may extend up to 100 or 1000 or more, depending on the term to which it is attached; in addition, the quantities of 100/1000 are not to be considered limiting, as lower or higher limits may also produce satisfactory results.
  • the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
  • the term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term.
  • A, B, C, or combinations thereof is intended to include at least one of: A, B, C, AB, AC, BC, or ABC and, if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB.
  • expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth.
  • BB BB
  • AAA AAA
  • AB BBC
  • AAABCCCCCC CBBAAA
  • CABABB CABABB
  • hydrophobically modified polysaccharide polymer undergoes syneresis upon dilution in aqueous solution, the hydrophobically modified polysaccharide polymer can deposit with high efficacy on substrates such as hair, skin, teeth, oral mucosa, or textile fabrics and can impart great conditioning benefits to the substrates.
  • substrates such as hair, skin, teeth, oral mucosa, or textile fabrics and can impart great conditioning benefits to the substrates.
  • the hydrophobically modified polysaccharide can also deposit other ingredients which improve the conditioning or enhance the characteristics of the substrate.
  • These polymers also have potential for conditioning skin when used in cleansing or moisturizing formulations, since these polymers may also better deliver the oil phase typically used in such creams and lotions.
  • nonionic hydrophobically modified polysaccharides preferably cellulose derivatives, and more specifically hydrophobically modified hydroxyethylcellulose, HMHEC, that show pronounced syneresis in aqueous solution upon dilution can deposit with high efficacy on hair/skin and can impart enhanced conditioning benefits to keratin substrates.
  • Such polymers impart other benefits in hair styling, body lotions, and sunscreens due to hydrophobic film formation on keratin substrates that acts as a barrier between the surfaces and the surrounding atmosphere.
  • compositions in the prior art containing nonionic hydrophobically modified polysaccharides have been found to have inferior conditioning properties to compositions containing environmentally harmful, but effective, cationic polymers.
  • the addition of at least one multi-tail surfactant improves the conditioning properties of nonionic hydrophobically modified polysaccharide compositions such as to provide similar or better conditioning benefits as the environmentally harmful compositions containing cationic polymers and/or silicones and/or emollients.
  • nonionic hydrophobically modified polysaccharide compositions containing surfactants consisting of only sulfate-free surfactants are capable of showing pronounced syneresis in aqueous solutions upon dilution and can deposit on substrates with a similar or better efficacy than compositions containing cationic polymers, even without the presence of multi-tail surfactants. It has also been found that the addition of multi-tail surfactants to compositions containing both nonionic hydrophobically modified polysaccharide compositions and sulfate-free surfactants does not interfere with the deposition efficacy of the compositions.
  • nonionic hydrophobically modified polysaccharide compositions containing surfactants consisting of only sulfate-free surfactants further improves the deposition efficacy of such compositions, which thereby results in improved conditioning properties on the substrate. Improvements in deposition efficacy and conditioning properties resulting from the addition of sodium chloride was also found to occur in nonionic hydrophobically modified polysaccharide compositions containing both sulfate-free surfactants and multi-tail surfactants.
  • Nonionic hydrophobically modified polysaccharides may be useful as film-formers and co-deposition agents onto the surfaces of hair, skin, and textiles, aiding in protection of the hair, skin, and textile substrates from moisture-loss, aiding deposition of sunscreens and subsequent protection of these substrates from UV radiation, enhancing deposition of fragrance or flavor onto substrates and entrapping fragrance and flavor leading to their improved longevity on these substrates, or aiding deposition of antimicrobial reagents and other active personal care ingredients, resulting in improved longevity of the active on the substrate.
  • these polymers find use in oral care applications such as dentifrices and denture adhesives to deliver prolonged flavor retention and flavor release. Prolonged release of antimicrobial and biocide agents from these polymers may also find usefulness in household and personal care applications, such as skin and hair treatment formulas and in oral care applications such as dentifrice, denture adhesives, and whitening strips.
  • the conditioning benefits of hydrophobically modified polysaccharides are demonstrated as conditioning agents in personal care compositions such as hair care, skin care, and oral care compositions as well as household care compositions, such as laundry cleaner and softener products for textile substrates and hard surface cleaner products.
  • the functional system substrate is defined as a material that is related to personal care and household care applications.
  • the substrate can be skin, hair, teeth, and mucous membranes.
  • the substrate can be hard surfaces such as metals, marbles, ceramics, granite, wood, hard plastics, and wall boards or textiles fabrics.
  • any water soluble polysaccharide or derivatives can be used as the backbone to form the hydrophobically modified polysaccharide of the presently disclosed and/or claimed inventive concept(s).
  • HEC hydroxyethylcellulose
  • HPC hydroxypropylcellulose
  • MC methylcellulose
  • HPMC hydroxypropylmethylcellulose
  • EHEC ethylhydroxyethylcellulose
  • MHEC methylhydroxyethylcellulose
  • agar, dextran, starch, and their nonionic derivatives can all be modified.
  • the amount of nonionic substituent such as methyl, hydroxyethyl, or hydroxypropyl does not appear to be critical so long as there is a sufficient amount to assure that the ether is water soluble.
  • the polysaccharides of the presently disclosed and/or claimed inventive concept(s) have a sufficient degree of nonionic substitution to cause them to be water soluble and a hydrophobic moiety including 1) 3-alkoxy-2-hydroxypropyl group wherein the alkyl moiety is a straight or branched chain having 3-30 carbon atoms, or 2) C 3 -C 30 alkyl, and C 7 -C 30 aryl, aryl alkyl, and alkyl aryl groups and mixtures thereof, wherein the hydrophobic moiety is present in an amount up to the amount that produces a hydrophobically-modified polysaccharide that shows pronounced syneresis in aqueous solution or in the presence of surfactants such as, for example, lauryl sulfate (LS)
  • the number of carbons can be 3-30, preferably 6-22, more preferably 8-18, and most preferably 10-16.
  • the aryl, aryl alkyl, or alkyl aryl moiety can have an upper limit carbon amount of 30 carbons, preferably 22 carbons, more preferably 18 carbons, and even more preferably 16 carbons.
  • the lower limit of the carbon amount is 7 carbons, more preferably 8 carbons, and even more preferably 10 carbons.
  • the preferred polysaccharide backbone is hydroxyethylcellulose (HEC).
  • HEC hydroxyethylcellulose
  • the HEC which is modified to function in the presently disclosed and/or claimed inventive concept(s) is a commercially available material. Suitable commercially available materials are marketed by the Aqualon Company, a division of Hercules, Incorporated, Wilmington, Del. U.S.A., under the trademark NATROSOL®.
  • the alkyl modifier can be attached to the polysaccharide backbone via an ether, ester, or urethane linkage.
  • Ether is the preferred linkage as the reagents most commonly used to effect etherification because it is readily obtainable.
  • the reaction is similar to that commonly used for the initial etherification, and the reagents used in the reaction are usually more easily handled than the reagents used for modification via the other linkages. The resulting linkage is also usually more resistant to further reactions.
  • polysaccharide of the presently disclosed and/or claimed inventive concept(s) is the 3-alkoxy-2-hydroxypropylhydroxyethylcellulose that shows pronounced syneresis in aqueous solution or in the presence of nonionic surfactants, such as acetylene based surfactants, or in the presence of anionic surfactants such as, for example, lauryl sulfate (LS) and lauryl ether sulfate (LES) surfactants.
  • nonionic surfactants such as acetylene based surfactants
  • anionic surfactants such as, for example, lauryl sulfate (LS) and lauryl ether sulfate (LES) surfactants.
  • the hydrophobic moiety is generally contained in an amount such that the hydrophobic substitution of the hydrophobically modified cellulose ether is in a range from a lower limit of 0.8 weight percent to an upper limit rendering the nonionic hydrophobically modified polysaccharide cellulose ether soluble in a five weight percent solution of surfactant, and at least one of (1) less than 0.05 percent by weight soluble in water, and (2) less than 0.05 percent by weight soluble in a one percent surfactant solution.
  • the alkyl group of the 3-alkoxy-2-hydroxypropyl group can be a straight or branched chain alkyl group having 3 to 30 carbon atoms.
  • Exemplary modifying radicals are propyl-, butyl-, pentyl-, 2-ethylhexyl, octyl, cetyl, octadecyl, methylphenyl, and docosapolyenoic glycidyl ether.
  • hydrophobically modified polysaccharide of the presently disclosed and/or claimed inventive concept(s) is the backbone ingredient of the system
  • an optional ingredient that may be in the system is a surfactant that can be either single tail or multi-tail and either soluble or insoluble in the composition.
  • Another optional ingredient that may be used in the system is a compatible solvent that can be either a single solvent or a blend of solvents.
  • surfactants useful with the presently disclosed and/or claimed inventive concept(s) are anionic, nonionic, cationic, zwitterionic, or amphoteric type of surfactants, and combinations thereof. Except for cationic surfactants, the surfactant can be soluble or insoluble in the presently disclosed and/or claimed inventive concept(s) and, when used, is present in the composition in the amount of from 0.01 to about 50 wt % by weight of the composition.
  • Synthetic anionic surfactants include alkyl and alkyl ether sulfates.
  • Cationic surfactants can be present in an amount of from 0.01 to about 1.0 wt %. Further examples of the surfactants include single tail surfactants, multi-tail surfactants, and combinations thereof.
  • Single tail surfactants are broadly defined as anionic, nonionic, cationic, zwitterionic, or amphoteric types of surfactants, and combinations thereof, having only a single hydrocarbon (i.e., alkyl) chain.
  • the hydrocarbon chain can be straight or branched and can have one or more moieties on the hydrocarbon chain comprising a solvophobic group (i.e., lacking an affinity for a specific solvent, for example, water) and/or a solvophilic group (i.e., having an affinity for a specific solvent).
  • single tail surfactants are sodium lauryl sulfate, sodium laureth sulfate, cocamidopropyl betain, oleth-5 phosphate, sodium lauroyl sarcosinate, sodium lauroamphoacetate, and decyl glucoside.
  • Multi-tail surfactants are broadly defined as anionic, cationic, zwitterionic, or amphoteric types of surfactants, and combinations thereof, having more than one hydrocarbon (i.e., alkyl) chain.
  • the at least two hydrocarbon chains can be straight, branched, or aromatic and can have one or more moieties on the hydrocarbon chains comprising a solvophobic group (i.e., lacking an affinity for a specific solvent, for example, water) and/or a solvophilic group (i.e., having an affinity for a specific non-polar or low polar solvent).
  • the hydrocarbon chains of the multi-tail surfactants are preferably hydrophobic in the presently disclosed and/or claimed inventive concept(s) so as to form more stable and denser hydrophobic structures on the substrate.
  • the nonionic hydrophobically modified polysaccharides When combined with at least one multi-tail surfactant in solution, the nonionic hydrophobically modified polysaccharides have been found to interact with the hydrophobic chains, or “tails”, of the multi-tail surfactants to form more stable and denser hydrophobic structures on keratin substrates, thereby improving the conditioning benefits provided thereon.
  • These hydrophobic structures improve the conditioning capabilities of the nonionic hydrophobically modified polysaccharide compositions, with or without active ingredients optionally contained therein.
  • multi-tail surfactants include, but are not limited to, dioctyl sulfosuccinates like sodium dioctyl sulphosuccinate, and quaternary ammonium compounds with long alkyl chains like dicoco dimethylammonium chloride, dipalmitoylethyl hydroxyethylmonium methosulfate, and dialkyl ammonium methosulfate.
  • Multi-tail surfactants such as those marketed under the trade names STEPANTEX® DC 90 (Stepan Company, Northfield, Ill.), STEPANQUAT® GA-90 (Stepan Company, Northfield, Ill.), ARQUAT® 2C-75 (AkzoNobel, Chicago, Ill.) and AEROSOL® OT (Cytec Industries Inc., West Paterson, N.J.) are also useful in the presently disclosed and/or claimed inventive concept(s).
  • Nonionic surfactants can be broadly defined as compounds containing a hydrophobic moiety and a nonionic hydrophilic moiety.
  • the hydrophobic moiety can be alkyl, alkyl aromatic, dialkyl siloxane, polyoxyalkylene, and fluoro-substituted alkyls.
  • hydrophilic moieties are polyoxyalkylenes, phosphine oxides, sulfoxides, amine oxides, and amides.
  • Nonionic surfactants such as those marketed under the trade name SURFYNOL® (Air Products and Chemicals, Inc., Allentown, Pa.) are also useful in the presently disclosed and/or claimed inventive concept(s).
  • Cationic surfactants useful in vehicle systems of the compositions of the presently disclosed and/or claimed inventive concept(s) contain amino or quaternary ammonium hydrophilic moieties which are positively charged when dissolved in the disclosed aqueous composition.
  • Zwitterionic surfactants are exemplified by those which can be broadly described as derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, which can be broadly described as derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water-solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • amphoteric surfactants which can be used in the disclosed systems and compositions are those which are broadly described as derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • Sulfate-free surfactants can be broadly defined as either single tail or multi-tail surfactants, or combinations thereof, that are generally free from salts or esters of sulfuric acid. Examples of sulfate-free surfactants include, but are not limited to, sodium lauroyl sarcosinate, sodium lauroamphoacetate, cocamidopropyl betain, and decyl glucoside.
  • the solvent used in the system should be compatible with the other components of the disclosed compositions.
  • the solvents that may be used are water, water-lower alkanols mixtures, and polyhydric alcohols having from 3 to 6 carbon atoms and from 2 to 6 hydroxyl groups.
  • Preferred solvents are water, propylene glycol, water-glycerine, sorbitol-water, and water-ethanol.
  • the solvent, when used, is present in the composition at a level of from 0.1% to 99% by weight of the composition.
  • the active component is optional because the dissolved polymer can be the active ingredient component.
  • An example of this is the use of the polymer in a conditioner formulation for hair or skin conditioning or in a fabric conditioner formulation.
  • an active ingredient when needed, it should provide some benefit to the user, the user's body, and/or the substrate to which it is applied.
  • the functional system may be either a personal care product or a household care product.
  • the functional system is a personal care product that contains at least one active personal care ingredient
  • the personal care active ingredient includes, but is not limited to, analgesics, anesthetics, antibiotic agents, antifungal agents, antiseptic agents, antidandruff agents, antibacterial agents, vitamins, hormones, antidiarrhea agents, corticosteroids, anti-inflammatory agents, vasodilators, kerolytic agents, dry-eye compositions, wound-healing agents, anti-infection agents, as well as solvents, diluents, adjuvants and other ingredients such as water, ethyl alcohol, isopropyl alcohol, propylene glycol, higher alcohols, glycerine, sorbitol, mineral oil, preservatives, surfactants, propellants, fragrances, essential oils, and viscosifying agents.
  • Personal care compositions include hair care, skin care, sun care, nail care, and oral care compositions.
  • active substances that may suitably be included, but not limited to, in the personal care products according to the presently disclosed and/or claimed inventive concept(s) are as follows: 1) Perfumes, which give rise to an olfactory response in the form of a fragrance and deodorant perfumes which in addition to providing a fragrance response can also reduce body malodor; 2) Skin coolants, such as menthol, menthyl acetate, menthyl pyrrolidone carboxylate N-ethyl-p-menthane-3-carboxamide and other derivatives of menthol, which give rise to a tactile response in the form of a cooling sensation on the skin; 3) Emollients, such as isopropylmyristate, silicone materials, mineral oils and vegetable oils which give rise to a tactile response in the form of an increase in skin lubricity; 4) Deodorants other than perfumes, whose function is to reduce the level
  • Precursors of deodorants other than perfume can also be used; 5) antiperspirant actives, whose function is to reduce or eliminate the appearance of perspiration at the skin surface; 6) moisturizing agents, that keep the skin moist by either adding moisture or preventing from evaporating from the skin; 7) cleansing agents, that remove dirt and oil from the skin; 8) sunscreen active ingredients that protect the skin and hair from UV and other harmful light rays from the sun.
  • a therapeutically effective amount will normally be from 0.01 to 10% by weight, preferable 0.1 to 5% by weight of the composition; 9) hair treatment agents that condition hair, cleanse hair, detangle hair, act as styling agents, volumizing and gloss agents, color retention agents, antidandruff agents, hair growth promoters, hair dyes and pigments, hair perfumes, hair relaxer, hair bleaching agents, hair moisturizer, hair oil treatment agents, and antifrizzing agents; 10) oral care agents, such as dentifrices and mouth washes that clean, whiten, deodorize and protect the teeth and gum; 11) denture adhesives that provide adhesion properties to dentures; 12) shaving products such as creams, gels and lotions and razor blade lubricating strips; 13) tissue paper products such as moisturizing or cleansing tissues; 14) beauty aids such as foundation powders, lipsticks, and eye care; and 15) textile products such as moisturizing or cleansing wipes.
  • hair treatment agents that condition hair, cleanse hair, detangle hair, act as styling agents, volum
  • this household care product when the functional system is a household care composition, this household care product includes a hydrophobically modified polysaccharide and at least one active household care ingredient.
  • the household care active ingredient should provide some benefit to the user.
  • active substances that may suitably be included, but not limited to, according to the present invention are as follows: 1) perfumes, which give rise to an olfactory response in the form of a fragrance and deodorant perfumes which in addition to providing a fragrance response can also reduce odor; 2) insect repellent agent whose function is to keep insects from a particular area or attacking skin; 3) bubble generating agent such as surfactant that generates foam or lather; 4) pet deodorizer or insecticides such as pyrethrins that reduce pet odor; 5) pet shampoo agents and actives, whose function is to remove dirt, foreign material and germs from the skin and hair surfaces; 6) industrial grade bar, shower gel, and liquid soap actives that remove germs, dirt, grease and oil from skin, sanitizes skin, and conditions the skin; 7) all purpose cleaning agents that remove dirt, oil, grease, and germs from the surface in areas such as kitchens, bathroom, and public facilities; 8) disinfecting ingredients that kill or prevent growth of germs in a house or public
  • compositions according to the presently disclosed and/or claimed inventive concept(s) can optionally also include ingredients such as a colorant, preservative, antioxidant, nutritional supplements, alpha or beta hydroxy acid, activity enhancer, emulsifiers, functional polymers, viscosifying agents (such as salts, i.e., NaCl, NH 4 Cl, and KCl, water-soluble polymers, i.e., hydroxyethylcellulose and hydroxypropylmethylcellulose, and fatty alcohols, i.e., cetyl alcohol), alcohols having 1-6 carbons, fats or fatty compounds, antimicrobial compound, zinc pyrithione, silicone material, hydrocarbon polymer, emollients, oils,
  • ingredients such as a colorant, preservative, antioxidant, nutritional supplements, alpha or beta hydroxy acid, activity enhancer, emulsifiers, functional polymers, viscosifying agents (such as salts, i.e., NaCl, NH 4 Cl, and KCl
  • examples of functional polymers that can be used in blends with the hydrophobically modified polysaccharides or derivatives thereof used herein include water-soluble polymers such as acrylic acid homopolymers such as CARBOPOL® (Lubrizol Advanced Materials, Inc., Cleveland, Ohio) products and anionic and amphoteric acrylic acid copolymers, vinylpyrrolidone homopolymers and cationic vinylpyrrolidone copolymers; nonionic, cationic, anionic, and amphoteric cellulosic polymers such as hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, cationic hydroxyethylcellulose, cationic carboxymethylhydroxyethylcellulose, and cationic hydroxypropylcellulose; acrylamide homopolymers and cationic, amphoteric, and hydrophobic acrylamide copolymers, polyethylene glycol polymers and copolymers, hydro
  • the silicone materials which can be used are polyorganosiloxanes that can be in the form of polymers, oligomers, oils, waxes, resins, or gums or polyorganosiloxane polyether copolyols, amodimethicones, cationic polydimethylsiloxane materials and any other silicone material that is used in personal care or household compositions.
  • the polymers of the presently disclosed and/or claimed inventive concept(s) are water-soluble with the formation of a homogeneous gel above a certain concentration in water of 0.01%-1%. These gels undergo syneresis upon dilution below certain concentrations in the personal care composition. These polymers can be synthesized by methods known in the prior art.
  • HMHECs that form gels or solutions in surfactant/water or ethanol/water mixtures, and undergo syneresis upon dilution below certain concentrations in the personal care composition are also useful.
  • the polymers of this invention can be useful as conditioning agents in 2-in-1 shampoos, body lotions, sunscreens, antifrizz, and hair styling.
  • the polymers of the presently disclosed and/or claimed inventive concept(s) can also be used to improve hair volume, manageability, hair repair or color retention, skin moisturization and moisture retention, fragrance retention, sunscreen longevity on hair, skin, and fabrics, flavor enhancement and antimicrobial performance in oral care applications, and improve fabric abrasion resistance and colorfastness in household applications.
  • Wet and dry hair comb ability measurements are typical test methods used to measure conditioning performance in shampoo and conditioner applications.
  • skin care applications skin lubricity or reduced friction or softer feel of the skin, reduced water vapor transmission, and improved skin elasticity are test methods used to measure skin conditioning.
  • conditioning refers to imparting a softer feel to fabric and eliminating static effects, eliminating fabric fiber breakage or deformation known as pilling. Imparting color retention properties to fabrics is also important and can be measured.
  • Silicone deposition can be measured by several techniques. One technique used for quantifying silicone deposition for Examples of the presently disclosed and/or claimed inventive concept(s) is described as follows.
  • Each 2-5 gram sample was weighed to the nearest mg, after removal of sample holder, and placed into clean 8-oz jars with approximately 150 ml of methylene chloride. The samples were shaken for 1.5 hours at room temperature. The methylene chloride supernatant was filtered using Whatman #41 filter paper and quantitatively transferred to clean 8-oz jars and evaporated to dryness with mild heat and a nitrogen sparge. Each sample was then dissolved into 2 ml of chloroform-d and quantitatively transferred to a 5-ml volumetric flask. Three chloroform-d rinses were used to transfer each sample to the 5-ml volumetric flask. All flasks were diluted to the mark with solvent and inverted.
  • the sample was stirred for 15-minutes. After the 15-minutes of stirring, 0.25 g of NH 4 Cl (ammonium chloride Baker reagent) was added to the jar. The sample was then stirred for an additional 45 minutes while covered. The sample jar was then removed from the 60° C. bath. The jar was then clamped into a room temperature water bath. The overhead stirrer was reattached and the stirring of the sample was begun in the water bath. The sample was allowed to stir for a minimum of 5-minutes. This was sufficient time for the sample temperature to drop below 35° C.
  • NH 4 Cl ammonium chloride Baker reagent
  • dimethiconol specifically SMTM 555 (Momentive Specialty Chemicals Inc., Columbus, Ohio)
  • SMTM 555 Momentive Specialty Chemicals Inc., Columbus, Ohio
  • GERMABEN® II ISP, Wayne, N.J.
  • the pH was checked and adjusted to 6.2-6.5 (either a 10% or 50% solution of citric acid was used to lower the pH).
  • the jar was sealed and centrifuged for about 10-minutes at 3,000 rpm to remove any entrapped air.
  • Brookfield viscosity equilibration was measured for 1 hour on a Brookfield LV-4, at 25.0° C., @ 0.3 RPM, then 12 RPM, then 30 RPM. A 3-minute rotation time was used at each speed.
  • the same premix Formulation I was used to prepare shampoos for testing on virgin brown hair, however, the polymer concentration in the shampoo was 0.4 wt %, the amount of ammonium chloride used in these shampoos was 1.0 gram, and the amount of silicone used was 2.45 g of SMT′′ 555 (ISP, Wayne, N.J.).
  • Each shampooed tress was hand combed twice with a large teeth comb.
  • the hand combed twice tress was loaded into an Instron instrument and the crosshead was lowered to bottom stop.
  • the tress was combed twice with small teeth comb and placed into double-combs.
  • the Instron was run under standard conditions. After the test was run, the tress was sprayed with DI water to keep moist. Using a paper towel, the excess liquid was wiped off double-combs.
  • the crosshead was returned to bottom stop and the tress was replaced into double-combs.
  • the test was rerun under standard conditions. A total of eight tests were run on each tress. After the eight tests were finished, the tress was hung up overnight. The next day, each tress was dry combed tested eight times. No hand combing of dry tresses was done. Averaged wet comb energy for 40 Instron runs and reported average with standard deviation. Averaged dry comb energy for 40 Instron runs and reported average with standard deviation.
  • the alkyl ether content of the substituted cellulose ethers shown in the examples is determined by reacting a sample with concentrated hydriodic acid at elevated temperature to produce alkyl iodides at temperatures of about 185° C. for 2 hours.
  • the reaction products are extracted in situ into a solvent (o-xylene) and the alkyl iodides are quantified by gas chromatography. This is the so called sealed tube Zeisel—GC technique.
  • the amount of alkyl iodide produced by the sample is converted into the desired equivalent alkyl compound or functional group by multiplying by the ratio of molecular weights:
  • Weight average molecular weights were determined using aqueous size exclusion chromatography.
  • wet hair comb energy was reduced 30% relative to the wet comb energy for the no polymer control shampoo, and silicone deposition was less than 10 ppm.
  • Wet comb energies for the shampoo containing the cationic guar benchmark, N-HANCE® 3916 product were reduced 40% relative to the no polymer shampoo.
  • This polymer formed a gel at 3-4 wt % polymer in water but showed syneresis at 2 wt %, was dissolved in 5 wt % ammonium lauryl sulfate to give a clear solution, and underwent syneresis upon dilution with water.
  • This polymer showed very good efficacy in 2-in-1 conditioning shampoos without the need for any cationic moiety and without depositing any silicone.
  • wet hair comb energy was reduced by 28% relative to the no polymer control shampoo, and silicone deposition was less than 10 ppm.
  • Wet hair comb energy reduction was 70% of the wet comb energy reduction achieved by cationic guar.
  • the dry comb energies for the tresses treated with a shampoo containing the polymers of the invention were equal to the dry comb energy measured on tresses treated with the shampoo containing no polymer and the shampoo containing cationic guar.
  • wet hair comb energy was reduced by 13% relative to the wet comb energy for the no polymer control shampoo, and silicone deposition was less than 10 ppm.
  • a gel of a water-soluble methylphenylglycidyl hydroxyethyl cellulose ether, (6.3 wt % methylphenyl substitution, 2.5 molar hydroxyethyl substitution, Mw 350,000 Dalton), formed a gel above 1.5-2 wt % polymer concentration and underwent syneresis upon dilution in water and showed good efficacy in 2-in-1 conditioning shampoos without the need for any cationic moiety and depositing less than 30 ppm silicone.
  • wet hair comb energy reduction was 72% of the wet comb energy reduction achieved by cationic guar. A silky feel was imparted to the hair.
  • NATROSOL® Hercules, Inc., Wilmington, Del.
  • hydroxyethyl cellulose type 250HHR was added to water under agitation.
  • pH was adjusted to 8.0 to 8.5.
  • the slurry was stirred for about 30 minutes or until polymer dissolved.
  • polymer of this invention or a commercial comparative polymer listed in TABLE 1 was added and mixed for 30 more minutes.
  • the solution was heated to about 65° C. and stirred until it became smooth. Cetyl alcohol was added and mixed until it mixed homogeneously.
  • the mixture was cooled to about 50° C. and then potassium chloride was added.
  • isopropyl myristate was added and mixed until the mixture looked homogeneous.
  • the pH of the mixture was adjusted between 5.25 to 5.5 with citric acid and/or NaOH solution.
  • the conditioner was preserved with 0.5% preservative and mixed until it reached room temperature.
  • test conditioner 0.5 grams per gram of hair was applied uniformly along the length of hair.
  • Tress was kneaded for 30 seconds and then it was rinsed under 40° C. running water for 30 seconds.
  • the conditioner was reapplied along the length of the tress and the tress was kneaded for 30 seconds; then, it was rinsed under 40° C. running water for 30 seconds.
  • the tress was rinsed with room temperature tap water for 30 seconds.
  • the tress was combed immediately eight times and from the data average amount combing energy in gram force-mm/gram of hair (gf-mm/g) required to comb the hair was calculated.
  • the tress was stored overnight at about 50% relative humidity and about 23° C.
  • the tress was first combed with fine teeth rubber comb to free-up hair stuck together. Again, the hair tress was combed eight times to determine the average force required to comb one gram of dry hair. The higher the number the poorer the conditioning effect of the polymer being tested. Two tresses were used per conditioning formulation. The data reported below are average of two tresses.
  • CRODACOL ® C95NF Cetyl alcohol from Croda Inc. Parsippany, NJ (12) KCl: Potassium chloride (13) STEPAN ® IPM: Isopropyl myristate from Stepan Company, Northfield, IL (14) GERMABEN ® II: preservative from ISP, Wayne, NJ
  • Polymers of this invention or comparative polymers, listed in Table 2 were added to water under agitation to form a slurry. Next, pH was adjusted to between 8.0 to 8.5 for cellulosic polymers and to about 6.5 for guar based products. The slurry was mixed for about 60 minutes or until the polymer fully dissolved. Then, the pH of the mixture was adjusted to between 5.25 to 5.5 with citric acid and/or NaOH solution. The conditioner was preserved with 0.1% preservative and mixed for 15 minutes. The pH was readjusted as necessary.
  • test solution 0.5 grams per gram of hair was applied uniformly along the length of hair.
  • the tress was kneaded for 30 seconds and then was rinsed under 40° C. running water for 30 seconds.
  • the test solution was reapplied along the length of the tress and the tress was kneaded for 30 seconds and then was rinsed under 40° C. running water for 30 seconds.
  • the tress was rinsed with room temperature tap water for 30 seconds.
  • the tress was combed immediately eight times to calculate the average amount of combing energy in gram force-mm/gram of hair (gf-mm/g) required to comb the hair.
  • the tress was stored overnight at about 50% relative humidity and about 23° C.
  • the tress was first combed with fine teeth rubber comb to free-up hair stuck together. Again, hair tress was combed eight times to determine average force required to comb one gram of dry hair. The higher the number, the poorer the conditioning effect of the polymer being tested. Two tresses were used per conditioning formulation. Combing data below are average of two tresses.
  • UCARE TM LR400 Cationic HEC from Dow Chemicals, Midland, MI (7)
  • UCARE TM JR30M Cationic HEC from Dow Chemicals, Midland, MI (8)
  • AQU D3930 Polymer of this invention, C16 hydrophobically modified hydroxyethyl
  • a skin lotion was prepared containing the polymer of the presently disclosed and/or claimed inventive concept(s) (Example 33) and compared with a polymer-free skin lotion (Example 30), skin lotions containing hydrophobic polymers which did not undergo syneresis (Examples 32, 36, 40) and with skin lotions containing commercial nonionic and cationic polymers.
  • the skin lotion containing the polymer of the invention showed increased viscosity and structure as compared with the polymer-free control formulation in Example 30.
  • Example 33 was more stable than the formulations containing cationic polymer.
  • the polymer of the invention appeared slightly grainy, suggesting that this polymer could be used at a lower concentration than commercial hydrophobic polymers.
  • the polymer listed in Table 3 was dispersed in water by adding to the vortex of well-agitated from Part A. It was mixed for five minutes. Next, glycerin was added with continued mixing and heated to 80° C. Mixed 15 minutes at 80° C. In a separate vessel, blended Part B ingredients and heated to 80° C. and mixed well.
  • Part A was added to Part B with good agitation while maintaining an emulsion temperature at 80° C.
  • Part C ingredients were mixed together in a vessel and added to the emulsion of Parts A and B.
  • the new mixture was mixed continuously while cooling to 40° C.
  • the pH was adjusted between 6.0 to 6.5.
  • Part D a preservative, was added to the emulsion and mixed well. The new emulsion was then cooled and filled.
  • NATROSOL ® 250LR lot#28667, Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
  • NATROSOL ® 250M Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
  • NEXTON ® 3082RC4 Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
  • NATROSOL ® 250HHR CS Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
  • AQU D3673 C8 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
  • a body wash formulation was prepared using the polymer of the presently disclosed and/or claimed inventive concept(s) (Example 43) with a polymer-free control (Example 41) and with formulations containing commercial nonionic, hydrophobic, and cationic polymers.
  • the polymer of the presently disclosed and/or claimed inventive concept(s) (Example 43) showed better compatibility with the body wash components than the nonionic commercial polymers (Examples 48 and 50).
  • the commercial hydrophobic polymers conveyed an applesauce texture to the formulation as did the polymer of the presently disclosed and/or claimed inventive concept(s). This result suggests that these polymers could be used at a lower concentration in this formulation.
  • aqueous stock solution of each polymer was first prepared at 1.0% concentration.
  • polymers N-HANCE® 3215, ADPP6503, AQU D3799, and AQU D3939 solutions were made by adding polymer to water under vigorous agitation. Next, the pH was lowered to between 6 to 7 with citric acid and the solution was mixed for an hour or until the polymer solubilized. The solutions were preserved with 0.5% Glydant® product.
  • the polymers were added to well agitated water and then the pH was raised to 8.5 to 9.5 using sodium hydroxide. The solution was mixed for an hour and then the pH was lowered to between 6 to 7 using citric acid.
  • Body wash stock solution was prepared by adding to vessel 46.4 grams of sodium laureth sulfate, 27.0 grams of sodium lauryl sulfate, 6.7 grams of C 9 -C 15 alkyl phosphate, 4.0 grams of PPG-2 hydroxyethyl cocamide, 1.0 gram of sodium chloride, 0.30 gram of tetra sodium EDTA, and 0.5 gram of DMDM hydantoin in the order listed while mixing. Each ingredient was allowed to mix homogeneously before adding the next ingredient. The total stock solution weighed 85.9 grams.
  • Body wash was prepared by adding 20 grams of polymer (listed in Table 4) solution to 80 grams of the above body wash stock solution while mixing. Next, the body wash pH was adjusted to between 6 and 7 with citric acid. The body wash viscosity was measured using the Brookfield LVT viscometer. The viscosity was measured at 30 rpm once the body wash conditioned for at least two hours at 25° C. The body wash clarity was also measured at 600 nm using a Spectrophotometer, Cary 5E UV-VIS-NIR, available from Varian Instruments, Inc. The clarity measurements at 600 nm wavelength are reported as % T value. The higher the number, the clearer is the solution.
  • the test was used to determine the influence that the polymers of this invention may have on lather quality.
  • the relevant equipment a WARING® Blender Model #7012 or 34BL97 or equivalent; a funnel, preferably plastic; 6′′ diameter, 7 ⁇ 8′′ ID neck, 51 ⁇ 4′′ high, with a horizontal wire 2′′ from the top; a U.S.A. Standard Testing Sieve NO.20 or TYLER® Equivalent 20 mesh or 850 micrometer or 0.0331 inch sieve (preferably over 7 inch in diameter but smaller size could also be used); and a stopwatch or a timer.
  • 1,000 g of a diluted body wash solution was prepared as shown below.
  • NATROSOL ® Plus 330 -NT3J3314 C16 Hydrophobically modified Hydroxyethyl cellulose Hercules Inc., Wilmington, DE (10) N-HANCE 3215: J4013A, Cationic guar, Hercules, Inc., Wilmington, DE (11) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 0.62 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0 (12) UCARE TM JR400: Cationic HEC from Dow Chemicals, Midland, Ml (13) UCARE TM JR30M: Cationic HEC from Dow Chemicals, Midland, Ml (14) POLYSURF ® 67: NT4C3594, hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
  • NATROSOL ® 250M Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
  • NEXTON ® 3082R Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.,Wilmington, DE
  • NATROSOL ® 250HHR CS Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
  • AQU D3673 C8 Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
  • the polymer of the presently disclosed and/or claimed inventive concept(s) was incorporated into a sunscreen formulation (Example 54).
  • the formulation was stable.
  • the Drakeol mineral oil was heated in a vessel to 75° C. while mixing.
  • the remaining ingredients of Part A Arlmol E, Neo Heliopan A V, Uvinol M40, Castor wax, Crill-6, Arlatone T, Ozokerite wax and Dehymuls HRE7 were added to the vessel in the order listed while mixing.
  • the mixture was mixed for 30 minutes at 70° C.
  • water of Part B was heated to 70° C.
  • the polymer of invention or comparative polymer (listed in Table 5) was added and mixed until dissolved and then Glycerine was added and mixed.
  • a solution of magnesium sulfate was prepared by adding magnesium sulfate to water.
  • ARLAMOL TM E OOG-15 Stearyl ether Uniqema Americas, New Castle, DE (3) NEO HELIOPAN ® AV: Octyl methoxcinnamate, Symrise, Totowa, NJ (4) UVINOL ® M40: Benzophenone-3, BASF, Mount Olive, NJ (5) Castor Wax: Hydrogenated castor oil, Frank B. Ross (7) CRILL TM 6: Sorbitan iostearate, Croda, Inc., Parsippany, NJ (8) ARLATONE ® T: PPG-40 Sorbitan Peroleate, Uniqema Americas, New Castle, DE (9) Ozokerite Wax 77W: Wax, Frank B.
  • NATROSOL ® 250M Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE (21) NEXTON ® 3082R: Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE (22) NATROSOL ® 250HHR CS, Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE (23) AQU D3673: 11750-46, C8 Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
  • aqueous stock solution of each polymer was first prepared at 1.0% concentration.
  • solutions were made by adding the polymer to water under vigorous agitation. Next, the pH was lowered to between 6 to 7 with citric acid and the solution was mixed for an hour or until polymer solubilized. The solutions were preserved with 0.5% Glydant® product.
  • the polymer was added to intensely agitated water and then the pH was raised to between 8.5 to 9.5 using sodium hydroxide. The solution was mixed for an hour and then the pH was lowered to between 6 to 7 using citric acid.
  • a 150 gram batch of roll-on antiperspirant was made using the procedure: 15.0 g of a polymer from the list in Table 6 was added to stock solution in an 8-oz. glass jar and mixed with a magnetic plate and stirrer; next, 22.5 g of deionized water was added to the glass jar and mixing continued for about 30 minutes. While mixing, 45.0 g of ethanol was added and the mixing continued for an additional 10 minutes; and then, 67.5 g of the antiperspirant active Summit ACH303 was added and the mixing continued for 30 more minutes.
  • AQU D3930 Polymer of this invention, C16 Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 0.62 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0 (7)
  • UCARE TM JR400 Cationic HEC from Dow Chemicals, Midland, MI
  • UCARE TM JR30M Cationic HEC from Dow Chemicals, Midland, MI
  • POLYSURF ® 67: NT4C3594 Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
  • NATROSOL ® 250M Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
  • NEXTON ® 3082R Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
  • NATROSOL ® 250HHR CS Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
  • Colgate-Palmolive SOFTSOAP® Body Wash (Colgate-Palmolive Co., NY, N.Y.).
  • the viscosity of the body wash increased (Example 77), and the clarity of the body wash was significantly better than for other commercial hydrophobic cellulose ethers or nonionic cellulose ethers (Examples 78-81).
  • the body wash was prepared by weighing 80 g commercial product into 4 oz. wide mouth glass jars, adding 20 g of a 1% polymer solution, capping and taping lid of jars with electrical tape, shaking the jars by hand to initially mix polymer, placing and securing the jars on tumbler using tape across jars and around jars on ends to prevent the jars from tumbling over the edge, tumbling the jars for 1.5 hours after which the jars were removed and tempered in a 25° C. bath overnight, and removing the jars from the bath the next day for observation and recordation of solution clarity, polymer solubility, and measuring the % T at 600 nm for the 24 hour samples. The samples were then stored at ambient conditions for two weeks after which the jars were again tempered in the bath overnight and observations and recordation of pH, viscosity, and % T were undertaken the next day.
  • the cleaner was prepared by weighing 80 g commercial product into 4 oz. wide mouth glass jars, adding 20 g of a 1% polymer solution to the jars, capping and taping lids of jars with electrical tape, shaking the jars by hand to initially mix polymer, placing and securing the jars on tumbler using tape across jars and around jars on ends to prevent the jars from tumbling over the edge, tumbling the jars for 1.5 hours after which the jars were removed and tempered in a 25° C. bath overnight, and removing the jars from the bath the next day for observation and recordation of solution clarity, polymer solubility, and measuring the % T at 600 nm for the 24 hour samples. The samples were then stored at ambient conditions for two weeks after which the jars were again tempered in the bath overnight and observations and recordation of pH, viscosity, and % T were undertaken the next day.
  • the cleaner was prepared by weighing 80 g commercial product into 4 oz. wide mouth glass jars, adding 20 g of a 1% polymer solution to the jars, capping and taping lids of jars with electrical tape, shaking the jars by hand to initially mix polymer, placing and securing the jars on tumbler using tape across jars and around jars on ends to prevent the jars from tumbling over the edge, tumbling the jars for 1.5 hours after which the jars were removed and tempered in a 25° C. bath overnight, and removing the jars from the bath the next day for observation and recordation of solution clarity, polymer solubility, and measuring the % T at 600 nm for the 24 hour samples. The samples were then stored at ambient conditions for two weeks after which the jars were again tempered in the bath overnight and observations and recordation of pH, viscosity, and % T were undertaken the next day.
  • the cleaner was prepared by weighing 80 g commercial product into 4 oz. wide mouth glass jars, adding 20 g of a 1% polymer solution to the jars, capping and taping lids of jars with electrical tape, shaking the jars by hand to initially mix polymer, placing and securing the jars on tumbler using tape across jars and around jars on ends to prevent the jars from tumbling over the edge, tumbling the jars for 1.5 hours after which the jars were removed and tempered in a 25° C. bath overnight, and removing the jars from the bath the next day for observation and recordation of solution clarity, polymer solubility, and measuring the % T at 600 nm for the 24 hour samples. The samples were then stored at ambient conditions for two weeks after which the jars were again tempered in the bath overnight and observations and recordation of pH, viscosity, and % T were undertaken the next day.
  • Examples 106-122 were prepared to illustrate the benefits of multi-tail surfactants and/or sulfate-free surfactants on the conditioning properties of compositions (e.g., shampoos) wherein the polymer therein is a nonionic hydrophobically modified polysaccharide.
  • Examples 123-126 were prepared to illustrate the added benefit of sodium chloride on the conditioning performance of compositions (e.g., shampoos) containing sulfate-free surfactants alone or in combination with multi-tail surfactants, wherein the polymer in the conditioning composition is a nonionic hydrophobically modified polysaccharide.
  • Examples 127-133 were prepared to illustrate the benefits of multi-tail surfactants on the conditioning properties of compositions (e.g. shampoos) wherein the concentration of hydrophobically modified polysaccharide varies from 0.3 weight percent to 1 weight percent.
  • a typical test method for measuring the conditioning performance of shampoo and conditioner applications consists of measuring the combability of wet hair that has been treated with a shampoo and/or conditioner. For Examples 106-125, the following Wet Comb Performance Measurement Test was used.
  • Performance was measured at a constant temperature and humidity (23° C. and 50% relative humidity).
  • Equipment used was a Stable Micro Systems Texture Analyzer Xt2i. Each tress (standard 3.0 g and 26 cm long) was washed first with Sodium Laureth Sulfate (SLES) using the standard washing/rinsing procedure.
  • SLES Sodium Laureth Sulfate
  • Each tress was shampooed with the agreed upon shampoo amount (0.3 g shampoo per 1 gram tress); after rinsing, the tress was loaded in the Texture Analyzer without any pre-combing; the Texture Analyzer was run under standard conditions through 200 mm distance from the upper part to the tip of the hair tress; a total of 5 tests were run on each tress; and the average wet comb energy was reported.
  • Examples 106-116 illustrate that multi-tail surfactants significantly improve the conditioning properties of nonionic hydrophobically modified polysaccharide compositions such that they provide similar or better conditioning benefits than compositions containing cationic polymers and/or silicones and/or emollients.
  • Examples 106-109 are comparative examples.
  • Examples 110-116 correspond to experimental samples, i.e., shampoo formulations, containing both a nonionic hydrophobically modified polysaccharide and at least one multi-tail surfactant.
  • Examples 106 and 107 are comparative examples corresponding to two commercial shampoos in the marketplace.
  • Example 106 corresponds to GARNIER® FRUCTIS® Nutri Repair shampoo (L'Oreal, Paris, FR) and
  • Example 107 corresponds to DOVE® Damage Therapy Intensive Repair shampoo (Unilever, Englewood Cliffs, N.J.).
  • Example 108 is a comparative shampoo formulation containing the cationic polymer Polyquaternium-10, commercially sold by Dow as UCARETM JR 400.
  • An ⁇ 100 g sample consists of:
  • Example 109 is also a comparative shampoo formulation comprised of the same ingredients as the formulation presented in Example 108 except that the cationic polymer, Polyquaternium-10, is replaced with the nonionic HMHCE polymer of the presently disclosed and/or claimed inventive concept(s), AQU D3930, at a 0.7 weight percent concentration. The amount of deionized water was adjusted to account for the increased concentration of polymer in the sample.
  • Examples 110-112 are experimental formulations containing both nonionic hydrophobically modified polysaccharides and multi-tail surfactants.
  • a ⁇ 100 g sample of the formulations consists of:
  • Quantum Satis (q.s.) Deionized Water 0.70 g Polymer of this invention or commercial polymer 11.56 g Sodium Laureth Sulfate (TEXAPON ® N702 - 69.2% active) 6.74 g Cocamidopropyl Betain (TEGOBETAIN ® L7 - 29.68% active) 3.0 g Multi-tail Surfactant(s) 0.50 g Phenoxyethanol, Ethylhexylglycerin (EUXYL ® PE9010 - Schulke & Mayr) As required Citric Acid or Sodium Hydroxide to adjust pH 0.10-1.50 g Sodium Chloride (99.5%, Aldrich)
  • Examples 113-116 have the same basic experimental formulations as Examples 110-112, however, the concentration of multi-tail surfactant has been lowered to 2.5 weight percent.
  • a ⁇ 100 g sample of the formulations consists of:
  • Quantum Satis (q.s.) Deionized Water 0.70 g Polymer of this invention or commercial polymer 11.56 g Sodium Laureth Sulfate (TEXAPON ® N702 - 69.2% active) 6.74 g Cocamidopropyl Betain (TEGOBETAIN ® L7 - 29.68% active) 2.5 g Multi-tail Surfactant(s) 0.50 g Phenoxyethanol, Ethylhexylglycerin (EUXYL ® PE9010 - Schulke & Mayr) As required Citric Acid or Sodium Hydroxide to adjust pH 0.10-1.50 g Sodium Chloride (99.5%, Aldrich)
  • ARQUAT ® 2C-75 Cationic multi-tail surfactant, dicoco dimethylammonium chloride, from Akzo-Nobel.
  • AEROSOL ® OT Anionic multi-tail surfactant, sodium dioctyl sulphosuccinate, from Cytec Industries Inc., West Paterson, NJ.
  • the above-described wet comb performance test was also performed on mildly bleached Chinese hair for Examples 114-116 and Comparative Examples 108-109. Prior to testing, the Chinese hair was damaged by bleaching the hair for approximately 1 hour.
  • the shampoo formulations for Examples 108-109 and 114-116 were added to individual tresses in amounts of 0.3 grams per gram of tress and then rinsed. After rinsing, the wet comb performance measurements were taken with a total of five tests run per tress.
  • the results presented in Table 13 also indicate a significant improvement in conditioning properties due to the addition of multi-tail surfactants.
  • AQU D3930 Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 1.1 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0.
  • STEPANTEX ® DC 90 Cationic multi-tail surfactant, dialkyl ammonium methosulfate, from Stepan Company, Northfield, IL.
  • STEPANQUAT ® GA-90 Cationic multi-tail surfactant, Dipalmitoylethyl hydroxyethylmonium methosulfate, from Stepan Company, Northfield, IL.
  • ARQUAT ® 2C-75 Cationic multi-tail surfactant, dicoco dimethylammonium chloride, from Akzo-Nobel.
  • AEROSOL ® OT Anionic multi-tail surfactant, sodium dioctyl sulphosuccinate, from Cytec Industries Inc., West Paterson, NJ.
  • Examples 117-119 illustrate that limiting nonionic hydrophobically modified polysaccharide compositions to include surfactants consisting only of sulfate-free surfactants (as opposed to sulfate-containing surfactants) also improves the conditioning properties of the compositions such that they provide similar or better conditioning benefits than compositions containing cationic polymers and/or silicones and/or emollients.
  • Examples 106-108 include sodium laureth sulfate, a sulfate-containing surfactant, in their formulations and are therefore used as comparative examples with respect to Examples 117-119.
  • Example 117 is an experimental formulation containing a nonionic hydrophobically modified polysaccharide wherein the surfactants contained therein are limited solely to (single tail) sulfate-free surfactants.
  • a ⁇ 100 g sample of the formulation consists of:
  • Examples 118-119 are additional experimental formulations containing nonionic hydrophobically modified polysaccharides wherein the surfactants are limited solely to (single tail) sulfate-free surfactants.
  • a ⁇ 100 g sample of the formulations consists of:
  • the above-described wet comb performance test was performed on highly bleached Caucasian virgin brown hair for Examples 117-119 and Comparative Examples 106-108. Prior to testing, the Caucasian virgin brown hair was damaged by bleaching the hair for approximately 2.5 hours.
  • the formulations and commercial shampoos corresponding to Examples 106-108 and 117-119 were added to individual tresses in amounts of 0.3 grams per gram of tress and then rinsed. After rinsing, the wet comb performance measurements were taken with a total of five tests run per tress. The results are presented in Table 14.
  • Examples 120-122 illustrate that the addition of multi-tail surfactants (whether sulfate-free or not) to nonionic hydrophobically modified polysaccharide compositions containing sulfate-free single tail surfactants provides similar or better conditioning benefits than those compositions containing cationic polymers and/or silicones and/or emollients.
  • Examples 106-108 and Example 117 are comparative examples and are described above.
  • a ⁇ 100 g sample of the formulation for Examples 120-122 consists of:
  • the above-described wet comb performance test was performed on highly bleached Caucasian virgin brown hair for Examples 120-122 and Comparative Examples 106-108 and 117. Prior to testing, the Caucasian virgin brown hair was damaged by bleaching the hair for approximately 2.5 hours.
  • the formulations and commercial shampoos corresponding to Examples 106-108, 117, and 120-122 were added to individual tresses in amounts of 0.3 grams per gram of tress and then rinsed. After rinsing, the wet comb performance measurements were taken with a total of five tests run per tress. The results are presented in Table 15.
  • STEPANQUAT ® GA-90 Cationic multi-tail surfactant, Dipalmitoylethyl hydroxyethylmonium methosulfate, from Stepan Company, Northfield, IL.
  • ARQUAT ® 2C-75 Cationic multi-tail surfactant, dicoco dimethylammonium chloride, from Akzo-Nobel.
  • Examples 123-126 illustrate the crucial role of sodium chloride on the performance of sulfate-free nonionic hydrophobically modified shampoos alone or in combination with multi-tail surfactants.
  • a ⁇ 100 g sample of the formulation for Examples 123-126 consists of:
  • the above-described wet comb performance test was performed on highly bleached Caucasian virgin brown hair for Examples 123-126. Prior to testing, the Caucasian virgin brown hair was damaged by bleaching the hair for approximately 2.5 hours. The formulations were added to individual tresses in amounts of 0.3 grams per gram of tress and then rinsed. After rinsing, the wet comb performance measurements were taken with a total of five tests run per tress. The results are presented in Table 16.
  • NATROSOL ® Plus 330 Hydroxyethyl cellulose from Hercules, Inc.
  • AEROSOL ® OT Anionic multi-tail surfactant, sodium dioctyl sulphosuccinate, from Cytec Industries Inc., West Paterson, NJ.
  • Examples 127-133 illustrate that multi-tail surfactants significantly improve the conditioning properties of compositions containing a range of concentrations of nonionic hydrophobically modified polysaccharides such that they provide similar or better conditioning benefits than compositions containing cationic polymers and/or silicones and/or emollients.
  • Examples 127-130 are comparative examples.
  • Examples 131-133 correspond to experimental samples containing both a nonionic hydrophobically modified polysaccharide and at least one multi-tail surfactant.
  • Comparative Examples 127 and 128 correspond to the commercial shampoos GARNIER FRUCTIS® Nutri Repair (L′Oreal, Paris, FR) and DOVE® Damage Therapy Intensive Repair (Unilever, Englewood Cliffs, N.J.).
  • Comparative Examples 129-130 are shampoo formulations without multi-tail surfactants.
  • a ⁇ 100 g sample of the formulations for Examples 129-130 consists of:
  • Examples 131-133 are shampoo formulations having a range of hydrophobically modified polysaccharide concentrations and include multi-tail surfactants.
  • a ⁇ 100 g sample of the formulations for Examples 131-133 consists of:
  • the above-described wet comb performance test was performed on Caucasian virgin brown hair for Examples 127-133.
  • the Caucasian virgin brown hair was not bleached or damaged prior to testing.
  • the formulations and commercial shampoos were added to individual tresses in amounts of 0.3 grams per gram of tress and then rinsed. After rinsing, the wet comb performance measurements were taken with a total of five tests run per tress. The results are presented in Table 17.
  • AQU D3930 Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 1.1 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0.
  • AEROSOL ® OT Anionic multi-tail surfactant, sodium dioctyl sulphosuccinate, from Cytec Industries Inc., West Paterson, NJ.

Abstract

The presently disclosed and/or claimed inventive concept(s) relates generally to the use of nonionic hydrophobically modified polysaccharides in personal care and household care compositions. More specifically, but not by way of limitation, the presently disclosed and/or claimed inventive concept(s) relates to the use of hydrophobically-modified cellulose ethers, such as hydrophobically-modified hydroxyethylcellulose (HMHEC) polymers in personal care and household care compositions. These compositions show pronounced syneresis in aqueous solutions or in the presence of surfactants, including nonionic surfactants and anionic surfactants such as lauryl sulfate (LS) and lauryl ether sulfate (LES). It is also contemplated that the surfactants used in the compositions be sulfate free and/or multi-tailed.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Disclosed and Claimed Inventive Concepts
  • The presently disclosed and/or claimed inventive concept(s) relates generally to the use of nonionic hydrophobically modified polysaccharides in personal care and household care compositions. More specifically, but not by way of limitation, the presently disclosed and/or claimed inventive concept(s) relates to the use of hydrophobically-modified cellulose ethers, such as hydrophobically-modified hydroxyethylcellulose (HMHEC) polymers in personal care and household care compositions. These compositions show pronounced syneresis in aqueous solutions or in the presence of surfactants, including nonionic surfactants and anionic surfactants such as lauryl sulfate (LS) and lauryl ether sulfate (LES). It is also contemplated that the surfactants used in the compositions be sulfate free and/or multi-tailed.
  • 2. Background
  • In the prior art, the commonly used approach to deliver a polymer coating from personal care or household compositions is through the use of complex formations between cationic polymers and anionic surfactants. It is well-known that for hair care, cleansing skin care, and fabric care applications, the conditioning mechanism for polymers with cationic functionality is based on dilution deposition of a cationic polymer-anionic surfactant complex, referred to as a coacervate complex, which has both a cationic polymer and an oppositely charged surfactant. (U.S. Pat. No. 5,422,280). As a result of this mechanism, commercial products such as cationic guars, cationic hydroxyethylcellulose, and synthetic cationic polymers show high efficacy in conditioning shampoos, skin care cleansing formulations, and fabric cleansing/conditioning formulations.
  • In personal care applications, such as in hair care and skin care, and in household care applications, there is a desire to deposit a coating onto the substrate (e.g., hair, skin, fabric, etc.) that reduces the energy needed to move a comb through the hair in the wet or dry state or delivers a silky, soft feel to the skin or fabric. This coating can also act to improve the luster and moisture retention of the hair and skin, as well as their manageability and feel.
  • The discovery of the improved deposition of silicone resins from cleansing formulations, such as shampoos, using cationic polymer-anionic surfactant complexes has led to the development of this approach to condition hair, skin, and fabric. However, the tendency for silicone to buildup on the hair after repeated washings with silicone shampoos, and the desire for clear conditioning formulations has left a strong market need for alternative approaches to achieve silicone-like conditioning on hair, skin, and fabric substrates with or without silicone resins.
  • Additionally, conditioners containing cationic polymers, with or without silicones/emollients, can irritate skin and are considered to be harmful to the environment despite providing good cleansing and detangling properties for hair. Unfortunately, attempts at replacing the cationic polymers in these compositions have been found lacking in terms of their ability to confer significant and predictable conditioning to keratin substrates as compared to the environmentally harmful, cationically charged polymers. As such, a need remains in the industry to provide an environmentally friendly conditioner capable of providing the same or better conditioning performances as those containing cationic polymers but with less aqua toxicity (i.e., less environmentally harmful water soluble or waterborne components) and less skin irritancy.
  • Furthermore, there is an underlying need for compositions having an improved overall conditioning performance combined with other desirable attributes such as improved hair volume and manageability, hair repair, hair color retention, skin moisturization and moisture retention, fragrance retention, sunscreen longevity on hair, skin, and fabrics, flavor enhancement and antimicrobial performance in oral care applications, and fabric abrasion resistance and colorfastness in household applications.
  • Prior to the presently disclosed and/or claimed inventive concept(s) invention, water soluble polysaccharides have been used in personal care applications, such as cleansing and cosmetic skin care, hair care, and oral care applications, and in household applications such as cleaning, sanitizing, polishing, toilet preparations, and pesticide preparations. Water soluble polysaccharides have additionally been used in applications such as air deodorants/fresheners, rug and upholstery shampoos, insect repellent lotions, all purpose kitchen cleaner and disinfectants, toilet bowl cleaners, fabric softener-detergent combinations, fabric softeners, fabric sizing agents, dishwashing detergents, and vehicle cleaners and shampoos. Widely used commercially available polysaccharides include water soluble polysaccharide ethers such as methyl cellulose (MC), hydroxypropylmethylcellulose (HPMC), hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), ethylhydroxyethylcellulose (EHEC), hydroxypropyl (HP) guar, hydroxyethyl guar, guar, starch, and other nonionic starch and guar derivatives.
  • U.S. Pat. Nos. 5,106,609, 5,104,646, 6,905,694, and 5,100,658 are examples of patents that disclose the use of hydrophobically modified cellulose ethers in cosmetic products. These patents disclose the use of high weight average molecular weight (i.e., 300,000 to 700,000) and alkyl carbon substitution in the hydrophobe (i.e., 3 to 24 carbons) for use in cosmetic compositions. U.S. Pat. No. 4,243,802 discloses a hydrophobically modified nonionic, water-insoluble, surfactant-soluble cellulose ether composition. The use of this material to increase the viscosity of an acidic shampoo composition and to emulsify oil in water emulsions is mentioned. Also, U.S. Pat. Nos. 4,228,277 and 4,352,916 describe hydrophobically modified cellulose ether derivatives modified with long chain alkyl group substitution in the hydrophobe. U.S. Pat. No. 5,512,091 discloses hydrogel compositions containing water-insoluble hydrophobically modified cellulose ethers. Publication US2001/0043912 discloses anti-frizz hair care compositions containing a hydrophobically modified cellulose ether thickener. U.S. Pat. No. 4,845,207 discloses a hydrophobically modified nonionic, water-soluble cellulose ether and U.S. Pat. No. 4,939,192 discloses the use of such ether in building compositions. U.S. Pat. No. 4,960,876 discloses hydrophobically modified galactomannan compositions as thickeners for use in paint, paper, and ceramic applications. U.S. Pat. No. 4,870,167 discloses hydrophobically modified nonionic polygalactomannan ethers prepared from long-chain aliphatic epoxides, and suggests their possible use in cosmetics, including hand lotions, shampoos, hair treatment compounds, toothpastes, and gels for cleaning teeth. U.S. Pat. No. 6,387,855 discloses aqueous compositions containing silicone, a surfactant, and a hydrophobic galactomannan gum for washing and conditioning keratin.
  • Additionally, U.S. Pat. Nos. 6,284,230 and 7,470,651 and Publication No. 2006/0293197 disclose the deposition of active ingredients to hair through the well-known process of forming a coacervate complex. U.S. Pat. No. 4,892,589 discloses the combination of water-soluble, nonionic hydrophobically modified hydroxyethylcellulose and water-soluble, nonionic hydroxyethylcellulose composition used for cement. U.S. Pat. No. 4,902,499 discloses a hair care composition containing a rigid silicone polymer, and U.S. Publication No. 2004/0076595 discloses a hair care composition containing a cationic thickener, nonionic thickener, or mixtures thereof, and at least one cationic surfactant, wherein the composition preferably also contains a silicone compound. U.S. Pat. No. 6,589,517 discloses a leave on conditioner, i.e., a hair conditioner that is intended to be used without a rinsing step. U.S. Pat. Nos. 6,074,996 and 6,191,083 disclose the use of cationic polymeric agents. Also, U.S. Pat. No. 5,855,878 discloses a cosmetic composition containing a hydrophobically modified nonionic polymer and an unsaturated quaternary ammonium surfactant, however, such composition is incapable of providing adequate performance for conditioning hair due to the surfactants claimed therein being incompatible with typical shampoo compositions.
  • The performance of water-soluble and water-insoluble hydrophobically modified celluloses has been found lacking in terms of their ability to confer significant and predictable conditioning to keratin substrates. Hence, a need still exists in the industry to have cellulose ethers that confer significant and predictable conditioning to keratin substrates and deposit films onto solid substrates, such as fabrics, when delivered from aqueous compositions.
  • Additionally, nonionic hydrophobically modified polysaccharides have also been found lacking in terms of their ability to confer significant and predictable conditioning to keratin substrates without using environmentally harmful cationically charged polymers. As such, an additional need exists in the industry for a method of utilizing environmentally friendly nonionic cellulose ethers capable of conferring significant and predictable conditioning to keratin substrates, such as hair, when delivered from aqueous compositions.
  • SUMMARY OF THE INVENTION
  • The presently disclosed and/or claimed inventive concept(s) is directed to a method of conditioning a functional system substrate, comprising the steps of:
      • (a) applying an aqueous solution to a functional system substrate, the aqueous solution comprising: (i) at least one surfactant comprising a multi-tail surfactant, (ii) at least one functional system active ingredient, and (iii) a nonionic hydrophobically modified cellulose ether having a weight average molecular weight of from 100,000 to 2,000,000 and is hydrophobically substituted, wherein the amount of the hydrophobic substitution of the nonionic hydrophobically modified cellulose ether is in a range from a lower limit of 0.8 weight percent to an upper limit rendering the nonionic hydrophobically modified cellulose ether soluble in a five weight percent solution of surfactant, and at least one of (1) less than 0.05 percent by weight soluble in water, and (2) less than 0.05 percent by weight soluble in a one percent surfactant solution; and
      • (b) diluting the aqueous solution with water such that the aqueous solution undergoes syneresis, whereby the nonionic hydrophobically modified cellulose ether separates from the aqueous solution and deposits upon the functional system substrate.
  • Additionally, the presently disclosed and/or claimed inventive concept(s) is directed to an improved method of conditioning a functional system substrate, comprising the steps of:
      • (a) applying an aqueous solution to a functional system substrate, the aqueous solution comprising: (i) a surfactant comprising at least one multi-tail surfactant, (ii) at least one functional system active ingredient, and (iii) a nonionic hydrophobically modified cellulose ether having a weight average molecular weight of from 100,000 to 2,000,000, and is hydrophobically substituted, wherein the amount of the hydrophobically modified cellulose is in a range from a lower limit of 0.8 weight percent to an upper limit rendering the nonionic hydrophobically modified cellulose ether soluble in a five weight percent solution of surfactant, and at least one of (1) less than 0.05 percent by weight soluble in water, and (2) less than 0.05 percent by weight soluble in a one percent surfactant solution, and
      • (b) diluting the aqueous solution with water such that the aqueous solution undergoes syneresis, whereby the nonionic hydrophobically modified cellulose ether separates from the aqueous solution and deposits upon the functional system substrate.
  • The presently disclosed and/or claimed inventive concept(s) is further directed to an improved method of conditioning a functional system substrate, comprising the steps of:
      • (a) applying an aqueous solution to a functional system substrate, the aqueous solution comprising: (i) a surfactant comprising at least one single tail sulfate-free surfactant, (ii) at least one functional system active ingredient, and (iii) a nonionic hydrophobically modified cellulose ether having a weight average molecular weight of from 100,000 to 2,000,000 and is hydrophobically substituted, wherein the amount of the hydrophobically modified cellulose is in a range from a lower limit of 0.8 weight percent to an upper limit rendering the nonionic hydrophobically modified cellulose ether soluble in a five weight percent solution of surfactant, and at least one of (1) less than 0.05 percent by weight soluble in water, and (2) less than 0.05 percent by weight soluble in a one percent surfactant solution, and
      • (b) diluting the aqueous solution with water such that the aqueous solution undergoes syneresis, whereby the nonionic hydrophobically modified cellulose ether separates from the aqueous solution and deposits upon the functional system substrate.
  • The presently disclosed and/or claimed inventive concept(s) is also directed to a process of conditioning an aqueous based functional system selected from the group consisting of personal care and household care products comprising adding and mixing a sufficient amount of a hydrophobically modified cellulose ether that is compatible with the aqueous based functional system to thicken the functional system wherein the hydrophobically modified cellulose ether is a nonionic hydrophobically modified cellulose ether (HMCE) having a weight average molecular weight (Mw) of from 100,000 to 2,000,000 and is hydrophobically substituted, wherein the amount of the hydrophobic substitution of the nonionic hydrophobically modified cellulose ether is in a range from a lower limit of 0.8 weight percent to an upper limit rendering the nonionic hydrophobically modified cellulose ether soluble in a five weight percent solution of surfactant, and at least one of (1) less than 0.05 percent by weight soluble in water, and (2) less than 0.05 percent by weight soluble in a one percent surfactant solution, and wherein the cellulose ether provides a conditioning benefit to a functional system substrate, and the resulting functional system has comparable or better conditioning properties as compared to when using similar thickening agents outside the scope of the present composition(s) and/or method(s).
  • The hydrophobically modified polysaccharide polymers of the presently disclosed and/or claimed inventive concept(s) can be either water-soluble with the formation of a homogeneous gel above a certain polymer concentration in water (i.e., the critical concentration) or partially soluble in water (i.e., reaching a solution by dissolving the hydrophobically modified polysaccharide by dissolving with the help of at least one surfactant). In both cases, the significant feature of this polymer is the ability to undergo syneresis when diluted to a concentration below a certain critical polymer concentration. Such polymers are useful as conditioning agents in 2-in-1 shampoos, in body cleansing formulations, in oral care cleansing systems such as dentifrices, and in fabric cleansing-conditioning systems due to their unique mechanism of activity and dilution-deposition upon rinsing.
  • By syneresis and dilution-deposition, it is meant that the hydrophobically modified polysaccharide, whose original concentration is between 0.05%-10% by weight, undergoes liquid-gel phase separation (i.e., syneresis) in aqueous solutions when diluted to a final concentration with a lower limit of 0.01% by weight in solution. The discussed polymers are water-soluble with the formation of a homogeneous gel above a concentration in water of 0.1%-1%. The significant and unique requirement of these gels is the ability to undergo syneresis upon dilution with water below a certain concentration in the personal care composition. These polymers can be synthesized by methods known in the prior art.
  • In addition to polymers, the aqueous solution can include surfactant/water mixtures, cyclodextrin/surfactant/water mixtures, water-miscible solvents, salts, water soluble nonionic, cationic, or anionic polymers, and a combination of any of these.
  • The aqueous solution can also include multi-tail surfactant/water mixtures, cyclodextrin/multi-tail surfactant/water mixtures, water-miscible solvents, salts, water soluble nonionic, cationic, or anionic polymers, and a combination of any of these.
  • Multi-tail surfactants have been found to improve the conditioning benefits provided by nonionic hydrophobically modified polymer-containing compositions such that they provide similar, if not better, conditioning benefits to substrates than those compositions containing cationic polymers and/or silicones and/or emollients. When combined with at least one multi-tail surfactant in solution, the nonionic hydrophobically modified polysaccharides have been found to interact with the hydrophobic chains, or “tails”, of the multi-tail surfactants to form more stable and denser hydrophobic structures on keratin substrates, thereby improving the conditioning benefits provided thereon. For example, the combination of multi-tail surfactants and nonionic hydrophobically modified polysaccharides in shampoo compositions provides similar or better results than their cationic polymer counterparts for both sodium laureth sulfate/cocamidopropyl betain (SLES/CAPB) systems and sulfate-free systems.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Before explaining at least one embodiment of the presently disclosed and/or claimed inventive concept(s) in detail, it is to be understood that the presently disclosed and/or claimed inventive concept(s) is not limited in its application to the details of construction and the arrangement of the components or steps or methodologies set forth in the following description. The presently disclosed and/or claimed inventive concept(s) is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
  • Unless otherwise defined herein, technical terms used in connection with the presently disclosed and/or claimed inventive concept(s) shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.
  • All patents, published patent applications, and non-patent publications mentioned in the specification are indicative of the level of skill of those skilled in the art to which the presently disclosed and/or claimed inventive concept(s) pertains. All patents, published patent applications, and non-patent publications referenced in any portion of this application are herein expressly incorporated by reference in their entirety to the same extent as if each individual patent or publication was specifically and individually indicated to be incorporated by reference.
  • All of the articles and/or methods disclosed herein can be made and executed without undue experimentation in light of the present disclosure. While the articles and methods of the presently disclosed and/or claimed inventive concept(s) have been described in terms of preferred embodiments, it will be apparent to those skilled in the art that variations may be applied to the articles and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit, and scope of the presently disclosed and/or claimed inventive concept(s).
  • As utilized in accordance with the present disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings.
  • The use of the word “a” or “an” when used in conjunction with the term “comprising” may mean “one”, but it is also consistent with the meaning of “one or more”, “at least one”, and “one or more than one”. The use of the term “or” is used to mean “and/or” unless explicitly indicated to refer to alternatives only if the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives “and/or”. Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the quantifying device, the method being employed to determine the value, or the variation that exists among the study subjects. For example, but not by way of limitation, when the term “about” is utilized, the designation value may vary by plus or minus twelve percent, or eleven percent, or ten percent, or nine percent, or eight percent, or seven percent, or six percent, or five percent, or four percent, or three percent, or two percent, or one percent. The use of the term “at least one” will be understood to include one as well as any quantity more than one, including but not limited to, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 100, etc. The term “at least one” may extend up to 100 or 1000 or more, depending on the term to which it is attached; in addition, the quantities of 100/1000 are not to be considered limiting, as lower or higher limits may also produce satisfactory results. In addition, the use of the term “at least one of X, Y, and Z” will be understood to include X alone, Y alone, and Z alone, as well as any combination of X, Y, and Z. The use of ordinal number terminology (i.e., “first”, “second”, “third”, “fourth”, etc.) is solely for the purpose of differentiating between two or more items and is not meant to imply any sequence or order or importance to one item over another or any order of addition, for example.
  • As used herein, the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps. The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC and, if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
  • It has been found that if a hydrophobically modified polysaccharide polymer undergoes syneresis upon dilution in aqueous solution, the hydrophobically modified polysaccharide polymer can deposit with high efficacy on substrates such as hair, skin, teeth, oral mucosa, or textile fabrics and can impart great conditioning benefits to the substrates. Upon deposition onto the substrate, the hydrophobically modified polysaccharide can also deposit other ingredients which improve the conditioning or enhance the characteristics of the substrate. These polymers also have potential for conditioning skin when used in cleansing or moisturizing formulations, since these polymers may also better deliver the oil phase typically used in such creams and lotions.
  • Surprisingly, it has been found that nonionic hydrophobically modified polysaccharides, preferably cellulose derivatives, and more specifically hydrophobically modified hydroxyethylcellulose, HMHEC, that show pronounced syneresis in aqueous solution upon dilution can deposit with high efficacy on hair/skin and can impart enhanced conditioning benefits to keratin substrates. Such polymers impart other benefits in hair styling, body lotions, and sunscreens due to hydrophobic film formation on keratin substrates that acts as a barrier between the surfaces and the surrounding atmosphere.
  • Although it has been found that nonionic hydrophobically modified polysaccharides show pronounced syneresis in aqueous solutions upon dilution and can deposit with relatively high efficacy on substrates, compositions in the prior art containing nonionic hydrophobically modified polysaccharides have been found to have inferior conditioning properties to compositions containing environmentally harmful, but effective, cationic polymers. However, it has been surprisingly found that the addition of at least one multi-tail surfactant improves the conditioning properties of nonionic hydrophobically modified polysaccharide compositions such as to provide similar or better conditioning benefits as the environmentally harmful compositions containing cationic polymers and/or silicones and/or emollients.
  • Furthermore, it has been found that nonionic hydrophobically modified polysaccharide compositions containing surfactants consisting of only sulfate-free surfactants are capable of showing pronounced syneresis in aqueous solutions upon dilution and can deposit on substrates with a similar or better efficacy than compositions containing cationic polymers, even without the presence of multi-tail surfactants. It has also been found that the addition of multi-tail surfactants to compositions containing both nonionic hydrophobically modified polysaccharide compositions and sulfate-free surfactants does not interfere with the deposition efficacy of the compositions.
  • Moreover, it has been found that the addition of sodium chloride to nonionic hydrophobically modified polysaccharide compositions containing surfactants consisting of only sulfate-free surfactants further improves the deposition efficacy of such compositions, which thereby results in improved conditioning properties on the substrate. Improvements in deposition efficacy and conditioning properties resulting from the addition of sodium chloride was also found to occur in nonionic hydrophobically modified polysaccharide compositions containing both sulfate-free surfactants and multi-tail surfactants.
  • Nonionic hydrophobically modified polysaccharides may be useful as film-formers and co-deposition agents onto the surfaces of hair, skin, and textiles, aiding in protection of the hair, skin, and textile substrates from moisture-loss, aiding deposition of sunscreens and subsequent protection of these substrates from UV radiation, enhancing deposition of fragrance or flavor onto substrates and entrapping fragrance and flavor leading to their improved longevity on these substrates, or aiding deposition of antimicrobial reagents and other active personal care ingredients, resulting in improved longevity of the active on the substrate. In addition, these polymers find use in oral care applications such as dentifrices and denture adhesives to deliver prolonged flavor retention and flavor release. Prolonged release of antimicrobial and biocide agents from these polymers may also find usefulness in household and personal care applications, such as skin and hair treatment formulas and in oral care applications such as dentifrice, denture adhesives, and whitening strips.
  • In accordance with the presently disclosed and/or claimed inventive concept(s), the conditioning benefits of hydrophobically modified polysaccharides, preferably hydrophobically modified cellulose ether polymers, are demonstrated as conditioning agents in personal care compositions such as hair care, skin care, and oral care compositions as well as household care compositions, such as laundry cleaner and softener products for textile substrates and hard surface cleaner products.
  • In accordance with the presently disclosed and/or claimed inventive concept(s), the functional system substrate is defined as a material that is related to personal care and household care applications. In personal care, the substrate can be skin, hair, teeth, and mucous membranes. In household care products, the substrate can be hard surfaces such as metals, marbles, ceramics, granite, wood, hard plastics, and wall boards or textiles fabrics.
  • Any water soluble polysaccharide or derivatives can be used as the backbone to form the hydrophobically modified polysaccharide of the presently disclosed and/or claimed inventive concept(s). Thus, e.g., hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), ethylhydroxyethylcellulose (EHEC), and methylhydroxyethylcellulose (MHEC) and, agar, dextran, starch, and their nonionic derivatives can all be modified. The amount of nonionic substituent such as methyl, hydroxyethyl, or hydroxypropyl does not appear to be critical so long as there is a sufficient amount to assure that the ether is water soluble. The polysaccharides of the presently disclosed and/or claimed inventive concept(s) have a sufficient degree of nonionic substitution to cause them to be water soluble and a hydrophobic moiety including 1) 3-alkoxy-2-hydroxypropyl group wherein the alkyl moiety is a straight or branched chain having 3-30 carbon atoms, or 2) C3-C30 alkyl, and C7-C30 aryl, aryl alkyl, and alkyl aryl groups and mixtures thereof, wherein the hydrophobic moiety is present in an amount up to the amount that produces a hydrophobically-modified polysaccharide that shows pronounced syneresis in aqueous solution or in the presence of surfactants such as, for example, lauryl sulfate (LS) and lauryl ether sulfate (LES) surfactants. When the hydrophobe is an alkyl moiety, the number of carbons can be 3-30, preferably 6-22, more preferably 8-18, and most preferably 10-16. The aryl, aryl alkyl, or alkyl aryl moiety can have an upper limit carbon amount of 30 carbons, preferably 22 carbons, more preferably 18 carbons, and even more preferably 16 carbons. The lower limit of the carbon amount is 7 carbons, more preferably 8 carbons, and even more preferably 10 carbons.
  • The preferred polysaccharide backbone is hydroxyethylcellulose (HEC). The HEC which is modified to function in the presently disclosed and/or claimed inventive concept(s) is a commercially available material. Suitable commercially available materials are marketed by the Aqualon Company, a division of Hercules, Incorporated, Wilmington, Del. U.S.A., under the trademark NATROSOL®.
  • The alkyl modifier can be attached to the polysaccharide backbone via an ether, ester, or urethane linkage. Ether is the preferred linkage as the reagents most commonly used to effect etherification because it is readily obtainable. The reaction is similar to that commonly used for the initial etherification, and the reagents used in the reaction are usually more easily handled than the reagents used for modification via the other linkages. The resulting linkage is also usually more resistant to further reactions.
  • An example of one polysaccharide of the presently disclosed and/or claimed inventive concept(s) is the 3-alkoxy-2-hydroxypropylhydroxyethylcellulose that shows pronounced syneresis in aqueous solution or in the presence of nonionic surfactants, such as acetylene based surfactants, or in the presence of anionic surfactants such as, for example, lauryl sulfate (LS) and lauryl ether sulfate (LES) surfactants.
  • The hydrophobic moiety is generally contained in an amount such that the hydrophobic substitution of the hydrophobically modified cellulose ether is in a range from a lower limit of 0.8 weight percent to an upper limit rendering the nonionic hydrophobically modified polysaccharide cellulose ether soluble in a five weight percent solution of surfactant, and at least one of (1) less than 0.05 percent by weight soluble in water, and (2) less than 0.05 percent by weight soluble in a one percent surfactant solution. The alkyl group of the 3-alkoxy-2-hydroxypropyl group can be a straight or branched chain alkyl group having 3 to 30 carbon atoms. Exemplary modifying radicals are propyl-, butyl-, pentyl-, 2-ethylhexyl, octyl, cetyl, octadecyl, methylphenyl, and docosapolyenoic glycidyl ether.
  • While the hydrophobically modified polysaccharide of the presently disclosed and/or claimed inventive concept(s) is the backbone ingredient of the system, an optional ingredient that may be in the system is a surfactant that can be either single tail or multi-tail and either soluble or insoluble in the composition. Another optional ingredient that may be used in the system is a compatible solvent that can be either a single solvent or a blend of solvents.
  • Examples of surfactants useful with the presently disclosed and/or claimed inventive concept(s) are anionic, nonionic, cationic, zwitterionic, or amphoteric type of surfactants, and combinations thereof. Except for cationic surfactants, the surfactant can be soluble or insoluble in the presently disclosed and/or claimed inventive concept(s) and, when used, is present in the composition in the amount of from 0.01 to about 50 wt % by weight of the composition. Synthetic anionic surfactants include alkyl and alkyl ether sulfates. Cationic surfactants can be present in an amount of from 0.01 to about 1.0 wt %. Further examples of the surfactants include single tail surfactants, multi-tail surfactants, and combinations thereof.
  • Single tail surfactants are broadly defined as anionic, nonionic, cationic, zwitterionic, or amphoteric types of surfactants, and combinations thereof, having only a single hydrocarbon (i.e., alkyl) chain. The hydrocarbon chain can be straight or branched and can have one or more moieties on the hydrocarbon chain comprising a solvophobic group (i.e., lacking an affinity for a specific solvent, for example, water) and/or a solvophilic group (i.e., having an affinity for a specific solvent). Examples of single tail surfactants are sodium lauryl sulfate, sodium laureth sulfate, cocamidopropyl betain, oleth-5 phosphate, sodium lauroyl sarcosinate, sodium lauroamphoacetate, and decyl glucoside.
  • Multi-tail surfactants are broadly defined as anionic, cationic, zwitterionic, or amphoteric types of surfactants, and combinations thereof, having more than one hydrocarbon (i.e., alkyl) chain. The at least two hydrocarbon chains can be straight, branched, or aromatic and can have one or more moieties on the hydrocarbon chains comprising a solvophobic group (i.e., lacking an affinity for a specific solvent, for example, water) and/or a solvophilic group (i.e., having an affinity for a specific non-polar or low polar solvent). More specifically, but not by way of limitation, the hydrocarbon chains of the multi-tail surfactants are preferably hydrophobic in the presently disclosed and/or claimed inventive concept(s) so as to form more stable and denser hydrophobic structures on the substrate. When combined with at least one multi-tail surfactant in solution, the nonionic hydrophobically modified polysaccharides have been found to interact with the hydrophobic chains, or “tails”, of the multi-tail surfactants to form more stable and denser hydrophobic structures on keratin substrates, thereby improving the conditioning benefits provided thereon. These hydrophobic structures improve the conditioning capabilities of the nonionic hydrophobically modified polysaccharide compositions, with or without active ingredients optionally contained therein. Examples of multi-tail surfactants include, but are not limited to, dioctyl sulfosuccinates like sodium dioctyl sulphosuccinate, and quaternary ammonium compounds with long alkyl chains like dicoco dimethylammonium chloride, dipalmitoylethyl hydroxyethylmonium methosulfate, and dialkyl ammonium methosulfate. Multi-tail surfactants such as those marketed under the trade names STEPANTEX® DC 90 (Stepan Company, Northfield, Ill.), STEPANQUAT® GA-90 (Stepan Company, Northfield, Ill.), ARQUAT® 2C-75 (AkzoNobel, Chicago, Ill.) and AEROSOL® OT (Cytec Industries Inc., West Paterson, N.J.) are also useful in the presently disclosed and/or claimed inventive concept(s).
  • Nonionic surfactants can be broadly defined as compounds containing a hydrophobic moiety and a nonionic hydrophilic moiety. Examples of the hydrophobic moiety can be alkyl, alkyl aromatic, dialkyl siloxane, polyoxyalkylene, and fluoro-substituted alkyls. Examples of hydrophilic moieties are polyoxyalkylenes, phosphine oxides, sulfoxides, amine oxides, and amides. Nonionic surfactants such as those marketed under the trade name SURFYNOL® (Air Products and Chemicals, Inc., Allentown, Pa.) are also useful in the presently disclosed and/or claimed inventive concept(s). Cationic surfactants useful in vehicle systems of the compositions of the presently disclosed and/or claimed inventive concept(s) contain amino or quaternary ammonium hydrophilic moieties which are positively charged when dissolved in the disclosed aqueous composition. Zwitterionic surfactants are exemplified by those which can be broadly described as derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, which can be broadly described as derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water-solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Examples of amphoteric surfactants which can be used in the disclosed systems and compositions are those which are broadly described as derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Sulfate-free surfactants can be broadly defined as either single tail or multi-tail surfactants, or combinations thereof, that are generally free from salts or esters of sulfuric acid. Examples of sulfate-free surfactants include, but are not limited to, sodium lauroyl sarcosinate, sodium lauroamphoacetate, cocamidopropyl betain, and decyl glucoside.
  • According to the presently disclosed and/or claimed inventive concept(s), the solvent used in the system should be compatible with the other components of the disclosed compositions. Examples of the solvents that may be used are water, water-lower alkanols mixtures, and polyhydric alcohols having from 3 to 6 carbon atoms and from 2 to 6 hydroxyl groups. Preferred solvents are water, propylene glycol, water-glycerine, sorbitol-water, and water-ethanol. The solvent, when used, is present in the composition at a level of from 0.1% to 99% by weight of the composition.
  • In certain instances, the active component is optional because the dissolved polymer can be the active ingredient component. An example of this is the use of the polymer in a conditioner formulation for hair or skin conditioning or in a fabric conditioner formulation. However, when an active ingredient is needed, it should provide some benefit to the user, the user's body, and/or the substrate to which it is applied.
  • In accordance with the presently disclosed and/or claimed inventive concept(s), the functional system may be either a personal care product or a household care product. When the functional system is a personal care product that contains at least one active personal care ingredient, the personal care active ingredient includes, but is not limited to, analgesics, anesthetics, antibiotic agents, antifungal agents, antiseptic agents, antidandruff agents, antibacterial agents, vitamins, hormones, antidiarrhea agents, corticosteroids, anti-inflammatory agents, vasodilators, kerolytic agents, dry-eye compositions, wound-healing agents, anti-infection agents, as well as solvents, diluents, adjuvants and other ingredients such as water, ethyl alcohol, isopropyl alcohol, propylene glycol, higher alcohols, glycerine, sorbitol, mineral oil, preservatives, surfactants, propellants, fragrances, essential oils, and viscosifying agents.
  • Personal care compositions include hair care, skin care, sun care, nail care, and oral care compositions. Examples of active substances that may suitably be included, but not limited to, in the personal care products according to the presently disclosed and/or claimed inventive concept(s) are as follows: 1) Perfumes, which give rise to an olfactory response in the form of a fragrance and deodorant perfumes which in addition to providing a fragrance response can also reduce body malodor; 2) Skin coolants, such as menthol, menthyl acetate, menthyl pyrrolidone carboxylate N-ethyl-p-menthane-3-carboxamide and other derivatives of menthol, which give rise to a tactile response in the form of a cooling sensation on the skin; 3) Emollients, such as isopropylmyristate, silicone materials, mineral oils and vegetable oils which give rise to a tactile response in the form of an increase in skin lubricity; 4) Deodorants other than perfumes, whose function is to reduce the level of or eliminate micro flora at the skin surface, especially those responsible for the development of body malodor. Precursors of deodorants other than perfume can also be used; 5) antiperspirant actives, whose function is to reduce or eliminate the appearance of perspiration at the skin surface; 6) moisturizing agents, that keep the skin moist by either adding moisture or preventing from evaporating from the skin; 7) cleansing agents, that remove dirt and oil from the skin; 8) sunscreen active ingredients that protect the skin and hair from UV and other harmful light rays from the sun. In accordance with this invention, a therapeutically effective amount will normally be from 0.01 to 10% by weight, preferable 0.1 to 5% by weight of the composition; 9) hair treatment agents that condition hair, cleanse hair, detangle hair, act as styling agents, volumizing and gloss agents, color retention agents, antidandruff agents, hair growth promoters, hair dyes and pigments, hair perfumes, hair relaxer, hair bleaching agents, hair moisturizer, hair oil treatment agents, and antifrizzing agents; 10) oral care agents, such as dentifrices and mouth washes that clean, whiten, deodorize and protect the teeth and gum; 11) denture adhesives that provide adhesion properties to dentures; 12) shaving products such as creams, gels and lotions and razor blade lubricating strips; 13) tissue paper products such as moisturizing or cleansing tissues; 14) beauty aids such as foundation powders, lipsticks, and eye care; and 15) textile products such as moisturizing or cleansing wipes.
  • In accordance with the presently disclosed and/or claimed inventive concept(s), when the functional system is a household care composition, this household care product includes a hydrophobically modified polysaccharide and at least one active household care ingredient. The household care active ingredient should provide some benefit to the user. Examples of active substances that may suitably be included, but not limited to, according to the present invention are as follows: 1) perfumes, which give rise to an olfactory response in the form of a fragrance and deodorant perfumes which in addition to providing a fragrance response can also reduce odor; 2) insect repellent agent whose function is to keep insects from a particular area or attacking skin; 3) bubble generating agent such as surfactant that generates foam or lather; 4) pet deodorizer or insecticides such as pyrethrins that reduce pet odor; 5) pet shampoo agents and actives, whose function is to remove dirt, foreign material and germs from the skin and hair surfaces; 6) industrial grade bar, shower gel, and liquid soap actives that remove germs, dirt, grease and oil from skin, sanitizes skin, and conditions the skin; 7) all purpose cleaning agents that remove dirt, oil, grease, and germs from the surface in areas such as kitchens, bathroom, and public facilities; 8) disinfecting ingredients that kill or prevent growth of germs in a house or public facility; 9) rug and upholstery cleaning actives which lift and remove dirt and foreign particles from the surfaces and also deliver softening and perfumes; 10) a laundry softener active which reduces static and makes fabric feel softer; 11) laundry detergent ingredients which remove dirt, oil, grease, stains and kills germs; 12) laundry or detergent or fabric softener ingredients that reduce color loss during the wash, rinse, and drying cycle of fabric care; 13) dishwashing detergents which remove stains, food, germs; 14) toilet bowl cleaning agents which remove stains, kills germs, and deodorizes; 15) laundry prespotter actives which help in removing stains from clothes; 16) fabric sizing agents which enhance appearance of fabric; 17) vehicle cleaning actives which removes dirt, grease, etc., from vehicles and equipment; 18) lubricating agents which reduce friction between parts; and 19) textile products such as dusting or disinfecting wipes.
  • The above enumerated personal care and household care active ingredients are only examples and are not complete lists of active ingredients that can be used. Other ingredients that are used in these types of products are well known in the industry and would be apparent to one of ordinary skill in the art given the present disclosure. In addition to the above ingredients conventionally used, compositions according to the presently disclosed and/or claimed inventive concept(s) can optionally also include ingredients such as a colorant, preservative, antioxidant, nutritional supplements, alpha or beta hydroxy acid, activity enhancer, emulsifiers, functional polymers, viscosifying agents (such as salts, i.e., NaCl, NH4Cl, and KCl, water-soluble polymers, i.e., hydroxyethylcellulose and hydroxypropylmethylcellulose, and fatty alcohols, i.e., cetyl alcohol), alcohols having 1-6 carbons, fats or fatty compounds, antimicrobial compound, zinc pyrithione, silicone material, hydrocarbon polymer, emollients, oils, surfactants, medicaments, flavors, fragrances, suspending agents, and mixtures thereof.
  • In accordance with the presently disclosed and/or claimed inventive concept(s), examples of functional polymers that can be used in blends with the hydrophobically modified polysaccharides or derivatives thereof used herein include water-soluble polymers such as acrylic acid homopolymers such as CARBOPOL® (Lubrizol Advanced Materials, Inc., Cleveland, Ohio) products and anionic and amphoteric acrylic acid copolymers, vinylpyrrolidone homopolymers and cationic vinylpyrrolidone copolymers; nonionic, cationic, anionic, and amphoteric cellulosic polymers such as hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, cationic hydroxyethylcellulose, cationic carboxymethylhydroxyethylcellulose, and cationic hydroxypropylcellulose; acrylamide homopolymers and cationic, amphoteric, and hydrophobic acrylamide copolymers, polyethylene glycol polymers and copolymers, hydrophobic polyethers, hydrophobic polyetheracetals, hydrophobically-modified polyetherurethanes and other polymers referred to as associative polymers, hydrophobic cellulosic polymers, polyethyleneoxide-propylene oxide copolymers, and nonionic, anionic, hydrophobic, amphoteric, and cationic polysaccharides such as xanthan, chitosan, carboxymethyl guar, alginates, gum arabic, hydroxypropyl guar, hydrophobic guar polymers, carboxymethyl guar hydroxypropyltrimethylammonium chloride, guar hydroxypropyltrimethylammonium chloride, and hydroxypropyl guar hydroxypropyltrimethylammonium chloride.
  • In accordance with the presently disclosed and/or claimed inventive concept(s), the silicone materials which can be used are polyorganosiloxanes that can be in the form of polymers, oligomers, oils, waxes, resins, or gums or polyorganosiloxane polyether copolyols, amodimethicones, cationic polydimethylsiloxane materials and any other silicone material that is used in personal care or household compositions.
  • The polymers of the presently disclosed and/or claimed inventive concept(s) are water-soluble with the formation of a homogeneous gel above a certain concentration in water of 0.01%-1%. These gels undergo syneresis upon dilution below certain concentrations in the personal care composition. These polymers can be synthesized by methods known in the prior art.
  • Other water-insoluble HMHECs that form gels or solutions in surfactant/water or ethanol/water mixtures, and undergo syneresis upon dilution below certain concentrations in the personal care composition are also useful. The polymers of this invention can be useful as conditioning agents in 2-in-1 shampoos, body lotions, sunscreens, antifrizz, and hair styling. The polymers of the presently disclosed and/or claimed inventive concept(s) can also be used to improve hair volume, manageability, hair repair or color retention, skin moisturization and moisture retention, fragrance retention, sunscreen longevity on hair, skin, and fabrics, flavor enhancement and antimicrobial performance in oral care applications, and improve fabric abrasion resistance and colorfastness in household applications.
  • For a more detailed understanding of the presently disclosed and/or claimed inventive concept(s), reference can be made to the following examples which are intended as further illustrations of the presently disclosed and/or claimed inventive concept(s) but are not to be construed in a limiting sense. All parts and percentages are by weight unless stated otherwise.
  • EXAMPLES
  • Wet and dry hair comb ability measurements are typical test methods used to measure conditioning performance in shampoo and conditioner applications. In skin care applications, skin lubricity or reduced friction or softer feel of the skin, reduced water vapor transmission, and improved skin elasticity are test methods used to measure skin conditioning. In surfactant-based household cleansing product formulations where conditioning performance is desired such as dish detergents, fabric softeners, and antistatic products, conditioning refers to imparting a softer feel to fabric and eliminating static effects, eliminating fabric fiber breakage or deformation known as pilling. Imparting color retention properties to fabrics is also important and can be measured.
  • Standard Testing Procedures
  • Silicone deposition can be measured by several techniques. One technique used for quantifying silicone deposition for Examples of the presently disclosed and/or claimed inventive concept(s) is described as follows.
  • 1. Silicone Deposition Measurement
  • Each 2-5 gram sample was weighed to the nearest mg, after removal of sample holder, and placed into clean 8-oz jars with approximately 150 ml of methylene chloride. The samples were shaken for 1.5 hours at room temperature. The methylene chloride supernatant was filtered using Whatman #41 filter paper and quantitatively transferred to clean 8-oz jars and evaporated to dryness with mild heat and a nitrogen sparge. Each sample was then dissolved into 2 ml of chloroform-d and quantitatively transferred to a 5-ml volumetric flask. Three chloroform-d rinses were used to transfer each sample to the 5-ml volumetric flask. All flasks were diluted to the mark with solvent and inverted. Each sample was examined in a NICOLET MAGNA 550 FT-IR with 150 co-added scans at 4 cm−1 resolution and 0.4747 velocity using a 0.1 cm-fixed path salt cell. A chloroform-d reference spectrum was used to subtract out the solvent bands (diff=1.0). The silicone level was determined by measuring the peak height of the S1—CH3 stretch at 1260 cm−1 (baseline 1286 and 1227 cm−1) followed by conversion to mg/ml of silicone using a low level calibration curve extending from 10-300 parts per million (ppm). Each sample was corrected for dilution volume and sample weight. All values are reported to the nearest ppm.
  • 2. Formulation I—Surfactant Premix
  • Grams % active
    ALS 1 654 11.44643 STEPANOL ® AM
    ALES 2 213 3.727966 STEOL ® CA-330
    CAPB 3 175 3.062883 AMPHOSOL ® CA
    Coco MEA4 16
    DI Water 543.6
    Wt % Ingredient in shampoo5
    ALS 8.699287
    ALES 2.833254
    CAPB 2.327791
    Total 13.86033
    1 Ammonium Lauryl Sulfate -STEPANOL ® AM (Stepan Company, Northfield, IL)
    2 Ammonium Laureth Sulfate (3 EO) - STEOL ® CA-330 (Stepan Company, Northfield, IL)
    3 Cocamidopropyl Betaine - AMPHOSOL ® CA (Stepan Company, Northfield, IL)
    4Coco Monoethanolamide - NINOL ® CMP (Stepan Company, Northfield, IL)
    5Use 76 grams premix per 100 grams shampoo

    3. Procedure for Preparing Silicone Shampoos from Premix Formulation I—Lightly Bleached European Medium Brown Hair
  • Seventy-six grams of Formulation I surfactant premix were weighed into a 4-oz. glass jar. Ten grams of 2 wt % polymer solutions and 9 grams additional water were then weighed into the 4-oz. jar containing the 76 grams Formulation I surfactant premix. The 4-oz jar was then clamped into a 60° C. water bath. A twin-propeller mixer was lowered into the jar and the jar opening was covered with a lid to reduce evaporation loss.
  • The sample was stirred for 15-minutes. After the 15-minutes of stirring, 0.25 g of NH4Cl (ammonium chloride Baker reagent) was added to the jar. The sample was then stirred for an additional 45 minutes while covered. The sample jar was then removed from the 60° C. bath. The jar was then clamped into a room temperature water bath. The overhead stirrer was reattached and the stirring of the sample was begun in the water bath. The sample was allowed to stir for a minimum of 5-minutes. This was sufficient time for the sample temperature to drop below 35° C.
  • 3.68 g of dimethiconol, specifically SM™ 555 (Momentive Specialty Chemicals Inc., Columbus, Ohio), was added to the jar and the jar was stirred for a minimum of 5-minutes additionally. 0.5 g of GERMABEN® II (ISP, Wayne, N.J.) product was added to the jar and the jar was stirred for an additional minimum amount of time of 5-minutes.
  • The pH was checked and adjusted to 6.2-6.5 (either a 10% or 50% solution of citric acid was used to lower the pH). The jar was sealed and centrifuged for about 10-minutes at 3,000 rpm to remove any entrapped air.
  • The Brookfield viscosity equilibration was measured for 1 hour on a Brookfield LV-4, at 25.0° C., @ 0.3 RPM, then 12 RPM, then 30 RPM. A 3-minute rotation time was used at each speed.
  • 4. Procedure for Preparing Silicone Shampoos from Premix Formulation I—Virgin European Medium Brown Hair
  • The same premix Formulation I was used to prepare shampoos for testing on virgin brown hair, however, the polymer concentration in the shampoo was 0.4 wt %, the amount of ammonium chloride used in these shampoos was 1.0 gram, and the amount of silicone used was 2.45 g of SMT″ 555 (ISP, Wayne, N.J.).
  • 5. Wet/Dry Comb Performance Measurement—Lightly Bleached European Medium Brown Hair Conditions
  • Measured at constant temperature and humidity (72 deg. F. and 50% relative humidity). An Instron 1122 (2-lb. load cell, 500-gram range) was used to measure the wet/dry comb performance. Each tress was washed twice with SLS using the standard washing/rinsing procedure. The twice washed tress was hand combed 5-times with large teeth comb and 5-times with small teeth comb (10× total). No Instron testing of SLS-washed tresses. The washed tresses were allowed to sit overnight. No dry-combing. Each tress was shampooed twice with the agreed upon shampoo amount (0.5 g shampoo per 1 gram tress—all tresses were 3.0 g). Each shampooed tress was hand combed twice with a large teeth comb. The hand combed twice tress was loaded into an Instron instrument and the crosshead was lowered to bottom stop. The tress was combed twice with small teeth comb and placed into double-combs. The Instron was run under standard conditions. After the test was run, the tress was sprayed with DI water to keep moist. Using a paper towel, the excess liquid was wiped off double-combs. The crosshead was returned to bottom stop and the tress was replaced into double-combs. The test was rerun under standard conditions. A total of eight tests were run on each tress. After the eight tests were finished, the tress was hung up overnight. The next day, each tress was dry combed tested eight times. No hand combing of dry tresses was done. Averaged wet comb energy for 40 Instron runs and reported average with standard deviation. Averaged dry comb energy for 40 Instron runs and reported average with standard deviation.
  • A similar combing protocol was used for virgin hair, but only two tresses were used, and the average reported from the two tresses combed 5 times per tress with more precombing of the tresses prior to measurement.
  • Several examples of the above technologies were demonstrated in the following Examples 1-6 in shampoo Formulation I using the standard combing protocol on bleached hair and virgin brown hair. This formulation is shown only for example and other formulations containing other silicones, or other oils, such as mineral oil or any other commonly used conditioning oil, humectants such as glycerol, or conditioning ingredients, such as panthenoic acid or derivatives can be included.
  • 6. Measurement and Calculation of Alkyl Ether Content
  • The alkyl ether content of the substituted cellulose ethers shown in the examples is determined by reacting a sample with concentrated hydriodic acid at elevated temperature to produce alkyl iodides at temperatures of about 185° C. for 2 hours. The reaction products are extracted in situ into a solvent (o-xylene) and the alkyl iodides are quantified by gas chromatography. This is the so called sealed tube Zeisel—GC technique. The amount of alkyl iodide produced by the sample is converted into the desired equivalent alkyl compound or functional group by multiplying by the ratio of molecular weights:

  • Species A×(mwB/mwA)=Species B
  • Specifically for Cetyl Content:

  • % cetyl iodide×mw cetyl/mw cetyl iodide=% cetyl

  • % cetyl iodide×225.45/3552.35=% cetyl
  • Weight average molecular weights were determined using aqueous size exclusion chromatography.
  • Example 1
  • A gel of a water-soluble cetyl-modified hydroxyethyl cellulose (C16 HMHEC, 1.14 wt % cetyl substitution, 3.8 molar hydroxyethyl substitution, Mw=824,000 Dalton) that formed above 1.5-2 wt % polymer concentration and underwent syneresis upon dilution in water was used in this example and showed very good efficacy in a 2-in-1 conditioning shampoo without the need for any cationic moiety and without depositing any silicone. For bleached hair, wet hair comb energy was reduced 30% relative to the wet comb energy for the no polymer control shampoo, and silicone deposition was less than 10 ppm. Wet comb energies for the shampoo containing the cationic guar benchmark, N-HANCE® 3916 product, were reduced 40% relative to the no polymer shampoo.
  • This example demonstrates that the nonionic hydrophobic polymer that undergoes syneresis in aqueous solution or in the shampoo on dilution can achieve nearly 75% of the wet comb energy reduction achieved by the cationic polymer. The dry comb energies for the tresses treated with a shampoo containing the polymers of the invention were equal to the dry comb energy measured on tresses treated with the shampoo containing no polymer and the shampoo containing cationic guar.
  • Example 2
  • A water-soluble C16 HMHEC (1.04 wt % cetyl substitution, 4.0 molar hydroxyethyl substitution, Mw=1,200,000 Dalton) was used in this Example. This polymer formed a gel at 3-4 wt % polymer in water but showed syneresis at 2 wt %, was dissolved in 5 wt % ammonium lauryl sulfate to give a clear solution, and underwent syneresis upon dilution with water. This polymer showed very good efficacy in 2-in-1 conditioning shampoos without the need for any cationic moiety and without depositing any silicone. For bleached hair, wet hair comb energy was reduced by 28% relative to the no polymer control shampoo, and silicone deposition was less than 10 ppm. Wet hair comb energy reduction was 70% of the wet comb energy reduction achieved by cationic guar. The dry comb energies for the tresses treated with a shampoo containing the polymers of the invention were equal to the dry comb energy measured on tresses treated with the shampoo containing no polymer and the shampoo containing cationic guar.
  • Example 3 Comparative
  • A shampoo was made with a water-soluble cetyl-modified hydroxyethyl cellulose (POLYSURF® 67 product, 0.5 wt % cetyl substitution, 2.5 molar hydroxyethyl substitution, Mw=830,000 Dalton) that did not form a gel above 1.5-2 wt % polymer concentration and did not undergo syneresis upon dilution in water. For bleached hair, wet hair comb energy was reduced by 13% relative to the wet comb energy for the no polymer control shampoo, and silicone deposition was less than 10 ppm.
  • This example demonstrates that the nonionic hydrophobic polymer that does not undergo syneresis does not show as good efficacy in the 2-in-1 conditioning shampoo as a polymer that undergoes dilution deposition (Examples 1-3). The dry comb energies for tresses treated with a shampoo containing the commercial Polysurf 67 product was equivalent, within standard deviation, of the dry comb energy measured on tresses treated with the shampoo containing no polymer and the shampoo containing cationic guar.
  • Example 4 Comparative
  • An HMHEC polymer that was water-insoluble (2.82 wt % cetyl substitution, 3.83 molar hydroxyethyl substitution), dissolved with added surfactant in shampoo, yet did not undergo syneresis upon dilution and hence showed low efficacy in wet comb reduction. For bleached hair, wet hair comb energy was reduced by 11% relative to the wet comb energy for the no polymer control shampoo, and silicone deposition was less than 10 ppm. The dry comb energies for the tresses treated with a shampoo containing this polymer were equal to the dry comb energy measured on tresses treated with the shampoo containing no polymer and the shampoo containing cationic guar. This example demonstrates that water-insolubility is not a defining criteria for performance, and syneresis of the water-insoluble polymer is required for performance.
  • Example 5
  • A gel of a water-soluble methylphenylglycidyl hydroxyethyl cellulose ether, (6.3 wt % methylphenyl substitution, 2.5 molar hydroxyethyl substitution, Mw=350,000 Dalton), formed a gel above 1.5-2 wt % polymer concentration and underwent syneresis upon dilution in water and showed good efficacy in 2-in-1 conditioning shampoos without the need for any cationic moiety and depositing less than 30 ppm silicone. For virgin medium brown European hair, wet hair comb energy reduction was 72% of the wet comb energy reduction achieved by cationic guar. A silky feel was imparted to the hair.
  • Wet comb energy for the shampoo containing the cationic guar benchmark, N-HANCE® 3916 product, was reduced 61% relative to the no polymer shampoo, with greater than 40 ppm silicone deposited. This example demonstrated that the nonionic hydrophobic polymer that undergoes syneresis in aqueous solution or in the shampoo on dilution can achieve nearly 74% of the wet comb energy reduction achieved by the cationic polymer on virgin hair, with less silicone deposition. The dry comb energies for the tresses treated with a shampoo containing the polymer of the invention were equal to the dry comb energy measured on tresses treated with the shampoo containing no polymer and the shampoo containing cationic guar.
  • Examples 6-28
  • Simple conditioning tests were performed evaluating polymers of the invention and some commercial polymers on mildly bleached hair using a fully formulated rinse-off conditioner (Examples 6-16) and aqueous solutions of the polymers (Examples 17-28). The Instron comb test described below was used to generate the data shown in these Examples. Comparison of the wet and dry comb energy Example 16 with other Examples in the Table demonstrated that the polymer of the invention delivered the lowest combined wet and dry comb energies of all nonionic and hydrophobic polymers tested and approached the wet and dry comb energies delivered by cationic polymers of Example 8. In Table 2, comparison of the wet and dry comb energy Example 28 with other examples in the Table 2 demonstrated that the polymer of the invention delivered the lowest combined wet and dry comb energies of all nonionic and hydrophobic polymers tested and approached the wet and dry comb energies delivered by cationic polymers of Examples 18-20.
  • Table 1—Polymers as a Conditioner in Fully Formulated Conditioning Formulation 1
  • NATROSOL® (Hercules, Inc., Wilmington, Del.) hydroxyethyl cellulose type 250HHR was added to water under agitation. Next, pH was adjusted to 8.0 to 8.5. The slurry was stirred for about 30 minutes or until polymer dissolved. Next, polymer of this invention or a commercial comparative polymer listed in TABLE 1 was added and mixed for 30 more minutes. The solution was heated to about 65° C. and stirred until it became smooth. Cetyl alcohol was added and mixed until it mixed homogeneously. The mixture was cooled to about 50° C. and then potassium chloride was added. Next, isopropyl myristate was added and mixed until the mixture looked homogeneous. The pH of the mixture was adjusted between 5.25 to 5.5 with citric acid and/or NaOH solution. The conditioner was preserved with 0.5% preservative and mixed until it reached room temperature.
  • 90.94 g Deionized water
    00.70 g NATROSOL ® 250HHR
    00.20 g Polymer of this invention or commercial polymer
    02.00 g Cetyl alcohol
    00.50 g Potassium Chloride
    02.00 g Isopropyl Palmitate
    As required - Citric acid to adjust pH
    As required - Sodium hydroxide to adjust pH
    00.50 g Preservative
  • About three grams in weight flat tresses of mildly bleached European hair from International Hair Importers and Products Inc. of Glendale, N.Y. were used for measuring wet and dry combing performance of various formulations of this experiment. To clean the hair tress, the hair tress was first wet with 40° C. tap water and then 5.0 ml of sodium lauryl sulfate solution was applied along the tress length. Tress was kneaded for 30 second. Tress was then rinsed under 40° C. running water for 30 seconds followed by rinsing with room temperature tap water for 30 seconds. The tress was then dried overnight. Next day, the tress was rewet with 40° C. tap water. Next, 0.5 grams of test conditioner per gram of hair was applied uniformly along the length of hair. Tress was kneaded for 30 seconds and then it was rinsed under 40° C. running water for 30 seconds. The conditioner was reapplied along the length of the tress and the tress was kneaded for 30 seconds; then, it was rinsed under 40° C. running water for 30 seconds. The tress was rinsed with room temperature tap water for 30 seconds. The tress was combed immediately eight times and from the data average amount combing energy in gram force-mm/gram of hair (gf-mm/g) required to comb the hair was calculated. The tress was stored overnight at about 50% relative humidity and about 23° C. Next day, the tress was first combed with fine teeth rubber comb to free-up hair stuck together. Again, the hair tress was combed eight times to determine the average force required to comb one gram of dry hair. The higher the number the poorer the conditioning effect of the polymer being tested. Two tresses were used per conditioning formulation. The data reported below are average of two tresses.
  • TABLE 1
    Comparative Polymer Polymer Conditioner Wet Combing Dry Combing
    Example# Polymer Polymer type Level/wt % Viscosity (cps) (gf-mm/g) (gf-mm/g) Comments
    6 Polymer-Free Control 0 990 4774 287 Stable
    7 Polymer-Free Control 0 1380 4513 364 Stable
    8 NHANCE ® 3269 cationic 0.2 1330 1389 263 Stable
    9 NATROSOL ® 250HHR nonionic 0.2 1970 4320 361 Stable
    10 NATROSOL ® 250HHR nonionic 0.2 2100 2700 290 Stable
    11 UCARE ™ LR400 cationic 0.2 1280 811 1116 Stable
    12 NEXTON ® 3082R hydrophobic 0.2 2280 4941 312 Stable
    13 NATROSOL ® Plus 330 hydrophobic 0.2 1670 2565 340 Stable
    14 POLYSURF ® 67 hydrophobic 0.2 2170 2952 459 Stable
    15 AQU D3673 hydrophobic 0.2 1080 2281 625 Stable
    16 AQU hydrophobic 0.2 1940 2262 298 Stable
    D3930
    Ingredient List FOR TABLE 1:
    (1) NATROSOl ® 250HHR: Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (2) NEXTON ® 3082R: C4 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (3) POLYSURF ® 67: NT4C3594, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
    (4) NATROSOL ® Plus 330: NT43669, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
    (5) UCARE ™ LR400: Cationic HEC from Dow Chemicals, Midland, MI
    (6) UCARE ™ JR30M: Cationic HEC from Dow Chemicals, Midland, MI
    (7) N-HANCE ® 3269: cationic guar cationic DS 0.13, Weight average Molecular weight 500,000 from Hercules, Inc., Wilmington, DE
    (8) AQUACAT ® CG 518: cationic guar, cationic DS 0.18, Weight average Molecular weight 50,000 from Hercules, Inc., Wilmington, DE
    (9) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Incorporated 0.62 wt % cetyl, hydroxyethyl molar substitution(HEMS)4.0
    (10) AQU D3673: C8 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
    (11) CRODACOL ® C95NF: Cetyl alcohol from Croda Inc. Parsippany, NJ
    (12) KCl: Potassium chloride
    (13) STEPAN ® IPM: Isopropyl myristate from Stepan Company, Northfield, IL
    (14) GERMABEN ® II: preservative from ISP, Wayne, NJ
  • Table 2—Polymers as a Detangling Agent/Conditioning Agent in Aqueous System
  • Polymers of this invention or comparative polymers, listed in Table 2, were added to water under agitation to form a slurry. Next, pH was adjusted to between 8.0 to 8.5 for cellulosic polymers and to about 6.5 for guar based products. The slurry was mixed for about 60 minutes or until the polymer fully dissolved. Then, the pH of the mixture was adjusted to between 5.25 to 5.5 with citric acid and/or NaOH solution. The conditioner was preserved with 0.1% preservative and mixed for 15 minutes. The pH was readjusted as necessary.
  • Ingredients:
  • 99.70 g Deionized water
    00.20 g Polymer of this invention or commercial polymer
    As required - Citric acid to adjust pH
    As required - Sodium hydroxide to adjust pH
    00.10 g Preservative
  • About three grams in weight of flat tresses of mildly bleached European hair from International Hair Importers and Products Inc. of Glendale, N.Y. were used for measuring wet and dry combing performance of various formulations of this example. To clean the hair tress, the hair tress was first wet with 40° C. tap water and then 5.0 ml of sodium lauryl sulfate solution was applied along the tress length. The tress was kneaded for 30 second. The tress was then rinsed under 40° C. running water for 30 seconds followed by rinsing with room temperature tap water for 30 seconds. The tress was then dried overnight. Next day, the tress was rewet with 40° C. tap water. Next, 0.5 grams of test solution per gram of hair was applied uniformly along the length of hair. The tress was kneaded for 30 seconds and then was rinsed under 40° C. running water for 30 seconds. The test solution was reapplied along the length of the tress and the tress was kneaded for 30 seconds and then was rinsed under 40° C. running water for 30 seconds. The tress was rinsed with room temperature tap water for 30 seconds. The tress was combed immediately eight times to calculate the average amount of combing energy in gram force-mm/gram of hair (gf-mm/g) required to comb the hair. The tress was stored overnight at about 50% relative humidity and about 23° C. Next day, the tress was first combed with fine teeth rubber comb to free-up hair stuck together. Again, hair tress was combed eight times to determine average force required to comb one gram of dry hair. The higher the number, the poorer the conditioning effect of the polymer being tested. Two tresses were used per conditioning formulation. Combing data below are average of two tresses.
  • TABLE 2
    Wet Dry
    Example Polymer Comparative Combing Combing
    # Polymer Type Polymer Lot# (gf-mm/g) (gf-mm/g)
    17 Polymer-free 5267 318
    Control
    18 Cationic N-HANCE ® 3269 1553 497
    19 Cationic AQUACAT ® CG518 1123 185
    20 Cationic N-HANCE ® 3196 1830 659
    21 Nonionic NATROSOL ® 2811 314
    250HHR
    22 Cationic UCARE ™ LR400 607 515
    23 Cationic UCARE ™ JR30M 759 334
    24 Hydrophobic NEXTON ® 3082R 5631 410
    25 Hydrophobic NEXTON J20R 5774 434
    26 Hydrophobic NATROSOL ® Plus 2059 333
    330
    27 Hydrophobic POLYSURF ® 67 2451 451
    28 AQU Hydrophobic 1798 463
    D3930
    Ingredient List FOR TABLE 2:
    (1) NATROSOL ® 250HHR: Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (2) NEXTON ® 3082R: C4 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (3) NEXTON ® J20R, C4hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (4) POLYSURF ® 67: NT4C3594, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
    (5) NATROSOL ® Plus 330: NT43669, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
    (6) UCARE ™ LR400: Cationic HEC from Dow Chemicals, Midland, MI
    (7) UCARE ™ JR30M: Cationic HEC from Dow Chemicals, Midland, MI
    (8) N-HANCE ® 3269: cationic guar cationic DS 0.13, Weight average Molecular weight 500,000 from Hercules, Inc., Wilmington, DE
    (9) N-HANCE ® 3196: cationic guar cationic DS 0.13, Weight average Molecular weight 1.2 MM from Hercules, Inc., Wilmington, DE
    (10) AQUACAT ® CG 518: cationic guar, cationic DS 0.18, Weight average Molecular weight 50,000 from Hercules, Inc., Wilmington, DE
    (11) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc. 0.62 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0
    (12) KATHON ™ CG: Preservative from Rohm & Haas
  • Examples 29-39
  • A skin lotion was prepared containing the polymer of the presently disclosed and/or claimed inventive concept(s) (Example 33) and compared with a polymer-free skin lotion (Example 30), skin lotions containing hydrophobic polymers which did not undergo syneresis (Examples 32, 36, 40) and with skin lotions containing commercial nonionic and cationic polymers. The skin lotion containing the polymer of the invention showed increased viscosity and structure as compared with the polymer-free control formulation in Example 30. Example 33 was more stable than the formulations containing cationic polymer. Compared with the commercial hydrophobic polymers, the polymer of the invention appeared slightly grainy, suggesting that this polymer could be used at a lower concentration than commercial hydrophobic polymers.
  • TABLE 3
    Fully Formulated Skin Lotion - Single Polymer
    Ingredient Weight % Active
    A. Polymer 0.50
    Distilled water 78.00
    Glycerin 2.00
    B. Glycol stearate (KESSCO ® EGMS) 2.75
    Stearic acid (INDUSTRENE ® 5016) 2.50
    Mineral oil (DRAKEOL ® 7) 2.00
    Acetylated lanolin (LIPOLAN ® 98) 0.50
    Cetyl alcohol (CRODACOL ® C95) 0.25
    C. Distilled water 10.00
    Triethanolamine 0.50
    D. Propylene glycol and diazolidinyl 0.75
    urea and methylparaben and
    propylparaben (GERMABEN ® II)
    Total: 100.00
  • Procedure:
  • The polymer listed in Table 3 was dispersed in water by adding to the vortex of well-agitated from Part A. It was mixed for five minutes. Next, glycerin was added with continued mixing and heated to 80° C. Mixed 15 minutes at 80° C. In a separate vessel, blended Part B ingredients and heated to 80° C. and mixed well.
  • Part A was added to Part B with good agitation while maintaining an emulsion temperature at 80° C. Part C ingredients were mixed together in a vessel and added to the emulsion of Parts A and B. The new mixture was mixed continuously while cooling to 40° C. Then, the pH was adjusted between 6.0 to 6.5. Then Part D, a preservative, was added to the emulsion and mixed well. The new emulsion was then cooled and filled.
  • TABLE 4
    Commercial Lotion Viscosity
    Example# Polymer Polymer Type Polymer at 5 rpm pH Comments
    30 Control -Polymer- 6,800 6.3 Fluid
    Free
    31 hydrophobic NATROSOL ®Plus 330 124,000 6.2 Smooth, glossy, cream
    32 cationic N-HANCE ® 3215 Phase separation
    33 AQU D3930 hydrophobic 164,000 6.4 Stable, grainy, Highly
    structured
    34 cationic UCARE ™ LR400 28,000 6.2 Curdled appearance. No
    separation
    35 cationic UCARE ™ JR30M 19,200 6.1 Curdled appearance. No
    separation
    36 hydrophobic POLYSURF ® 67 165,000 6.4 Stable, glossy, Highly
    structured
    37 nonionic NATROSOL ® 250M 5,600 6.3 Fluid, Glossy
    38 nonionic NATROSOL ® 250LR 4,400 6.6 Fluid, Glossy
    39 hydrophobic AQU D3673A 10,800 6.5 Fluid, Glossy
    40 hydrophobic NEXTON ® 3082R
    Ingredient List FOR TABLE 4:
    (1) KESSCO ® EGMS: Stepan Company, Northfield, IL
    (2) INUSTRENE ® 5016: Crompton Corp., Middlebury, CT
    (3) DRAKEOL ® 7: Penreco, Pennzoil Products Company, Karn City, PA
    (4) LIPOLAN ® 98: Lipo Chemicals., Inc., Paterson, NJ
    (5) CRODACOL ® C95: Croda Inc., Parsippany, NJ
    (6) GERMABEN ® II: preservative from ISP, Wayne, NJ
    (7) NATROSOL ® Plus 330: C16 Hydrophobically modified Hydroxyethyl cellulose Hercules, Inc., Wilmington, DE
    (8) N-HANCE ® 3215 : Cationic guar, Hercules, Inc., Wilmington, DE
    (9) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 0.62 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0
    (10) UCARE ™ LR400: Cationic HEC from Dow Chemicals, Midland, MI
    (11) UCARE ™ JR30M: Cationic HEC from Dow Chemicals, Midland, MI
    (12) POLYSURF ® 67: NT4C3594, hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
    (13) NATROSOL ® 250LR: lot#28667, Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (14) NATROSOL ® 250M: Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (15) NEXTON ® 3082RC4: Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (16) NATROSOL ® 250HHR CS: Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (17) AQU D3673: C8 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
  • Examples 41-51
  • A body wash formulation was prepared using the polymer of the presently disclosed and/or claimed inventive concept(s) (Example 43) with a polymer-free control (Example 41) and with formulations containing commercial nonionic, hydrophobic, and cationic polymers. The polymer of the presently disclosed and/or claimed inventive concept(s) (Example 43) showed better compatibility with the body wash components than the nonionic commercial polymers (Examples 48 and 50). The commercial hydrophobic polymers conveyed an applesauce texture to the formulation as did the polymer of the presently disclosed and/or claimed inventive concept(s). This result suggests that these polymers could be used at a lower concentration in this formulation.
  • Body Wash Table 5
  • Body Wash Preparation:
  • An aqueous stock solution of each polymer was first prepared at 1.0% concentration. For polymers: N-HANCE® 3215, ADPP6503, AQU D3799, and AQU D3939 solutions were made by adding polymer to water under vigorous agitation. Next, the pH was lowered to between 6 to 7 with citric acid and the solution was mixed for an hour or until the polymer solubilized. The solutions were preserved with 0.5% Glydant® product. For the polymers ADPP6531, ADPP5922, AQU D3869, AQU D3673, ADPP6582 ADPP6626, POLYSURF® 67, NATROSOL® plus 330, NATROSOL® 250HHR, NATROSOL® 250M, UCARE™ JR30M, UCARE™ JR400, AQU D3686 ADPP6641, the polymers were added to well agitated water and then the pH was raised to 8.5 to 9.5 using sodium hydroxide. The solution was mixed for an hour and then the pH was lowered to between 6 to 7 using citric acid.
  • Body wash stock solution was prepared by adding to vessel 46.4 grams of sodium laureth sulfate, 27.0 grams of sodium lauryl sulfate, 6.7 grams of C9-C15 alkyl phosphate, 4.0 grams of PPG-2 hydroxyethyl cocamide, 1.0 gram of sodium chloride, 0.30 gram of tetra sodium EDTA, and 0.5 gram of DMDM hydantoin in the order listed while mixing. Each ingredient was allowed to mix homogeneously before adding the next ingredient. The total stock solution weighed 85.9 grams.
  • Body wash was prepared by adding 20 grams of polymer (listed in Table 4) solution to 80 grams of the above body wash stock solution while mixing. Next, the body wash pH was adjusted to between 6 and 7 with citric acid. The body wash viscosity was measured using the Brookfield LVT viscometer. The viscosity was measured at 30 rpm once the body wash conditioned for at least two hours at 25° C. The body wash clarity was also measured at 600 nm using a Spectrophotometer, Cary 5E UV-VIS-NIR, available from Varian Instruments, Inc. The clarity measurements at 600 nm wavelength are reported as % T value. The higher the number, the clearer is the solution.
  • Lather Drainage Test:
  • Objective of this test is to measure the lather drainage time of a diluted body wash solution. Long drainage times indicate a rich, dense lather with good stability. The test was used to determine the influence that the polymers of this invention may have on lather quality. The relevant equipment: a WARING® Blender Model #7012 or 34BL97 or equivalent; a funnel, preferably plastic; 6″ diameter, ⅞″ ID neck, 5¼″ high, with a horizontal wire 2″ from the top; a U.S.A. Standard Testing Sieve NO.20 or TYLER® Equivalent 20 mesh or 850 micrometer or 0.0331 inch sieve (preferably over 7 inch in diameter but smaller size could also be used); and a stopwatch or a timer. For each test formulation, 1,000 g of a diluted body wash solution was prepared as shown below.
  • Body wash 66.13 g
    Deionized Water 933.87 g
    Total 1,000.00 g
  • For each lather test measurement, 200 grams of above diluted solution was weighed and placed in a 25° C. water-bath for 2 hours. Three jars (each with 200 grams of solution) were prepared per body wash formulation. Next, the lather drainage time for each solution was measured using the following procedure: 200 g of solution was poured into a clean, dry Waring® blender glass vessel; the solution was blended at the highest speed for exactly 1 minute while covered; the foam generated in the jar was immediately poured into a clean, dry funnel standing on a 20 mesh screen over a beaker and the foam from the blender was poured for exactly 15 seconds (the goal was to get as much foam as possible into the funnel without overflowing); after 15 seconds, stopped pouring foam, however, the stopwatch was kept running; and, the total time needed for the foam to drain including the seconds for pour time was recorded once the wire was no longer covered by foam or liquid.
  • TABLE 5
    Lather
    Polymer Commercial Visc. Stability T
    Example # Polymer Type Polymer Cps Seconds (%) Comments
    41 Control -Polymer- 3680 54 99.4
    Free
    42 Cationic N-HANCE ® 3215 6100 98.7 85.9
    43 AQU Hydrophobic 3960 57.3 25.2 Applesauce like structure,
    D3930 separation
    44 Cationic UCARE ™ JR400 6420 52.7 78.8
    45 Cationic UCARE ™ JR30M 19120 57.5 98.5
    46 Hydrophobic NATROSOL ®Plus 4080 64.3 21.6 Applesauce like structure
    330
    47 Hydrophobic POLYSURF67 4080 52.3 14.2 Applesauce like structure
    48 Nonionic NATROSOL ® 250M 4540 Not Run 32.4 Gels - Incompatible
    49 Hydrophobic NEXTON ® 3082R 4420 53.3
    50 Nonionic NATROSOL ® 4680 Not run 52.1 Gels - Incompatible
    250HHR CS
    51 Hydrophobic AQU D3673A 3560 60 95.5
    Ingredient List for TABLE 5:
    (1) Sodium Lauryl Sulfate -STEPANOL ® WAC, Stepan Company, Northfield, IL 60093.
    (2) Sodium Laureth Sulfate- RHODAPEX ® ES-2, Rhodia, Cranbury, NJ 08512
    (3) Cocamidopropyl Betaine - AMPHOSOL ® CA, Stepan Company, Northfield, IL 60093.
    (4) PPG-2 Hydroxyethyl Cocamide - PROMIDIUM ® CO, Uniqema, Newcastle, DE
    (5) Tetra Sodium EDTA-Fisher Scientific.
    (7) DMDM Hydantoin, GLYDANT ®, Lonza Inc., Fair Lawn, NJ, USA
    (8) Sodium Chloride from Baker.
    (9) NATROSOL ® Plus 330 -NT3J3314, C16 Hydrophobically modified Hydroxyethyl cellulose Hercules Inc., Wilmington, DE
    (10) N-HANCE 3215: J4013A, Cationic guar, Hercules, Inc., Wilmington, DE
    (11) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 0.62 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0
    (12) UCARE ™ JR400: Cationic HEC from Dow Chemicals, Midland, Ml
    (13) UCARE ™ JR30M: Cationic HEC from Dow Chemicals, Midland, Ml
    (14) POLYSURF ® 67: NT4C3594, hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
    (15) NATROSOL ® 250M: Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (16) NEXTON ® 3082R: Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.,Wilmington, DE
    (17) NATROSOL ® 250HHR CS, Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (18) AQU D3673: C8 Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
  • Examples 52-62
  • The polymer of the presently disclosed and/or claimed inventive concept(s) was incorporated into a sunscreen formulation (Example 54). The formulation was stable.
  • Sunscreen Lotion—Table 6
  • The Drakeol mineral oil was heated in a vessel to 75° C. while mixing. Next, the remaining ingredients of Part A (Arlmol E, Neo Heliopan A V, Uvinol M40, Castor wax, Crill-6, Arlatone T, Ozokerite wax and Dehymuls HRE7) were added to the vessel in the order listed while mixing. The mixture was mixed for 30 minutes at 70° C. In a separate container water of Part B was heated to 70° C. Next, the polymer of invention or comparative polymer (listed in Table 5) was added and mixed until dissolved and then Glycerine was added and mixed. In a separate container, a solution of magnesium sulfate was prepared by adding magnesium sulfate to water. Next, the solution of magnesium sulfate was added to Part B and mixed until heated back to 70° C. This mixture was then added to Part A while mixing and then mixed for 30 minutes at 70° C. and then cooled to room temperature while mixing. Preservative Germaben II was added when temperature reached below 50° C.
  • Ingredient Amount
    Part A:
    DRAKEOL ® 7: Mineral oil 13.0 g 
    ARLAMOL ™ E: PPG-15 Stearyl ether 6.0 g
    NEO HELIOPAN ® AV: Octyl methoxcinnamate 1.0 g
    UVINOL ® M40: Benzophenone-3 1.0 g
    Castor Wax: Hydrogenated castor oil 1.4 g
    CRILL ™ 6: Sorbitan iostearate 1.2 g
    ARLATONE ® T: PPG-40 Sorbitan Peroleate 1.0 g
    Ozokerite Wax 77W: Wax 1.0 g
    DEHYMULS ® HRE7: PEG-7 hydrogenated castor oil 0.5 g
    Part B:
    Deionized water 40.5 g 
    Polymer 0.5 g
    Glycerine 3.0 g
    Part C:
    Deionized water 23.1 g 
    Magnesium Sulfate 0.7 g
    Part D:
    Germaben ® II - Preservative 0.5 g
  • TABLE 6
    Poly-
    Exam- Poly- mer Commercial Visc.
    ple # mer Type Polymer cps Comments
    52 Control - Polymer- 4400
    Free
    53 N-HANCE ® 3215 2440
    54 AQU 6060
    D3930
    55 UCARE ™ JR400 8120
    56 UCARE ™ JR30M 3516
    57 NATROSOL ® Plus 330 5880
    58 POLYSURF ® 67 5260
    59 NATROSOL ® 250M 3540
    60 NEXTON ® 3082R 5700
    61 NATROSOL ® 2500
    250HHR CS
    62 AQU D3673A Phase
    separation
    Ingredient List for TABLE 6:
    (1) DRAKEOL ® 7: Mineral oil, Penereco, Karn City, PA.
    (2) ARLAMOL ™ E: OOG-15 Stearyl ether Uniqema Americas, New Castle, DE
    (3) NEO HELIOPAN ® AV: Octyl methoxcinnamate, Symrise, Totowa, NJ
    (4) UVINOL ® M40: Benzophenone-3, BASF, Mount Olive, NJ
    (5) Castor Wax: Hydrogenated castor oil, Frank B. Ross
    (7) CRILL ™ 6: Sorbitan iostearate, Croda, Inc., Parsippany, NJ
    (8) ARLATONE ® T: PPG-40 Sorbitan Peroleate, Uniqema Americas, New Castle, DE
    (9) Ozokerite Wax 77W: Wax, Frank B. Ross
    (10) DEHYMULS ® HRE7: PEG-7 hydrogenated castor oil, Cognis, Amber, PA
    (11) Magnesium sulfate - J. T. Baker, Phillpsburg, NJ
    (12) Glycerine: Spectrum Bulk Chemicals, New Brunswick, NJ
    (13) Germaben ® II - Preservative, Cognis, Amber, PA
    (14) NATROSOL ® Plus 330 - NT3J3314, C16 Hydrophobically modified Hydroxyethyl cellulose Hercules, Inc., Wilmington, DE
    (15) N-HANCE ® 3215 - J4013A, Cationic guar, Hercules, Inc., Wilmington, DE
    (16) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 0.62 wt % cetyl, hydroxyethyl molar substitution(HEMS) 4.0
    (17) UCARE ™ JR400: Cationic HEC from Dow Chemicals, Midland, MI
    (18) UCARE ™ JR30M: Cationic HEC from Dow Chemicals, Midland, MI
    (19) POLYSURF ® 67: NT4C3594, hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
    (20) NATROSOL ® 250M: Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (21) NEXTON ® 3082R: Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (22) NATROSOL ® 250HHR CS, Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (23) AQU D3673: 11750-46, C8 Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
  • Examples 63-73
  • The polymer of the presently disclosed and/or claimed inventive concept(s) was incorporated into a roll-on antiperspirant formulation which was stable (Example 65).
  • Roll-On Antiperspirant Table 7
  • Antiperspirant Preparation:
  • An aqueous stock solution of each polymer was first prepared at 1.0% concentration. For polymers (N-HANCE® 3215, ADPP6503, AQU D3799, and AQU D3939), solutions were made by adding the polymer to water under vigorous agitation. Next, the pH was lowered to between 6 to 7 with citric acid and the solution was mixed for an hour or until polymer solubilized. The solutions were preserved with 0.5% Glydant® product. For the polymers ADPP6531, ADPP5922, AQU D3869, AQU D3673, ADPP6582 ADPP6626, POLYSURF® 67, NATROSOL® plus 330, NATROSOL® 250HHR, NATROSOL® 250M, UCARE™ JR30M, UCARE™ JR400, AQU D3686 ADPP6641, the polymer was added to intensely agitated water and then the pH was raised to between 8.5 to 9.5 using sodium hydroxide. The solution was mixed for an hour and then the pH was lowered to between 6 to 7 using citric acid.
  • A 150 gram batch of roll-on antiperspirant was made using the procedure: 15.0 g of a polymer from the list in Table 6 was added to stock solution in an 8-oz. glass jar and mixed with a magnetic plate and stirrer; next, 22.5 g of deionized water was added to the glass jar and mixing continued for about 30 minutes. While mixing, 45.0 g of ethanol was added and the mixing continued for an additional 10 minutes; and then, 67.5 g of the antiperspirant active Summit ACH303 was added and the mixing continued for 30 more minutes.
  • TABLE 7
    Polymer
    Exam- of Inven- Visc.
    ple # tion Commercial Polymer cps Comments
    63 Control - Polymer- Clear, water-white
    Free
    64 N-HANCE ® 3215 Very hazy, gels
    through-out
    65 AQU
    D3930
    66 UCARE ™ JR400
    67 UCARE ™ JR30M
    68 NATROSOL ® Plus Clear, water-white,
    330 fine particles
    throughout
    69 POLYSURF ® 67 Clear, trace haze,
    fine particles
    throughout
    70 NATROSOL ® 250M Clear, water-white,
    fine particles
    throughout
    71 NEXTON ® 3082R
    72 NATROSOL ® Clear, water-white,
    250HHR CS fine particles
    throughout
    73 AQU D3673A
    Ingredient List for TABLE 7:
    (1) Ethanol: Dehydrated ethanol; Spectrum Chemicals MFG Corp, Gardena, CA
    (2) SUMMIT ACH-303 - 50% aqueous solution of Aluminum Chlorohydrate, Summit Research abs, 45 River Road, Flemington, NJ
    (3) NATROSOL ® Plus 330 - NT3J3314, C16 Hydrophobically modified Hydroxyethyl cellulose Hercules, Inc., Wilmington, DE
    (4) N-HANCE ® 3215: J4013A, Cationic guar, Hercules, Inc., Wilmington, DE
    (5) AQU D3673: 11750-46; Polymer of this invention, C8 Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
    (6) AQU D3930: Polymer of this invention, C16 Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 0.62 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0
    (7) UCARE ™ JR400: Cationic HEC from Dow Chemicals, Midland, MI
    (8) UCARE ™ JR30M: Cationic HEC from Dow Chemicals, Midland, MI
    (9) POLYSURF ® 67: NT4C3594, Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc.
    (10) NATROSOL ® 250M: Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (11) NEXTON ® 3082R: Hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
    (12) NATROSOL ® 250HHR CS, Hydroxyethyl cellulose from Hercules, Inc., Wilmington, DE
  • Examples 74-81
  • The polymer of the presently disclosed and/or claimed inventive concept(s) was incorporated into Colgate-Palmolive SOFTSOAP® Body Wash (Colgate-Palmolive Co., NY, N.Y.). The viscosity of the body wash increased (Example 77), and the clarity of the body wash was significantly better than for other commercial hydrophobic cellulose ethers or nonionic cellulose ethers (Examples 78-81).
  • The body wash was prepared by weighing 80 g commercial product into 4 oz. wide mouth glass jars, adding 20 g of a 1% polymer solution, capping and taping lid of jars with electrical tape, shaking the jars by hand to initially mix polymer, placing and securing the jars on tumbler using tape across jars and around jars on ends to prevent the jars from tumbling over the edge, tumbling the jars for 1.5 hours after which the jars were removed and tempered in a 25° C. bath overnight, and removing the jars from the bath the next day for observation and recordation of solution clarity, polymer solubility, and measuring the % T at 600 nm for the 24 hour samples. The samples were then stored at ambient conditions for two weeks after which the jars were again tempered in the bath overnight and observations and recordation of pH, viscosity, and % T were undertaken the next day.
  • TABLE 8
    Examples Soft Soap - 0.2% Active
    Initial (24 Hours) 2 Weeks at Room Temp.
    Ex- Solu- Solu-
    am- Vis- Spindle tion Vis- Spindle tion Polymer
    ple cosity #, Clar- cosity #, Clar- Solu-
    # Designation Source Composition pH (cps) Rpm % T ity pH (cps) Rpm % T ity bility
    74 Control - 100 g of SOFTSOAP ® - no water 7.19 5060.0 #4, 30 97.7 Clear 7.21 4600.0 #4, 30 97.5 Clear
    or polymer added
    75 Control - 80 g of SOFTSOAP ® + 20 g of 7.20 175.0 #2, 30 97.1 Clear 7.23 173.0 #2, 30 97.1 Clear
    water added
    76 AQU D3673 Experi- C8HMHEC 7.14 337.0 #2, 30 97.5 Clear 7.20 331.0 #2, 30 96.8 Clear Soluble
    mental
    77 AQU D3930 Polymer of C16HMHEC 7.17 1628.0 #3, 30 87.4 Very 7.21 1736.0 #3, 30 87.5 Very Soluble
    invention slight slight
    hazy hazy
    78 POLYSURF ® Commercial C16HMHEC 7.04 1332.0 #3, 30 32.5 Very 7.17 1380.0 #3, 30 40.4 Very Soluble
    67 hazy hazy
    79 NATROSOL ® Commercial C16HMHEC 7.09 783.0 #2, 30 80.2 Hazy 7.15 774.0 #2, 30 81.2 Hazy Soluble
    Plus 330
    80 NATROSOL ® Commercial HEC 7.11 249.0 #2, 30 63.5 Hazy 7.17 282.0 #2, 30 74.1 Hazy Polymer
    250HHR CS (polymer gel
    settled on layer on
    bottom; bottom
    shaken
    before %
    T taken)
    81 NATROSOL ® Commercial HEC 7.11 236.0 #2, 30 14.6 Hazy 7.18 282.0 #2, 30 46.6 Hazy Polymer
    250M (polymer gel
    settled on layer on
    bottom; bottom
    shaken
    before %
    T taken)
  • Examples 82-89
  • Incorporation of the polymer of the presently disclosed and/or claimed inventive concept(s) into LYSOL® All Purpose Cleaner (Reckitt Benckiser LLC, Parsippany, N.J.), increased the product viscosity relative to the control product containing no polymer (Compare Example 85 with 82 in Table 9). The polymer of the presently disclosed and/or claimed inventive concept(s) was slow to dissolve in the Lysol base, but this could be improved with formulation optimization.
  • The cleaner was prepared by weighing 80 g commercial product into 4 oz. wide mouth glass jars, adding 20 g of a 1% polymer solution to the jars, capping and taping lids of jars with electrical tape, shaking the jars by hand to initially mix polymer, placing and securing the jars on tumbler using tape across jars and around jars on ends to prevent the jars from tumbling over the edge, tumbling the jars for 1.5 hours after which the jars were removed and tempered in a 25° C. bath overnight, and removing the jars from the bath the next day for observation and recordation of solution clarity, polymer solubility, and measuring the % T at 600 nm for the 24 hour samples. The samples were then stored at ambient conditions for two weeks after which the jars were again tempered in the bath overnight and observations and recordation of pH, viscosity, and % T were undertaken the next day.
  • TABLE 9
    Examples LYSOL ® All Purpose - 0.2% Active
    Initial (24 Hours) 2 Weeks at Room Temp.
    Ex- Solu- Solu-
    am- Vis- Spindle tion Polymer Vis- Spindle tion Polymer
    ple cosity #, Clar- Solu- cosity #, Clar- Solu-
    # Designation Source Composition pH (cps) Rpm % T ity bility pH (cps) Rpm % T ity bility
    82 Control - 100 g of LYSOL ® - no water or 8.78 4.1 #1, 60 99.4 Clear Control 8.79 3.50 #1, 60 99.3 Clear Control
    polymer added
    83 Control - 80 g of LYSOL ® + 20 g of 8.75 3.4 #1, 60 99.2 Clear Control 8.79 3.20 #1, 60 99.2 Clear Control
    water added
    84 AQU D3673 Experi- C8HMHEC 8.57 4.2 #1, 60 99.6 Clear Soluble 8.68 4.40 #1, 60 99.7 Clear Soluble
    mental
    85 AQU D3930 Polymer of C16HMHEC 8.62 10.5 #1, 60 99.0 Clear Insolu- 8.64 11.30 #1, 60 98.5 Clear Soluble
    invention ble, un-
    dis-
    solved
    polymer
    86 POLYSURF ® Commercial C16HMHEC 8.51 10.1 #1, 60 98.4 Clear Soluble 8.58 12.40 #1, 60 99.6 Clear Soluble
    67
    87 NATROSOL ® Commercial C16HMHEC 8.47 6.2 #1, 60 99.2 Clear Soluble 8.55 6.00 #1, 60 99.8 Clear Soluble
    Plus 330
    88 NATROSOL ® Commercial HEC 8.55 21.5 #1, 60 99.0 Clear Soluble 8.62 19.10 #1, 60 99.9 Clear Soluble
    250HHR CS
    89 NATROSOL ® Commercial HEC 8.49 9.7 #1, 60 99.6 Clear Soluble 8.55 11.10 #1, 60 99.9 Clear Soluble
    250M
  • Examples 90-97
  • Incorporation of the polymer of the presently disclosed and/or claimed inventive concept(s) into Pine-sol® (The Clorox Company, Oakland, Calif.) more than doubled the viscosity of the product. (Compare viscosity for Example 93 with 90 in Table 10, for example.)
  • The cleaner was prepared by weighing 80 g commercial product into 4 oz. wide mouth glass jars, adding 20 g of a 1% polymer solution to the jars, capping and taping lids of jars with electrical tape, shaking the jars by hand to initially mix polymer, placing and securing the jars on tumbler using tape across jars and around jars on ends to prevent the jars from tumbling over the edge, tumbling the jars for 1.5 hours after which the jars were removed and tempered in a 25° C. bath overnight, and removing the jars from the bath the next day for observation and recordation of solution clarity, polymer solubility, and measuring the % T at 600 nm for the 24 hour samples. The samples were then stored at ambient conditions for two weeks after which the jars were again tempered in the bath overnight and observations and recordation of pH, viscosity, and % T were undertaken the next day.
  • TABLE 10
    Examples PINE-SOL ® All Purpose - 0.2% Active
    Initial (24 Hours) 2 Weeks at Room Temp.
    Ex- Solu- Solu-
    am- Vis- Spindle tion Polymer Vis- Spindle tion Polymer
    ple cosity #, Clar- solu- cosity #, Clar- Solu-
    # Designation Source Composition pH (cps) Rpm % T ity bility pH (cps) Rpm % T ity bility
    90 Control - 100 g of PINE-SOL ® - no water 10.1 43.0 #2, 30 42.6 Clear Control 10.02 38.5 #2, 30 42.3 Clear Control
    or polymer added
    91 Control - 80 g of PINE-SOL ® + 20 g of 10.1 17.4 #1, 30 50.5 Clear Control 10.01 17.8 #1, 30 50.5 Clear Control
    water added
    92 AQU D3673 Experimental C8HMHEC 9.93 30.0 #2, 30 50.2 Clear Soluble 9.88 29.0 #2, 30 50.3 Clear Soluble
    93 AQU D3930 Polymer of C16HMHEC 9.87 84.0 #2, 30 49.3 Very Soluble 9.84 86.0 #2, 30 48.4 Very Soluble
    invention slight slight
    hazy hazy
    94 POLYSURF ® Commercial C16HMHEC 9.85 78.0 #2, 30 49.5 Clear Soluble 9.83 80.0 #2, 30 49.9 Clear Soluble
    67
    95 NATROSOL ® Commercial C16HMHEC 9.85 40.0 #1, 30 49.2 Clear Soluble 9.81 52.0 #2, 30 49.8 Clear Soluble
    Plus 330
    96 NATROSOL ® Commercial HEC 9.86 143.0 #2, 30 49.9 Clear Soluble 9.85 136.0 #2, 30 50.3 Clear Soluble
    250HHR CS
    97 NATROSOL ® Commercial HEC 9.88 75.0 #2, 30 50.1 Clear Soluble 9.87 67.0 #2, 30 50.5 Clear Soluble
    250M
  • Examples 98-105
  • Incorporation of the product of the invention into Clorox® (The Clorox Company, Oakland, Calif.) (compare Example 101 with 98) increased the viscosity of the product to a greater extent than any of the commercial hydrophobic or nonionic cellulose ethers in Table 11.
  • The cleaner was prepared by weighing 80 g commercial product into 4 oz. wide mouth glass jars, adding 20 g of a 1% polymer solution to the jars, capping and taping lids of jars with electrical tape, shaking the jars by hand to initially mix polymer, placing and securing the jars on tumbler using tape across jars and around jars on ends to prevent the jars from tumbling over the edge, tumbling the jars for 1.5 hours after which the jars were removed and tempered in a 25° C. bath overnight, and removing the jars from the bath the next day for observation and recordation of solution clarity, polymer solubility, and measuring the % T at 600 nm for the 24 hour samples. The samples were then stored at ambient conditions for two weeks after which the jars were again tempered in the bath overnight and observations and recordation of pH, viscosity, and % T were undertaken the next day.
  • TABLE 11
    Examples CLOROX ® All Purpose - 0.2% Active
    Initial (24 Hours) 2 Weeks at Room Temp.
    Ex- Solu- Solu-
    am- Vis- Spindle tion Polymer Vis- Spindle tion Polymer
    ple cosity #, Clar- solu- cosity #, Clar- Solu-
    # Designation Source Composition pH (cps) Rpm % T ity bility pH (cps) Rpm % T ity bility
    98 Control - 100 g of CLOROL ® - no water or 3.44 55.1 #1, 60 96.5 Clear Control 3.48 48.4 #1, 60 96.6 Clear Control
    polymer added
    99 Control - 80 g of CLOROX ® + 20 g of 3.51 10.6 #1, 60 96.6 Clear Control 3.54 10.3 #1, 60 96.2 Clear Control
    water added
    100 AQU D3673 Experimental C8HMHEC 3.75 28.8 #1, 60 95.6 Clear Soluble 3.75 25.4 #1, 60 96.9 Clear Soluble
    101 AQU D3930 Polymer of C16HMHEC 3.54 96.2 #1, 30 95.8 Clear Soluble 3.57 122.6 #1, 30 95.5 Clear Soluble
    invention
    102 POLYSURF ® Commercial C16HMHEC 3.61 81.2 #1, 60 94.9 Clear Soluble 3.50 87.7 #1, 60 96.5 Clear Soluble
    67
    103 NATROSOL ® Commercial C16HMHEC 3.63 31.9 #1, 60 94.5 Clear Soluble 3.53 32.7 #1, 60 95.4 Clear Soluble
    Plus 330
    104 NATROSOL ® Commercial HEC 3.55 79.6 #1, 60 95.2 Clear Soluble 3.48 69.2 #1, 60 96.3 Clear Soluble
    250HHR CS
    105 NATROSOL ® Commercial HEC 3.56 34.1 #1, 60 95.7 Clear Soluble 3.53 30.3 #1, 60 96.4 Clear Soluble
    250M
  • Effect of Multi-Tail and/or Sulfate-Free Surfactants on the Conditioning Properties of Nonionic Hydrophobically Modified Polysaccharide Compositions
  • Examples 106-122 were prepared to illustrate the benefits of multi-tail surfactants and/or sulfate-free surfactants on the conditioning properties of compositions (e.g., shampoos) wherein the polymer therein is a nonionic hydrophobically modified polysaccharide. Examples 123-126 were prepared to illustrate the added benefit of sodium chloride on the conditioning performance of compositions (e.g., shampoos) containing sulfate-free surfactants alone or in combination with multi-tail surfactants, wherein the polymer in the conditioning composition is a nonionic hydrophobically modified polysaccharide. Examples 127-133 were prepared to illustrate the benefits of multi-tail surfactants on the conditioning properties of compositions (e.g. shampoos) wherein the concentration of hydrophobically modified polysaccharide varies from 0.3 weight percent to 1 weight percent.
  • A typical test method for measuring the conditioning performance of shampoo and conditioner applications consists of measuring the combability of wet hair that has been treated with a shampoo and/or conditioner. For Examples 106-125, the following Wet Comb Performance Measurement Test was used.
  • 1. Wet Comb Performance Measurement Test
  • Performance was measured at a constant temperature and humidity (23° C. and 50% relative humidity). Equipment used was a Stable Micro Systems Texture Analyzer Xt2i. Each tress (standard 3.0 g and 26 cm long) was washed first with Sodium Laureth Sulfate (SLES) using the standard washing/rinsing procedure. Three tresses were used for each example: Each tress was shampooed with the agreed upon shampoo amount (0.3 g shampoo per 1 gram tress); after rinsing, the tress was loaded in the Texture Analyzer without any pre-combing; the Texture Analyzer was run under standard conditions through 200 mm distance from the upper part to the tip of the hair tress; a total of 5 tests were run on each tress; and the average wet comb energy was reported.
  • Examples 106-116
  • Examples 106-116 illustrate that multi-tail surfactants significantly improve the conditioning properties of nonionic hydrophobically modified polysaccharide compositions such that they provide similar or better conditioning benefits than compositions containing cationic polymers and/or silicones and/or emollients. Examples 106-109 are comparative examples. Examples 110-116 correspond to experimental samples, i.e., shampoo formulations, containing both a nonionic hydrophobically modified polysaccharide and at least one multi-tail surfactant.
  • Examples 106-107 Comparative
  • Examples 106 and 107 are comparative examples corresponding to two commercial shampoos in the marketplace. Example 106 corresponds to GARNIER® FRUCTIS® Nutri Repair shampoo (L'Oreal, Paris, FR) and Example 107 corresponds to DOVE® Damage Therapy Intensive Repair shampoo (Unilever, Englewood Cliffs, N.J.).
  • Example 108 Comparative
  • Example 108 is a comparative shampoo formulation containing the cationic polymer Polyquaternium-10, commercially sold by Dow as UCARE™ JR 400. An ˜100 g sample consists of:
  • 73.42 g  Deionized Water
    0.50 g Polyquaternium-10 (UCARE ™ JR400)
    17.34 g  Sodium Laureth Sulfate (TEXAPON ® N702 -
    67.2% active)
    6.74 g Cocamidopropyl Betain (TEGOBETAIN ® L7 -
    29.68% active)
    0.50 g Phenoxyethanol, Ethylhexylglycerin (EUXYL ®
    PE9010 - Schulke & Mayr)
    As required Citric Acid to Adjust pH
    1.50 g Sodium Chloride (99.5%, Aldrich)
  • Example 109 Comparative
  • Example 109 is also a comparative shampoo formulation comprised of the same ingredients as the formulation presented in Example 108 except that the cationic polymer, Polyquaternium-10, is replaced with the nonionic HMHCE polymer of the presently disclosed and/or claimed inventive concept(s), AQU D3930, at a 0.7 weight percent concentration. The amount of deionized water was adjusted to account for the increased concentration of polymer in the sample.
  • Examples 110-112
  • Examples 110-112 are experimental formulations containing both nonionic hydrophobically modified polysaccharides and multi-tail surfactants. A ˜100 g sample of the formulations consists of:
  • Quantum Satis (q.s.) Deionized Water
    0.70 g Polymer of this invention or commercial polymer
    11.56 g Sodium Laureth Sulfate (TEXAPON ® N702 -
    69.2% active)
    6.74 g Cocamidopropyl Betain (TEGOBETAIN ® L7 -
    29.68% active)
    3.0 g Multi-tail Surfactant(s)
    0.50 g Phenoxyethanol, Ethylhexylglycerin (EUXYL ®
    PE9010 - Schulke & Mayr)
    As required Citric Acid or Sodium Hydroxide to adjust pH
    0.10-1.50 g Sodium Chloride (99.5%, Aldrich)
  • Examples 113-116
  • Examples 113-116 have the same basic experimental formulations as Examples 110-112, however, the concentration of multi-tail surfactant has been lowered to 2.5 weight percent. A ˜100 g sample of the formulations consists of:
  • Quantum Satis (q.s.) Deionized Water
    0.70 g Polymer of this invention or commercial polymer
    11.56 g Sodium Laureth Sulfate (TEXAPON ® N702 -
    69.2% active)
    6.74 g Cocamidopropyl Betain (TEGOBETAIN ® L7 -
    29.68% active)
    2.5 g Multi-tail Surfactant(s)
    0.50 g Phenoxyethanol, Ethylhexylglycerin (EUXYL ®
    PE9010 - Schulke & Mayr)
    As required Citric Acid or Sodium Hydroxide to adjust pH
    0.10-1.50 g Sodium Chloride (99.5%, Aldrich)
  • Wet Comb Performance Measurements on Highly Bleached Caucasian Virgin Brown Hair Treated with Compositions Containing Multi-Tail Surfactants—Table 12
  • The above-described wet comb performance test was performed on highly bleached Caucasian virgin brown hair for Examples 106-112. Prior to testing, Caucasian virgin brown hair was damaged by bleaching the hair for approximately 2.5 hours. The formulations and commercial shampoos corresponding to Examples 106-112 were added to individual tresses in amounts of 0.3 grams per gram of tress and then rinsed. After rinsing, the wet comb performance measurements were taken with a total of five tests run per tress. The results presented in Table 12 demonstrate that multi-tail surfactants significantly enhance the conditioning properties of compositions containing nonionic hydrophobically modified polysaccharide polymers.
  • TABLE 12
    Type of Wet
    Multi-tail Multi- comb-
    Ex- Polymer Surfactant tail ing
    am- (concen- Polymer (concen- Surfac- (gf-
    ple # tration) Type tration) tant mm/g)
    106 GARNIER FRUCTIS ® None 420778
    Nutri Repair
    107 DOVE ® Damage None 406384
    Therapy Intensive
    Repair
    108 UCARE ™ Cationic None 378652
    JR400
    (0.5 wt %)
    109 AQU D3930 Nonionic None 416705
    (0.7 wt %)
    110 AQU D3930 Nonionic STEPANQUAT ® Cationic 239659
    (0.7 wt %) GA-90 (3 wt %)
    111 AQU D3930 Nonionic ARQUAT ® Cationic 214502
    (0.7 wt %) 2C-75 (3 wt %)
    112 AQU D3930 Nonionic AEROSOL ® Anionic 245759
    (0.7 wt %) OT (3 wt %)
    Description of Ingredients Listed in Table 12:
    (1) GARNIER FRUCTIS ® Nutri Repair: Commercial shampoo, L'Oreal, Paris, FR.
    (2) DOVE ® Damage Therapy Intensive Repair: Commercial shampoo, Unilever, Englewood Cliffs, NJ.
    (3) UCARE ™ JR400: Cationic HEC, Polyquaternium-10, from Dow Chemicals, Midland, MI.
    (4) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc. 1.1 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0.
    (5) STEPANQUAT ® GA-90: Cationic multi-tail surfactant, Dipalmitoylethyl hydroxyethylmonium methosulfate, from Stepan Compan, Northfield, Illinois.
    (6) ARQUAT ® 2C-75: Cationic multi-tail surfactant, dicoco dimethylammonium chloride, from Akzo-Nobel.
    (7) AEROSOL ® OT: Anionic multi-tail surfactant, sodium dioctyl sulphosuccinate, from Cytec Industries Inc., West Paterson, NJ.
  • Wet Comb Performance Measurements on Mildly Bleached Chinese Hair With Compositions Containing Multi-Tail Surfactants—Table 13
  • The above-described wet comb performance test was also performed on mildly bleached Chinese hair for Examples 114-116 and Comparative Examples 108-109. Prior to testing, the Chinese hair was damaged by bleaching the hair for approximately 1 hour. The shampoo formulations for Examples 108-109 and 114-116 were added to individual tresses in amounts of 0.3 grams per gram of tress and then rinsed. After rinsing, the wet comb performance measurements were taken with a total of five tests run per tress. The results presented in Table 13 also indicate a significant improvement in conditioning properties due to the addition of multi-tail surfactants.
  • TABLE 13
    Type of Wet
    Multi-tail Multi- Comb-
    Ex- Polymer Surfactant tail ing
    am- (Concen- Polymer (Concen- Surfac- (gf-
    ple # tration) Type tration) tant mm/g)
    108 UCARE ™ Cationic None 380171
    JR 400
    (0.5 wt %)
    109 AQU D3930 Nonionic None 180487
    (0.7 wt %)
    113 AQU D3930 Nonionic STEPANTEX ® Cationic 62081
    (0.7 wt %) DC 90 (2.5 wt %)
    114 AQU D3930 Nonionic STEPANQUAT ® Cationic 54229
    (0.7 wt %) GA-90 (2.5 wt %)
    115 AQU D3930 Nonionic ARQUAT ® Cationic 44974
    (0.7 wt %) 2C-75 (2.5 wt %)
    116 AQU D3930 Nonionic AEROSOL ® Anionic 46395
    (0.7 wt %) OT (2.5 wt %)
    Description of Ingredients Listed in Table 13:
    (1) UCARE ™ JR400: Cationic HEC, Polyquaternium-10, from Dow Chemicals, Midland, MI.
    (2) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 1.1 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0.
    (3) STEPANTEX ® DC 90: Cationic multi-tail surfactant, dialkyl ammonium methosulfate, from Stepan Company, Northfield, IL.
    (4) STEPANQUAT ® GA-90: Cationic multi-tail surfactant, Dipalmitoylethyl hydroxyethylmonium methosulfate, from Stepan Company, Northfield, IL.
    (5) ARQUAT ® 2C-75: Cationic multi-tail surfactant, dicoco dimethylammonium chloride, from Akzo-Nobel.
    (6) AEROSOL ® OT: Anionic multi-tail surfactant, sodium dioctyl sulphosuccinate, from Cytec Industries Inc., West Paterson, NJ.
  • Wet Comb Performance Measurements on Highly Bleached Caucasian Virgin Brown Hair Treated with Sulfate-Free Shampoos—Table 14
  • The following examples, Examples 117-119, illustrate that limiting nonionic hydrophobically modified polysaccharide compositions to include surfactants consisting only of sulfate-free surfactants (as opposed to sulfate-containing surfactants) also improves the conditioning properties of the compositions such that they provide similar or better conditioning benefits than compositions containing cationic polymers and/or silicones and/or emollients. Examples 106-108 include sodium laureth sulfate, a sulfate-containing surfactant, in their formulations and are therefore used as comparative examples with respect to Examples 117-119.
  • Example 117 is an experimental formulation containing a nonionic hydrophobically modified polysaccharide wherein the surfactants contained therein are limited solely to (single tail) sulfate-free surfactants. A ˜100 g sample of the formulation consists of:
  • q.s. Deionized Water
    0.10 g Disodium EDTA (EDETA ® BD - BASF)
    0.70-1.0 g Polymer of this invention or commercial polymer
    10.00 g Sodium Lauroyl Sarcosinate (MEDIALAN ® LD,
    30% active - Clariant)
    6.00 g Sodium Lauroamphoacetate (JEETERIC ® LM-M30,
    41% active - Jeen International)
    15.00 g Coamidopropyl Betain (AMPHOSOL ® CG-K, 30%
    active - Stepan Company)
    2.00 g Decyl glucoside (PLANTACARE ® 2000, 54%
    active - Cognis)
    0.20 g Methylisothiazolinone and Phenethyl alcohol
    and PPG-2-Methyl Ether (OPTIPHEN ®
    MIT Plus - Ashland Specialty Ingredients)
    As required Citric acid to adjust pH
    None-3.0 g Sodium Chloride (99.5%, Aldrich)
  • Examples 118-119 are additional experimental formulations containing nonionic hydrophobically modified polysaccharides wherein the surfactants are limited solely to (single tail) sulfate-free surfactants. A ˜100 g sample of the formulations consists of:
  • q.s. Deionized Water
    0.10 g Disodium EDTA (EDETA ® BD - BASF)
    0.70-1.0 g Polymer of this invention or commercial polymer
    16.67 g Sodium Lauroyl Sarcosinate (MEDIALAN ® LD,
    30% active - Clariant)
    12.20 g Sodium Lauroamphoacetate (JEETERIC ® LM-M30,
    41% active - Jeen International)
    7.41 g Decyl glucoside (PLANTACARE ® 2000, 54%
    active - Cognis)
    0.20 g Methylisothiazolinone and Phenethyl alcohol
    and PPG-2-Methyl Ether (OPTIPHEN ®
    MIT Plus - Ashland Specialty Ingredients)
    As required Citric acid to adjust pH
    None-1.0 g Sodium Chloride (99.5%, Aldrich)
  • The above-described wet comb performance test was performed on highly bleached Caucasian virgin brown hair for Examples 117-119 and Comparative Examples 106-108. Prior to testing, the Caucasian virgin brown hair was damaged by bleaching the hair for approximately 2.5 hours. The formulations and commercial shampoos corresponding to Examples 106-108 and 117-119 were added to individual tresses in amounts of 0.3 grams per gram of tress and then rinsed. After rinsing, the wet comb performance measurements were taken with a total of five tests run per tress. The results are presented in Table 14.
  • TABLE 14
    Polymer NaCl Wet
    Example (concen- Polymer Concen- Combing
    # tration) Type tration (gf-mm/g)
    106 GARNIER FRUCTIS ® Nutri Repair 420778
    107 DOVE ® Damage Repair Therapy 406384
    Intensive Repair
    108 UCARE ™ Cationic 1.5 wt % 378652
    JR400
    (0.5 wt %)
    117 AQU D3930 Nonionic   3 wt % 251791
    (0.7 wt %)
    118 AQU D3930 Nonionic 0.2 wt % 363231
    (1 wt %)
    119 NATROSOL ® Plus Nonionic   1 wt % 378276
    330 (1 wt %)
    Description of Ingredients Listed in Table 14:
    (1) GARNIER FRUCTIS ® Nutri Repair: Commercial Shampoo, L'Oreal, Paris, FR.
    (2) DOVE ® Damage Therapy Intensive Repair: Commercial Shampoo, Unilever, Englewood Cliffs, NJ.
    (3) UCARE ™ JR400: Cationic HEC, Polyquaternium-10, from Dow Chemicals, Midland, MI.
    (4) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 1.1 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0.
    (5) NATROSOL ® Plus 330: Hydroxyethyl cellulose from Hercules, Inc.
  • Wet Comb Performance Measurements on Highly Bleached Caucasian Virgin Brown Hair Treated with Shampoo Compositions Containing Multi-Tail Surfactants and Single Tail Sulfate-Free Surfactants—Table 15
  • Examples 120-122 illustrate that the addition of multi-tail surfactants (whether sulfate-free or not) to nonionic hydrophobically modified polysaccharide compositions containing sulfate-free single tail surfactants provides similar or better conditioning benefits than those compositions containing cationic polymers and/or silicones and/or emollients. Examples 106-108 and Example 117 are comparative examples and are described above. A ˜100 g sample of the formulation for Examples 120-122 consists of:
  • q.s. Deionized Water
    0.10 g Disodium EDTA (EDETA ® BD - BASF)
    0.70-1.0 g Polymer of this invention or commercial polymer
    10.00 g Sodium Lauroyl Sarcosinate (MEDIALAN ® LD,
    30% active - Clariant)
    6.00 g Sodium Lauroamphoacetate (JEETERIC ® LM-M30,
    41% active - Jeen International)
    15.00 g Coamidopropyl Betain (AMPHOSOL ® CG-K, 30%
    active - Stepan Company)
    2.00 g Decyl glucoside (PLANTACARE ® 2000, 54%
    active - Cognis)
    3.00 g Multi-tail Surfactant(s)
    0.20 g Methylisothiazolinone and Phenethyl alcohol
    and PPG-2-Methyl Ether (OPTIPHEN ®
    MIT Plus - Ashland Specialty Ingredients)
    As required Citric acid to adjust pH
    None-3.0 g Sodium Chloride (99.5%, Aldrich)
  • The above-described wet comb performance test was performed on highly bleached Caucasian virgin brown hair for Examples 120-122 and Comparative Examples 106-108 and 117. Prior to testing, the Caucasian virgin brown hair was damaged by bleaching the hair for approximately 2.5 hours. The formulations and commercial shampoos corresponding to Examples 106-108, 117, and 120-122 were added to individual tresses in amounts of 0.3 grams per gram of tress and then rinsed. After rinsing, the wet comb performance measurements were taken with a total of five tests run per tress. The results are presented in Table 15.
  • TABLE 15
    Multi-tail Type of Wet
    Polymer Polymer Concentration Surfactant Multi-tail Combing
    Example# (concentration) Type of NaCl (concentration) Surfactant (gf-mm/g)
    106 GARNIER FRUCTIS ® Nutri Repair None N/A 420778
    107 DOVE ® Damage Repair Therapy Intensive None N/A 406778
    Repair
    108 UCARE ™ JR400 Cationic 1.5 wt % None N/A 378652
    (0.5 wt %)
    117 AQU D3930 Nonionic   3 wt % None N/A 251791
    (0.7 wt %)
    120 AQU D3930 Nonionic 0.1 wt % STEPANTEX ® DC 90 Cationic 371131
    (0.7 wt %) (3 wt %)
    121 AQU D3930 Nonionic 0.1 wt % STEPANQUAT ® GA- Cationic 284344
    (0.7 wt %) 90 (3 wt %)
    122 AQU D3930 Nonionic 0.1 wt % ARQUAT ® 2C-75 Cationic 165465
    (0.7 wt %) (3 wt %)
    Description of Ingredients Listed in Table 15:
    (1) GARNIER FRUCTIS ® Nutri Repair: Commercial Shampoo L'Oreal, Paris, FR.
    (2) DOVE ® Damage Therapy Intensive Repair: Commercial Shampoo, Unilever, Englewood Cliffs, NJ.
    (3) UCARE ™ JR400: Cationic HEC, Polyquaternium-10, from Dow Chemicals, Midland, MI.
    (4) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc. 1.1 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0.
    (5) STEPANTEX ® DC 90: Cationic multi-tail surfactant, dialkyl ammonium methosulfate, from Stepan Company, Northfield, IL.
    (6) STEPANQUAT ® GA-90: Cationic multi-tail surfactant, Dipalmitoylethyl hydroxyethylmonium methosulfate, from Stepan Company, Northfield, IL.
    (7) ARQUAT ® 2C-75: Cationic multi-tail surfactant, dicoco dimethylammonium chloride, from Akzo-Nobel.
  • Wet Comb Performance Measurements on Highly Bleached Caucasian Virgin Brown Hair Treated with Shampoo Compositions Containing Varying Levels of Sodium Chloride and Multi-Tail Surfactants and/or Single Tail Sulfate-Free Surfactants—Table 16
  • Examples 123-126 illustrate the crucial role of sodium chloride on the performance of sulfate-free nonionic hydrophobically modified shampoos alone or in combination with multi-tail surfactants. A ˜100 g sample of the formulation for Examples 123-126 consists of:
  • q.s. Deionized Water
    0.10 g Disodium EDTA (EDETA ® BD - BASF)
    0.70-1.0 g Polymer of this invention or commercial polymer
    16.67 g Sodium Lauroyl Sarcosinate (MEDIALAN ® LD,
    30% active - Clariant)
    12.20 g Sodium Lauroamphoacetate (JEETERIC ® LM-M30,
    41% active - Jeen International)
    7.41 g Decyl glucoside (PLANTACARE ® 2000, 54%
    active - Cognis)
    0.0-3.0 g Multi-tail surfactant(s)
    0.20 g Methylisothiazolinone and Phenethyl alcohol
    and PPG-2-Methyl Ether (OPTIPHEN ®
    MIT Plus - Ashland Specialty Ingredients)
    As required Citric acid to adjust pH
    None-1.0 g Sodium Chloride (99.5%, Aldrich)
  • The above-described wet comb performance test was performed on highly bleached Caucasian virgin brown hair for Examples 123-126. Prior to testing, the Caucasian virgin brown hair was damaged by bleaching the hair for approximately 2.5 hours. The formulations were added to individual tresses in amounts of 0.3 grams per gram of tress and then rinsed. After rinsing, the wet comb performance measurements were taken with a total of five tests run per tress. The results are presented in Table 16.
  • TABLE 16
    Multi-tail Type of Wet
    Example Polymer Polymer Concentration Surfactant Multi-tail Combing
    # (Concentration) Type of NaCl (Concentration) Surfactant (gf-mm/g)
    123 AQU D3930 Nonionic None 625635
    (1 wt %)
    124 AQU D3930 Nonionic 0.2 wt % None 363231
    (1 wt %)
    125 NATROSOL ® Plus Nonionic Aerosol ® OT Anionic 390873
    330 (2.5 wt %)
    (1 wt %)
    126 NATROSOL ® Plus Nonionic   1 wt % Aerosol ® OT Anionic 35976
    330 (2.5 wt %)
    (1 wt %)
    Description of Ingredients Listed in Table 16:
    (1) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 1.1 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0.
    (2) NATROSOL ® Plus 330: Hydroxyethyl cellulose from Hercules, Inc.
    (3) AEROSOL ® OT: Anionic multi-tail surfactant, sodium dioctyl sulphosuccinate, from Cytec Industries Inc., West Paterson, NJ.
  • Wet Comb Performance Measurements on Non-Bleached Caucasian Virgin Brown Hair Treated with Shampoo Compositions Containing Varying Levels of Nonionic Hydrophobically Modified Polysaccharide and Multi-Tail Surfactants—Table 17
  • Examples 127-133 illustrate that multi-tail surfactants significantly improve the conditioning properties of compositions containing a range of concentrations of nonionic hydrophobically modified polysaccharides such that they provide similar or better conditioning benefits than compositions containing cationic polymers and/or silicones and/or emollients. Examples 127-130 are comparative examples. Examples 131-133 correspond to experimental samples containing both a nonionic hydrophobically modified polysaccharide and at least one multi-tail surfactant.
  • Comparative Examples 127 and 128 correspond to the commercial shampoos GARNIER FRUCTIS® Nutri Repair (L′Oreal, Paris, FR) and DOVE® Damage Therapy Intensive Repair (Unilever, Englewood Cliffs, N.J.).
  • Comparative Examples 129-130 are shampoo formulations without multi-tail surfactants. A ˜100 g sample of the formulations for Examples 129-130 consists of:
  • q.s. Deionized Water
    0.50-0.70 g Polymer of this invention or commercial polymer
    17.34 g Sodium Laureth Sulfate (TEXAPON ® N702 - 69.2%
    active)
    6.74 g Cocamidopropyl Betain (TEGOBETAIN ® L7 - 29.68%
    active)
    0.50 g Phenoxyethanol, Ethylhexylglycerin (EUXYL ®
    PE9010 - Schulke & Mayr)
    As required Citric acid to adjust pH
    0.10-1.50 g Sodium Chloride (99.5%, Aldrich)
  • Examples 131-133 are shampoo formulations having a range of hydrophobically modified polysaccharide concentrations and include multi-tail surfactants. A ˜100 g sample of the formulations for Examples 131-133 consists of:
  • q.s. Deionized Water
    0.30-1.0 g Polymer of this invention or commercial polymer
    11.56 g Sodium Laureth Sulfate (TEXAPON ® N702 - 69.2%
    active)
    6.74 g Cocamidopropyl Betain (TEGOBETAIN ® L7 - 29.68%
    active)
    0.0-3.0 g Multi-tail Surfactant(s)
    0.50 g Phenoxyethanol, Ethylhexylglycerin (EUXYL ®
    PE9010 - Schulke & Mayr)
    As required Citric acid or Sodium Hydroxide to adjust pH
    0.10-1.50 g Sodium Chloride (99.5% Aldrich)
  • The above-described wet comb performance test was performed on Caucasian virgin brown hair for Examples 127-133. The Caucasian virgin brown hair was not bleached or damaged prior to testing. The formulations and commercial shampoos were added to individual tresses in amounts of 0.3 grams per gram of tress and then rinsed. After rinsing, the wet comb performance measurements were taken with a total of five tests run per tress. The results are presented in Table 17.
  • TABLE 17
    Type of Wet
    Multi-tail Multi- Comb-
    Ex- Polymer Surfactant tail ing
    am- (Concen- Polymer (Concen- Surfac- (gf-
    ple # tration) Type tration) tant mm/g)
    127 GARNIER FRUCTIS ® None N/A 96350
    Nutri Repair
    Shampoo
    128 DOVE ® Damage None N/A 98189
    Therapy Intensive
    Repair Shampoo
    129 UCARE ™ Cationic None N/A 76689
    JR400
    (0.5 wt %)
    130 AQU D3930 Nonionic None N/A 244406
    (0.7 wt %)
    131 AQU D3930 Nonionic AEROSOL ® Anionic 129849
    (0.3 wt %) OT (3 wt %)
    132 AQU D3930 Nonionic AEROSOL ® Anionic 103353
    (0.7 wt %) OT (3 wt %)
    133 AQU D3930 Nonionic AEROSOL ® Anionic 83373
    (1 wt %) OT (3 wt %)
    Description of Ingredients Listed in Table 17:
    (1) GARNIER FRUCTIS ® Nutri Repair: Commercial Shampoo, L'Oreal, Paris, FR.
    (2) DOVE ® Damage Therapy Intensive Repair: Commercial Shampoo Unilever, Englewood Cliffs, NJ.
    (3) UCARE ™ JR400: Cationic HEC, Polyquaternium-10, from Dow Chemicals, Midland, MI.
    (4) AQU D3930: Polymer of this invention, C16 hydrophobically modified hydroxyethyl cellulose from Hercules, Inc., 1.1 wt % cetyl, hydroxyethyl molar substitution (HEMS) 4.0.
    (5) AEROSOL ® OT: Anionic multi-tail surfactant, sodium dioctyl sulphosuccinate, from Cytec Industries Inc., West Paterson, NJ.

Claims (22)

1-90. (canceled)
91. A composition for conditioning a functional system substrate comprising an aqueous solution, comprising:
a. at least one surfactant comprising a surfactant selected from the group consisting of a multi-tail surfactant, a sulfate-free surfactant, and combinations thereof;
b. at least one functional system active ingredient; and
c. a nonionic hydrophobically modified cellulose ether having a weight average molecular weight of from 100,000 to 2,000,000, and is hydrophobically substituted,
wherein the amount of the hydrophobic substitution of the nonionic hydrophobically modified cellulose ether is in a range from a lower limit of 0.8 weight percent to an upper limit rendering the nonionic hydrophobically modified cellulose ether soluble in a five weight percent solution of surfactant, and at least one of (1) less than 0.5 percent by weight soluble in water, and (2) less than 0.05 percent by weight soluble in a one percent surfactant solution,
wherein upon diluting the aqueous solution with water, the aqueous solution undergoes syneresis, whereby the nonionic hydrophobically modified cellulose ether separates from the aqueous solution and deposits upon the functional system substrate.
92. The composition of claim 91, wherein the upper limit of the weight average molecular weight of the nonionic hydrophobically modified cellulose ether is selected from the group consisting of 1,500,000 and 1,000,000.
93. The composition of claim 91, wherein the lower limit of the weight average molecular weight of the nonionic hydrophobically modified cellulose ether is selected from the group consisting of 200,000 and 600,000.
94. The composition of claim 91, wherein the nonionic hydrophobically modified cellulose ether has a hydrophobic moiety selected from the group consisting of alkyl, aryl, alkyl aryl, aryl alkyl, and combinations thereof.
95. The composition of claim 94, wherein the hydrophobic moiety is an alkyl having less than or equal to 12 carbons.
96. The composition of claim 94, wherein the hydrophobic moiety is selected from the group consisting of cetyl, octyl, and butyl.
97. The composition of claim 94, wherein the hydrophobic moiety is 3-alkoxy-2-hydroxypropyl.
98. The composition of claim 91, wherein the nonionic hydrophobically modified cellulose ether has a backbone selected from the group consisting of hydroxyethylcellulose, hydroxypropylcellulose, ethyl hydroxyethylcellulose, methyl hydroxyethylcellulose, hydroxypropylmethylcellulose, hydroxypropylhydroxyethylcellulose, ethyl hydroxypropylcellulose, and methylcellulose.
99. The composition of claim 94, wherein the nonionic hydrophobically modified cellulose ether has a hydrophobic moiety attached to the backbone via an ether, ester, or urethane linkage.
100. The composition of claim 91, wherein the functional system substrate is selected from the group consisting of skin, hair, teeth, mucous membranes, textiles, and hard surface cleaner products.
101. The composition of claim 91, wherein the at least one surfactant is selected from the group consisting of anionic, nonionic, zwitterionic, and amphoteric surfactants.
102. The composition of claim 101, wherein the at least one surfactant is present in an amount ranging from 0.01 to 50 weight percent.
103. The composition of claim 91, wherein the aqueous solution further comprises at least one single tail surfactant.
104. The composition of claim 103, wherein the single tail surfactant is selected from the group consisting of anionic, nonionic, zwitterionic, and amphoteric surfactants.
105. The composition of claim 104, wherein the single tail surfactant is present in an amount ranging from 0.01 to 50 weight percent.
106. The composition of claim 91, wherein the sulfate-free surfactant is a single tail surfactant.
107. The composition of claim 91, wherein the aqueous solution further comprises a solvent selected from the group consisting of water-lower alkanols mixtures and polyhydric alcohols having 3 to 6 carbons and 2 to 6 hydroxyl groups.
108. The composition of claim 91, wherein the aqueous solution further comprises sodium chloride.
109. The composition of claim 108, wherein the sodium chloride is present in an amount ranging from 0.1 to 5 weight percent.
110. The composition of claim 91, wherein the at least one functional system active ingredient is selected from the group consisting of perfumes, skin coolants, emollients, moisturizers, deodorants, antiperspirants, moisturizing agents, cleansers, sunscreens, hair treatment agents, oral care agents, denture adhesive agents, conditioning agents, shaving agents, beauty aids, personal care agents, and nail care agents.
111. The composition of claim 110, wherein the at least one functional system active ingredient is selected from the group consisting of oil-in-water emulsions, water-in-oil emulsions, solutions, slurries, dispersions, suspensions, and combinations thereof.
US13/833,330 2013-03-15 2013-03-15 Composition and method of producing personal care compositions with improved deposition properties Abandoned US20140271504A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US13/833,330 US20140271504A1 (en) 2013-03-15 2013-03-15 Composition and method of producing personal care compositions with improved deposition properties
EP13720626.4A EP2969019A1 (en) 2013-03-15 2013-03-15 Composition and method of producing personal care compositions with improved deposition properties
BR112015023765A BR112015023765B1 (en) 2013-03-15 2013-03-15 composition and method for hair conditioning
CN201380076549.2A CN105209122B (en) 2013-03-15 2013-03-15 Composition and the method for preparing the personal care composition with the deposition properties improved
PCT/US2013/031974 WO2014149019A1 (en) 2013-03-15 2013-03-15 Composition and method of producing personal care compositions with improved deposition properties
RU2015144100A RU2671577C2 (en) 2013-03-15 2013-03-15 Composition and method of producing personal care compositions with improved deposition properties
MX2015012366A MX366869B (en) 2013-03-15 2013-03-15 Composition and method of producing personal care compositions with improved deposition properties.
KR1020157028434A KR102066476B1 (en) 2013-03-15 2013-03-15 Composition and method of producing personal care compositions with improved deposition properties
JP2016500057A JP6284616B2 (en) 2013-03-15 2013-03-15 Compositions and methods for producing personal care compositions with improved deposition characteristics
US14/881,584 US10058498B2 (en) 2013-03-15 2015-10-13 Composition and method of producing personal care compositions with improved deposition properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/833,330 US20140271504A1 (en) 2013-03-15 2013-03-15 Composition and method of producing personal care compositions with improved deposition properties

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/881,584 Continuation US10058498B2 (en) 2013-03-15 2015-10-13 Composition and method of producing personal care compositions with improved deposition properties

Publications (1)

Publication Number Publication Date
US20140271504A1 true US20140271504A1 (en) 2014-09-18

Family

ID=48289604

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/833,330 Abandoned US20140271504A1 (en) 2013-03-15 2013-03-15 Composition and method of producing personal care compositions with improved deposition properties
US14/881,584 Active 2033-04-21 US10058498B2 (en) 2013-03-15 2015-10-13 Composition and method of producing personal care compositions with improved deposition properties

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/881,584 Active 2033-04-21 US10058498B2 (en) 2013-03-15 2015-10-13 Composition and method of producing personal care compositions with improved deposition properties

Country Status (9)

Country Link
US (2) US20140271504A1 (en)
EP (1) EP2969019A1 (en)
JP (1) JP6284616B2 (en)
KR (1) KR102066476B1 (en)
CN (1) CN105209122B (en)
BR (1) BR112015023765B1 (en)
MX (1) MX366869B (en)
RU (1) RU2671577C2 (en)
WO (1) WO2014149019A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018044576A1 (en) * 2016-08-30 2018-03-08 Rohm And Haas Company Personal care composition
US10980724B2 (en) * 2017-06-02 2021-04-20 Laboratoires M&L Bicarbonate-based aqueous cosmetic composition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR109378A1 (en) 2016-08-30 2018-11-28 Rohm & Haas COMPOSITION FOR BATH GELS
KR102263749B1 (en) * 2017-11-16 2021-06-10 주식회사 엘지생활건강 Conditioning polymer inhibits build-up of adsorption film upon, and composition comprising the same
KR102040114B1 (en) * 2017-11-16 2019-11-04 주식회사 엘지생활건강 Conditioning polymer inhibits build-up of adsorption film upon, and composition comprising the same
DE102017223419A1 (en) 2017-12-20 2019-06-27 Henkel Ag & Co. Kgaa Tinting shampoo with improved dyeing power
DE102017223420A1 (en) 2017-12-20 2019-06-27 Henkel Ag & Co. Kgaa Improved tint shampoos
JP7173857B2 (en) * 2018-12-21 2022-11-16 花王株式会社 Garment care composition
US11312922B2 (en) 2019-04-12 2022-04-26 Ecolab Usa Inc. Antimicrobial multi-purpose cleaner comprising a sulfonic acid-containing surfactant and methods of making and using the same
US20220347076A1 (en) * 2019-10-04 2022-11-03 Living Proof, Inc. Cosmetic compositions comprising chitosan and hydroxypropyl methylcellulose and their use for improving hair strength and related properties
KR102314140B1 (en) * 2019-10-28 2021-10-18 주식회사 엘지생활건강 Conditioning polymer inhibits build-up of adsorption film upon, and composition comprising the same
CN117202887A (en) * 2021-02-08 2023-12-08 法国特种经营公司 Compositions comprising a multi-tail surfactant and a cationic polymer and uses thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015471A (en) * 1988-12-01 1991-05-14 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Topical composition
US5798409A (en) * 1995-10-03 1998-08-25 Minnesota Mining & Manufacturing Company Reactive two-part polyurethane compositions and optionally self-healable and scratch-resistant coatings prepared therefrom
US5939059A (en) * 1997-08-13 1999-08-17 Akzo Nobel Nv Hair conditioner and 2 in 1 conditioning shampoo
US6329331B1 (en) * 1998-04-03 2001-12-11 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Detergent compositions
US20060134047A1 (en) * 2004-12-16 2006-06-22 Bakeev Kirill N Personal care and household compositions of hydrophobically-modified polysaccharides
US20130089587A1 (en) * 2011-10-07 2013-04-11 The Procter & Gamble Company Personal Care Compositions and Methods of Making Same

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1545206A (en) * 1975-05-27 1979-05-02 Roney Prod & Dev Ltd Milk-containing cosmetic compositions
US4228277A (en) 1979-02-12 1980-10-14 Hercules Incorporated Modified nonionic cellulose ethers
US4243802A (en) 1979-06-06 1981-01-06 Hercules Incorporated Surfactant-soluble cellulose derivatives
US4352916A (en) 1981-07-17 1982-10-05 Hercules Incorporated Use of hydrophobically modified water soluble polymers in suspension polymerization
US4902499A (en) 1986-04-04 1990-02-20 The Procter & Gamble Company Hair care compositions containing a rigid silicone polymer
US4870167A (en) 1987-03-02 1989-09-26 Hi-Tek Polymers, Inc. Hydrophobically modified non-ionic polygalactomannan ethers
US4845207A (en) 1987-06-17 1989-07-04 Aqualon Company 3-alkoxy-2-hydroxypropylhydroxyethylcellulose and building composition containing the same
US4939192A (en) 1987-06-17 1990-07-03 Aqualon Company Building composition containing 3-alkoxy-2-hydroxypropylhydroxyethyl cellulose
US4892589A (en) 1987-10-30 1990-01-09 Aqualon Company Composition comprising water-soluble, nonionic hydrophobically modified hydroxyethyl cellulose and water-soluble, nonionic hydroxyethyl cellulose
IT1224421B (en) 1987-12-29 1990-10-04 Lamberti Flli Spa MODIFIED GALATTOMANNANS AND REALIVE PREPARATION PROCEDURE
US5100658A (en) 1989-08-07 1992-03-31 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5104646A (en) 1989-08-07 1992-04-14 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5106609A (en) 1990-05-01 1992-04-21 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5512091A (en) * 1990-08-13 1996-04-30 Steiner; Carol A. Associative polymer hydrogels
DE69206609T2 (en) 1991-03-19 1996-08-08 Procter & Gamble COSMETIC COMPOSITIONS CONTAINING HYDROPHOBIC MODIFIED POLYMERS AND UNSATURATED QUATERNAIRE AMMONIUM TENSIONS.
GB9216766D0 (en) 1992-08-07 1992-09-23 Unilever Plc Detergent compositions for enhanced silicone deposition comprising silicone and cationic polymers and method for detecting such compositions
US5393461A (en) * 1993-10-04 1995-02-28 Rtd Corporation Preparation of stable aqueous emulsions of water-insoluble particles
DE69524880T2 (en) * 1994-10-04 2002-08-22 Minnesota Mining & Mfg REACTIVE, TWO-PIECE POLYURETHANE COMPOSITIONS, AND, IF ANY, SELF-HALING AND SCRATCH-RESISTANT COATINGS MADE THEREOF
GB9510838D0 (en) 1995-05-27 1995-07-19 Procter & Gamble Cleansing compositions
ES2124167B1 (en) * 1996-06-04 1999-09-16 Espanola Prod Quimicos NEW DERIVATIVES OF BENZMIDAZOLE WITH ANTIHISTAMINE ACTIVITY.
US6191083B1 (en) 1996-07-03 2001-02-20 The Procter & Gamble Company Cleansing compositions
US6284230B1 (en) 1996-12-30 2001-09-04 The Procter & Gamble Company Hair conditioning shampoo compositions comprising primary anionic surfactant
US6905694B1 (en) * 1997-05-12 2005-06-14 Hercules Incorporated Hydrophobically modified polysaccharide in personal care products
US6280757B1 (en) * 1997-05-22 2001-08-28 The Procter & Gamble Company Cleansing articles for skin or hair
FR2765479B1 (en) 1997-07-02 1999-10-29 Oreal WASHING AND CONDITIONING COMPOSITION BASED ON SILICONE AND GALACTOMANNANE HYDROPHOBE GUM
EP1088543A1 (en) 1999-09-30 2001-04-04 The Procter & Gamble Company Hair care compositions
CN1427709A (en) * 2000-04-03 2003-07-02 宝洁公司 Hair care compositions containing selected frizz control agents
US7192896B2 (en) * 2001-11-15 2007-03-20 3M Innovative Properties Company Disposable cleaning product
WO2004032887A1 (en) 2002-10-10 2004-04-22 The Procter & Gamble Company Hair conditioning composition comprising thickening polymer and cationic surfactant
ES2659650T3 (en) * 2004-01-20 2018-03-16 Huntsman Petrochemical Llc Innovative acylalkyl sethionate esters and applications in consumer products
US7470651B2 (en) 2005-06-24 2008-12-30 The Procter & Gamble Company Clear conditioning compositions comprising coacervate
US20060293197A1 (en) 2005-06-24 2006-12-28 The Procter & Gamble Company Conditioning compositions comprising coacervate and conditioning agent
DE102008038137A1 (en) * 2008-08-18 2010-02-25 Henkel Ag & Co. Kgaa Sulfate-free mild surfactant system for skin and hair cleansing
JP2010059076A (en) * 2008-09-02 2010-03-18 Shiseido Co Ltd Oil-in-water emulsion composition
EP2341893B1 (en) * 2008-10-09 2015-09-30 Hercules Incorporated Cleansing formulations comprising non-cellulosic polysaccharides with mixed cationic substituents
FR2945442B1 (en) * 2009-05-14 2012-08-03 Fabre Pierre Dermo Cosmetique USE OF DELTA-TOCOPHERYL-GLUCIDE AS DEPIGMENTING AGENT.
CN102802598A (en) * 2009-06-12 2012-11-28 株式会社高丝 Vesicle composition and cosmetic comprising same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015471A (en) * 1988-12-01 1991-05-14 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Topical composition
US5798409A (en) * 1995-10-03 1998-08-25 Minnesota Mining & Manufacturing Company Reactive two-part polyurethane compositions and optionally self-healable and scratch-resistant coatings prepared therefrom
US5939059A (en) * 1997-08-13 1999-08-17 Akzo Nobel Nv Hair conditioner and 2 in 1 conditioning shampoo
US6329331B1 (en) * 1998-04-03 2001-12-11 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Detergent compositions
US20060134047A1 (en) * 2004-12-16 2006-06-22 Bakeev Kirill N Personal care and household compositions of hydrophobically-modified polysaccharides
US20130089587A1 (en) * 2011-10-07 2013-04-11 The Procter & Gamble Company Personal Care Compositions and Methods of Making Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018044576A1 (en) * 2016-08-30 2018-03-08 Rohm And Haas Company Personal care composition
CN109640940A (en) * 2016-08-30 2019-04-16 罗门哈斯公司 Personal care composition
US20200155439A1 (en) * 2016-08-30 2020-05-21 Rohm And Haas Company Personal care composition
US11246821B2 (en) 2016-08-30 2022-02-15 Rohm And Haas Company Personal care composition
US10980724B2 (en) * 2017-06-02 2021-04-20 Laboratoires M&L Bicarbonate-based aqueous cosmetic composition

Also Published As

Publication number Publication date
RU2671577C2 (en) 2018-11-02
KR20150130454A (en) 2015-11-23
US10058498B2 (en) 2018-08-28
RU2015144100A (en) 2017-04-24
EP2969019A1 (en) 2016-01-20
JP6284616B2 (en) 2018-02-28
BR112015023765A2 (en) 2017-07-18
US20160113854A1 (en) 2016-04-28
MX2015012366A (en) 2016-03-03
WO2014149019A1 (en) 2014-09-25
CN105209122B (en) 2018-07-17
MX366869B (en) 2019-07-29
CN105209122A (en) 2015-12-30
BR112015023765B1 (en) 2019-12-03
KR102066476B1 (en) 2020-01-15
JP2016518314A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
US10058498B2 (en) Composition and method of producing personal care compositions with improved deposition properties
US20060134047A1 (en) Personal care and household compositions of hydrophobically-modified polysaccharides
EP2341893B1 (en) Cleansing formulations comprising non-cellulosic polysaccharides with mixed cationic substituents
US8343469B2 (en) Cationic synthetic polymers with improved solubility and performance in surfactant-based systems and use in personal care and household applications
US20060046943A1 (en) Functional systems with reduced odor cationic polygalactomannan
US8796196B2 (en) Polysaccharide products with improved performance and clarity in surfactant-based aqueous formulations and process for preparation
US8568701B2 (en) Cationic synthetic polymers with improved solubility and performance in phosphate surfactant-based systems and use in personal care and household applications
US20080003192A1 (en) Functional compositions containing cationic hydrophobically modified polysaccharides for personal care, household & institutional and pet care products
US9561166B2 (en) Polysaccharide products with improved performance and clarity in phosphate ester surfactant-based aqueous formulations and process for preparation

Legal Events

Date Code Title Description
AS Assignment

Owner name: HERCULES INCORPORATED, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HURKENS, STEPHEN HUGO;KROON, GIJSBERT;LE-PHAM, THI HONG LAN;REEL/FRAME:030093/0369

Effective date: 20130327

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION