US20140204455A1 - Wearable data display - Google Patents

Wearable data display Download PDF

Info

Publication number
US20140204455A1
US20140204455A1 US14/240,643 US201214240643A US2014204455A1 US 20140204455 A1 US20140204455 A1 US 20140204455A1 US 201214240643 A US201214240643 A US 201214240643A US 2014204455 A1 US2014204455 A1 US 2014204455A1
Authority
US
United States
Prior art keywords
array
grating
light
data display
switchable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/240,643
Inventor
Milan Momcilo Popovich
Jonathan David Waldern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwell Collins Inc
DigiLens Inc
Original Assignee
Milan Momcilo Popovich
Jonathan David Waldern
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Milan Momcilo Popovich, Jonathan David Waldern filed Critical Milan Momcilo Popovich
Priority to US14/240,643 priority Critical patent/US20140204455A1/en
Publication of US20140204455A1 publication Critical patent/US20140204455A1/en
Assigned to ROCKWELL COLLINS, INC., DIGILENS, INC. reassignment ROCKWELL COLLINS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: POPOVICH, MILAN MOMCILO, WALDERN, JONATHAN DAVID
Assigned to DIGILENS INC. reassignment DIGILENS INC. CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 040220 FRAME 0509. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: POPOVICH, MILAN MOMCILO, WALDERN, JONATHAN DAVID
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4227Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant in image scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13342Holographic polymer dispersed liquid crystals

Definitions

  • This invention relates to a wearable display device, and more particularly to a wearable display using electrically switchable holographic optical elements.
  • the display should be highly transparent and the displayed image content should be clearly visible when superimposed over a bright background scene.
  • the display should provide full colour with an enhanced colour gamut for optimal data visibility and impact.
  • a prime requirement is that the display should be as easy to wear, natural and non-distracting as possible with a form factor similar to that of ski goggles or, more desirably, sunglasses.
  • the eye relief and pupil should be big enough to avoid image loss during head movement even for demanding military and sports activities.
  • the image generator should be compact, solid state and have low power consumption.
  • DOEs diffractive optical elements
  • Bragg gratings also commonly termed volume phase gratings or holograms
  • holograms which offer the highest diffraction efficiencies, have been widely used in devices such as Head Up Displays.
  • U.S. Pat. No. 6,052,540 by Koyama discloses a viewfinder device comprising a transmission hologram that can be located at a position other than in an image plane. The position of the virtual image formed by the transmission hologram is arranged to lie at the image plane of the optical system.
  • SBG electrically Switchable Bragg Gratings
  • PDLC polymer dispersed liquid crystal
  • SBG devices are fabricated by first placing a thin film of a mixture of photopolymerisable monomers and liquid crystal material between parallel glass plates. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the PDLC layer. A Bragg grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure.
  • the monomers polymerize and the PDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer.
  • the alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating.
  • the resulting Bragg grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer. In the absence of an applied electric field the SBG remains in its diffracting state.
  • an electric field is applied to the hologram via the electrodes, the natural orientation of the LC droplets is changed thus reducing the refractive index modulation of the fringes and causing the hologram diffraction efficiency to drop to very low levels.
  • the diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range from essentially zero to near 100%.
  • U.S. Pat. No. 5,942,157 by Sutherland et al. and U.S. Pat. No. 5,751,452 by Tanaka et al. describe monomer and liquid crystal material combinations suitable for fabricating SBG devices.
  • a transparent wearable data display comprising: a source; a means of collimating light from the source; a means for deflecting the collimated light into a scanned beam; a first array comprising one column containing N switchable grating elements sandwiched between first and second parallel transparent substrates, the substrates together functioning as a first light guide; a second array comprising integer M columns and integer N rows of switchable grating elements sandwiched between third and fourth parallel transparent substrates, the substrates together functioning as a second light guide.
  • Transparent electrodes are applied to the first and second and the third and fourth substrates.
  • Each switchable grating element has a diffracting state and a non diffracting state.
  • the apparatus further comprises a first coupling means for directing the scanned beam into a first total internal reflection (TIR) light path between the outer surfaces of the first lightguide along the first array column; and a second coupling means linking each element of the first array to the first element of a row of elements of the second array.
  • TIR total internal reflection
  • Each element of the first array when in its diffracting state directing light via the second coupling means into a second TIR path along a row of the second array for directing the first TIR light into a second TIR path between the outer surfaces of the second lightguide along a row of elements of the second array.
  • At least one of said electrodes of the first array is patterned into 1 ⁇ N independently switchable elements each element overlapping one of the first array grating elements.
  • At least one of the electrodes of said second array is patterned into M ⁇ N independently switchable elements, each element overlapping one of the second array grating elements.
  • each element of the first array is disposed adjacent to a first element of a row of said second array.
  • each switchable grating element has a diffracting state when no electric field is applied across the electrodes sandwiching the grating element and a non diffracting state when a field is applied across the electrodes.
  • Each element of the first array when in its diffracting state directs light from the first TIR path into the second TIR path starting at the first element of a row of elements of the second array and proceeding along said row.
  • the elements of said first array are switched sequentially into their diffracting states.
  • the elements of rows of the second array adjacent an element of the first array in its diffracting state are switched sequentially into their diffracting states.
  • Each element of the second array when in its diffracting state deflects light through the fourth substrate.
  • each grating element of the second array encodes image information.
  • the outer surface of the fourth substrate faces a viewer of the display.
  • an element of the second array in its diffracting state forms an image of the information encoded within the grating element at a predefined viewing range and an angular bearing defined by the sweep angles of the scanned beam at.
  • the substrates of the first array are parallel to the substrates of the second array.
  • the substrates of the first array are orthogonal to the substrates of the second array.
  • the first coupling means is a grating device.
  • the second coupling means is a grating device abutting each of the first and second arrays.
  • each switchable grating element of the output array is divided into independently switchable columns aligned orthogonally to the TIR path direction in the output array.
  • a switchable grating is a Switchable Bragg Grating (SBG).
  • SBG Switchable Bragg Grating
  • the scanned beam is characterised by angular deflections in two orthogonal directions.
  • the intensity of the scanned beam is modulated by varying the refractive index modulation of at least one of the switchable grating elements traversed by the beam.
  • the source of collimated light provides first, second and third wavelength light.
  • the source of collimated light provides comprises first second and third wavelength light and each switchable grating element is a multiplexed SBG comprising a first grating for diffracting first wavelength light and a second grating for diffracting second and third wavelength light.
  • the source of collimated light provides comprises first second and third wavelength light and each switchable grating element is a multiplexed SBG comprising a first grating for diffracting first wavelength light, a second grating for diffracting second wavelength light and a third grating for diffracting third wavelength light.
  • a switchable grating element comprises a surface relief grating backfilled with an electrically variable refractive index medium.
  • each switchable grating element in at least one of the first array and second array is divided into independently switchable columns aligned orthogonally to the TIR paths.
  • the refractive index modulation of each switchable column is dynamically controlled such that a predetermined amount of light is diffracted by the switchable column through the fourth substrate.
  • N is equal to 4 and M is equal to 4.
  • the data display is one of an identical pair of left and right eyepieces.
  • the means for providing a scanned beam comprises: a first transparent optical substrate with an input surface and an output surface; a second transparent optical substrate with an input surface and an output surface; transparent electrodes applied to the output surface of the first substrate and the input surface of the second substrate; an electrically variable refractive index layer having a planar surface and a second surface shaped to provide an array of prisms; and a fixed refractive index layer having a planar surface and a second surface shaped to provide an array of prismatic cavities.
  • the prisms and prismatic cavities have identical and opposing geometries, each prism abutting one of said prismatic cavities.
  • the planar surface of the variable refractive index layer abuts the output surface of the first substrate and the planar surface of the fixed refractive index layer abuts the input surface of the second substrate.
  • the transparent electrodes are electrically coupled to a variable voltage generating means. At least one of the transparent electrodes is patterned into independently switchable electrode elements having substantially the same cross sectional area as the prisms such that said the refractive index prisms may be selectively switched in discrete steps from a fully diffracting to a non diffracting state by an electric field applied across the transparent electrodes.
  • FIG. 1 is a schematic front elevation view of a wearable display in a first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view of a wearable display in a first embodiment of the invention.
  • FIG. 3A is a schematic front elevation view of a switchable grating element in a first embodiment of the invention.
  • FIG. 3A is a schematic cross-sectional view of a switchable grating element in a first embodiment of the invention.
  • FIG. 4A is a schematic cross-sectional view of a switchable grating element in a first embodiment of the invention.
  • FIG. 4B is a schematic front elevation view of a switchable grating element in a first embodiment of the invention.
  • FIG. 5 is a schematic plan view of an illumination source in one embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view of a portion of a wearable display in one embodiment of the invention.
  • FIG. 7 is an example of a image provided in one embodiment of the invention.
  • FIG. 8 is a schematic cross-section view of a wearable display eyepiece in one embodiment of the invention.
  • FIG. 9 is a schematic illustration showing the subdivision of grating elements into column shaped elements in one embodiment of the invention.
  • FIG. 10 is a schematic illustration showing the subdivision of grating elements into column shaped elements in one embodiment of the invention.
  • FIG. 11 is a schematic cross-sectional view of a portion of a grating element subdivided into column elements showing the diffraction of TIR light.
  • FIG. 12 is a schematic front elevation view of a wearable display in one embodiment of the invention.
  • FIG. 13 is a schematic cross-sectional view of a wearable display in one embodiment of the invention.
  • FIG. 14 is a schematic cross-sectional view of a wearable display in one embodiment of the invention.
  • FIG. 15 is a schematic cross-sectional view of a portion of a wearable display in one embodiment of the invention.
  • on-axis in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention.
  • light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories.
  • a transparent wearable data display comprising: an illumination source 1 , a first switchable grating array 2 and a second switchable grating array 3 .
  • the display provides an eyepiece that may be one of pair of identical elements used in a binocular display. Alternatively the display may simply provide a monocular eyepiece.
  • the illumination source which will be discussed in more detail later in the description comprises a light source, a means for collimating the light; and a means for deflecting the collimated light into a scanned beam. Desirably, the source is a laser.
  • the first array 2 comprises one column and integer number N switchable grating elements (1 ⁇ N) sandwiched between first and second parallel transparent substrates 25 , 26 .
  • the substrates 25 , 26 together function as a first light guide.
  • the second array comprises M columns and N rows of switchable grating elements sandwiched between third and fourth parallel transparent substrates 30 , 31 .
  • the substrates 30 , 31 together function as a second light guide.
  • the substrates 30 , 31 are in orthogonal planes to those of 25 , 26 .
  • Transparent electrodes which are not illustrated are applied to the first and second and the third and fourth substrates.
  • the electrodes are applied to opposing faces of the substrates.
  • the electrodes are configured such that the applied electric field will be perpendicular to the substrates.
  • the electrodes would typically be fabricated from Indium Tin Oxide (ITO).
  • ITO Indium Tin Oxide
  • the switchable grating is a Switchable Bragg Grating (SBG).
  • SBG Switchable Bragg Grating
  • the integer M is equal to 4 and N is equal to 4 in other words the first array is a 1 ⁇ 4 array and the second array is a 4 ⁇ 4 array.
  • the invention does not assume any particular value for M or N.
  • the illumination source further comprises a first coupling means for directing the scanned beam into a first TIR light path between the outer surfaces of the first lightguide along the first array column.
  • a second coupling means 16 for directing the first TIR light into a second TIR path between the outer surfaces of the second lightguide along a row of elements of the second array.
  • the first coupling means is a grating device.
  • the second coupling means is a grating device abutting each of the first and second arrays as indicated in FIG. 1 .
  • At least one of said electrodes of the first array is patterned into 1 ⁇ N independently switchable elements each element overlapping one of the first array grating elements.
  • each element of the first array is disposed adjacent to a first element of a row of said second array.
  • Each switchable grating element has a diffracting state when no electric field is applied across the electrodes sandwiching the grating element and a non diffracting state when a field is applied across the electrodes.
  • Each element of the first array when in its diffracting state directs light from the first TIR path into the second TIR path starting at the first element of a row of elements of the second array and proceeding along said row.
  • the elements of said first array are switched sequentially into their diffracting states.
  • the elements of rows of the second array adjacent an element of the first array in its diffracting state are switched sequentially into their diffracting states.
  • Each element of the second array when in its diffracting state deflects light through the fourth substrate towards the eye of the user of the display.
  • the rows of the second array are switched sequentially.
  • the switchable grating elements of the first array are indicated by 24 A- 24 D with the element 24 B being indicated as being in its diffracting state by a dashed line.
  • the diffracted light 102 R, 102 G, 102 B is diffracted into the row of elements 11 A- 11 D of the second array starting at element 11 A.
  • Input colour sequential red, green blue light from the light source 40 is indicated by the rays 100 R, 100 G, 100 B. It should be noted that the light is in collimated spaced throughout the optical process to be described.
  • the rays are coupled into the first array lightguide into the TIR paths 101 R, 101 G, 101 B which are coupled the TIR paths indicated by the rays 102 R, 102 G, 102 B along the row of elements 11 A- 11 B by the grating element 24 B which is in its active state.
  • FIG. 2 is a schematic cross-sectional view of the display showing the input array and the output array.
  • the switchable grating element 24 B of the first array and the row of switchable grating elements 11 A- 11 B of the second array are illustrated. Only the red TIR path 102 R is illustrated.
  • each grating element of the second array encodes image information.
  • this image information may comprise a binary dot pattern or a symbol where the dots or symbols comprise regions of material into which gratings have been recorded surrounded by regions containing no gratings.
  • the grating element diffracts the light to form an image corresponding to said image information.
  • an element of the second array in its diffracting state forms an image of the information encoded within the grating element at a predefined viewing range and an angular bearing defined by the instantaneous deflection angles of the scanned beam.
  • the encoded information may comprise a numeric symbol or a portion of a numeric symbol.
  • the information may be a gray level pixel.
  • the information may be a binary pixel or symbol characterised solely by “on” and “off” states.
  • the information may provide a three dimensional or holographic image when the grating element is in its diffracting state. The invention does not assume any particular type of image information.
  • each switchable grating element is a multiplexed Bragg grating comprising a first grating for diffracting red light and a second grating for diffracting blue and green light.
  • FIG. 3 illustrates the elements of the first array in more detail.
  • FIG. 3A is a schematic plan view of a grating element of the first array.
  • the grating contains two multiplexed gratings having slant angles in the YX plane.
  • the fringes 22 A, 22 B from the first grating and the fringes as 23 A, 23 B in the second grating are indicated.
  • the same fringes are shown in the orthogonal YZ plane in FIG. 3B .
  • FIG. 4 illustrates the elements of the second array in more detail.
  • FIG. 3A is a schematic cross sectional view of a switchable grating element of the second array.
  • the grating contains two multiplexed gratings having slant angles in the ZX plane.
  • the fringes 32 A, 32 B from the first grating and the fringes as 33 A, 33 B in the second grating are indicated.
  • the same fringes are shown in the orthogonal YX plane in FIG. 4B .
  • the switchable grating multiplexes separate red, green and blue diffracting Bragg gratings.
  • the invention may provide a monochrome display by recording a single monochrome grating within each switchable grating element. Further, since the display is fundamentally transparent red green and blue diffracting arrays may be stacked to provide a colour display. However such an implementation of the invention would suffer from increased thickness.
  • FIG. 5 is a schematic plan view of an illumination source in one embodiment of the invention comprising a laser module emitting red, green and blue collimated light 110 R, 110 G, 110 B, a scanner 42 providing the scanned beams 111 R, 111 G, 111 B, and angular sweep expansion means 43 providing the beams 112 R, 112 G, 112 B and a grating coupler 44 (essentially the first coupling means discussed above) for deflecting scanned beams 113 R, 113 G, 113 B into a TIR path insider the lightguide formed by the first array.
  • the angular sweep expansion means may comprise an a focal system of lenses or other equivalent means known to those skilled in the art of optical design.
  • the invention does not assume any particular configuration of the grating coupler with respect to the first array and many alternative schemes should be apparent to those skilled in the art of optical design.
  • the grating coupler may employ any known grating technology. In a typical eyeglass where the display provides left and right eyepieces it would be ergonomically advantageous to integrate the illumination source within the arms of the spectacles.
  • the scanned beams are characterised by angular deflections in two orthogonal directions which advantageously correspond to the Y and X coordinate directions indicated in FIG. 1 .
  • Techniques for scanning a beam in orthogonal direction are well documented in the prior art.
  • the invention does not assume any particular beam scanning method.
  • the scanner will be an electro optical device
  • devices based on piezoelectric deflectors and micro electro mechanical systems (MEMS) may be also considered.
  • MEMS micro electro mechanical systems
  • Separate scanners may be provided for red, green and blue light.
  • a single scanner operating on colour sequential light from separate red green and blue sources may be used.
  • the relative merits of such technologies in terms of scanning speed, optical efficiency, physical robustness, size and cost should be apparent to those skilled in the art of optical design.
  • the scanner is similar to the electro optical micro scanner disclosed in U.S. Provisional Patent Application No. 61/457,835 by the present inventors with filing date 16 Jun. 2011 entitled HOLOGRAPHIC BEAM STEERING DEVICE FOR AUTOSTEREOSCOPIC DISPLAYS.
  • the micro scanner described in that reference comprises: a first transparent optical substrate with an input surface and an output surface; a second transparent optical substrate with an input surface and an output surface; transparent electrodes applied to the output surface of the first substrate and the input surface of the second substrate; an electrically variable refractive index layer having a planar surface and a second surface shaped to provide an array of prisms; and a fixed refractive index layer having a planar surface and a second surface shaped to provide an array of prismatic cavities.
  • the prisms and prismatic cavities have identical and opposing geometries, each prism abutting one of the prismatic cavities.
  • the planar surface of the variable refractive index layer abuts the output surface of the first substrate and the planar surface of the fixed refractive index layer abuts the input surface of the second substrate.
  • the transparent electrodes are electrically coupled to a variable voltage generating means. At least one of the transparent electrodes is patterned into independently switchable electrode elements having substantially the same cross sectional area as the prisms such that the refractive index prisms may be selectively switched in discrete steps from a fully diffracting to a non diffracting state by an electric field applied across the transparent electrodes.
  • the scanner scans the light into discrete angular steps. In an alternative embodiment of the invention the scanner scans the light in continuous sweeps.
  • the intensity of the scanned beam is modulated by varying the refractive index modulation of at least one of the switchable grating elements traversed by the beam.
  • the elements of the first array are used to modulate the beam.
  • other modulation schemes based on varying the refractive index modulation of any of the grating elements along the beam path from the light source to the output surface of the display may be used.
  • FIG. 7 is a schematic cross-sectional view of a portion of the second array including the grating elements 11 A- 11 C (see FIGS. 1-2 ). The element 11 C is in its diffracting state.
  • a voltage source for applying a voltage across each grating element is indicated by 5 and the circuit connection to the switching electrodes across the grating element is indicated by 51.
  • an active matrix switching scheme would be used to control the voltages applied to the first and second arrays.
  • the TIR path of the illumination light at one point in the beam angular sweep is indicated by the rays 114 R, 114 G, 114 B.
  • the light deflected out of the display at one extreme of the beam angular sweep is indicated by rays 115 R, 115 G, 115 B and at the other extreme of the beam angular sweep by the rays 116 R, 116 G, 116 B.
  • the output light forms a virtual image 111 at infinity. It should be apparent from consideration of FIG. 6 that by scanning the beam in the X and Y directions and modulating the voltage applied across the active grating element a symbol image such as the one illustrated in FIG. 7 may be written.
  • the symbol image comprises bright pixels 113 and dark pixels 114 .
  • the voltage modulation as indicated by the chart 52 showing voltage V plotted against time t would have a binary waveform represented by the characteristic 53 .
  • the output light is viewed through the pupil 112 .
  • each element of the second array requires a unique prescription to that all light diffracted out of the eye glass passes through an exit pupil through which the eye may observe the entire displayed image. It should be apparent that by switching the voltage to provide grey levels and taking advantage of the colour gamut provided by the red, green blue illumination more complex images may be generated.
  • FIG. 8 is a schematic side elevation view of the display 15 in relation to the observer eye 17 in one embodiment of the invention, showing the angular extent of the display data in relation to the overall field of view defined by the physical aperture of the display.
  • the limiting rays defining the overall field of view are illustrated by 115 A, 115 B.
  • the rays 116 A. 116 b define the vertical extent of the displayed data. In typical applications such as data displays for sports it is desirable to project data into the lower portion of the field of view. The data may extend across the full horizontal field if necessary.
  • each switchable grating element in at least one of the input and output arrays is divided into independently switchable columns, aligned orthogonally to the TIR paths.
  • FIG. 9 provides a front elevation of view of the elements 11 A- 11 D of the second array.
  • One column of the grating element 11 A is indicated by the numeral 13 .
  • the invention does not place any restrictions on the width of and number of column elements in a column.
  • the refractive index modulation of each switchable column is dynamically controlled by active matrix voltage control circuitry which is not illustrated.
  • the refractive index modulation within a column can be set by the SBG recording conditions or can be varied dynamically by modulating each column in synchronization with the scanning of the input light. Alternatively, a combination of fixed and dynamic index modulation may be used.
  • the columns maximise the extraction of light from the lightguide by diffracting a predetermined amount of light from an active column out of the display towards the eye.
  • Non-diffracted or zero-order light which would otherwise be confined to the lightguide by TIR is depleted in small steps each time the beam interacts with a column until all of the light has been extracted.
  • zero-order light is treated as a loss.
  • the zero order light is recycled to allow uniform out-coupling of TIR light.
  • the diffraction efficiency of individual column elements is controlled by adjusting the index modulation in synchronisation with the beam scanning.
  • the grating elements are identical in size and contain equal numbers of columns.
  • the use of columns elements as described above allows the grating element widths to vary across an array row as in the case of the grating elements indicated by 11 E- 11 H in FIG. 10 .
  • the grating elements widths may be varied dynamically to match the extraction efficiency to the time varying beam angle. This overcomes the problem that TIR rays with incidence angles that do not meet the exact Bragg condition (off-Bragg rays) are diffracted with progressively diminishing efficiency as the angle increases up to the angular bandwidth limit, requiring more bounces before the beam or an acceptable portion of the beam is ejected from the lightguide.
  • FIG. 11 is a schematic plan view of a portion of the grating element 11 a illustrating the propagation of TIR light through the columns labelled by 13 A- 13 C.
  • the TIR path light inside the light guide is indicated by the ray 102 R.
  • the diffraction efficiencies of the column elements 13 A, 13 B, 13 C for rays meeting the exact Bragg diffraction angle are k,k′,k′′ respectively. If the TIR light is injected into the lightguide with power P 0 the power diffracted at element 13 A is kP 0 in to the ray direction 102 RA.
  • the power diffracted at the element 13 B is k′(1 ⁇ k)P 0 into the ray direction 102 RB and so on until most of the beam power has been extracted and the output light is distributed over the ray directions generally indicated by 120 R.
  • the k factors are specified to give a fixed light output at each bounce of the TIR beam ensuring a uniform light distribution across the exit pupil of the display. Other light distributions maybe obtained by suitable specification of the k-factors.
  • the grating element is no longer a fixed functional element of the display as discussed in relation to the embodiments of FIGS. 1-8 .
  • the term now describes the instantaneous extent of the set of columns over which extraction of the light corresponds to a defined image element (pixel) takes place.
  • the switchable columns principle also allow the output put light to be distributed uniformly over the exit pupil.
  • the switchable column principle allow the size of the exit pupil to be expanded by using a sufficiently large subset of columns and matching the column prescriptions to the scanned beam ray directions. Switchable column designs for use with the present invention may be based on the embodiments and teachings disclosed in the U.S. Provisional Patent Application No. 61/457,835 with filing date 16 Jun. 2011 entitled HOLOGRAPHIC BEAM STEERING DEVICE FOR AUTOSTEREOSCOPIC DISPLAYS which is incorporated by reference herein in its entirety.
  • FIG. 12 is a schematic front elevation view of the display showing the illumination source 1 the first array 6 which further comprises the elements 24 A- 24 D and the second array 3 .
  • the illumination source and second array are unchanged from the embodiment of FIG. 1 .
  • FIG. 12 is a schematic front elevation view of the display showing the illumination source 1 the first array 6 which further comprises the elements 24 A- 24 D and the second array 3 .
  • the illumination source and second array are unchanged from the embodiment of FIG. 1 .
  • FIG. 13 is a schematic cross-sectional view of the first and second arrays showing the propagation of red beam.
  • FIG. 14 is a schematic cross sectional view of the first array 6 in the ZY plane.
  • FIG. 15 is schematic cross sectional view of the first array in the ZX plane.
  • the first and second arrays may abut as shown in FIG. 13 .
  • the first and second arrays may sandwich an air gap or a slab of transparent material.
  • FIG. 13 we see that the first and second arrays are sandwiched by the substrates 30 , 31 to which transparent electrodes (not illustrated) are applied on opposing faces.
  • the first array grating element 24 B and the second array gratings elements 11 A- 11 D are indicated.
  • a passive grating device comprises a grating 29 B sandwiched by substrates 28 A, 28 B abuts the substrate 30 overlapping the element 24 A. As indicated in FIG. 14 the passive grating device extends over the entire length of the first array. Although the passive grating is illustrated as four distinct elements 29 A- 29 D in FIG. 13 the grating will typically have a uniform prescription along its length.
  • the illumination source injects colour-sequential TIR light 121 R, 121 G, 121 B into the lightguide formed by the first array substrates which is diffracted by the active element 24 B into the ray directions 122 R, 122 G, 122 B.
  • the passive grating diffracts the light which is totally internally reflected at the outer surface of the substrate 28 B as represented by the ray paths 123 R, 124 R lying in the plane ZY in FIG. 12 and FIG. 14 .
  • the light then proceeds to follow the TIR path 102 R within the second array.
  • At least one of the first or second arrays may use the column element scheme described earlier.
  • a switchable grating element according to the principles of the invention is a surface relief grating backfilled with an electrically variable refractive index medium based on the embodiments and teachings disclosed in the United States Provisional Patent Application No. 61/457,835 with filing date 16 Jun. 2011 entitled HOLOGRAPHIC BEAM STEERING DEVICE FOR AUTOSTEREOSCOPIC DISPLAYS which is incorporated by reference herein in its entirety.
  • a low index-modulation residual grating with a modulation not greater than 0.007, is desirable. This will require a good match between the refractive index of the polymer region and the ordinary index of the liquid crystal.
  • the material should have a high index modulation capability with a refractive index modulation not less than 0.06.
  • the material should exhibit very low haze for HPDLC cell thicknesses in the range 2-6 micron.
  • the HPDLC should have a good index match (to within +0.015) for glass or plastic at 630 nm.
  • One option is 1.515 (for example, 1737F or BK7 glasses).
  • An alternative option would be 1.472 (for example Borofloat or 7740 Pyrex glasses).
  • the light sources are solid-state lasers.
  • the low etendue of lasers results in considerable simplification of the optics.
  • LEDs may also be used with the invention.
  • LEDs suffer from large etendue, inefficient light collection and complex illuminator and projection optics.
  • a further disadvantage with regard to SBGs is that LEDs are fundamentally unpolarized.
  • the present invention may incorporate any type of despeckler.
  • the despeckler would be based on electro-optical principles.
  • a despeckler for use with the present invention may be based on the disclosed embodiments and teachings of PCT Application No.: US2008/001909, with International Filing Date: 22 Jul. 2008, entitled LASER ILLUMINATION DEVICE. and PCT Application No.: PCT/GB2010/002023 filed on 2 Nov. 2010 by the present inventors entitled APPARATUS FOR REDUCING LASER SPECKLE each of which is incorporated by reference herein in its entirety.
  • the need for a despeckler may be eliminated by using a miniature, broadband (4 nm) ROB lasers of the type supplied by Epicrystal Inc.
  • Speckle arising from laser sources can be reduced by applying decorrelation procedures based on combining multiple sets of speckle patterns or cells from a given speckle-generating surface during the spatio-temporal resolution of the human eye.
  • the despeckler is an electro-optical device configured to generate set of unique speckle phase cells by operating on the angular or polarization characteristic of rays propagating through the device.
  • the despeckler device may be configured in several different ways to operate on one of more of the phase, and ray angular characteristics of incoming light. The invention does not rely on any particular despeckler technology. Any method for generating and averaging speckle cells may be used with the invention. However, solid-state methods using SBGs offer more scope for miniaturization of the illuminator module.
  • the optical design of a wearable display according to the principles of the invention will be dictated by basic geometrical considerations well known to those skilled in the art of optical design.
  • the goal is to maximize eye relief, exit pupil and field of view. Since these parameters will impact on geometrical aberrations, dispersion and other factors affecting image quality some performance versus form factor trade-offs are inevitable.
  • the preferred light source is a laser. If broadband sources such as LEDs are used the design will require careful attention to the correction of chromatic dispersion and monochromatic geometrical aberrations.
  • Dispersion is a problem for any DOE illuminated by a broadband source. The degree of defocus or image blur due to dispersion depends on the source spectral bandwidth and the distance from the DOE to the virtual image plane. Typically, the angular blur for a given wavelength and a source spectral bandwidth will be of the order of the bandwidth divided by the wavelength.
  • the effect of monochromatic geometrical aberrations will depend on the field of view and pupil size.
  • a wearable display based on any of the above-described embodiments may be implemented using plastic substrates. Using sufficiently thin substrates such embodiments could be implemented as a long clear strip appliqué running from the nasal to ear ends of each eyeglass with a small illumination module continuing laser dies, light guides and display drive chip tucked into the sidewall of the eyeglass. Standard index matched glue would be used to fix the display to the surfaces of the eyeglasses.
  • the plastic substrates may be fabricated from materials such as polycarbonate.
  • the transparent electrodes may be fabricated from carbon nanotubes (CNTs) which may be more suitable than ITO for use with flexible substrates.
  • the display may further comprise an environmental seal.
  • a plastic SBG for use in the present invention may be based on the HPDLC material system and processes disclosed in a United States Provisional Patent Application by the present inventors entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES for which no filing number is available at the present but which is referenced by the Applicant's docket number SBG104 which is incorporated by reference herein in its entirety.
  • an eyepiece according to the principles of the invention may be fabricated using curved surfaces.
  • the invention may be used to provide a facetted surface display.
  • the switchable gratings are SBGs operated in reverse mode. In reverse mode the SBG has low diffraction efficiency when no electric field is applied and has high efficiency when a field is applied.
  • a reverse mode SBG for use in the present invention may be based on the HPDLC material system and processes disclosed in U.S. Provisional Patent Application No. 61/573,066 with filing date 24 Aug. 2011 by the present inventors entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES which is incorporated by reference herein in its entirety.
  • a key feature of all of the embodiments described above is that they provide the benefit of see-through.
  • the latter is of great importance in Head Up Displays for automobile, aviation and other transport applications; private see-through displays such for security sensitive applications; architectural interior signage and many other applications.
  • a holographic brightness enhancing film, or other narrow band reflector affixed to one side of the display the purpose of which is to reflect the display illumination wavelength light only
  • the see-through display can be made invisible (and hence secure) in the opposite direction of view.
  • the reflected display illumination is effectively mirrored and therefore blocked in one direction, making it ideal for transparent desktop display applications in customer or personal interview settings common in bank or financial services settings.
  • any of the above described embodiments of the invention may be used in either directly viewed or virtual image displays. Possible applications range from miniature displays such as those used in viewfinders to large area public information displays.
  • the above described embodiments may be used in applications where a transparent display is required.
  • the invention may be used in applications where the displayed imagery is superimposed on a background scene such as heads up displays and teleprompters.
  • the invention may be used to provide a display device that is located at or near to an internal image plane of an optical system.
  • any of the above described embodiments may be used to provide a symbolic data display for a camera viewfinder in which symbol data is projected at an intermediate image plane and then magnified by a viewfinder eyepiece.
  • the invention may be applied in biocular or monocular displays.
  • the invention may also be used in a stereoscopic wearable display.
  • Any of the above described embodiments of the invention may be used in a rear projection television.
  • the invention may be applied in avionic, industrial and medical displays. There are applications in entertainment, simulation, virtual reality, training systems and sport.
  • SBG arrays may be fabricated using a diffractive optical mask formed on a transparent sapphire wafer.
  • the SBG cell optical prescriptions are defined on a cell to cell basis.
  • the process of fabricating the SBG array may start with the creation of a multiphase computer generated hologram encoding the desired optical functions which is then holographically recorded in the SBG.
  • the method of fabricating the SBG pixel elements and the ITO electrodes used in any of the above-described embodiments of the invention may be based on the process disclosed in the PCT Application No.: US2006/043938, claiming priority to U.S. provisional patent application 60/789,595 filed on 6 Apr. 2006, entitled METHOD AND APPARATUS FOR PROVIDING A TRANSPARENT DISPLAY, which is incorporated by reference herein in its entirety.
  • the display devices disclosed in the present invention may employ features of the transparent edge lit display embodiments and teachings disclosed in U.S. patent application Ser. No. 10/555,661 filed 4 Nov. 2005 entitled SWITCHABLE VIEWFINDER DISPLAY which is incorporated by reference herein in its entirety.
  • the display disclosed in the present application may incorporate an eye tracker based on the embodiments and teachings disclosed in U.S. Provisional Patent Application No. 61/344,748 with filing date 28 Sep. 2010 entitled EYE TRACKED HOLOGRAPHIC EDGE ILLUMINATED EYEGLASS DISPLAY (and also referenced by the Applicant's docket number SBG092) which is incorporated by reference herein in its entirety.
  • the means for scanning collimated input light and the column array technique for improving the light extraction efficiency from switchable gratings discussed above may be based on the embodiments and teachings disclosed in the U.S. Provisional Patent Application No. 61/457,835 with filing date 16 Jun. 2011 entitled HOLOGRAPHIC BEAM STEERING DEVICE FOR AUTOSTEREOSCOPIC DISPLAYS which is incorporated by reference herein in its entirety.
  • optical design of display disclosed in the present application may be guided by the teachings of PCT Application No.: PCT/GB2010/000835 with International Filing Date: 26 Apr. 2010 entitled COMPACT HOLOGRAPHIC EDGE ILLUMINATED EYEGLASS DISPLAY which is incorporated by reference herein in its entirety, which discloses eyeglass display architectures based on a light guiding eyepiece in which a two dimension array of SBG deflectors is combined with an input beam.
  • the display disclosed in the present application may fabricated using the HPDLC material system and processes disclosed in a U.S. Provisional Patent Application No. 61/573,066 with filing date 24 Aug. 2011 by the present inventors entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES which is incorporated by reference herein in its entirety.

Abstract

A transparent wearable data display having a source of collimated light a deflector for deflecting the collimated light into a scanned beam, and a first array including one column and integer N rows of switchable grating elements sandwiched between first and second parallel transparent substrates. The substrates together functioning as a first light guide, and a second array including M columns and N rows of switchable grating elements sandwiched between third and fourth parallel transparent substrates which together function as a second lightguide. Transparent electrodes are applied to opposing substrates. A first coupling for directing the scanned beam into a first TIR light path of the first lightguide along the first array column; and a second coupling for directing the first TIR light into a second TIR path of the second lightguide along a row of elements of the second array.

Description

    REFERENCE TO PRIORITY APPLICATION
  • This application claims the priority of U.S. Provisional Patent Application No. 61/573,067 with filing date 24 Aug. 2011 entitled “Wearable Data Display”.
  • REFERENCE TO RELATED APPLICATIONS
  • Each of the following applications is incorporated herein by reference in its entirety: PCT Application No.: US2008/001909, with International Filing Date: 22 Jul. 2008, entitled LASER ILLUMINATION DEVICE; PCT Application No.: US2006/043938, entitled METHOD AND APPARATUS FOR PROVIDING A TRANSPARENT DISPLAY; PCT Application No.: PCT/GB2010/001982 entitled COMPACT EDGE ILLUMINATED EYEGLASS DISPLAY PCT Application No.: PCT/GB2010/000835 with International Filing Date: 26 Apr. 2010 entitled COMPACT HOLOGRAPHIC EDGE ILLUMINATED EYEGLASS DISPLAY; and PCT Application No.: PCT/GB2010/002023 filed on 2 Nov. 2010 entitled APPARATUS FOR REDUCING LASER SPECKLE, U.S. patent application Ser. No. 10/555,661 filed 4 Nov. 2005 entitled SWITCHABLE VIEWFINDER DISPLAY; U.S. Provisional Patent Application No. 61/344,748 WITH FILING DATE 28 Sep. 2010 ENTITLED EYE Tracked Holographic Edge Illuminated Eyeglass Display; No. 61/457,835 with filing date 16 Jun. 2011 entitled HOLOGRAPHIC BEAM STEERING DEVICE FOR AUTOSTEREOSCOPIC DISPLAYS; and U.S. Provisional Patent Application No. 61/573,066 with filing date 24 Aug. 2011 by the present inventors entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES.
  • BACKGROUND OF THE INVENTION
  • This invention relates to a wearable display device, and more particularly to a wearable display using electrically switchable holographic optical elements.
  • There is a requirement for a compact see through data display capable of displaying image content ranging from symbols and alphanumeric characters to high-resolution pixelated images. The display should be highly transparent and the displayed image content should be clearly visible when superimposed over a bright background scene. The display should provide full colour with an enhanced colour gamut for optimal data visibility and impact. A prime requirement is that the display should be as easy to wear, natural and non-distracting as possible with a form factor similar to that of ski goggles or, more desirably, sunglasses. The eye relief and pupil should be big enough to avoid image loss during head movement even for demanding military and sports activities. The image generator should be compact, solid state and have low power consumption.
  • The above goals are not achieved by current technology. Current wearable displays only manage to deliver see through, adequate pupils, eye relief and field of view and high brightness simultaneously at the expense of cumbersome form factors. In many cases weight is distributed in the worst possible place for a wearable display, in front of the eye. The most common approach to providing see through relies on reflective or diffractive visors illuminated off axis. Microdisplays, which provide high-resolution image generators in tiny flat panels, do not necessarily help with miniaturizing wearable displays because the requirement for very high magnifications inevitably results in large diameter optics. Several ultra low form factor designs offering spectacle-like form factors are currently available but usually require aggressive trade-offs against field of view, eye relief and exit pupil.
  • The optical design benefits of diffractive optical elements (DOEs) are well known including unique and efficient form factors and the ability to encode complex optical functions such as optical power and diffusion into thin layers. Bragg gratings (also commonly termed volume phase gratings or holograms), which offer the highest diffraction efficiencies, have been widely used in devices such as Head Up Displays.
  • It is also known that diffractive optical elements can be used to provide virtual images for direct viewing or for viewing with the aid of optical systems. U.S. Pat. No. 6,052,540 by Koyama discloses a viewfinder device comprising a transmission hologram that can be located at a position other than in an image plane. The position of the virtual image formed by the transmission hologram is arranged to lie at the image plane of the optical system.
  • An important class of diffractive optical element known as an electrically Switchable Bragg Gratings (SBG) is based on recording Bragg gratings into a polymer dispersed liquid crystal (PDLC) mixture. Typically, SBG devices are fabricated by first placing a thin film of a mixture of photopolymerisable monomers and liquid crystal material between parallel glass plates. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the PDLC layer. A Bragg grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure. During the recording process, the monomers polymerize and the PDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating. The resulting Bragg grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer. In the absence of an applied electric field the SBG remains in its diffracting state. When an electric field is applied to the hologram via the electrodes, the natural orientation of the LC droplets is changed thus reducing the refractive index modulation of the fringes and causing the hologram diffraction efficiency to drop to very low levels. The diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range from essentially zero to near 100%. U.S. Pat. No. 5,942,157 by Sutherland et al. and U.S. Pat. No. 5,751,452 by Tanaka et al. describe monomer and liquid crystal material combinations suitable for fabricating SBG devices.
  • There is a requirement for a compact, lightweight wearable data display providing a high brightness, high contrast information display with a high degree of transparency to external light.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a compact, lightweight wearable data display providing high brightness and high contrast information visibility with a high degree of transparency to external light.
  • The objects of the invention are achieved in a first embodiment in which there is provided a transparent wearable data display comprising: a source; a means of collimating light from the source; a means for deflecting the collimated light into a scanned beam; a first array comprising one column containing N switchable grating elements sandwiched between first and second parallel transparent substrates, the substrates together functioning as a first light guide; a second array comprising integer M columns and integer N rows of switchable grating elements sandwiched between third and fourth parallel transparent substrates, the substrates together functioning as a second light guide. Transparent electrodes are applied to the first and second and the third and fourth substrates. Each switchable grating element has a diffracting state and a non diffracting state. The apparatus further comprises a first coupling means for directing the scanned beam into a first total internal reflection (TIR) light path between the outer surfaces of the first lightguide along the first array column; and a second coupling means linking each element of the first array to the first element of a row of elements of the second array. Each element of the first array when in its diffracting state directing light via the second coupling means into a second TIR path along a row of the second array for directing the first TIR light into a second TIR path between the outer surfaces of the second lightguide along a row of elements of the second array. At least one of said electrodes of the first array is patterned into 1×N independently switchable elements each element overlapping one of the first array grating elements. At least one of the electrodes of said second array is patterned into M×N independently switchable elements, each element overlapping one of the second array grating elements. In one embodiment of the invention each element of the first array is disposed adjacent to a first element of a row of said second array.
  • In one embodiment of the invention each switchable grating element has a diffracting state when no electric field is applied across the electrodes sandwiching the grating element and a non diffracting state when a field is applied across the electrodes. Each element of the first array when in its diffracting state directs light from the first TIR path into the second TIR path starting at the first element of a row of elements of the second array and proceeding along said row. In one embodiment of the invention the elements of said first array are switched sequentially into their diffracting states. In one embodiment of the invention the elements of rows of the second array adjacent an element of the first array in its diffracting state are switched sequentially into their diffracting states. Each element of the second array when in its diffracting state deflects light through the fourth substrate.
  • In one embodiment of the invention each grating element of the second array encodes image information.
  • In one embodiment of the invention the outer surface of the fourth substrate faces a viewer of the display.
  • In one embodiment of the invention an element of the second array in its diffracting state forms an image of the information encoded within the grating element at a predefined viewing range and an angular bearing defined by the sweep angles of the scanned beam at.
  • In one embodiment of the invention the substrates of the first array are parallel to the substrates of the second array.
  • In one embodiment of the invention the substrates of the first array are orthogonal to the substrates of the second array.
  • In one embodiment of the invention the first coupling means is a grating device.
  • In one embodiment of the invention the second coupling means is a grating device abutting each of the first and second arrays.
  • In one embodiment of the invention each switchable grating element of the output array is divided into independently switchable columns aligned orthogonally to the TIR path direction in the output array.
  • In one embodiment of the invention a switchable grating is a Switchable Bragg Grating (SBG).
  • In one embodiment of the invention the scanned beam is characterised by angular deflections in two orthogonal directions.
  • In one embodiment of the invention the intensity of the scanned beam is modulated by varying the refractive index modulation of at least one of the switchable grating elements traversed by the beam.
  • In one embodiment of the invention the source of collimated light provides first, second and third wavelength light.
  • In one embodiment of the invention the source of collimated light provides comprises first second and third wavelength light and each switchable grating element is a multiplexed SBG comprising a first grating for diffracting first wavelength light and a second grating for diffracting second and third wavelength light.
  • In one embodiment of the invention the source of collimated light provides comprises first second and third wavelength light and each switchable grating element is a multiplexed SBG comprising a first grating for diffracting first wavelength light, a second grating for diffracting second wavelength light and a third grating for diffracting third wavelength light.
  • In one embodiment of the invention a switchable grating element comprises a surface relief grating backfilled with an electrically variable refractive index medium.
  • In one embodiment of the invention each switchable grating element in at least one of the first array and second array is divided into independently switchable columns aligned orthogonally to the TIR paths. The refractive index modulation of each switchable column is dynamically controlled such that a predetermined amount of light is diffracted by the switchable column through the fourth substrate.
  • In one embodiment of the invention N is equal to 4 and M is equal to 4.
  • In one embodiment of the invention the data display is one of an identical pair of left and right eyepieces.
  • In one embodiment of the invention the means for providing a scanned beam comprises: a first transparent optical substrate with an input surface and an output surface; a second transparent optical substrate with an input surface and an output surface; transparent electrodes applied to the output surface of the first substrate and the input surface of the second substrate; an electrically variable refractive index layer having a planar surface and a second surface shaped to provide an array of prisms; and a fixed refractive index layer having a planar surface and a second surface shaped to provide an array of prismatic cavities. The prisms and prismatic cavities have identical and opposing geometries, each prism abutting one of said prismatic cavities. The planar surface of the variable refractive index layer abuts the output surface of the first substrate and the planar surface of the fixed refractive index layer abuts the input surface of the second substrate. The transparent electrodes are electrically coupled to a variable voltage generating means. At least one of the transparent electrodes is patterned into independently switchable electrode elements having substantially the same cross sectional area as the prisms such that said the refractive index prisms may be selectively switched in discrete steps from a fully diffracting to a non diffracting state by an electric field applied across the transparent electrodes.
  • A more complete understanding of the invention can be obtained by considering the following detailed description in conjunction with the accompanying drawings, wherein like index numerals indicate like parts. For purposes of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic front elevation view of a wearable display in a first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view of a wearable display in a first embodiment of the invention.
  • FIG. 3A is a schematic front elevation view of a switchable grating element in a first embodiment of the invention.
  • FIG. 3A is a schematic cross-sectional view of a switchable grating element in a first embodiment of the invention.
  • FIG. 4A is a schematic cross-sectional view of a switchable grating element in a first embodiment of the invention.
  • FIG. 4B is a schematic front elevation view of a switchable grating element in a first embodiment of the invention.
  • FIG. 5 is a schematic plan view of an illumination source in one embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view of a portion of a wearable display in one embodiment of the invention.
  • FIG. 7 is an example of a image provided in one embodiment of the invention.
  • FIG. 8 is a schematic cross-section view of a wearable display eyepiece in one embodiment of the invention.
  • FIG. 9 is a schematic illustration showing the subdivision of grating elements into column shaped elements in one embodiment of the invention.
  • FIG. 10 is a schematic illustration showing the subdivision of grating elements into column shaped elements in one embodiment of the invention.
  • FIG. 11 is a schematic cross-sectional view of a portion of a grating element subdivided into column elements showing the diffraction of TIR light.
  • FIG. 12 is a schematic front elevation view of a wearable display in one embodiment of the invention.
  • FIG. 13 is a schematic cross-sectional view of a wearable display in one embodiment of the invention.
  • FIG. 14 is a schematic cross-sectional view of a wearable display in one embodiment of the invention.
  • FIG. 15 is a schematic cross-sectional view of a portion of a wearable display in one embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention will now be further described by way of example only with reference to the accompanying drawings.
  • It will apparent to those skilled in the art that the present invention may be practiced with some or all of the present invention as disclosed in the following description. For the purposes of explaining the invention well-known features of optical technology known to those skilled in the art of optical design and visual displays have been omitted or simplified in order not to obscure the basic principles of the invention.
  • Unless otherwise stated the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention. In the following description the terms light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories.
  • Parts of the following description will be presented using terminology commonly employed by those skilled in the art of optical design.
  • It should also be noted that in the following description of the invention repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment.
  • In a first embodiment of the invention illustrated in the schematic front elevation view of FIG. 1 there is provided a transparent wearable data display comprising: an illumination source 1, a first switchable grating array 2 and a second switchable grating array 3. The display provides an eyepiece that may be one of pair of identical elements used in a binocular display. Alternatively the display may simply provide a monocular eyepiece. The illumination source which will be discussed in more detail later in the description comprises a light source, a means for collimating the light; and a means for deflecting the collimated light into a scanned beam. Desirably, the source is a laser. The first array 2 comprises one column and integer number N switchable grating elements (1×N) sandwiched between first and second parallel transparent substrates 25,26. The substrates 25,26 together function as a first light guide. The second array comprises M columns and N rows of switchable grating elements sandwiched between third and fourth parallel transparent substrates 30,31. The substrates 30,31 together function as a second light guide. The substrates 30,31 are in orthogonal planes to those of 25,26. Transparent electrodes which are not illustrated are applied to the first and second and the third and fourth substrates. Advantageously the electrodes are applied to opposing faces of the substrates. The electrodes are configured such that the applied electric field will be perpendicular to the substrates. The electrodes would typically be fabricated from Indium Tin Oxide (ITO). In one embodiment of the invention the outer surface of the fourth substrate faces a viewer of the display.
  • In one embodiment of the invention the switchable grating is a Switchable Bragg Grating (SBG).
  • In the embodiment of FIG. 1 the integer M is equal to 4 and N is equal to 4 in other words the first array is a 1×4 array and the second array is a 4×4 array. The invention does not assume any particular value for M or N.
  • The illumination source further comprises a first coupling means for directing the scanned beam into a first TIR light path between the outer surfaces of the first lightguide along the first array column. There is further provided a second coupling means 16 for directing the first TIR light into a second TIR path between the outer surfaces of the second lightguide along a row of elements of the second array. In one embodiment of the invention the first coupling means is a grating device. In one embodiment of the invention the second coupling means is a grating device abutting each of the first and second arrays as indicated in FIG. 1.
  • At least one of said electrodes of the first array is patterned into 1×N independently switchable elements each element overlapping one of the first array grating elements. At least one of the electrodes of said second array is patterned into M×N independently switchable elements each element overlapping one of the second array grating elements. Again we will assume M=4 and N=4.
  • In one embodiment of the invention each element of the first array is disposed adjacent to a first element of a row of said second array. Each switchable grating element has a diffracting state when no electric field is applied across the electrodes sandwiching the grating element and a non diffracting state when a field is applied across the electrodes. Each element of the first array when in its diffracting state directs light from the first TIR path into the second TIR path starting at the first element of a row of elements of the second array and proceeding along said row.
  • In one embodiment of the invention the elements of said first array are switched sequentially into their diffracting states. The elements of rows of the second array adjacent an element of the first array in its diffracting state are switched sequentially into their diffracting states. Each element of the second array when in its diffracting state deflects light through the fourth substrate towards the eye of the user of the display. The rows of the second array are switched sequentially. For example, in FIG. 1 the switchable grating elements of the first array are indicated by 24A-24D with the element 24B being indicated as being in its diffracting state by a dashed line. The diffracted light 102R,102G,102B is diffracted into the row of elements 11A-11D of the second array starting at element 11A. Input colour sequential red, green blue light from the light source 40 is indicated by the rays 100R,100G,100B. It should be noted that the light is in collimated spaced throughout the optical process to be described. The rays are coupled into the first array lightguide into the TIR paths 101R,101G,101B which are coupled the TIR paths indicated by the rays 102R,102G,102B along the row of elements 11A-11B by the grating element 24B which is in its active state.
  • FIG. 2 is a schematic cross-sectional view of the display showing the input array and the output array. The switchable grating element 24B of the first array and the row of switchable grating elements 11A-11B of the second array are illustrated. Only the red TIR path 102R is illustrated.
  • In one embodiment of the invention each grating element of the second array encodes image information. For the purpose of understanding the invention this image information may comprise a binary dot pattern or a symbol where the dots or symbols comprise regions of material into which gratings have been recorded surrounded by regions containing no gratings. In other words when illuminated by collimated light and in its diffracting state the grating element diffracts the light to form an image corresponding to said image information. In one embodiment of the invention an element of the second array in its diffracting state forms an image of the information encoded within the grating element at a predefined viewing range and an angular bearing defined by the instantaneous deflection angles of the scanned beam. The encoded information may comprise a numeric symbol or a portion of a numeric symbol. The information may be a gray level pixel. The information may be a binary pixel or symbol characterised solely by “on” and “off” states. In other embodiments of the invention the information may provide a three dimensional or holographic image when the grating element is in its diffracting state. The invention does not assume any particular type of image information.
  • In one embodiment of the invention the source of collimated light provides color sequential red, green and blue illumination and each switchable grating element is a multiplexed Bragg grating comprising a first grating for diffracting red light and a second grating for diffracting blue and green light.
  • FIG. 3 illustrates the elements of the first array in more detail. FIG. 3A is a schematic plan view of a grating element of the first array. The grating contains two multiplexed gratings having slant angles in the YX plane. The fringes 22A, 22B from the first grating and the fringes as 23A, 23B in the second grating are indicated. The same fringes are shown in the orthogonal YZ plane in FIG. 3B.
  • FIG. 4 illustrates the elements of the second array in more detail. FIG. 3A is a schematic cross sectional view of a switchable grating element of the second array. The grating contains two multiplexed gratings having slant angles in the ZX plane. The fringes 32A, 32B from the first grating and the fringes as 33A, 33B in the second grating are indicated. The same fringes are shown in the orthogonal YX plane in FIG. 4B.
  • In a further embodiment of the invention based on the embodiment of FIGS. 3-4 the switchable grating multiplexes separate red, green and blue diffracting Bragg gratings.
  • It should be apparent from consideration of FIGS. 3-4 that the invention may provide a monochrome display by recording a single monochrome grating within each switchable grating element. Further, since the display is fundamentally transparent red green and blue diffracting arrays may be stacked to provide a colour display. However such an implementation of the invention would suffer from increased thickness.
  • FIG. 5 is a schematic plan view of an illumination source in one embodiment of the invention comprising a laser module emitting red, green and blue collimated light 110R,110G,110B, a scanner 42 providing the scanned beams 111R,111G,111B, and angular sweep expansion means 43 providing the beams 112R,112G,112B and a grating coupler 44 (essentially the first coupling means discussed above) for deflecting scanned beams 113R,113G,113B into a TIR path insider the lightguide formed by the first array. The angular sweep expansion means may comprise an a focal system of lenses or other equivalent means known to those skilled in the art of optical design. The invention does not assume any particular configuration of the grating coupler with respect to the first array and many alternative schemes should be apparent to those skilled in the art of optical design. The grating coupler may employ any known grating technology. In a typical eyeglass where the display provides left and right eyepieces it would be ergonomically advantageous to integrate the illumination source within the arms of the spectacles.
  • In one embodiment of the invention the scanned beams are characterised by angular deflections in two orthogonal directions which advantageously correspond to the Y and X coordinate directions indicated in FIG. 1. Techniques for scanning a beam in orthogonal direction are well documented in the prior art.
  • The invention does not assume any particular beam scanning method. Advantageously the scanner will be an electro optical device However, devices based on piezoelectric deflectors and micro electro mechanical systems (MEMS) may be also considered. Separate scanners may be provided for red, green and blue light. Alternatively, a single scanner operating on colour sequential light from separate red green and blue sources may be used. The relative merits of such technologies in terms of scanning speed, optical efficiency, physical robustness, size and cost should be apparent to those skilled in the art of optical design.
  • In one embodiment of the invention, the scanner is similar to the electro optical micro scanner disclosed in U.S. Provisional Patent Application No. 61/457,835 by the present inventors with filing date 16 Jun. 2011 entitled HOLOGRAPHIC BEAM STEERING DEVICE FOR AUTOSTEREOSCOPIC DISPLAYS. The micro scanner described in that reference comprises: a first transparent optical substrate with an input surface and an output surface; a second transparent optical substrate with an input surface and an output surface; transparent electrodes applied to the output surface of the first substrate and the input surface of the second substrate; an electrically variable refractive index layer having a planar surface and a second surface shaped to provide an array of prisms; and a fixed refractive index layer having a planar surface and a second surface shaped to provide an array of prismatic cavities. The prisms and prismatic cavities have identical and opposing geometries, each prism abutting one of the prismatic cavities. The planar surface of the variable refractive index layer abuts the output surface of the first substrate and the planar surface of the fixed refractive index layer abuts the input surface of the second substrate. The transparent electrodes are electrically coupled to a variable voltage generating means. At least one of the transparent electrodes is patterned into independently switchable electrode elements having substantially the same cross sectional area as the prisms such that the refractive index prisms may be selectively switched in discrete steps from a fully diffracting to a non diffracting state by an electric field applied across the transparent electrodes.
  • In one embodiment of the invention the scanner scans the light into discrete angular steps. In an alternative embodiment of the invention the scanner scans the light in continuous sweeps. In one embodiment of the invention the intensity of the scanned beam is modulated by varying the refractive index modulation of at least one of the switchable grating elements traversed by the beam. Advantageously the elements of the first array are used to modulate the beam. However, it will be apparent from consideration of the description and drawings that other modulation schemes based on varying the refractive index modulation of any of the grating elements along the beam path from the light source to the output surface of the display may be used.
  • The formation of a viewable image by the display is illustrated in more detail in FIGS. 6-7. In a typical application of the invention the viewable image is overlaid on the external scene in the manner of a Heads Up Display (HUD). FIG. 7 is a schematic cross-sectional view of a portion of the second array including the grating elements 11A-11C (see FIGS. 1-2). The element 11C is in its diffracting state. A voltage source for applying a voltage across each grating element is indicated by 5 and the circuit connection to the switching electrodes across the grating element is indicated by 51. Typically, an active matrix switching scheme would be used to control the voltages applied to the first and second arrays. The TIR path of the illumination light at one point in the beam angular sweep is indicated by the rays 114R,114G,114B. The light deflected out of the display at one extreme of the beam angular sweep is indicated by rays 115R,115G,115B and at the other extreme of the beam angular sweep by the rays 116R,116G,116B. The output light forms a virtual image 111 at infinity. It should be apparent from consideration of FIG. 6 that by scanning the beam in the X and Y directions and modulating the voltage applied across the active grating element a symbol image such as the one illustrated in FIG. 7 may be written. The symbol image comprises bright pixels 113 and dark pixels 114. In this case the voltage modulation as indicated by the chart 52 showing voltage V plotted against time t would have a binary waveform represented by the characteristic 53. The output light is viewed through the pupil 112. It should be noted that each element of the second array requires a unique prescription to that all light diffracted out of the eye glass passes through an exit pupil through which the eye may observe the entire displayed image. It should be apparent that by switching the voltage to provide grey levels and taking advantage of the colour gamut provided by the red, green blue illumination more complex images may be generated.
  • FIG. 8 is a schematic side elevation view of the display 15 in relation to the observer eye 17 in one embodiment of the invention, showing the angular extent of the display data in relation to the overall field of view defined by the physical aperture of the display. The limiting rays defining the overall field of view are illustrated by 115A,115B. The rays 116A.116 b define the vertical extent of the displayed data. In typical applications such as data displays for sports it is desirable to project data into the lower portion of the field of view. The data may extend across the full horizontal field if necessary.
  • In one embodiment of the invention each switchable grating element in at least one of the input and output arrays is divided into independently switchable columns, aligned orthogonally to the TIR paths. FIG. 9 provides a front elevation of view of the elements 11A-11D of the second array. One column of the grating element 11A is indicated by the numeral 13. The invention does not place any restrictions on the width of and number of column elements in a column. The refractive index modulation of each switchable column is dynamically controlled by active matrix voltage control circuitry which is not illustrated. The refractive index modulation within a column can be set by the SBG recording conditions or can be varied dynamically by modulating each column in synchronization with the scanning of the input light. Alternatively, a combination of fixed and dynamic index modulation may be used.
  • The columns maximise the extraction of light from the lightguide by diffracting a predetermined amount of light from an active column out of the display towards the eye. Non-diffracted or zero-order light which would otherwise be confined to the lightguide by TIR is depleted in small steps each time the beam interacts with a column until all of the light has been extracted. In other applications of diffractive optical elements zero-order light is treated as a loss. However, in the present application the zero order light is recycled to allow uniform out-coupling of TIR light. The diffraction efficiency of individual column elements is controlled by adjusting the index modulation in synchronisation with the beam scanning.
  • In the embodiment of the invention illustrated in FIG. 9 the grating elements are identical in size and contain equal numbers of columns. The use of columns elements as described above allows the grating element widths to vary across an array row as in the case of the grating elements indicated by 11E-11H in FIG. 10. The grating elements widths may be varied dynamically to match the extraction efficiency to the time varying beam angle. This overcomes the problem that TIR rays with incidence angles that do not meet the exact Bragg condition (off-Bragg rays) are diffracted with progressively diminishing efficiency as the angle increases up to the angular bandwidth limit, requiring more bounces before the beam or an acceptable portion of the beam is ejected from the lightguide.
  • FIG. 11 is a schematic plan view of a portion of the grating element 11 a illustrating the propagation of TIR light through the columns labelled by 13A-13C. The TIR path light inside the light guide is indicated by the ray 102R. The diffraction efficiencies of the column elements 13A,13B,13C for rays meeting the exact Bragg diffraction angle (referred to as on-Bragg rays) are k,k′,k″ respectively. If the TIR light is injected into the lightguide with power P0 the power diffracted at element 13A is kP0 in to the ray direction 102RA. The power diffracted at the element 13B is k′(1−k)P0 into the ray direction 102RB and so on until most of the beam power has been extracted and the output light is distributed over the ray directions generally indicated by 120R. The k factors are specified to give a fixed light output at each bounce of the TIR beam ensuring a uniform light distribution across the exit pupil of the display. Other light distributions maybe obtained by suitable specification of the k-factors.
  • In embodiments of the invention using the switchable column principle described above the grating element is no longer a fixed functional element of the display as discussed in relation to the embodiments of FIGS. 1-8. The term now describes the instantaneous extent of the set of columns over which extraction of the light corresponds to a defined image element (pixel) takes place. In addition to maximising the extraction of light from the display the switchable columns principle also allow the output put light to be distributed uniformly over the exit pupil. Furthermore, the switchable column principle allow the size of the exit pupil to be expanded by using a sufficiently large subset of columns and matching the column prescriptions to the scanned beam ray directions. Switchable column designs for use with the present invention may be based on the embodiments and teachings disclosed in the U.S. Provisional Patent Application No. 61/457,835 with filing date 16 Jun. 2011 entitled HOLOGRAPHIC BEAM STEERING DEVICE FOR AUTOSTEREOSCOPIC DISPLAYS which is incorporated by reference herein in its entirety.
  • In the embodiment of FIG. 1 the first array is orthogonal the second array. In an alternative embodiment of the invention illustrated in FIGS. 12-15 the substrates of the first array are parallel to the substrates of the second array. The advantage of such a configuration which will now be discussed with reference to FIGS. 12-15 is that the first and second arrays may share common substrates and transparent electrode layers avoiding the fabrication problems of aligning the first and second arrays. Again the drawings are referred to the coordinate system defined by the axes labelled XYZ. FIG. 12 is a schematic front elevation view of the display showing the illumination source 1 the first array 6 which further comprises the elements 24A-24D and the second array 3. The illumination source and second array are unchanged from the embodiment of FIG. 1. FIG. 13 is a schematic cross-sectional view of the first and second arrays showing the propagation of red beam. FIG. 14 is a schematic cross sectional view of the first array 6 in the ZY plane. FIG. 15 is schematic cross sectional view of the first array in the ZX plane. The first and second arrays may abut as shown in FIG. 13. In alternative embodiments of the invention the first and second arrays may sandwich an air gap or a slab of transparent material. Turning now to FIG. 13 we see that the first and second arrays are sandwiched by the substrates 30,31 to which transparent electrodes (not illustrated) are applied on opposing faces. The first array grating element 24B and the second array gratings elements 11A-11D are indicated. A passive grating device comprises a grating 29B sandwiched by substrates 28A,28B abuts the substrate 30 overlapping the element 24A. As indicated in FIG. 14 the passive grating device extends over the entire length of the first array. Although the passive grating is illustrated as four distinct elements 29A-29D in FIG. 13 the grating will typically have a uniform prescription along its length. The illumination source injects colour- sequential TIR light 121R,121G,121B into the lightguide formed by the first array substrates which is diffracted by the active element 24B into the ray directions 122R,122G,122B. The passive grating diffracts the light which is totally internally reflected at the outer surface of the substrate 28B as represented by the ray paths 123R,124R lying in the plane ZY in FIG. 12 and FIG. 14. The light then proceeds to follow the TIR path 102R within the second array. At least one of the first or second arrays may use the column element scheme described earlier.
  • In one embodiment of the invention a switchable grating element according to the principles of the invention is a surface relief grating backfilled with an electrically variable refractive index medium based on the embodiments and teachings disclosed in the United States Provisional Patent Application No. 61/457,835 with filing date 16 Jun. 2011 entitled HOLOGRAPHIC BEAM STEERING DEVICE FOR AUTOSTEREOSCOPIC DISPLAYS which is incorporated by reference herein in its entirety.
  • In order to ensure high transparency to external light, high contrast of displayed data (ie high diffraction efficiency) and very low haze due to scatter the following material characteristics are desirable. A low index-modulation residual grating, with a modulation not greater than 0.007, is desirable. This will require a good match between the refractive index of the polymer region and the ordinary index of the liquid crystal. The material should have a high index modulation capability with a refractive index modulation not less than 0.06. The material should exhibit very low haze for HPDLC cell thicknesses in the range 2-6 micron. The HPDLC should have a good index match (to within +0.015) for glass or plastic at 630 nm. One option is 1.515 (for example, 1737F or BK7 glasses). An alternative option would be 1.472 (for example Borofloat or 7740 Pyrex glasses).
  • Desirably the light sources are solid-state lasers. The low etendue of lasers results in considerable simplification of the optics. LEDs may also be used with the invention. However, LEDs suffer from large etendue, inefficient light collection and complex illuminator and projection optics. A further disadvantage with regard to SBGs is that LEDs are fundamentally unpolarized.
  • Any display device using lasers will tend to suffer from speckle. The present invention may incorporate any type of despeckler. Advantageously, the despeckler would be based on electro-optical principles. A despeckler for use with the present invention may be based on the disclosed embodiments and teachings of PCT Application No.: US2008/001909, with International Filing Date: 22 Jul. 2008, entitled LASER ILLUMINATION DEVICE. and PCT Application No.: PCT/GB2010/002023 filed on 2 Nov. 2010 by the present inventors entitled APPARATUS FOR REDUCING LASER SPECKLE each of which is incorporated by reference herein in its entirety. The need for a despeckler may be eliminated by using a miniature, broadband (4 nm) ROB lasers of the type supplied by Epicrystal Inc.
  • Speckle arising from laser sources can be reduced by applying decorrelation procedures based on combining multiple sets of speckle patterns or cells from a given speckle-generating surface during the spatio-temporal resolution of the human eye. Desirably the despeckler is an electro-optical device configured to generate set of unique speckle phase cells by operating on the angular or polarization characteristic of rays propagating through the device. Furthermore, the despeckler device may be configured in several different ways to operate on one of more of the phase, and ray angular characteristics of incoming light. The invention does not rely on any particular despeckler technology. Any method for generating and averaging speckle cells may be used with the invention. However, solid-state methods using SBGs offer more scope for miniaturization of the illuminator module.
  • The optical design of a wearable display according to the principles of the invention will be dictated by basic geometrical considerations well known to those skilled in the art of optical design. The goal is to maximize eye relief, exit pupil and field of view. Since these parameters will impact on geometrical aberrations, dispersion and other factors affecting image quality some performance versus form factor trade-offs are inevitable. The preferred light source is a laser. If broadband sources such as LEDs are used the design will require careful attention to the correction of chromatic dispersion and monochromatic geometrical aberrations. Dispersion is a problem for any DOE illuminated by a broadband source. The degree of defocus or image blur due to dispersion depends on the source spectral bandwidth and the distance from the DOE to the virtual image plane. Typically, the angular blur for a given wavelength and a source spectral bandwidth will be of the order of the bandwidth divided by the wavelength. The effect of monochromatic geometrical aberrations will depend on the field of view and pupil size.
  • A wearable display based on any of the above-described embodiments may be implemented using plastic substrates. Using sufficiently thin substrates such embodiments could be implemented as a long clear strip appliqué running from the nasal to ear ends of each eyeglass with a small illumination module continuing laser dies, light guides and display drive chip tucked into the sidewall of the eyeglass. Standard index matched glue would be used to fix the display to the surfaces of the eyeglasses. The plastic substrates may be fabricated from materials such as polycarbonate. The transparent electrodes may be fabricated from carbon nanotubes (CNTs) which may be more suitable than ITO for use with flexible substrates. The display may further comprise an environmental seal. A plastic SBG for use in the present invention may be based on the HPDLC material system and processes disclosed in a United States Provisional Patent Application by the present inventors entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES for which no filing number is available at the present but which is referenced by the Applicant's docket number SBG104 which is incorporated by reference herein in its entirety.
  • Although a planar display element using flat substrates has been discussed in the above description an eyepiece according to the principles of the invention may be fabricated using curved surfaces. The invention the invention may be used to provide a facetted surface display. In one embodiment of the invention the switchable gratings are SBGs operated in reverse mode. In reverse mode the SBG has low diffraction efficiency when no electric field is applied and has high efficiency when a field is applied. A reverse mode SBG for use in the present invention may be based on the HPDLC material system and processes disclosed in U.S. Provisional Patent Application No. 61/573,066 with filing date 24 Aug. 2011 by the present inventors entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES which is incorporated by reference herein in its entirety.
  • A key feature of all of the embodiments described above is that they provide the benefit of see-through. The latter is of great importance in Head Up Displays for automobile, aviation and other transport applications; private see-through displays such for security sensitive applications; architectural interior signage and many other applications. With the addition of a holographic brightness enhancing film, or other narrow band reflector affixed to one side of the display, the purpose of which is to reflect the display illumination wavelength light only, the see-through display can be made invisible (and hence secure) in the opposite direction of view. Here the reflected display illumination is effectively mirrored and therefore blocked in one direction, making it ideal for transparent desktop display applications in customer or personal interview settings common in bank or financial services settings.
  • Although the present application addresses wearable displays it will be clear that in any of the above embodiments the eye lens and retina may be replaced by any type of imaging lens and a screen. Any of the above described embodiments of the invention may be used in either directly viewed or virtual image displays. Possible applications range from miniature displays such as those used in viewfinders to large area public information displays. The above described embodiments may be used in applications where a transparent display is required. For example the invention may be used in applications where the displayed imagery is superimposed on a background scene such as heads up displays and teleprompters. The invention may be used to provide a display device that is located at or near to an internal image plane of an optical system. For example any of the above described embodiments may be used to provide a symbolic data display for a camera viewfinder in which symbol data is projected at an intermediate image plane and then magnified by a viewfinder eyepiece. It will be clear the invention may be applied in biocular or monocular displays. The invention may also be used in a stereoscopic wearable display. Any of the above described embodiments of the invention may be used in a rear projection television. The invention may be applied in avionic, industrial and medical displays. There are applications in entertainment, simulation, virtual reality, training systems and sport.
  • SBG arrays may be fabricated using a diffractive optical mask formed on a transparent sapphire wafer. The SBG cell optical prescriptions are defined on a cell to cell basis. The process of fabricating the SBG array may start with the creation of a multiphase computer generated hologram encoding the desired optical functions which is then holographically recorded in the SBG.
  • It should be noted that the total internal reflection ray paths shown in the drawings are meant to be schematic only. The number of total internal reflections will depend on the scrolling scheme used and the overall geometry of the light guide formed by the display layers. Typically, in order to ensure that TIR occurs the incidence angles must lie in the range of about 42 to about 70 degrees. It should be emphasized that the drawings are exemplary and that the dimensions have been exaggerated.
  • The method of fabricating the SBG pixel elements and the ITO electrodes used in any of the above-described embodiments of the invention may be based on the process disclosed in the PCT Application No.: US2006/043938, claiming priority to U.S. provisional patent application 60/789,595 filed on 6 Apr. 2006, entitled METHOD AND APPARATUS FOR PROVIDING A TRANSPARENT DISPLAY, which is incorporated by reference herein in its entirety.
  • The display devices disclosed in the present invention may employ features of the transparent edge lit display embodiments and teachings disclosed in U.S. patent application Ser. No. 10/555,661 filed 4 Nov. 2005 entitled SWITCHABLE VIEWFINDER DISPLAY which is incorporated by reference herein in its entirety.
  • The despeckler referred to in the above description may be based on the disclosed embodiments and teachings of PCT Application No.: US2008/001909, with International Filing Date: 22 Jul. 2008, entitled LASER ILLUMINATION DEVICE. and PCT Application No.: PCT/GB2010/002023 filed on 2 Nov. 2010 by the present inventors entitled APPARATUS FOR REDUCING LASER SPECKLE each of which is incorporated by reference herein in its entirety.
  • The optical design of the display disclosed in the present application may be guided by the teachings of PCT Application No.: PCT/GB2010/001982 entitled COMPACT EDGE ILLUMINATED EYEGLASS DISPLAY by the present inventors (and also referenced by the Applicant's docket number SBG081PCT) which is incorporated by reference herein in its entirety.
  • The display disclosed in the present application may incorporate an eye tracker based on the embodiments and teachings disclosed in U.S. Provisional Patent Application No. 61/344,748 with filing date 28 Sep. 2010 entitled EYE TRACKED HOLOGRAPHIC EDGE ILLUMINATED EYEGLASS DISPLAY (and also referenced by the Applicant's docket number SBG092) which is incorporated by reference herein in its entirety.
  • The means for scanning collimated input light and the column array technique for improving the light extraction efficiency from switchable gratings discussed above may be based on the embodiments and teachings disclosed in the U.S. Provisional Patent Application No. 61/457,835 with filing date 16 Jun. 2011 entitled HOLOGRAPHIC BEAM STEERING DEVICE FOR AUTOSTEREOSCOPIC DISPLAYS which is incorporated by reference herein in its entirety.
  • The optical design of display disclosed in the present application may be guided by the teachings of PCT Application No.: PCT/GB2010/000835 with International Filing Date: 26 Apr. 2010 entitled COMPACT HOLOGRAPHIC EDGE ILLUMINATED EYEGLASS DISPLAY which is incorporated by reference herein in its entirety, which discloses eyeglass display architectures based on a light guiding eyepiece in which a two dimension array of SBG deflectors is combined with an input beam.
  • The display disclosed in the present application may fabricated using the HPDLC material system and processes disclosed in a U.S. Provisional Patent Application No. 61/573,066 with filing date 24 Aug. 2011 by the present inventors entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES which is incorporated by reference herein in its entirety.
  • It should be understood by those skilled in the art that while the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. Various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.

Claims (23)

1. A transparent wearable data display comprising:
a source of light;
a means for collimating said light;
a means for deflecting said collimated light into a scanned beam;
a first array comprising one column containing M switchable grating elements sandwiched between first and second parallel transparent substrates, said substrates together functioning as a first light guide;
a second array comprising N columns and M rows of switchable grating elements sandwiched between third and fourth parallel transparent substrates, said substrates together functioning as a second light guide;
transparent electrodes applied to said first and second and said third and fourth substrates;
a first coupling means for directing said scanned beam into a first TIR light path between the outer surfaces of said first lightguide along said first array column; and
a second coupling means linking each element of said first array to the first element of a row of elements of said second array,
said switchable grating elements each having a diffracting state and a non diffracting state,
each element of said first array when in its diffracting state directing light via said second coupling means into a second TIR path along a row of said second array,
each element of said second array in said diffracting state deflecting light through said fourth substrate.
2. The wearable data display of claim 1 wherein at least one of said electrodes of said first array is patterned into 1×N independently switchable elements each said element overlapping one of said first array grating elements, wherein at least one of said electrodes of said second array is patterned into M×N independently switchable elements each said element overlapping one of said second array grating elements.
3. The wearable data display of claim 1 wherein said switchable grating elements each have a diffracting state when no electric field is applied across said electrodes and a non diffracting state when a field is applied across said electrodes.
4. The wearable data display of claim 1 wherein each element of said first array is disposed adjacent a first element of a row of said second array.
5. The wearable data display of claim 1 wherein each said grating element of said second array encodes image information.
6. The wearable display of claim 1 wherein said fourth substrate faces a viewer of the display.
7. The wearable data display of claim 1 wherein at any point in time said element of said second array in said diffracting state forms an image of the information encoded within said grating element at a predefined viewing range and an angular bearing defined by the instantaneous deflection angles of said scanned beam.
8. The wearable data display of claim 1 wherein said substrates of said first array are parallel to said substrates of said second array.
9. The wearable data display of claim 1 wherein said substrates of said first array are orthogonal to said substrates of said second array.
10. The wearable data display of claim 1 wherein said first coupling means is a grating device.
11. The wearable data display of claim 1 wherein said second coupling means is a grating device abutting each of said first and second arrays.
12. The wearable data display of claim 1 wherein each switchable grating element of said second array is divided into independently switchable columns aligned orthogonally to the direction of said output array TIR path.
13. The wearable data display of claim 1 wherein said switchable grating is a Switchable Bragg Grating.
14. The wearable data display of claim 1 wherein said scanned beam is characterised by angular deflections in two orthogonal directions.
15. The wearable data display of claim 1 wherein the intensity of said scanned beam is modulated by varying the refractive index modulation of at least one of the switchable grating elements traversed by the beam.
16. The wearable data display of claim 1 wherein said light comprises first, second and third wavelength light.
17. The wearable data display of claim 1 wherein said light comprises first second and third wavelength light and each switchable grating element is a multiplexed SBG comprising a first grating for diffracting said first wavelength light and a second grating for diffracting said second and third wavelength light.
18. The wearable data display of claim 1 wherein said light comprises first second and third wavelength light and each switchable grating element is a multiplexed SBG comprising a first grating for diffracting said first wavelength light, a second grating for diffracting said second wavelength light and a third grating for diffracting said third wavelength light.
19. The wearable data display of claim 1 wherein each said switchable grating is a surface relief grating backfilled with an electrically variable refractive index medium.
20. The wearable data display of claim 1 wherein each switchable grating element in at least one of said first array and said second array is divided into independently switchable columns aligned orthogonally to said TIR paths, wherein the refractive index modulation of each element in said switchable column is dynamically controlled such that a predetermined amount of light is diffracted by said switchable column through said fourth substrate.
21. The wearable data display of claim 1 wherein said data display is one of a pair of left and right eyepieces.
22. The wearable data display of claim 1 wherein said means for deflecting said collimated light is an electro optical device.
23. The wearable data display of claim 1 wherein said means for deflecting said collimated light comprises:
a first transparent optical substrate with an input surface and an output surface;
a second transparent optical substrate with an input surface and an output surface;
transparent electrodes applied to said output surface of said first substrate and said input surface of said second substrate;
an electrically variable refractive index layer having a planar surface and a second surface shaped to provide an array of prisms; and
a fixed refractive index layer having a planar surface and a second surface shaped to provide an array of prismatic cavities, said prisms and said prismatic cavities having
identical and opposing geometries, each said prism abutting one of said prismatic cavities,
wherein said planar surface of said variable refractive index layer abuts said output surface of said first substrate and said planar surface of said fixed refractive index layer abuts said input surface of said second substrate, wherein said transparent electrodes are electrically couple to a variable voltage generating means,
wherein at least one of said transparent electrodes is patterned into independently switchable electrode elements having substantially the same cross sectional area as said prisms such that said variable refractive index prisms may be selectively switched in discrete steps from a fully diffracting to a non diffracting state by an electric field applied across said transparent electrodes.
US14/240,643 2011-08-24 2012-08-22 Wearable data display Abandoned US20140204455A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/240,643 US20140204455A1 (en) 2011-08-24 2012-08-22 Wearable data display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161573067P 2011-08-24 2011-08-24
PCT/GB2012/000677 WO2013027004A1 (en) 2011-08-24 2012-08-22 Wearable data display
US14/240,643 US20140204455A1 (en) 2011-08-24 2012-08-22 Wearable data display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2012/000677 A-371-Of-International WO2013027004A1 (en) 2011-08-24 2012-08-22 Wearable data display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/794,356 Continuation US10642058B2 (en) 2011-08-24 2015-07-08 Wearable data display

Publications (1)

Publication Number Publication Date
US20140204455A1 true US20140204455A1 (en) 2014-07-24

Family

ID=46963982

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/240,643 Abandoned US20140204455A1 (en) 2011-08-24 2012-08-22 Wearable data display
US14/794,356 Active US10642058B2 (en) 2011-08-24 2015-07-08 Wearable data display
US16/855,812 Active US11287666B2 (en) 2011-08-24 2020-04-22 Wearable data display
US17/685,918 Active US11874477B2 (en) 2011-08-24 2022-03-03 Wearable data display
US18/385,824 Pending US20240077742A1 (en) 2011-08-24 2023-10-31 Wearable data display

Family Applications After (4)

Application Number Title Priority Date Filing Date
US14/794,356 Active US10642058B2 (en) 2011-08-24 2015-07-08 Wearable data display
US16/855,812 Active US11287666B2 (en) 2011-08-24 2020-04-22 Wearable data display
US17/685,918 Active US11874477B2 (en) 2011-08-24 2022-03-03 Wearable data display
US18/385,824 Pending US20240077742A1 (en) 2011-08-24 2023-10-31 Wearable data display

Country Status (3)

Country Link
US (5) US20140204455A1 (en)
EP (2) EP2748670B1 (en)
WO (1) WO2013027004A1 (en)

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140140653A1 (en) * 2012-11-16 2014-05-22 Rockwell Collins, Inc. Transparent waveguide display
US20140267618A1 (en) * 2013-03-15 2014-09-18 Google Inc. Capturing and Refocusing Imagery
US20150205134A1 (en) * 2014-01-17 2015-07-23 Thalmic Labs Inc. Systems, articles, and methods for wearable heads-up displays
US9164290B2 (en) 2013-11-06 2015-10-20 Microsoft Corporation Grating configurations for a tiled waveguide display
US9223138B2 (en) 2011-12-23 2015-12-29 Microsoft Technology Licensing, Llc Pixel opacity for augmented reality
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US9274338B2 (en) 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
US9274339B1 (en) 2010-02-04 2016-03-01 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
US9297996B2 (en) 2012-02-15 2016-03-29 Microsoft Technology Licensing, Llc Laser illumination scanning
US9304235B2 (en) 2014-07-30 2016-04-05 Microsoft Technology Licensing, Llc Microfabrication
US9341846B2 (en) 2012-04-25 2016-05-17 Rockwell Collins Inc. Holographic wide angle display
US20160154150A1 (en) * 2012-12-10 2016-06-02 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
US9366864B1 (en) 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US9368546B2 (en) 2012-02-15 2016-06-14 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US9377623B2 (en) 2014-08-11 2016-06-28 Microsoft Technology Licensing, Llc Waveguide eye tracking employing volume Bragg grating
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
WO2016146963A1 (en) * 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
US9459451B2 (en) 2013-12-26 2016-10-04 Microsoft Technology Licensing, Llc Eye tracking apparatus, method and system
WO2016113533A3 (en) * 2015-01-12 2016-10-06 Milan Momcilo Popovich Holographic waveguide light field displays
US9488836B2 (en) 2013-05-02 2016-11-08 Microsoft Technology Licensing, Llc Spherical interface for binocular display
US9494799B2 (en) 2014-09-24 2016-11-15 Microsoft Technology Licensing, Llc Waveguide eye tracking employing switchable diffraction gratings
US9507150B1 (en) 2011-09-30 2016-11-29 Rockwell Collins, Inc. Head up display (HUD) using a bent waveguide assembly
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US9578318B2 (en) 2012-03-14 2017-02-21 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US9581820B2 (en) 2012-06-04 2017-02-28 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US9606586B2 (en) 2012-01-23 2017-03-28 Microsoft Technology Licensing, Llc Heat transfer device
US9625723B2 (en) 2013-06-25 2017-04-18 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism
US9632317B2 (en) 2014-06-24 2017-04-25 Commissariat à l'énergie atomique et aux énergies alternatives Image projection device
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
US9726887B2 (en) 2012-02-15 2017-08-08 Microsoft Technology Licensing, Llc Imaging structure color conversion
US9766449B2 (en) 2014-06-25 2017-09-19 Thalmic Labs Inc. Systems, devices, and methods for wearable heads-up displays
US9779643B2 (en) 2012-02-15 2017-10-03 Microsoft Technology Licensing, Llc Imaging structure emitter configurations
US9827209B2 (en) 2015-02-09 2017-11-28 Microsoft Technology Licensing, Llc Display system
US9904051B2 (en) 2015-10-23 2018-02-27 Thalmic Labs Inc. Systems, devices, and methods for laser eye tracking
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9959818B2 (en) * 2016-09-22 2018-05-01 Microsoft Technology Licensing, Llc Display engines for use with optical waveguides
US9958682B1 (en) 2015-02-17 2018-05-01 Thalmic Labs Inc. Systems, devices, and methods for splitter optics in wearable heads-up displays
US9989764B2 (en) 2015-02-17 2018-06-05 Thalmic Labs Inc. Systems, devices, and methods for eyebox expansion in wearable heads-up displays
US20180188631A1 (en) * 2016-12-29 2018-07-05 Oculus Vr, Llc Switchable bragg gratings for chromatic error correction of pancharatnam berry phase (pbp) components
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
WO2018152235A1 (en) * 2017-02-14 2018-08-23 Optecks, Llc Optical display system for augmented reality and virtual reality
US10073268B2 (en) 2015-05-28 2018-09-11 Thalmic Labs Inc. Display with integrated visible light eye tracking
US10089516B2 (en) 2013-07-31 2018-10-02 Digilens, Inc. Method and apparatus for contact image sensing
US10088689B2 (en) 2015-03-13 2018-10-02 Microsoft Technology Licensing, Llc Light engine with lenticular microlenslet arrays
US10088675B1 (en) 2015-05-18 2018-10-02 Rockwell Collins, Inc. Turning light pipe for a pupil expansion system and method
US10108010B2 (en) 2015-06-29 2018-10-23 Rockwell Collins, Inc. System for and method of integrating head up displays and head down displays
US10126552B2 (en) 2015-05-18 2018-11-13 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US10126815B2 (en) 2016-01-20 2018-11-13 Thalmic Labs Inc. Systems, devices, and methods for proximity-based eye tracking
WO2018102834A3 (en) * 2016-12-02 2018-11-15 Digilens, Inc. Waveguide device with uniform output illumination
US10133075B2 (en) 2015-05-04 2018-11-20 Thalmic Labs Inc. Systems, devices, and methods for angle- and wavelength-multiplexed holographic optical elements
US10145533B2 (en) 2005-11-11 2018-12-04 Digilens, Inc. Compact holographic illumination device
US10146053B2 (en) 2012-12-19 2018-12-04 Microsoft Technology Licensing, Llc Multiplexed hologram tiling in a waveguide display
US10151926B2 (en) 2016-01-29 2018-12-11 North Inc. Systems, devices, and methods for preventing eyebox degradation in a wearable heads-up display
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US20180364486A1 (en) * 2017-06-16 2018-12-20 Journey Technology, Ltd. Optical apparatus and waveguide display apparatus
US10185154B2 (en) 2011-04-07 2019-01-22 Digilens, Inc. Laser despeckler based on angular diversity
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US10215987B2 (en) 2016-11-10 2019-02-26 North Inc. Systems, devices, and methods for astigmatism compensation in a wearable heads-up display
US10216061B2 (en) 2012-01-06 2019-02-26 Digilens, Inc. Contact image sensor using switchable bragg gratings
US10230929B2 (en) 2016-07-27 2019-03-12 North Inc. Systems, devices, and methods for laser projectors
US10228561B2 (en) 2013-06-25 2019-03-12 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism and gaze-detection light
US10234696B2 (en) 2007-07-26 2019-03-19 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US10248001B1 (en) 2016-11-16 2019-04-02 Facebook Technologies, Llc Varifocal structure comprising a liquid lens structure in optical series with a liquid crystal lens in a head-mounted display
US10247943B1 (en) 2015-05-18 2019-04-02 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US10254942B2 (en) 2014-07-31 2019-04-09 Microsoft Technology Licensing, Llc Adaptive sizing and positioning of application windows
US10295824B2 (en) 2017-01-26 2019-05-21 Rockwell Collins, Inc. Head up display with an angled light pipe
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
US10345903B2 (en) 2013-07-30 2019-07-09 Microsoft Technology Licensing, Llc Feedback for optic positioning in display devices
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US10365550B2 (en) 2016-04-13 2019-07-30 North Inc. Systems, devices, and methods for focusing laser projectors
US10365492B2 (en) 2016-12-23 2019-07-30 North Inc. Systems, devices, and methods for beam combining in wearable heads-up displays
US10379419B1 (en) 2016-11-23 2019-08-13 Facebook Technologies, Llc Focus adjusting pancharatnam berry phase liquid crystal lenses in a head-mounted display
US10388073B2 (en) 2012-03-28 2019-08-20 Microsoft Technology Licensing, Llc Augmented reality light guide display
US10409057B2 (en) 2016-11-30 2019-09-10 North Inc. Systems, devices, and methods for laser eye tracking in wearable heads-up displays
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US10429639B2 (en) * 2016-01-31 2019-10-01 Paul Lapstun Head-mounted light field display
US10437073B2 (en) 2017-01-25 2019-10-08 North Inc. Systems, devices, and methods for beam combining in laser projectors
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
US10437051B2 (en) 2012-05-11 2019-10-08 Digilens Inc. Apparatus for eye tracking
US10459222B2 (en) 2016-08-12 2019-10-29 North Inc. Systems, devices, and methods for variable luminance in wearable heads-up displays
US10488662B2 (en) 2015-09-04 2019-11-26 North Inc. Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses
US10502876B2 (en) 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
US10509241B1 (en) 2009-09-30 2019-12-17 Rockwell Collins, Inc. Optical displays
US10528135B2 (en) 2013-01-14 2020-01-07 Ctrl-Labs Corporation Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US10546523B2 (en) * 2018-06-22 2020-01-28 Microsoft Technology Licensing, Llc Display system with a single plate optical waveguide and independently adjustable micro display arrays
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10592080B2 (en) 2014-07-31 2020-03-17 Microsoft Technology Licensing, Llc Assisted presentation of application windows
US10598932B1 (en) 2016-01-06 2020-03-24 Rockwell Collins, Inc. Head up display for integrating views of conformally mapped symbols and a fixed image source
US10642058B2 (en) 2011-08-24 2020-05-05 Digilens Inc. Wearable data display
US10656822B2 (en) 2015-10-01 2020-05-19 North Inc. Systems, devices, and methods for interacting with content displayed on head-mounted displays
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US10678053B2 (en) 2009-04-27 2020-06-09 Digilens Inc. Diffractive projection apparatus
US10678412B2 (en) 2014-07-31 2020-06-09 Microsoft Technology Licensing, Llc Dynamic joint dividers for application windows
US10684692B2 (en) 2014-06-19 2020-06-16 Facebook Technologies, Llc Systems, devices, and methods for gesture identification
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
CN111465888A (en) * 2017-10-16 2020-07-28 奥里姆光学有限公司 High-efficient compact head-mounted display system
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US10732407B1 (en) 2014-01-10 2020-08-04 Rockwell Collins, Inc. Near eye head up display system and method with fixed combiner
US10795160B1 (en) 2014-09-25 2020-10-06 Rockwell Collins, Inc. Systems for and methods of using fold gratings for dual axis expansion
US10802190B2 (en) 2015-12-17 2020-10-13 Covestro Llc Systems, devices, and methods for curved holographic optical elements
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US10901216B2 (en) 2017-10-23 2021-01-26 Google Llc Free space multiple laser diode modules
US10901205B1 (en) 2016-08-09 2021-01-26 Facebook Technologies, Llc Focus adjusting liquid crystal lenses in a head-mounted display
CN112285931A (en) * 2016-02-18 2021-01-29 奥里姆光学有限公司 Compact head-mounted display system
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US10942430B2 (en) 2017-10-16 2021-03-09 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US10976483B2 (en) 2019-02-26 2021-04-13 Facebook Technologies, Llc Variable-etch-depth gratings
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
US11068049B2 (en) 2012-03-23 2021-07-20 Microsoft Technology Licensing, Llc Light guide display and field of view
US11079846B2 (en) 2013-11-12 2021-08-03 Facebook Technologies, Llc Systems, articles, and methods for capacitive electromyography sensors
US11086216B2 (en) 2015-02-09 2021-08-10 Microsoft Technology Licensing, Llc Generating electronic components
US11204540B2 (en) 2009-10-09 2021-12-21 Digilens Inc. Diffractive waveguide providing a retinal image
US11300795B1 (en) 2009-09-30 2022-04-12 Digilens Inc. Systems for and methods of using fold gratings coordinated with output couplers for dual axis expansion
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US11314084B1 (en) 2011-09-30 2022-04-26 Rockwell Collins, Inc. Waveguide combiner system and method with less susceptibility to glare
US11327330B2 (en) * 2018-06-04 2022-05-10 The Regents Of The University Of Colorado, A Body Corporate 3D diffractive optics
US11366316B2 (en) 2015-05-18 2022-06-21 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
EP4089470A1 (en) 2021-05-12 2022-11-16 Commissariat à l'énergie atomique et aux énergies alternatives Device for projecting an image into the eye of a user
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11635736B2 (en) 2017-10-19 2023-04-25 Meta Platforms Technologies, Llc Systems and methods for identifying biological structures associated with neuromuscular source signals
US11644799B2 (en) 2013-10-04 2023-05-09 Meta Platforms Technologies, Llc Systems, articles and methods for wearable electronic devices employing contact sensors
US11666264B1 (en) 2013-11-27 2023-06-06 Meta Platforms Technologies, Llc Systems, articles, and methods for electromyography sensors
US11681143B2 (en) 2019-07-29 2023-06-20 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US11709422B2 (en) 2020-09-17 2023-07-25 Meta Platforms Technologies, Llc Gray-tone lithography for precise control of grating etch depth
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11797087B2 (en) 2018-11-27 2023-10-24 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US11961494B1 (en) 2020-03-27 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200057353A1 (en) 2009-10-09 2020-02-20 Digilens Inc. Compact Edge Illuminated Diffractive Display
JP2015184561A (en) 2014-03-25 2015-10-22 ソニー株式会社 Light guide device, image display device, and display device
JP2015184560A (en) * 2014-03-25 2015-10-22 ソニー株式会社 Light guide device, image display device, and display device
WO2017127897A1 (en) 2016-01-27 2017-08-03 Paul Lapstun Shuttered waveguide light field display
US10466479B2 (en) 2016-10-07 2019-11-05 Coretronic Corporation Head-mounted display apparatus and optical system
CN106772764B (en) 2016-12-29 2019-09-27 上海天马微电子有限公司 Backlight module and display device
US10409066B2 (en) 2017-01-19 2019-09-10 Coretronic Corporation Head-mounted display device with waveguide elements
KR102633622B1 (en) * 2017-02-13 2024-02-02 시리얼 테크놀로지즈 에스.에이. Light guide device and display device for expressing scenes
CN108873326A (en) 2017-05-16 2018-11-23 中强光电股份有限公司 Head-mounted display apparatus
US11480797B2 (en) * 2018-07-06 2022-10-25 Chengdu Idealsee Technology Co., Ltd. Waveguide-based display module, and image generation module and application thereof
EP3843866B1 (en) * 2018-08-28 2023-03-08 Magic Leap, Inc. Dynamic incoupling gratings in imaging systems
US11067877B2 (en) 2018-11-09 2021-07-20 Samsung Electronics Co., Ltd. Structured light projector and electronic device including the same
US11536972B2 (en) 2020-05-22 2022-12-27 Magic Leap, Inc. Method and system for dual projector waveguide displays with wide field of view using a combined pupil expander-extractor (CPE)
US11852842B2 (en) * 2020-06-16 2023-12-26 Marsupial Holdings, Inc. Aiming device with a diffractive optical element and reflective image combiner
KR20230086689A (en) * 2020-09-16 2023-06-15 매직 립, 인코포레이티드 Eyepieces for Augmented Reality Display Systems
EP4083680A1 (en) 2021-04-30 2022-11-02 IMEC vzw Optical system and corresponding optical method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148302A (en) * 1986-04-10 1992-09-15 Akihiko Nagano Optical modulation element having two-dimensional phase type diffraction grating
US20050105909A1 (en) * 2003-11-18 2005-05-19 Stone Thomas W. Optical add/drop multiplexing systems
US20060146422A1 (en) * 2004-10-08 2006-07-06 Pioneer Corporation Diffractive optical element, objective lens module, optical pickup, and optical information recording and reproducing apparatus
US20100134534A1 (en) * 2007-05-04 2010-06-03 Carl Zeiss Ag Display unit, and displaying method for the binocular representation of a multicolor image
US20100231532A1 (en) * 2009-03-12 2010-09-16 Samsung Electronics Co., Ltd. Touch sensing system and display apparatus employing the same
US20110063604A1 (en) * 2009-09-11 2011-03-17 Identix Incorporated Optically based planar scanner

Family Cites Families (1333)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242411A (en) 1999-05-10 2001-09-07 Asahi Glass Co Ltd Hologram display device
US1043938A (en) 1911-08-17 1912-11-12 Friedrich Huttenlocher Safety device for gas-lamps.
US2141884A (en) 1936-11-12 1938-12-27 Zeiss Carl Fa Photographic objective
US3482498A (en) 1967-05-09 1969-12-09 Trw Inc Ridge pattern recording apparatus
GB1332433A (en) 1969-10-24 1973-10-03 Smiths Industries Ltd Head-up display apparatus
DE2115312C3 (en) 1971-03-30 1975-06-26 Hoechst Ag, 6000 Frankfurt Heatable spinning shaft
US3843231A (en) 1971-04-22 1974-10-22 Commissariat Energie Atomique Liquid crystal diffraction grating
US3851303A (en) 1972-11-17 1974-11-26 Sundstrand Data Control Head up display and pitch generator
US3885095A (en) 1973-04-30 1975-05-20 Hughes Aircraft Co Combined head-up multisensor display
US3965029A (en) 1974-02-04 1976-06-22 Kent State University Liquid crystal materials
US3975711A (en) 1974-08-30 1976-08-17 Sperry Rand Corporation Real time fingerprint recording terminal
US4066334A (en) 1975-01-06 1978-01-03 National Research Development Corporation Liquid crystal light deflector
US4082432A (en) 1975-01-09 1978-04-04 Sundstrand Data Control, Inc. Head-up visual display system using on-axis optics with image window at the focal plane of the collimating mirror
US3940204A (en) 1975-01-23 1976-02-24 Hughes Aircraft Company Optical display systems utilizing holographic lenses
GB1548164A (en) 1975-06-25 1979-07-04 Penrose R Set of tiles for covering a surface
US4035068A (en) 1975-06-25 1977-07-12 Xerox Corporation Speckle minimization in projection displays by reducing spatial coherence of the image light
GB1525573A (en) 1975-09-13 1978-09-20 Pilkington Perkin Elmer Ltd Lenses
US4099841A (en) 1976-06-30 1978-07-11 Elliott Brothers (London) Limited Head up displays using optical combiner with three or more partially reflective films
GB1584268A (en) 1977-03-28 1981-02-11 Elliott Brothers London Ltd Head-up displays
US4251137A (en) 1977-09-28 1981-02-17 Rca Corporation Tunable diffractive subtractive filter
US4322163A (en) 1977-10-25 1982-03-30 Fingermatrix Inc. Finger identification
US4218111A (en) 1978-07-10 1980-08-19 Hughes Aircraft Company Holographic head-up displays
GB2041562B (en) 1978-12-21 1983-09-01 Redifon Simulation Ltd Visual display apparatus
DE3000402A1 (en) 1979-01-19 1980-07-31 Smiths Industries Ltd DISPLAY DEVICE
US4248093A (en) 1979-04-13 1981-02-03 The Boeing Company Holographic resolution of complex sound fields
US4389612A (en) 1980-06-17 1983-06-21 S.H.E. Corporation Apparatus for reducing low frequency noise in dc biased SQUIDS
GB2182159B (en) 1980-08-21 1987-10-14 Secr Defence Head-up displays
US4403189A (en) 1980-08-25 1983-09-06 S.H.E. Corporation Superconducting quantum interference device having thin film Josephson junctions
US4386361A (en) 1980-09-26 1983-05-31 S.H.E. Corporation Thin film SQUID with low inductance
JPS5789722A (en) 1980-11-25 1982-06-04 Sharp Corp Manufacture of display cell
US4544267A (en) 1980-11-25 1985-10-01 Fingermatrix, Inc. Finger identification
IL62627A (en) 1981-04-10 1984-09-30 Yissum Res Dev Co Eye testing system
US4418993A (en) 1981-05-07 1983-12-06 Stereographics Corp. Stereoscopic zoom lens system for three-dimensional motion pictures and television
US4562463A (en) 1981-05-15 1985-12-31 Stereographics Corp. Stereoscopic television system with field storage for sequential display of right and left images
US4472037A (en) 1981-08-24 1984-09-18 Stereographics Corporation Additive color means for the calibration of stereoscopic projection
US4523226A (en) 1982-01-27 1985-06-11 Stereographics Corporation Stereoscopic television system
US4566758A (en) 1983-05-09 1986-01-28 Tektronix, Inc. Rapid starting, high-speed liquid crystal variable optical retarder
US4884876A (en) 1983-10-30 1989-12-05 Stereographics Corporation Achromatic liquid crystal shutter for stereoscopic and other applications
KR0130554B1 (en) 1984-03-19 1998-04-11 유젠 웬닝거 Light modulating material comprising a liquid crystal disersion in a synthetic resin matrix
US4583117A (en) 1984-07-17 1986-04-15 Stereographics Corporation Stereoscopic video camera
US4729640A (en) 1984-10-03 1988-03-08 Canon Kabushiki Kaisha Liquid crystal light modulation device
US4643515A (en) 1985-04-01 1987-02-17 Environmental Research Institute Of Michigan Method and apparatus for recording and displaying edge-illuminated holograms
US4728547A (en) 1985-06-10 1988-03-01 General Motors Corporation Liquid crystal droplets dispersed in thin films of UV-curable polymers
US4711512A (en) 1985-07-12 1987-12-08 Environmental Research Institute Of Michigan Compact head-up display
JPS6232425A (en) 1985-08-05 1987-02-12 Brother Ind Ltd Optical deflector
US4890902A (en) 1985-09-17 1990-01-02 Kent State University Liquid crystal light modulating materials with selectable viewing angles
US4743083A (en) 1985-12-30 1988-05-10 Schimpe Robert M Cylindrical diffraction grating couplers and distributed feedback resonators for guided wave devices
US4647967A (en) 1986-01-28 1987-03-03 Sundstrand Data Control, Inc. Head-up display independent test site
US4799765A (en) 1986-03-31 1989-01-24 Hughes Aircraft Company Integrated head-up and panel display unit
US5707925A (en) 1986-04-11 1998-01-13 Dai Nippon Insatsu Kabushiki Kaisha Image formation on objective bodies
DE3751484T2 (en) 1986-04-11 1996-06-13 Dainippon Printing Co Ltd Device for producing images on objects.
US4970129A (en) 1986-12-19 1990-11-13 Polaroid Corporation Holograms
US4749256A (en) 1987-02-13 1988-06-07 Gec Avionics, Inc. Mounting apparatus for head-up display
US4811414A (en) 1987-02-27 1989-03-07 C.F.A. Technologies, Inc. Methods for digitally noise averaging and illumination equalizing fingerprint images
DE3881252D1 (en) 1987-03-30 1993-07-01 Siemens Ag INTEGRATED-OPTICAL ARRANGEMENT FOR BIDIRECTIONAL OPTICAL MESSAGE OR SIGNAL TRANSMISSION.
FR2613497B1 (en) 1987-03-31 1991-08-16 Thomson Csf BINOCULAR, HOLOGRAPHIC AND LARGE FIELD SIGHT, USED ON HELMET
US4775218A (en) 1987-04-17 1988-10-04 Flight Dynamics, Inc. Combiner alignment detector for head up display system
US4848093A (en) 1987-08-24 1989-07-18 Quantum Design Apparatus and method for regulating temperature in a cryogenic test chamber
US4791788A (en) 1987-08-24 1988-12-20 Quantum Design, Inc. Method for obtaining improved temperature regulation when using liquid helium cooling
US5710645A (en) 1993-01-29 1998-01-20 Imedge Technology, Inc. Grazing incidence holograms and system and method for producing the same
US5822089A (en) 1993-01-29 1998-10-13 Imedge Technology Inc. Grazing incidence holograms and system and method for producing the same
US20050259302A9 (en) 1987-09-11 2005-11-24 Metz Michael H Holographic light panels and flat panel display systems and method and apparatus for making same
GB8723050D0 (en) 1987-10-01 1987-11-04 British Telecomm Optical filters
US5079416A (en) 1987-10-27 1992-01-07 Night Vision General Partnership Compact see-through night vision goggles
US4792850A (en) 1987-11-25 1988-12-20 Sterographics Corporation Method and system employing a push-pull liquid crystal modulator
US4938568A (en) 1988-01-05 1990-07-03 Hughes Aircraft Company Polymer dispersed liquid crystal film devices, and method of forming the same
US5096282A (en) 1988-01-05 1992-03-17 Hughes Aircraft Co. Polymer dispersed liquid crystal film devices
US4933976A (en) 1988-01-25 1990-06-12 C.F.A. Technologies, Inc. System for generating rolled fingerprint images
US4994204A (en) 1988-11-04 1991-02-19 Kent State University Light modulating materials comprising a liquid crystal phase dispersed in a birefringent polymeric phase
US5240636A (en) 1988-04-11 1993-08-31 Kent State University Light modulating materials comprising a liquid crystal microdroplets dispersed in a birefringent polymeric matri method of making light modulating materials
US4854688A (en) 1988-04-14 1989-08-08 Honeywell Inc. Optical arrangement
US5119454A (en) 1988-05-23 1992-06-02 Polaroid Corporation Bulk optic wavelength division multiplexer
JPH01306886A (en) 1988-06-03 1989-12-11 Canon Inc Volume phase type diffraction grating
US5150234A (en) 1988-08-08 1992-09-22 Olympus Optical Co., Ltd. Imaging apparatus having electrooptic devices comprising a variable focal length lens
US5004323A (en) 1988-08-30 1991-04-02 Kent State University Extended temperature range polymer dispersed liquid crystal light shutters
US4964701A (en) 1988-10-04 1990-10-23 Raytheon Company Deflector for an optical beam
US5007711A (en) 1988-11-30 1991-04-16 Flight Dynamics, Inc. Compact arrangement for head-up display components
US4928301A (en) 1988-12-30 1990-05-22 Bell Communications Research, Inc. Teleconferencing terminal with camera behind display screen
JPH02186319A (en) 1989-01-13 1990-07-20 Fujitsu Ltd Display system
US5033814A (en) 1989-04-10 1991-07-23 Nilford Laboratories, Inc. Line light source
US5009483A (en) 1989-04-12 1991-04-23 Rockwell Iii Marshall A Optical waveguide display system
FI82989C (en) 1989-04-13 1991-05-10 Nokia Oy Ab FRAMEWORK FOR FRAMING REQUIREMENTS AND INSPECTION.
US5183545A (en) 1989-04-28 1993-02-02 Branca Phillip A Electrolytic cell with composite, porous diaphragm
FR2647556B1 (en) 1989-05-23 1993-10-29 Thomson Csf OPTICAL DEVICE FOR INTRODUCING A COLLIMATED IMAGE INTO THE VISUAL FIELD OF AN OBSERVER AND HELMET COMPRISING AT LEAST ONE SUCH DEVICE
US5099343A (en) 1989-05-25 1992-03-24 Hughes Aircraft Company Edge-illuminated liquid crystal display devices
US4967268A (en) 1989-07-31 1990-10-30 Stereographics Liquid crystal shutter system for stereoscopic and other applications
AU6294690A (en) 1989-08-21 1991-04-03 Carl R. Amos Methods of and apparatus for manipulating electromagnetic phenomenon
US5016953A (en) 1989-08-31 1991-05-21 Hughes Aircraft Company Reduction of noise in computer generated holograms
US4960311A (en) 1989-08-31 1990-10-02 Hughes Aircraft Company Holographic exposure system for computer generated holograms
US4963007A (en) 1989-09-05 1990-10-16 U.S. Precision Lens, Inc. Color corrected projection lens
US5210624A (en) 1989-09-19 1993-05-11 Fujitsu Limited Heads-up display
US4971719A (en) 1989-09-22 1990-11-20 General Motors Corporation Polymer dispersed liquid crystal films formed by electron beam curing
US5198912A (en) 1990-01-12 1993-03-30 Polaroid Corporation Volume phase hologram with liquid crystal in microvoids between fringes
US5109465A (en) 1990-01-16 1992-04-28 Summit Technology, Inc. Beam homogenizer
JPH03239384A (en) 1990-02-16 1991-10-24 Fujitsu Ltd Semiconductor laser protective circuit
US5416616A (en) 1990-04-06 1995-05-16 University Of Southern California Incoherent/coherent readout of double angularly multiplexed volume holographic optical elements
US5117302A (en) 1990-04-13 1992-05-26 Stereographics Corporation High dynamic range electro-optical shutter for steroscopic and other applications
US5153751A (en) 1990-04-27 1992-10-06 Central Glass Company, Limited Holographic display element
CA2044932C (en) 1990-06-29 1996-03-26 Masayuki Kato Display unit
FI86226C (en) 1990-07-10 1992-07-27 Nokia Oy Ab Process for producing light wave conductors by ion exchange technique on a glass substrate
FI86225C (en) 1990-08-23 1992-07-27 Nokia Oy Ab Adaptation elements for interconnecting different light waveguides and manufacturing process for the same
US5110034A (en) 1990-08-30 1992-05-05 Quantum Magnetics, Inc. Superconducting bonds for thin film devices
US5139192A (en) 1990-08-30 1992-08-18 Quantum Magnetics, Inc. Superconducting bonds for thin film devices
US5053834A (en) 1990-08-31 1991-10-01 Quantum Magnetics, Inc. High symmetry dc SQUID system
DE4028275A1 (en) 1990-09-06 1992-03-12 Kabelmetal Electro Gmbh METHOD FOR THE PRODUCTION OF FIBERGLASS FIBER OPTICS WITH INCREASED STRENGTH
US5142357A (en) 1990-10-11 1992-08-25 Stereographics Corp. Stereoscopic video camera with image sensors having variable effective position
US5063441A (en) 1990-10-11 1991-11-05 Stereographics Corporation Stereoscopic video cameras with image sensors having variable effective position
US10593092B2 (en) 1990-12-07 2020-03-17 Dennis J Solomon Integrated 3D-D2 visual effects display
US5619586A (en) 1990-12-20 1997-04-08 Thorn Emi Plc Method and apparatus for producing a directly viewable image of a fingerprint
US5410370A (en) 1990-12-27 1995-04-25 North American Philips Corporation Single panel color projection video display improved scanning
US5416514A (en) 1990-12-27 1995-05-16 North American Philips Corporation Single panel color projection video display having control circuitry for synchronizing the color illumination system with reading/writing of the light valve
US5159445A (en) 1990-12-31 1992-10-27 At&T Bell Laboratories Teleconferencing video display system for improving eye contact
US5867238A (en) 1991-01-11 1999-02-02 Minnesota Mining And Manufacturing Company Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same
US5117285A (en) 1991-01-15 1992-05-26 Bell Communications Research Eye contact apparatus for video conferencing
US5481321A (en) 1991-01-29 1996-01-02 Stereographics Corp. Stereoscopic motion picture projection system
US5142644A (en) 1991-03-08 1992-08-25 General Motors Corporation Electrical contacts for polymer dispersed liquid crystal films
US5317405A (en) 1991-03-08 1994-05-31 Nippon Telegraph And Telephone Corporation Display and image capture apparatus which enables eye contact
JP2873126B2 (en) 1991-04-17 1999-03-24 日本ペイント株式会社 Photosensitive composition for volume hologram recording
US5695682A (en) 1991-05-02 1997-12-09 Kent State University Liquid crystalline light modulating device and material
US5453863A (en) 1991-05-02 1995-09-26 Kent State University Multistable chiral nematic displays
US6104448A (en) 1991-05-02 2000-08-15 Kent State University Pressure sensitive liquid crystalline light modulating device and material
US5241337A (en) 1991-05-13 1993-08-31 Eastman Kodak Company Real image viewfinder requiring no field lens
US5181133A (en) 1991-05-15 1993-01-19 Stereographics Corporation Drive method for twisted nematic liquid crystal shutters for stereoscopic and other applications
US5268792A (en) 1991-05-20 1993-12-07 Eastman Kodak Company Zoom lens
US5218360A (en) 1991-05-23 1993-06-08 Trw Inc. Millimeter-wave aircraft landing and taxing system
JPH0728999Y2 (en) 1991-05-29 1995-07-05 セントラル硝子株式会社 Glass for multicolor display head-up display
FR2677463B1 (en) 1991-06-04 1994-06-17 Thomson Csf COLLIMATE VISUAL WITH LARGE HORIZONTAL AND VERTICAL FIELDS, PARTICULARLY FOR SIMULATORS.
US5299289A (en) 1991-06-11 1994-03-29 Matsushita Electric Industrial Co., Ltd. Polymer dispersed liquid crystal panel with diffraction grating
US5764414A (en) 1991-08-19 1998-06-09 Hughes Aircraft Company Biocular display system using binary optics
US5193000A (en) 1991-08-28 1993-03-09 Stereographics Corporation Multiplexing technique for stereoscopic video system
US5416510A (en) 1991-08-28 1995-05-16 Stereographics Corporation Camera controller for stereoscopic video system
US5621552A (en) 1991-08-29 1997-04-15 Merck Patent Gesellschaft Mit Beschrankter Haftung Electrooptical liquid crystal system containing dual frequency liquid crystal mixture
US5200861A (en) 1991-09-27 1993-04-06 U.S. Precision Lens Incorporated Lens systems
US5224198A (en) 1991-09-30 1993-06-29 Motorola, Inc. Waveguide virtual image display
EP0536763B1 (en) 1991-10-09 1999-03-17 Denso Corporation Hologram
US5726782A (en) 1991-10-09 1998-03-10 Nippondenso Co., Ltd. Hologram and method of fabricating
US5315440A (en) 1991-11-04 1994-05-24 Eastman Kodak Company Zoom lens having weak front lens group
US5515184A (en) 1991-11-12 1996-05-07 The University Of Alabama In Huntsville Waveguide hologram illuminators
US5633100A (en) 1991-11-27 1997-05-27 E. I. Du Pont De Nemours And Company Holographic imaging using filters
US5218480A (en) 1991-12-03 1993-06-08 U.S. Precision Lens Incorporated Retrofocus wide angle lens
FR2684805B1 (en) 1991-12-04 1998-08-14 France Telecom VERY LOW RESISTANCE OPTOELECTRONIC DEVICE.
US5239372A (en) 1991-12-31 1993-08-24 Stereographics Corporation Stereoscopic video projection system
US5264950A (en) 1992-01-06 1993-11-23 Kent State University Light modulating device with polarizer and liquid crystal interspersed as spherical or randomly distorted droplets in isotropic polymer
US5303085A (en) 1992-02-07 1994-04-12 Rallison Richard D Optically corrected helmet mounted display
US5295208A (en) 1992-02-26 1994-03-15 The University Of Alabama In Huntsville Multimode waveguide holograms capable of using non-coherent light
US5296967A (en) 1992-03-02 1994-03-22 U.S. Precision Lens Incorporated High speed wide angle projection TV lens system
EP0564869A1 (en) 1992-03-31 1993-10-13 MERCK PATENT GmbH Electrooptical liquid crystal systems
US5284499A (en) 1992-05-01 1994-02-08 Corning Incorporated Method and apparatus for drawing optical fibers
US5327269A (en) 1992-05-13 1994-07-05 Standish Industries, Inc. Fast switching 270° twisted nematic liquid crystal device and eyewear incorporating the device
WO1993023496A1 (en) 1992-05-18 1993-11-25 Kent State University Liquid crystalline light modulating device & material
KR100320567B1 (en) 1992-05-18 2002-06-20 Liquid Crystal Light Modulators & Materials
US5251048A (en) 1992-05-18 1993-10-05 Kent State University Method and apparatus for electronic switching of a reflective color display
US5315419A (en) 1992-05-19 1994-05-24 Kent State University Method of producing a homogeneously aligned chiral smectic C liquid crystal having homeotropic alignment layers
US5368770A (en) 1992-06-01 1994-11-29 Kent State University Method of preparing thin liquid crystal films
US6479193B1 (en) 1992-06-30 2002-11-12 Nippon Sheet Glass Co., Ltd. Optical recording film and process for production thereof
JP2958418B2 (en) 1992-07-23 1999-10-06 セントラル硝子株式会社 Display device
JP3027065B2 (en) 1992-07-31 2000-03-27 日本電信電話株式会社 Display / imaging device
US5313330A (en) 1992-08-31 1994-05-17 U.S. Precision Lens Incorporated Zoom projection lens systems
US5243413A (en) 1992-09-02 1993-09-07 At&T Bell Laboratories Color parallax-free camera and display
EP0840183B1 (en) 1992-09-03 2002-07-03 Denso Corporation Holography device
US5343147A (en) 1992-09-08 1994-08-30 Quantum Magnetics, Inc. Method and apparatus for using stochastic excitation and a superconducting quantum interference device (SAUID) to perform wideband frequency response measurements
US6052540A (en) 1992-09-11 2000-04-18 Canon Kabushiki Kaisha Viewfinder device for displaying photographic information relating to operation of a camera
US5455693A (en) 1992-09-24 1995-10-03 Hughes Aircraft Company Display hologram
US5321533A (en) 1992-09-24 1994-06-14 Kent State Universtiy Polymer dispersed ferroelectric smectic liquid crystal
US7132200B1 (en) 1992-11-27 2006-11-07 Dai Nippon Printing Co., Ltd. Hologram recording sheet, holographic optical element using said sheet, and its production process
US5315324A (en) 1992-12-09 1994-05-24 Delphax Systems High precision charge imaging cartridge
JP3418985B2 (en) 1992-12-14 2003-06-23 株式会社デンソー Image display device
US5341230A (en) 1992-12-22 1994-08-23 Hughes Aircraft Company Waveguide holographic telltale display
US5418584A (en) 1992-12-31 1995-05-23 Honeywell Inc. Retroreflective array virtual image projection screen
US5888477A (en) 1993-01-29 1999-03-30 Aradigm Corporation Use of monomeric insulin as a means for improving the bioavailability of inhaled insulin
US6151142A (en) 1993-01-29 2000-11-21 Imedge Technology, Inc. Grazing incidence holograms and system and method for producing the same
US5351151A (en) 1993-02-01 1994-09-27 Levy George S Optical filter using microlens arrays
US5428480A (en) 1993-02-16 1995-06-27 Eastman Kodak Company Zoom lens having weak plastic element
US5371817A (en) 1993-02-16 1994-12-06 Eastman Kodak Company Multichannel optical waveguide page scanner with individually addressable electro-optic modulators
US5751452A (en) 1993-02-22 1998-05-12 Nippon Telegraph And Telephone Corporation Optical devices with high polymer material and method of forming the same
US5682255A (en) 1993-02-26 1997-10-28 Yeda Research & Development Co. Ltd. Holographic optical devices for the transmission of optical signals of a plurality of channels
WO1994019712A1 (en) 1993-02-26 1994-09-01 Yeda Research & Development Co., Ltd. Holographic optical devices
US5371626A (en) 1993-03-09 1994-12-06 Benopcon, Inc. Wide angle binocular system with variable power capability
JP2823470B2 (en) * 1993-03-09 1998-11-11 シャープ株式会社 Optical scanning device, display device using the same, and image information input / output device
US5359362A (en) 1993-03-30 1994-10-25 Nec Usa, Inc. Videoconference system using a virtual camera image
US5309283A (en) 1993-03-30 1994-05-03 U.S. Precision Lens Incorporated Hybrid, color-corrected, projection TV lens system
JP3202831B2 (en) 1993-04-09 2001-08-27 日本電信電話株式会社 Method for manufacturing reflective color liquid crystal display
DE69405902T2 (en) 1993-04-16 1998-01-29 Central Glass Co Ltd Glass pane with anti-reflective coating and combination element of a single-view display system
DE4492865T1 (en) 1993-04-28 1996-04-25 Mcpheters Holographic user interface
US5471326A (en) 1993-04-30 1995-11-28 Northrop Grumman Corporation Holographic laser scanner and rangefinder
ES2118408T3 (en) 1993-05-03 1998-09-16 Loctite Corp LIQUID CRYSTALS SCATTERED IN POLYMERS OF TIOL AND ALKENE RICH IN ELECTRONS.
US5579026A (en) 1993-05-14 1996-11-26 Olympus Optical Co., Ltd. Image display apparatus of head mounted type
FR2706079B1 (en) 1993-06-02 1995-07-21 France Telecom Integrated laser-modulator monolithic component with quantum multi-well structure.
US5329363A (en) 1993-06-15 1994-07-12 U. S. Precision Lens Incorporated Projection lens systems having reduced spherochromatism
US5400069A (en) 1993-06-16 1995-03-21 Bell Communications Research, Inc. Eye contact video-conferencing system and screen
JP3623250B2 (en) 1993-06-23 2005-02-23 オリンパス株式会社 Video display device
US5455713A (en) 1993-06-23 1995-10-03 Kreitzer; Melvyn H. High performance, thermally-stabilized projection television lens systems
US5585035A (en) 1993-08-06 1996-12-17 Minnesota Mining And Manufacturing Company Light modulating device having a silicon-containing matrix
JPH0798439A (en) 1993-09-29 1995-04-11 Nippon Telegr & Teleph Corp <Ntt> Three-dimensional stereoscopic display device
US5537232A (en) 1993-10-05 1996-07-16 In Focus Systems, Inc. Reflection hologram multiple-color filter array formed by sequential exposure to a light source
US5686975A (en) 1993-10-18 1997-11-11 Stereographics Corporation Polarel panel for stereoscopic displays
US5408346A (en) 1993-10-20 1995-04-18 Kaiser Electro-Optics, Inc. Optical collimating device employing cholesteric liquid crystal and a non-transmissive reflector
US5485313A (en) 1993-10-27 1996-01-16 Polaroid Corporation Zoom lens systems
IL107502A (en) 1993-11-04 1999-12-31 Elbit Systems Ltd Helmet display mounting system
US5991087A (en) 1993-11-12 1999-11-23 I-O Display System Llc Non-orthogonal plate in a virtual reality or heads up display
US5438357A (en) 1993-11-23 1995-08-01 Mcnelley; Steve H. Image manipulating teleconferencing system
US5757546A (en) 1993-12-03 1998-05-26 Stereographics Corporation Electronic stereoscopic viewer
US5524272A (en) 1993-12-22 1996-06-04 Gte Airfone Incorporated Method and apparatus for distributing program material
GB2286057A (en) 1994-01-21 1995-08-02 Sharp Kk Electrically controllable grating
US5677797A (en) 1994-02-04 1997-10-14 U.S. Precision Lens Inc. Method for correcting field curvature
US5559637A (en) 1994-02-04 1996-09-24 Corning Incorporated Field curvature corrector
US5463428A (en) 1994-02-08 1995-10-31 Stereographics Corporation Wireless active eyewear for stereoscopic applications
JPH09509490A (en) 1994-02-18 1997-09-22 イメッジ・テクノロジー・インコーポレーテッド Method for generating and detecting a high-contrast image of the surface shape of an object and a compact device for implementing the method
JP3453836B2 (en) 1994-02-18 2003-10-06 株式会社デンソー Hologram manufacturing method
US5631107A (en) 1994-02-18 1997-05-20 Nippondenso Co., Ltd. Method for producing optical member
US5986746A (en) 1994-02-18 1999-11-16 Imedge Technology Inc. Topographical object detection system
JPH07270615A (en) 1994-03-31 1995-10-20 Central Glass Co Ltd Holographic laminated body
US5790288A (en) 1994-04-15 1998-08-04 Nokia Telecommunications Oy Transport network with high transmission capacity for telecommunications
WO1995029968A1 (en) 1994-04-29 1995-11-09 Minnesota Mining And Manufacturing Company Light modulating device having a matrix prepared from acid reactants
US7126583B1 (en) 1999-12-15 2006-10-24 Automotive Technologies International, Inc. Interactive vehicle display system
US5473222A (en) 1994-07-05 1995-12-05 Delco Electronics Corporation Active matrix vacuum fluorescent display with microprocessor integration
WO1996002862A1 (en) 1994-07-15 1996-02-01 Matsushita Electric Industrial Co., Ltd. Head-up display apparatus, liquid crystal display panel and production method thereof
US5612733A (en) 1994-07-18 1997-03-18 C-Phone Corporation Optics orienting arrangement for videoconferencing system
US5493430A (en) 1994-08-03 1996-02-20 Kent Display Systems, L.P. Color, reflective liquid crystal displays
US5903395A (en) 1994-08-31 1999-05-11 I-O Display Systems Llc Personal visual display system
US5606433A (en) 1994-08-31 1997-02-25 Hughes Electronics Lamination of multilayer photopolymer holograms
DE4431122A1 (en) 1994-09-01 1996-03-07 Bayer Ag New thiazolo [3,2-a] quinoline and naphthyridine derivatives
JPH08129146A (en) 1994-09-05 1996-05-21 Olympus Optical Co Ltd Video display device
US5727098A (en) 1994-09-07 1998-03-10 Jacobson; Joseph M. Oscillating fiber optic display and imager
US6167169A (en) 1994-09-09 2000-12-26 Gemfire Corporation Scanning method and architecture for display
US5647036A (en) 1994-09-09 1997-07-08 Deacon Research Projection display with electrically-controlled waveguide routing
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
FI98871C (en) 1994-09-15 1997-08-25 Nokia Telecommunications Oy Method of tuning a summation network into a base station and a bandpass filter
US5572248A (en) 1994-09-19 1996-11-05 Teleport Corporation Teleconferencing method and system for providing face-to-face, non-animated teleconference environment
US5506929A (en) 1994-10-19 1996-04-09 Clio Technologies, Inc. Light expanding system for producing a linear or planar light beam from a point-like light source
US5572250A (en) 1994-10-20 1996-11-05 Stereographics Corporation Universal electronic stereoscopic display
US5500671A (en) 1994-10-25 1996-03-19 At&T Corp. Video conference system and method of providing parallax correction and a sense of presence
SG47360A1 (en) 1994-11-14 1998-04-17 Hoffmann La Roche Colour display with serially-connected lc filters
US5625495A (en) 1994-12-07 1997-04-29 U.S. Precision Lens Inc. Telecentric lens systems for forming an image of an object composed of pixels
US5745301A (en) 1994-12-19 1998-04-28 Benopcon, Inc. Variable power lens systems for producing small images
US5748277A (en) 1995-02-17 1998-05-05 Kent State University Dynamic drive method and apparatus for a bistable liquid crystal display
US6154190A (en) 1995-02-17 2000-11-28 Kent State University Dynamic drive methods and apparatus for a bistable liquid crystal display
US6061463A (en) 1995-02-21 2000-05-09 Imedge Technology, Inc. Holographic fingerprint device
US5731853A (en) 1995-02-24 1998-03-24 Matsushita Electric Industrial Co., Ltd. Display device
JP3658034B2 (en) 1995-02-28 2005-06-08 キヤノン株式会社 Image observation optical system and imaging optical system
US5583795A (en) 1995-03-17 1996-12-10 The United States Of America As Represented By The Secretary Of The Army Apparatus for measuring eye gaze and fixation duration, and method therefor
US6259559B1 (en) 1995-03-28 2001-07-10 Central Glass Company, Limited Glass arrangement including an outside glass plate, a polarization direction changing film and an adhesive layer therebetween, and an inside glass layer
US5621529A (en) 1995-04-05 1997-04-15 Intelligent Automation Systems, Inc. Apparatus and method for projecting laser pattern with reduced speckle noise
US5764619A (en) 1995-04-07 1998-06-09 Matsushita Electric Industrial Co., Ltd. Optical recording medium having two separate recording layers
US5619254A (en) 1995-04-11 1997-04-08 Mcnelley; Steve H. Compact teleconferencing eye contact terminal
US5668614A (en) 1995-05-01 1997-09-16 Kent State University Pixelized liquid crystal display materials including chiral material adopted to change its chirality upon photo-irradiation
US5543950A (en) 1995-05-04 1996-08-06 Kent State University Liquid crystalline electrooptical device
FI98584C (en) 1995-05-05 1997-07-10 Nokia Technology Gmbh Method and apparatus for processing a received signal
AU686511B2 (en) 1995-05-15 1998-02-05 Raytheon Company Low-cost light-weight head-mounted virtual-image projection display with low moments of inertia and low center of gravity
US5831700A (en) 1995-05-19 1998-11-03 Kent State University Polymer stabilized four domain twisted nematic liquid crystal display
US5825448A (en) 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
US5929946A (en) 1995-05-23 1999-07-27 Colorlink, Inc. Retarder stack for preconditioning light for a modulator having modulation and isotropic states of polarization
US5680231A (en) 1995-06-06 1997-10-21 Hughes Aircraft Company Holographic lenses with wide angular and spectral bandwidths for use in a color display device
US5694230A (en) 1995-06-07 1997-12-02 Digital Optics Corp. Diffractive optical elements as combiners
US5671035A (en) 1995-06-07 1997-09-23 Barnes; Elwood E. Light intensity reduction apparatus and method
WO1997001133A1 (en) 1995-06-23 1997-01-09 Holoplex Multiplexed hologram copying system and method
US5629764A (en) 1995-07-07 1997-05-13 Advanced Precision Technology, Inc. Prism fingerprint sensor using a holographic optical element
JPH0933853A (en) 1995-07-20 1997-02-07 Denso Corp Hologram display device
FI99221C (en) 1995-08-25 1997-10-27 Nokia Telecommunications Oy Planar antenna construction
DE69629257T2 (en) 1995-09-21 2004-04-22 3M Innovative Properties Co., St. Paul Lens system for television projection device
JPH0990312A (en) 1995-09-27 1997-04-04 Olympus Optical Co Ltd Optical device
US5907436A (en) 1995-09-29 1999-05-25 The Regents Of The University Of California Multilayer dielectric diffraction gratings
US5999282A (en) 1995-11-08 1999-12-07 Victor Company Of Japan, Ltd. Color filter and color image display apparatus employing the filter
US5612734A (en) 1995-11-13 1997-03-18 Bell Communications Research, Inc. Eye contact apparatus employing a directionally transmissive layer for video conferencing
US5724189A (en) 1995-12-15 1998-03-03 Mcdonnell Douglas Corporation Methods and apparatus for creating an aspheric optical element and the aspheric optical elements formed thereby
JP3250782B2 (en) 1995-12-25 2002-01-28 セントラル硝子株式会社 Laminate
US5668907A (en) 1996-01-11 1997-09-16 Associated Universities, Inc. Thin optical display panel
EP1798592A3 (en) 1996-01-17 2007-09-19 Nippon Telegraph And Telephone Corporation Optical device and three-dimensional display device
WO1997027519A1 (en) 1996-01-29 1997-07-31 Foster-Miller, Inc. Optical components containing complex diffraction gratings and methods for the fabrication thereof
US5963375A (en) 1996-01-31 1999-10-05 U.S. Precision Lens Inc. Athermal LCD projection lens
DE69709709D1 (en) 1996-03-15 2002-02-21 Retinal Display Cayman Ltd METHOD AND DEVICE FOR VIEWING AN IMAGE
US6166834A (en) 1996-03-15 2000-12-26 Matsushita Electric Industrial Co., Ltd. Display apparatus and method for forming hologram suitable for the display apparatus
US5701132A (en) 1996-03-29 1997-12-23 University Of Washington Virtual retinal display with expanded exit pupil
GB2312110B (en) 1996-03-29 2000-07-05 Advanced Saw Prod Sa Acoustic wave filter
GB2312109B (en) 1996-03-29 2000-08-02 Advanced Saw Prod Sa Acoustic wave filter
WO1997041461A1 (en) 1996-04-29 1997-11-06 U.S. Precision Lens Incorporated Lcd projection lens
US5841587A (en) 1996-04-29 1998-11-24 U.S. Precision Lens Inc. LCD projection lens
WO1997041477A1 (en) 1996-04-29 1997-11-06 U.S. Precision Lens Incorporated Projection television lens system
US5729242A (en) 1996-05-08 1998-03-17 Hughes Electronics Dual PDLC-projection head-up display
US6133975A (en) 1996-05-10 2000-10-17 Kent State University Bistable liquid crystal display device using polymer stabilization
US6061107A (en) 1996-05-10 2000-05-09 Kent State University Bistable polymer dispersed cholesteric liquid crystal displays
US6583838B1 (en) 1996-05-10 2003-06-24 Kent State University Bistable liquid crystal display device using polymer stabilization
US5870228A (en) 1996-05-24 1999-02-09 U.S. Precision Lens Inc. Projection lenses having larger back focal length to focal length ratios
US5969874A (en) 1996-05-30 1999-10-19 U.S. Precision Lens Incorporated Long focal length projection lenses
CA2207226C (en) 1996-06-10 2005-06-21 Sumitomo Electric Industries, Ltd. Optical fiber grating and method of manufacturing the same
US6550949B1 (en) 1996-06-13 2003-04-22 Gentex Corporation Systems and components for enhancing rear vision from a vehicle
US7312906B2 (en) 1996-07-12 2007-12-25 Science Applications International Corporation Switchable polymer-dispersed liquid crystal optical elements
US6867888B2 (en) 1996-07-12 2005-03-15 Science Applications International Corporation Switchable polymer-dispersed liquid crystal optical elements
US6821457B1 (en) 1998-07-29 2004-11-23 Science Applications International Corporation Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects
US5942157A (en) 1996-07-12 1999-08-24 Science Applications International Corporation Switchable volume hologram materials and devices
US7077984B1 (en) 1996-07-12 2006-07-18 Science Applications International Corporation Electrically switchable polymer-dispersed liquid crystal materials
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
GB2315902A (en) 1996-08-01 1998-02-11 Sharp Kk LIquid crystal device
US5847787A (en) 1996-08-05 1998-12-08 Motorola, Inc. Low driving voltage polymer dispersed liquid crystal display device with conductive nanoparticles
DE19632111C1 (en) 1996-08-08 1998-02-12 Pelikan Produktions Ag Thermal transfer ribbon for luminescent characters
US5857043A (en) 1996-08-12 1999-01-05 Corning Incorporated Variable period amplitude grating mask and method for use
DE69726352T2 (en) 1996-08-16 2004-09-09 3M Innovative Properties Co., St. Paul Miniature projection zoom lens for use with pixel matrix display board
US5856842A (en) 1996-08-26 1999-01-05 Kaiser Optical Systems Corporation Apparatus facilitating eye-contact video communications
KR100206688B1 (en) 1996-09-07 1999-07-01 박원훈 Color holographic head up display
JPH1096903A (en) 1996-09-25 1998-04-14 Sumitomo Bakelite Co Ltd Liquid crystal display element and its production
US5936776A (en) 1996-09-27 1999-08-10 U.S. Precision Lens Inc. Focusable front projection lens systems for use with large screen formats
US5745266A (en) 1996-10-02 1998-04-28 Raytheon Company Quarter-wave film for brightness enhancement of holographic thin taillamp
US5886822A (en) 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
JP4007633B2 (en) 1996-10-09 2007-11-14 株式会社島津製作所 Head up display
FR2755530B1 (en) 1996-11-05 1999-01-22 Thomson Csf VISUALIZATION DEVICE AND FLAT TELEVISION SCREEN USING THE SAME
WO1998021612A1 (en) 1996-11-12 1998-05-22 Planop - Planar Optics Ltd Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer
JPH10148787A (en) 1996-11-20 1998-06-02 Central Glass Co Ltd Display
US5962147A (en) 1996-11-26 1999-10-05 General Latex And Chemical Corporation Method of bonding with a natural rubber latex and laminate produced
EP1010028B1 (en) 1996-11-29 2004-03-17 3M Innovative Properties Company Lenses for electronic imaging systems
AU5896498A (en) 1996-12-06 1998-07-15 Stereographics Corporation Synthetic panoramagram
US6864927B1 (en) 1996-12-31 2005-03-08 Micron Technology, Inc. Head up display with adjustable transparency screen
US5907416A (en) 1997-01-27 1999-05-25 Raytheon Company Wide FOV simulator heads-up display with selective holographic reflector combined
US6133971A (en) 1997-01-31 2000-10-17 Xerox Corporation Holographically formed reflective display, liquid crystal display and projection system and methods of forming the same
US5790314A (en) 1997-01-31 1998-08-04 Jds Fitel Inc. Grin lensed optical device
US5956113A (en) 1997-01-31 1999-09-21 Xerox Corporation Bistable reflective display and methods of forming the same
US5875012A (en) 1997-01-31 1999-02-23 Xerox Corporation Broadband reflective display, and methods of forming the same
US5877826A (en) 1997-02-06 1999-03-02 Kent State University Dual frequency switchable cholesteric liquid crystal light shutter and driving waveform
US6567573B1 (en) 1997-02-12 2003-05-20 Digilens, Inc. Switchable optical components
US5937115A (en) 1997-02-12 1999-08-10 Foster-Miller, Inc. Switchable optical components/structures and methods for the fabrication thereof
US5900987A (en) 1997-02-13 1999-05-04 U.S. Precision Lens Inc Zoom projection lenses for use with pixelized panels
US5798641A (en) 1997-03-17 1998-08-25 Quantum Design, Inc. Torque magnetometer utilizing integrated piezoresistive levers
US6034752A (en) 1997-03-22 2000-03-07 Kent Displays Incorporated Display device reflecting visible and infrared radiation
US6156243A (en) 1997-04-25 2000-12-05 Hoya Corporation Mold and method of producing the same
FI971850A (en) 1997-04-30 1998-10-31 Nokia Telecommunications Oy Arrangements for reducing interference between radio frequency signals
US5868951A (en) 1997-05-09 1999-02-09 University Technology Corporation Electro-optical device and method
US5999089A (en) 1997-05-13 1999-12-07 Carlson; Lance K. Alarm system
US5973727A (en) 1997-05-13 1999-10-26 New Light Industries, Ltd. Video image viewing device and method
GB2325530A (en) 1997-05-22 1998-11-25 Sharp Kk Liquid crystal device
FI103619B (en) 1997-05-26 1999-07-30 Nokia Telecommunications Oy Optical multiplexing and demultiplexing
US6608720B1 (en) 1997-06-02 2003-08-19 Robin John Freeman Optical instrument and optical element thereof
IL121067A0 (en) * 1997-06-12 1997-11-20 Yeda Res & Dev Compact planar optical correlator
JPH1115358A (en) 1997-06-25 1999-01-22 Denso Corp Hologram
WO1999003006A1 (en) 1997-07-11 1999-01-21 U.S. Precision Lens Incorporated High performance projection television lens systems
US7164818B2 (en) 2001-05-03 2007-01-16 Neophontonics Corporation Integrated gradient index lenses
US5930433A (en) 1997-07-23 1999-07-27 Hewlett-Packard Company Waveguide array document scanner
US6417971B1 (en) 1997-08-05 2002-07-09 U.S. Precision Lens Incorporated Zoom projection lens having a lens correction unit
AU9103798A (en) 1997-08-13 1999-03-08 Foster-Miller Inc. Switchable optical components
US6141154A (en) 1997-08-22 2000-10-31 U.S. Precision Lens Inc. Focusable, color corrected, high performance projection lens systems
JPH1167448A (en) 1997-08-26 1999-03-09 Toyota Central Res & Dev Lab Inc Display device
US7028899B2 (en) 1999-06-07 2006-04-18 Metrologic Instruments, Inc. Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target
JP3535710B2 (en) 1997-09-16 2004-06-07 キヤノン株式会社 Optical element and optical system using the same
JP2953444B2 (en) 1997-10-01 1999-09-27 日本電気株式会社 Liquid crystal display device and manufacturing method thereof
US6285813B1 (en) 1997-10-03 2001-09-04 Georgia Tech Research Corporation Diffractive grating coupler and method
US5929960A (en) 1997-10-17 1999-07-27 Kent State University Method for forming liquid crystal display cell walls using a patterned electric field
US5903396A (en) 1997-10-17 1999-05-11 I/O Display Systems, Llc Intensified visual display
US6486997B1 (en) 1997-10-28 2002-11-26 3M Innovative Properties Company Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter
JP3331559B2 (en) 1997-11-13 2002-10-07 日本電信電話株式会社 Optical device
EP1031050B1 (en) 1997-11-13 2006-03-01 3M Innovative Properties Company Wide field of view projection lenses for compact projection lens systems employing pixelized panels
DE19751190A1 (en) 1997-11-19 1999-05-20 Bosch Gmbh Robert Laser display device has a polymer-dispersed liquid crystal disk
US6046585A (en) 1997-11-21 2000-04-04 Quantum Design, Inc. Method and apparatus for making quantitative measurements of localized accumulations of target particles having magnetic particles bound thereto
US6437563B1 (en) 1997-11-21 2002-08-20 Quantum Design, Inc. Method and apparatus for making measurements of accumulations of magnetically susceptible particles combined with analytes
US5949508A (en) 1997-12-10 1999-09-07 Kent State University Phase separated composite organic film and methods for the manufacture thereof
US6864861B2 (en) 1997-12-31 2005-03-08 Brillian Corporation Image generator having a miniature display device
US6195206B1 (en) 1998-01-13 2001-02-27 Elbit Systems Ltd. Optical system for day and night use
US6975345B1 (en) 1998-03-27 2005-12-13 Stereographics Corporation Polarizing modulator for an electronic stereoscopic display
CA2326767C (en) 1998-04-02 2009-06-23 Yeda Research And Development Co., Ltd. Holographic optical devices
US6176837B1 (en) 1998-04-17 2001-01-23 Massachusetts Institute Of Technology Motion tracking system
US6204835B1 (en) 1998-05-12 2001-03-20 Kent State University Cumulative two phase drive scheme for bistable cholesteric reflective displays
US6268839B1 (en) 1998-05-12 2001-07-31 Kent State University Drive schemes for gray scale bistable cholesteric reflective displays
JPH11326617A (en) 1998-05-13 1999-11-26 Olympus Optical Co Ltd Optical system including diffraction optical element and its design method
EP0957477A3 (en) 1998-05-15 2003-11-05 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus
GB2337859B (en) 1998-05-29 2002-12-11 Nokia Mobile Phones Ltd Antenna
US6388797B1 (en) 1998-05-29 2002-05-14 Stereographics Corporation Electrostereoscopic eyewear
US6341118B1 (en) 1998-06-02 2002-01-22 Science Applications International Corporation Multiple channel scanning device using oversampling and image processing to increase throughput
KR100553060B1 (en) 1998-06-24 2006-02-15 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Projection television lens systems having improved modulation transfer functions
US6411444B1 (en) 1998-06-30 2002-06-25 Corning Precision Lens, Incorporated Lenses for electronic imaging systems having long wavelength filtering properties
US6064354A (en) 1998-07-01 2000-05-16 Deluca; Michael Joseph Stereoscopic user interface method and apparatus
US20030202228A1 (en) 1998-07-07 2003-10-30 Kenichiro Takada Hologram screen and a method of producing the same
US6137630A (en) 1998-07-13 2000-10-24 Industrial Technology Research Institute Thin-film multilayer systems for use in a head-up display
US6222971B1 (en) 1998-07-17 2001-04-24 David Slobodin Small inlet optical panel and a method of making a small inlet optical panel
US6618104B1 (en) 1998-07-28 2003-09-09 Nippon Telegraph And Telephone Corporation Optical device having reverse mode holographic PDLC and front light guide
IL125558A (en) 1998-07-28 2003-06-24 Elbit Systems Ltd Non-adjustable helmet mounted optical systems
JP3643486B2 (en) 1998-08-04 2005-04-27 株式会社東芝 Optical functional device and optical communication system
JP2000056259A (en) 1998-08-10 2000-02-25 Fuji Xerox Co Ltd Picture display device
US6169594B1 (en) 1998-08-24 2001-01-02 Physical Optics Corporation Beam deflector and scanner
ATE322143T1 (en) 1998-09-02 2006-04-15 Seiko Epson Corp LIGHT SOURCE AND DISPLAY DEVICE
US6188462B1 (en) 1998-09-02 2001-02-13 Kent State University Diffraction grating with electrically controlled periodicity
US20020127497A1 (en) 1998-09-10 2002-09-12 Brown Daniel J. W. Large diffraction grating for gas discharge laser
US6278429B1 (en) 1998-09-11 2001-08-21 Kent State University Bistable reflective cholesteric liquid crystal displays utilizing super twisted nematic driver chips
US20020126332A1 (en) 1998-09-14 2002-09-12 Popovich Milan M. System and method for modulating light intesity
EP1114340A1 (en) 1998-09-14 2001-07-11 Digilens Inc. Holographic illumination system and holographic projection system
JP4052741B2 (en) 1998-09-30 2008-02-27 セントラル硝子株式会社 Laminated glass for reflective displays
US6101008A (en) 1998-10-16 2000-08-08 Digilens, Inc. Autostereoscopic display based on electrically switchable holograms
AU6428199A (en) 1998-10-16 2000-05-08 Digilens Inc. Holographic display system
US6082862A (en) 1998-10-16 2000-07-04 Digilens, Inc. Image tiling technique based on electrically switchable holograms
CN1187622C (en) 1998-10-21 2005-02-02 保尔·G·邓肯 Optic measuring method and device using optic wave front polarized rotation of rare earth iron garnet
FI105856B (en) 1998-10-21 2000-10-13 Nokia Networks Oy WDM optical signal gain
US6414760B1 (en) 1998-10-29 2002-07-02 Hewlett-Packard Company Image scanner with optical waveguide and enhanced optical sampling rate
US6567014B1 (en) 1998-11-05 2003-05-20 Rockwell Collins, Inc. Aircraft head up display system
WO2000028369A2 (en) 1998-11-12 2000-05-18 Digilens, Inc. Head mounted apparatus for viewing an image
US6850210B1 (en) 1998-11-12 2005-02-01 Stereographics Corporation Parallax panoramagram having improved depth and sharpness
WO2000028353A1 (en) 1998-11-12 2000-05-18 U.S. Precision Lens Incorporated Color corrected projection lenses employing diffractive optical surfaces
US6222675B1 (en) 1998-12-01 2001-04-24 Kaiser Electro-Optics, Inc. Area of interest head-mounted display using low resolution, wide angle; high resolution, narrow angle; and see-through views
US6078427A (en) 1998-12-01 2000-06-20 Kaiser Electro-Optics, Inc. Smooth transition device for area of interest head-mounted display
US6744478B1 (en) 1998-12-28 2004-06-01 Central Glass Company, Limited Heads-up display system with optical rotation layers
US6185016B1 (en) 1999-01-19 2001-02-06 Digilens, Inc. System for generating an image
US6191887B1 (en) 1999-01-20 2001-02-20 Tropel Corporation Laser illumination with speckle reduction
US6320563B1 (en) 1999-01-21 2001-11-20 Kent State University Dual frequency cholesteric display and drive scheme
US6301057B1 (en) 1999-02-02 2001-10-09 Corning Precision Lens Long focal length projection lenses
JP4089071B2 (en) 1999-03-10 2008-05-21 ブラザー工業株式会社 Head mounted camera
JP2000267042A (en) 1999-03-17 2000-09-29 Fuji Xerox Co Ltd Head-mounted type video display device
US6269203B1 (en) 1999-03-17 2001-07-31 Radiant Photonics Holographic optical devices for transmission of optical signals
JP2000267552A (en) 1999-03-19 2000-09-29 Sony Corp Device and method for image recording and recording medium
US6504629B1 (en) 1999-03-23 2003-01-07 Digilens, Inc. Method and apparatus for illuminating a display
US6909443B1 (en) 1999-04-06 2005-06-21 Microsoft Corporation Method and apparatus for providing a three-dimensional task gallery computer interface
JP4548680B2 (en) 1999-04-12 2010-09-22 大日本印刷株式会社 Color hologram display and method for producing the same
US6121899A (en) 1999-04-16 2000-09-19 Rockwell Collins, Inc. Impending aircraft tail strike warning display symbology
US6107943A (en) 1999-04-16 2000-08-22 Rockwell Collins, Inc. Display symbology indicating aircraft ground motion deceleration
DE19917751C2 (en) 1999-04-20 2001-05-31 Nokia Networks Oy Method and monitoring device for monitoring the quality of data transmission over analog lines
US6195209B1 (en) 1999-05-04 2001-02-27 U.S. Precision Lens Incorporated Projection lenses having reduced lateral color for use with pixelized panels
SE516715C2 (en) 1999-05-26 2002-02-19 Ericsson Telefon Ab L M Main mount display
FI113581B (en) 1999-07-09 2004-05-14 Nokia Corp Process for manufacturing a waveguide in multi-layer ceramic structures and waveguides
FR2796184B1 (en) 1999-07-09 2001-11-02 Thomson Csf SECURE DOCUMENT, MANUFACTURING SYSTEM, AND SYSTEM FOR READING THE DOCUMENT
JP4341108B2 (en) 1999-07-14 2009-10-07 ソニー株式会社 Virtual image observation optical device
US20030063042A1 (en) 1999-07-29 2003-04-03 Asher A. Friesem Electronic utility devices incorporating a compact virtual image display
AU6400300A (en) 1999-08-04 2001-03-05 Digilens Inc. Apparatus for producing a three-dimensional image
GB2353144A (en) 1999-08-11 2001-02-14 Nokia Telecommunications Oy Combline filter
US6317528B1 (en) 1999-08-23 2001-11-13 Corning Incorporated Temperature compensated integrated planar bragg grating, and method of formation
US6646772B1 (en) 1999-09-14 2003-11-11 Digilens, Inc. Holographic illumination system
US6317228B2 (en) 1999-09-14 2001-11-13 Digilens, Inc. Holographic illumination system
JP2001093179A (en) 1999-09-21 2001-04-06 Pioneer Electronic Corp Optical pickup
US6222297B1 (en) 1999-09-24 2001-04-24 Litton Systems, Inc. Pressed V-groove pancake slip ring
JP2001091715A (en) 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp Composite diffraction device
US6323970B1 (en) 1999-09-29 2001-11-27 Digilents, Inc. Method of producing switchable holograms
GB2354835A (en) 1999-09-29 2001-04-04 Marconi Electronic Syst Ltd Head up displays
US6741189B1 (en) 1999-10-06 2004-05-25 Microsoft Corporation Keypad having optical waveguides
US6301056B1 (en) 1999-11-08 2001-10-09 Corning Precision Lens High speed retrofocus projection television lens systems
US20020009299A1 (en) 1999-12-04 2002-01-24 Lenny Lipton System for the display of stereoscopic photographs
WO2001042828A1 (en) 1999-12-07 2001-06-14 Digilens Inc. Holographic display system
AU5515201A (en) 1999-12-22 2001-07-16 Science Applications International Corp. Switchable polymer-dispersed liquid crystal optical elements
US6356172B1 (en) 1999-12-29 2002-03-12 Nokia Networks Oy Resonator structure embedded in mechanical structure
US7502003B2 (en) 2000-01-20 2009-03-10 Real D Method for eliminating pi-cell artifacts
US6519088B1 (en) 2000-01-21 2003-02-11 Stereographics Corporation Method and apparatus for maximizing the viewing zone of a lenticular stereogram
JP4921634B2 (en) 2000-01-31 2012-04-25 グーグル インコーポレイテッド Display device
GB2372930B (en) 2000-03-03 2003-03-19 Teraview Ltd Apparatus and method for investigating a sample
US6281457B1 (en) * 2000-03-16 2001-08-28 Aten International Co., Ltd. Power switch apparatus of universal serial bus device
US6993223B2 (en) 2000-03-16 2006-01-31 Lightsmyth Technologies, Inc. Multiple distributed optical structures in a single optical element
US6987911B2 (en) 2000-03-16 2006-01-17 Lightsmyth Technologies, Inc. Multimode planar waveguide spectral filter
US7245325B2 (en) 2000-03-17 2007-07-17 Fujifilm Corporation Photographing device with light quantity adjustment
US6919003B2 (en) 2000-03-23 2005-07-19 Canon Kabushiki Kaisha Apparatus and process for producing electrophoretic device
JP2001296503A (en) 2000-04-13 2001-10-26 Mitsubishi Heavy Ind Ltd Device for reducing speckle
US6522795B1 (en) 2000-05-17 2003-02-18 Rebecca Jordan Tunable etched grating for WDM optical communication systems
US6730442B1 (en) 2000-05-24 2004-05-04 Science Applications International Corporation System and method for replicating volume holograms
JP4433355B2 (en) 2000-05-25 2010-03-17 大日本印刷株式会社 Production method of transmission hologram
JP2003535405A (en) 2000-05-29 2003-11-25 ブイケービー インコーポレイティド Virtual data input device and method for inputting characters, numbers and other data
CZ302883B6 (en) 2000-06-05 2012-01-04 Lumus Ltd. Optical device containing light-transmitting substrate
US7671889B2 (en) 2000-06-07 2010-03-02 Real D Autostereoscopic pixel arrangement techniques
US20010050756A1 (en) 2000-06-07 2001-12-13 Lenny Lipton Software generated color organ for stereoscopic and planar applications
FI114585B (en) 2000-06-09 2004-11-15 Nokia Corp Transfer cable in multilayer structures
US6830789B2 (en) 2000-06-09 2004-12-14 Kent Displays, Inc. Chiral additives for cholesteric displays
US6598987B1 (en) 2000-06-15 2003-07-29 Nokia Mobile Phones Limited Method and apparatus for distributing light to the user interface of an electronic device
US20080024598A1 (en) 2000-07-21 2008-01-31 New York University Autostereoscopic display
US6359737B1 (en) 2000-07-28 2002-03-19 Generals Motors Corporation Combined head-up display
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element
US7376068B1 (en) 2000-08-19 2008-05-20 Jehad Khoury Nano-scale resolution holographic lens and pickup device
US7099080B2 (en) 2000-08-30 2006-08-29 Stereo Graphics Corporation Autostereoscopic lenticular screen
US6470132B1 (en) 2000-09-05 2002-10-22 Nokia Mobile Phones Ltd. Optical hinge apparatus
US6611253B1 (en) 2000-09-19 2003-08-26 Harel Cohen Virtual input environment
JP2002090858A (en) 2000-09-20 2002-03-27 Olympus Optical Co Ltd In-finder display device
US6583873B1 (en) 2000-09-25 2003-06-24 The Carnegie Institution Of Washington Optical devices having a wavelength-tunable dispersion assembly that has a volume dispersive diffraction grating
FI111457B (en) 2000-10-02 2003-07-31 Nokia Corp Micromechanical structure
US6750968B2 (en) 2000-10-03 2004-06-15 Accent Optical Technologies, Inc. Differential numerical aperture methods and device
AU2000279154A1 (en) 2000-10-06 2002-04-15 Nokia Corporation Self-aligned transition between a transmission line and a module
DE10051186B4 (en) 2000-10-16 2005-04-07 Fibermark Gessner Gmbh & Co. Ohg Dust filter bag with highly porous carrier material layer
JP2002122906A (en) 2000-10-17 2002-04-26 Olympus Optical Co Ltd Display device within finder
DE60009962T2 (en) 2000-10-18 2004-09-02 Nokia Corp. WAVEGUIDE STRIPE WIRE TRANSFERS
US6563648B2 (en) 2000-10-20 2003-05-13 Three-Five Systems, Inc. Compact wide field of view imaging system
US6738105B1 (en) 2000-11-02 2004-05-18 Intel Corporation Coherent light despeckling
US6791629B2 (en) 2000-11-09 2004-09-14 3M Innovative Properties Company Lens systems for projection televisions
US6552789B1 (en) 2000-11-22 2003-04-22 Rockwell Collins, Inc. Alignment detector
US6822713B1 (en) 2000-11-27 2004-11-23 Kent State University Optical compensation film for liquid crystal display
JP4727034B2 (en) 2000-11-28 2011-07-20 オリンパス株式会社 Observation optical system and imaging optical system
GB0029340D0 (en) 2000-11-30 2001-01-17 Cambridge 3D Display Ltd Flat panel camera
EP1257873A2 (en) 2000-12-14 2002-11-20 Koninklijke Philips Electronics N.V. Liquid crystal display laminate and method of manufacturing such
US20020093701A1 (en) 2000-12-29 2002-07-18 Xiaoxiao Zhang Holographic multifocal lens
US7042631B2 (en) 2001-01-04 2006-05-09 Coherent Technologies, Inc. Power scalable optical systems for generating, transporting, and delivering high power, high quality, laser beams
US20020120916A1 (en) 2001-01-16 2002-08-29 Snider Albert Monroe Head-up display system utilizing fluorescent material
US6563650B2 (en) 2001-01-17 2003-05-13 3M Innovative Properties Company Compact, telecentric projection lenses for use with pixelized panels
EP2328026B1 (en) 2001-02-09 2014-04-09 Dai Nippon Printing Co., Ltd. Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording
US6518747B2 (en) 2001-02-16 2003-02-11 Quantum Design, Inc. Method and apparatus for quantitative determination of accumulations of magnetic particles
US6600590B2 (en) 2001-02-20 2003-07-29 Eastman Kodak Company Speckle suppressed laser projection system using RF injection
US6625381B2 (en) 2001-02-20 2003-09-23 Eastman Kodak Company Speckle suppressed laser projection system with partial beam reflection
US6476974B1 (en) 2001-02-28 2002-11-05 Corning Precision Lens Incorporated Projection lenses for use with reflective pixelized panels
EP1374354B1 (en) 2001-03-02 2008-12-31 Innovative Solutions & Support, Inc. Image display generator for a head-up display
JP2002277732A (en) 2001-03-14 2002-09-25 Fuji Photo Optical Co Ltd Diffraction type optical pickup lens and optical pickup device using the same
JP2002277816A (en) 2001-03-21 2002-09-25 Minolta Co Ltd Image display device
US7184002B2 (en) 2001-03-29 2007-02-27 Stereographics Corporation Above-and-below stereoscopic format with signifier
GB0108838D0 (en) 2001-04-07 2001-05-30 Cambridge 3D Display Ltd Far field display
US6781701B1 (en) 2001-04-10 2004-08-24 Intel Corporation Method and apparatus for measuring optical phase and amplitude
FI20010778A (en) 2001-04-12 2002-10-13 Nokia Corp Optical switching arrangement
US6788864B2 (en) 2001-04-12 2004-09-07 Omniguide Communications High index-contrast fiber waveguides and applications
JP4772204B2 (en) 2001-04-13 2011-09-14 オリンパス株式会社 Observation optical system
US6844980B2 (en) 2001-04-23 2005-01-18 Reveo, Inc. Image display system and electrically actuatable image combiner therefor
FI20010917A (en) 2001-05-03 2002-11-04 Nokia Corp Electrically reconfigurable optical devices and methods for their formation
FI111357B (en) 2001-05-03 2003-07-15 Nokia Corp Electrically controllable sheet of varying thickness and method for its formation
US6731434B1 (en) 2001-05-23 2004-05-04 University Of Central Florida Compact lens assembly for the teleportal augmented reality system
US6963454B1 (en) 2002-03-01 2005-11-08 Research Foundation Of The University Of Central Florida Head-mounted display by integration of phase-conjugate material
US6999239B1 (en) 2001-05-23 2006-02-14 Research Foundation Of The University Of Central Florida, Inc Head-mounted display by integration of phase-conjugate material
US7009773B2 (en) 2001-05-23 2006-03-07 Research Foundation Of The University Of Central Florida, Inc. Compact microlenslet arrays imager
JP4414612B2 (en) 2001-05-31 2010-02-10 矢崎総業株式会社 Vehicle display device
US7002618B2 (en) 2001-06-01 2006-02-21 Stereographics Corporation Plano-stereoscopic DVD movie
US7500104B2 (en) 2001-06-15 2009-03-03 Microsoft Corporation Networked device branding for secure interaction in trust webs on open networks
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US7496257B2 (en) * 2001-07-03 2009-02-24 Brown University Research Foundation Method and apparatus for detecting multiple optical wavelengths
US7151246B2 (en) 2001-07-06 2006-12-19 Palantyr Research, Llc Imaging system and methodology
US6750995B2 (en) 2001-07-09 2004-06-15 Dickson Leroy David Enhanced volume phase grating with high dispersion, high diffraction efficiency and low polarization sensitivity
JP2003114347A (en) 2001-07-30 2003-04-18 Furukawa Electric Co Ltd:The Single mode optical fiber, method and device for manufacturing the same
GB0118866D0 (en) 2001-08-02 2001-09-26 Cambridge 3D Display Ltd Shaped taper flat panel display
CN1558921A (en) 2001-08-03 2004-12-29 Dsm Curable compositions for display devices
US6791739B2 (en) 2001-08-08 2004-09-14 Eastman Kodak Company Electro-optic despeckling modulator and method of use
US6927694B1 (en) 2001-08-20 2005-08-09 Research Foundation Of The University Of Central Florida Algorithm for monitoring head/eye motion for driver alertness with one camera
JP2003066428A (en) 2001-08-23 2003-03-05 Toppan Printing Co Ltd Projector using holographic polymer dispersed liquid crystal
US6987908B2 (en) 2001-08-24 2006-01-17 T-Networks, Inc. Grating dispersion compensator and method of manufacture
US6594090B2 (en) 2001-08-27 2003-07-15 Eastman Kodak Company Laser projection display system
JP4155771B2 (en) 2001-08-27 2008-09-24 大日本印刷株式会社 Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording using the same
US6646810B2 (en) 2001-09-04 2003-11-11 Delphi Technologies, Inc. Display backlighting apparatus
US7447967B2 (en) 2001-09-13 2008-11-04 Texas Instruments Incorporated MIMO hybrid-ARQ using basis hopping
EP1430351B1 (en) 2001-09-25 2006-11-29 Cambridge Flat Projection Displays Limited Flat-panel projection display
US6833955B2 (en) 2001-10-09 2004-12-21 Planop Planar Optics Ltd. Compact two-plane optical device
KR100416548B1 (en) 2001-10-10 2004-02-05 삼성전자주식회사 Three dimensional image displaying apparatus
JP2003139958A (en) 2001-10-31 2003-05-14 Sony Corp Transmission type laminated hologram optical element, image display element and image display device
US6806982B2 (en) 2001-11-30 2004-10-19 Zebra Imaging, Inc. Pulsed-laser systems and methods for producing holographic stereograms
US6816309B2 (en) 2001-11-30 2004-11-09 Colorlink, Inc. Compensated color management systems and methods
US6773114B2 (en) 2001-12-07 2004-08-10 Nokia Corporation Portable multimode display device
DE60212183T2 (en) 2001-12-13 2007-04-12 Sony Deutschland Gmbh PROCESS FOR PRODUCING A COMPOSITION
JP2005515495A (en) 2002-01-10 2005-05-26 ケント ステート ユニバーシティ Liquid crystal cell materials
US6577429B1 (en) 2002-01-15 2003-06-10 Eastman Kodak Company Laser projection display system
US6972788B1 (en) 2002-01-28 2005-12-06 Rockwell Collins Projection display for a aircraft cockpit environment
US6926429B2 (en) 2002-01-30 2005-08-09 Delphi Technologies, Inc. Eye tracking/HUD system
US6952435B2 (en) 2002-02-11 2005-10-04 Ming Lai Speckle free laser probe beam
WO2003069396A2 (en) 2002-02-15 2003-08-21 Elop Electro-Optics Industries Ltd. Device and method for varying the reflectance or transmittance of light
JP2005529984A (en) 2002-02-19 2005-10-06 フォトン−エックス・インコーポレーテッド Polymer nanocomposites for optical applications
US6836369B2 (en) 2002-03-08 2004-12-28 Denso Corporation Head-up display
DE60311904D1 (en) 2002-03-15 2007-04-05 Computer Sciences Corp Methods and apparatus for analyzing writing in documents
US7528385B2 (en) 2002-03-15 2009-05-05 Pd-Ld, Inc. Fiber optic devices having volume Bragg grating elements
JP2003270419A (en) 2002-03-18 2003-09-25 Sony Corp Diffractive optical element and image display device
US7027671B2 (en) 2002-03-18 2006-04-11 Koninklijke Philips Electronics N.V. Polarized-light-emitting waveguide, illumination arrangement and display device comprising such
EP1347641A1 (en) 2002-03-19 2003-09-24 Siemens Aktiengesellschaft Free projection display device
IL148804A (en) 2002-03-21 2007-02-11 Yaacov Amitai Optical device
CN1678948A (en) 2002-03-27 2005-10-05 艾利丹尼森公司 Switchable electro-optical laminates
DE10216279A1 (en) 2002-04-12 2003-10-30 Siemens Ag Method for the detection of a control signal in an optical transmission system
DE10312405B4 (en) 2002-04-16 2011-12-01 Merck Patent Gmbh Liquid crystalline medium with high birefringence and light stability and its use
US6757105B2 (en) 2002-04-25 2004-06-29 Planop Planar Optics Ltd. Optical device having a wide field-of-view for multicolor images
JP3460716B1 (en) 2002-04-25 2003-10-27 ソニー株式会社 Image display device
FI113719B (en) 2002-04-26 2004-05-31 Nokia Corp modulator
KR20030088217A (en) 2002-05-13 2003-11-19 삼성전자주식회사 Wearable display system enabling adjustment of magnfication
US20030228019A1 (en) 2002-06-11 2003-12-11 Elbit Systems Ltd. Method and system for reducing noise
ATE406599T1 (en) 2002-06-13 2008-09-15 Nokia Corp EXPANSION ELECTRODE CONFIGURATION FOR ELECTRICALLY CONTROLLED LIGHT MODULATORS
US7804995B2 (en) 2002-07-02 2010-09-28 Reald Inc. Stereoscopic format converter
JP3958134B2 (en) 2002-07-12 2007-08-15 キヤノン株式会社 measuring device
ITTO20020625A1 (en) 2002-07-17 2004-01-19 Fiat Ricerche LIGHT GUIDE FOR "HEAD-MOUNTED" OR "HEAD-UP" TYPE DISPLAY DEVICES
JP3867634B2 (en) 2002-07-26 2007-01-10 株式会社ニコン Image combiner and image display device
US6951393B2 (en) 2002-07-31 2005-10-04 Canon Kabushiki Kaisha Projection type image display apparatus and image display system
AU2003247148A1 (en) 2002-08-05 2004-02-23 Elbit Systems Ltd. Vehicle mounted night vision imaging system and method
US7872804B2 (en) 2002-08-20 2011-01-18 Illumina, Inc. Encoded particle having a grating with variations in the refractive index
US8538208B2 (en) 2002-08-28 2013-09-17 Seng-Tiong Ho Apparatus for coupling light between input and output waveguides
US7619739B1 (en) 2002-08-29 2009-11-17 Science Applications International Corporation Detection and identification of biological agents using Bragg filters
US7259906B1 (en) 2002-09-03 2007-08-21 Cheetah Omni, Llc System and method for voice control of medical devices
EP1546795A4 (en) 2002-09-03 2006-11-15 Optrex Kk Image display system
AU2003268487A1 (en) 2002-09-05 2004-03-29 Nanosys, Inc. Nanocomposites
FI114945B (en) * 2002-09-19 2005-01-31 Nokia Corp Electrically adjustable diffractive gate element
JP3994896B2 (en) 2002-09-25 2007-10-24 コニカミノルタホールディングス株式会社 Video display device
AU2003278747A1 (en) 2002-09-25 2004-04-19 Xponent Photonics Inc Optical assemblies for free-space optical propagation between waveguide(s) and/or fiber(s)
US6776339B2 (en) 2002-09-27 2004-08-17 Nokia Corporation Wireless communication device providing a contactless interface for a smart card reader
US6805490B2 (en) 2002-09-30 2004-10-19 Nokia Corporation Method and system for beam expansion in a display device
EP1413972B1 (en) 2002-10-24 2008-10-22 L-1 Identity Solutions AG Examination of images of persons
JP4242138B2 (en) 2002-11-05 2009-03-18 日本電信電話株式会社 Hologram drawing method and hologram
US7095026B2 (en) 2002-11-08 2006-08-22 L-3 Communications Cincinnati Electronics Corporation Methods and apparatuses for selectively limiting undesired radiation
US8786923B2 (en) 2002-11-22 2014-07-22 Akonia Holographics, Llc Methods and systems for recording to holographic storage media
US20040263969A1 (en) 2002-11-25 2004-12-30 Lenny Lipton Lenticular antireflection display
US7018563B1 (en) 2002-11-26 2006-03-28 Science Applications International Corporation Tailoring material composition for optimization of application-specific switchable holograms
WO2004049319A1 (en) 2002-11-27 2004-06-10 Nokia Corporation Read/write device for optical memory and method therefore
US6853491B1 (en) 2003-11-26 2005-02-08 Frank Ruhle Collimating optical member for real world simulation
US20040112862A1 (en) 2002-12-12 2004-06-17 Molecular Imprints, Inc. Planarization composition and method of patterning a substrate using the same
FI114946B (en) 2002-12-16 2005-01-31 Nokia Corp Diffractive grating element for balancing diffraction efficiency
US7046888B2 (en) 2002-12-18 2006-05-16 The Regents Of The University Of Michigan Enhancing fiber-optic sensing technique using a dual-core fiber
US7002407B2 (en) 2002-12-18 2006-02-21 Powerwave Technologies, Inc. Delay mismatched feed forward amplifier system using penalties and floors for control
GB2396484A (en) 2002-12-19 2004-06-23 Nokia Corp Reducing coupling between different antennas
US6952312B2 (en) 2002-12-31 2005-10-04 3M Innovative Properties Company Head-up display with polarized light source and wide-angle p-polarization reflective polarizer
US6853493B2 (en) 2003-01-07 2005-02-08 3M Innovative Properties Company Folded, telecentric projection lenses for use with pixelized panels
JP3873892B2 (en) 2003-01-22 2007-01-31 コニカミノルタホールディングス株式会社 Video display device
EP1597616A4 (en) 2003-02-10 2008-04-09 Nanoopto Corp Universal broadband polarizer, devices incorporating same, and method of making same
US20040263971A1 (en) 2003-02-12 2004-12-30 Lenny Lipton Dual mode autosteroscopic lens sheet
US7088515B2 (en) 2003-02-12 2006-08-08 Stereographics Corporation Autostereoscopic lens sheet with planar areas
US7205960B2 (en) 2003-02-19 2007-04-17 Mirage Innovations Ltd. Chromatic planar optic display system
US7119965B1 (en) 2003-02-24 2006-10-10 University Of Central Florida Research Foundation, Inc. Head mounted projection display with a wide field of view
US8230359B2 (en) 2003-02-25 2012-07-24 Microsoft Corporation System and method that facilitates computer desktop use via scaling of displayed objects with shifts to the periphery
WO2004079431A1 (en) 2003-03-05 2004-09-16 3M Innovative Properties Company Diffractive lens
US7092133B2 (en) 2003-03-10 2006-08-15 Inphase Technologies, Inc. Polytopic multiplex holography
US20040179764A1 (en) 2003-03-14 2004-09-16 Noureddine Melikechi Interferometric analog optical modulator for single mode fibers
KR20060015476A (en) 2003-03-16 2006-02-17 익스플레이 엘티디. Projection system and method
US7006732B2 (en) 2003-03-21 2006-02-28 Luxtera, Inc. Polarization splitting grating couplers
US7181105B2 (en) 2003-03-25 2007-02-20 Fuji Photo Film Co., Ltd. Method for adjusting alignment of laser beams in combined-laser-light source where the laser beams are incident on restricted area of light-emission end face of optical fiber
US7460696B2 (en) 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
US7539330B2 (en) 2004-06-01 2009-05-26 Lumidigm, Inc. Multispectral liveness determination
US6950173B1 (en) 2003-04-08 2005-09-27 Science Applications International Corporation Optimizing performance parameters for switchable polymer dispersed liquid crystal optical elements
AU2003901797A0 (en) 2003-04-14 2003-05-01 Agresearch Limited Manipulation of condensed tannin biosynthesis
US6985296B2 (en) 2003-04-15 2006-01-10 Stereographics Corporation Neutralizing device for autostereoscopic lens sheet
WO2004102226A2 (en) 2003-05-09 2004-11-25 Sbg Labs, Inc. Switchable viewfinder display
EP1623266B1 (en) 2003-05-12 2009-10-28 Elbit Systems Ltd. Method and system for audiovisual communication
FI115169B (en) 2003-05-13 2005-03-15 Nokia Corp Method and optical system for coupling light to a waveguide
US7401920B1 (en) 2003-05-20 2008-07-22 Elbit Systems Ltd. Head mounted eye tracking and display system
US7046439B2 (en) 2003-05-22 2006-05-16 Eastman Kodak Company Optical element with nanoparticles
GB0313044D0 (en) 2003-06-06 2003-07-09 Cambridge Flat Projection Flat panel scanning illuminator
US20060132914A1 (en) 2003-06-10 2006-06-22 Victor Weiss Method and system for displaying an informative image against a background image
JP2005011387A (en) 2003-06-16 2005-01-13 Hitachi Global Storage Technologies Inc Magnetic disk unit
EP1635197B1 (en) 2003-06-19 2010-12-01 Nikon Corporation Optical element
EP1636735A1 (en) 2003-06-21 2006-03-22 Aprilis, Inc. Acquisition of high resolution boimetric images
US7394865B2 (en) 2003-06-25 2008-07-01 Nokia Corporation Signal constellations for multi-carrier systems
EP1649309A4 (en) 2003-07-03 2011-03-09 Holo Touch Inc Holographic human-machine interfaces
ITTO20030530A1 (en) 2003-07-09 2005-01-10 Infm Istituto Naz Per La Fisi Ca Della Mater HOLOGRAPHIC DISTRIBUTION NETWORK, PROCEDURE FOR THE
GB2403814A (en) 2003-07-10 2005-01-12 Ocuity Ltd Directional display apparatus with birefringent lens structure
US7158095B2 (en) 2003-07-17 2007-01-02 Big Buddy Performance, Inc. Visual display system for displaying virtual images onto a field of vision
WO2005015298A1 (en) 2003-08-08 2005-02-17 Merck Patent Gmbh Alignment layer with reactive mesogens for aligning liquid crystal molecules
KR100516601B1 (en) 2003-08-13 2005-09-22 삼성전기주식회사 Lens system being constructed in mobile terminal
EP1510862A3 (en) 2003-08-25 2006-08-09 Fuji Photo Film Co., Ltd. Hologram recording method and hologram recording material
AU2003258743A1 (en) 2003-08-29 2005-03-16 Nokia Corporation Electrical device utilizing charge recycling within a cell
GB2405519A (en) 2003-08-30 2005-03-02 Sharp Kk A multiple-view directional display
IL157836A (en) 2003-09-10 2009-08-03 Yaakov Amitai Optical devices particularly for remote viewing applications
IL157837A (en) 2003-09-10 2012-12-31 Yaakov Amitai Substrate-guided optical device particularly for three-dimensional displays
IL157838A (en) 2003-09-10 2013-05-30 Yaakov Amitai High brightness optical device
US7212175B1 (en) 2003-09-19 2007-05-01 Rockwell Collins, Inc. Symbol position monitoring for pixelated heads-up display method and apparatus
DE10344575A1 (en) * 2003-09-25 2005-04-28 Siemens Ag Device for transmitting data and portable electronic device and field device for such a device
US7088457B1 (en) 2003-10-01 2006-08-08 University Of Central Florida Research Foundation, Inc. Iterative least-squares wavefront estimation for general pupil shapes
US7616228B2 (en) 2003-10-02 2009-11-10 Real D Hardware based interdigitation
US7616227B2 (en) 2003-10-02 2009-11-10 Real D Hardware based interdigitation
JP4266770B2 (en) 2003-10-22 2009-05-20 アルプス電気株式会社 Optical image reader
US7333685B2 (en) 2003-11-24 2008-02-19 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Variable optical attenuator systems
KR100807440B1 (en) 2003-11-28 2008-02-25 오므론 가부시키가이샤 Multi-channel array waveguide diffraction grating type multiplexer/demultiplexer and method of connecting array waveguide with output waveguides
IL165376A0 (en) 2003-12-02 2006-01-15 Electro Optics Ind Ltd Vehicle display system
JP2005190647A (en) 2003-12-03 2005-07-14 Ricoh Co Ltd Phase-change optical recording medium
US7034748B2 (en) 2003-12-17 2006-04-25 Microsoft Corporation Low-cost, steerable, phased array antenna with controllable high permittivity phase shifters
US7273659B2 (en) 2003-12-18 2007-09-25 Lintec Corporation Photochromic film material
US7557154B2 (en) 2004-12-23 2009-07-07 Sabic Innovative Plastics Ip B.V. Polymer compositions, method of manufacture, and articles formed therefrom
US7496293B2 (en) 2004-01-14 2009-02-24 Elbit Systems Ltd. Versatile camera for various visibility conditions
KR101180140B1 (en) 2004-01-29 2012-09-05 파나소닉 주식회사 Light source device, and two-dimensional image display unit
JP4682519B2 (en) 2004-02-03 2011-05-11 セイコーエプソン株式会社 Display device
JP4438436B2 (en) 2004-02-03 2010-03-24 セイコーエプソン株式会社 Display device
FI20040162A0 (en) 2004-02-03 2004-02-03 Nokia Oyj Stabilization of reference oscillator frequency
US7317449B2 (en) 2004-03-02 2008-01-08 Microsoft Corporation Key-based advanced navigation techniques
CN101174028B (en) 2004-03-29 2015-05-20 索尼株式会社 Optical device and virtual image display device
US6958868B1 (en) 2004-03-29 2005-10-25 John George Pender Motion-free tracking solar concentrator
US7119161B2 (en) 2004-03-31 2006-10-10 Solaris Nanosciences, Inc. Anisotropic nanoparticles and anisotropic nanostructures and pixels, displays and inks using them
US20050232530A1 (en) 2004-04-01 2005-10-20 Jason Kekas Electronically controlled volume phase grating devices, systems and fabrication methods
JP3952034B2 (en) 2004-04-14 2007-08-01 富士ゼロックス株式会社 Hologram recording method, hologram recording apparatus, hologram reproducing method, hologram reproducing apparatus, and information holding body
US7526103B2 (en) 2004-04-15 2009-04-28 Donnelly Corporation Imaging system for vehicle
US7375886B2 (en) 2004-04-19 2008-05-20 Stereographics Corporation Method and apparatus for optimizing the viewing distance of a lenticular stereogram
US6992830B1 (en) 2004-04-22 2006-01-31 Raytheon Company Projection display having an angle-selective coating for enhanced image contrast, and method for enhancing image contrast
WO2005103771A1 (en) 2004-04-23 2005-11-03 Parriaux Olivier M High efficiency optical diffraction device
US7339737B2 (en) 2004-04-23 2008-03-04 Microvision, Inc. Beam multiplier that can be used as an exit-pupil expander and related system and method
JP4373286B2 (en) 2004-05-06 2009-11-25 オリンパス株式会社 Head-mounted display device
GB2414127A (en) 2004-05-12 2005-11-16 Sharp Kk Time sequential colour projection
WO2005111669A1 (en) 2004-05-17 2005-11-24 Nikon Corporation Optical element, combiner optical system, and image display unit
US7301601B2 (en) 2004-05-20 2007-11-27 Alps Electric (Usa) Inc. Optical switching device using holographic polymer dispersed liquid crystals
US7639208B1 (en) 2004-05-21 2009-12-29 University Of Central Florida Research Foundation, Inc. Compact optical see-through head-mounted display with occlusion support
US8229185B2 (en) 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
US7002753B2 (en) 2004-06-02 2006-02-21 3M Innovative Properties Company Color-corrected projection lenses for use with pixelized panels
IL162573A (en) 2004-06-17 2013-05-30 Lumus Ltd Substrate-guided optical device with very wide aperture
IL162572A (en) 2004-06-17 2013-02-28 Lumus Ltd High brightness optical device
US7482996B2 (en) 2004-06-28 2009-01-27 Honeywell International Inc. Head-up display
IL162779A (en) 2004-06-29 2010-11-30 Elbit Systems Ltd Security systems and methods relating to travelling vehicles
EP1612596A1 (en) 2004-06-29 2006-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-efficient, tuneable and switchable optical elements based on polymer-liquid crystal composites and films, mixtures and a method for their production
JP2006018864A (en) 2004-06-30 2006-01-19 Sony Corp Hologram duplication method
US7617022B1 (en) 2004-07-01 2009-11-10 Rockwell Collins, Inc. Dual wavelength enhanced vision system optimized for visual landing light alignment
US7605774B1 (en) 2004-07-02 2009-10-20 Rockwell Collins, Inc. Enhanced vision system (EVS) processing window tied to flight path
US20060013977A1 (en) 2004-07-13 2006-01-19 Duke Leslie P Polymeric ballistic material and method of making
US7597447B2 (en) 2004-07-14 2009-10-06 Honeywell International Inc. Color correcting contrast enhancement of displays
US7285903B2 (en) 2004-07-15 2007-10-23 Honeywell International, Inc. Display with bright backlight
US7110184B1 (en) 2004-07-19 2006-09-19 Elbit Systems Ltd. Method and apparatus for combining an induced image with a scene image
EP1783537A4 (en) 2004-07-20 2009-09-02 Asahi Glass Co Ltd Liquid crystal lens element and optical head device
US7492512B2 (en) 2004-07-23 2009-02-17 Mirage International Ltd. Wide field-of-view binocular device, system and kit
JP4841815B2 (en) 2004-07-23 2011-12-21 株式会社村上開明堂 Display device
US8938141B2 (en) 2004-07-30 2015-01-20 University Of Connecticut Tunable resonant leaky-mode N/MEMS elements and uses in optical devices
US7689086B2 (en) 2004-07-30 2010-03-30 University Of Connecticut Resonant leaky-mode optical devices and associated methods
US7145729B2 (en) 2004-08-04 2006-12-05 3M Innovative Properties Company Foldable projection lenses
US7230770B2 (en) 2004-08-04 2007-06-12 3M Innovative Properties Company Projection lenses having color-correcting rear lens units
IL163361A (en) 2004-08-05 2011-06-30 Lumus Ltd Optical device for light coupling into a guiding substrate
KR20070064319A (en) * 2004-08-06 2007-06-20 유니버시티 오브 워싱톤 Variable fixation viewing distance scanned light displays
US7436568B1 (en) 2004-08-17 2008-10-14 Kuykendall Jr Jacob L Head mountable video display
US7233446B2 (en) * 2004-08-19 2007-06-19 3Dtl, Inc. Transformable, applicable material and methods for using same for optical effects
US7075273B2 (en) 2004-08-24 2006-07-11 Motorola, Inc. Automotive electrical system configuration using a two bus structure
US8124929B2 (en) 2004-08-25 2012-02-28 Protarius Filo Ag, L.L.C. Imager module optical focus and assembly method
JP2006318515A (en) 2004-09-10 2006-11-24 Ricoh Co Ltd Hologram element, production method thereof and optical header
US7619825B1 (en) 2004-09-27 2009-11-17 Rockwell Collins, Inc. Compact head up display with wide viewing angle
WO2006035737A1 (en) 2004-09-29 2006-04-06 Brother Kogyo Kabushiki Kaisha Retina scanning type display
JP4649158B2 (en) 2004-09-30 2011-03-09 富士フイルム株式会社 Hologram recording method
WO2006041278A1 (en) 2004-10-15 2006-04-20 Stichting Dutch Polymer Institute Waveguide comprising an anisotropic diffracting layer
WO2006044652A1 (en) 2004-10-16 2006-04-27 Identix Incorporated Diffractive imaging system for the reading and analysis of skin topology
JP4692489B2 (en) 2004-10-19 2011-06-01 旭硝子株式会社 Liquid crystal diffractive lens element and optical head device
US7376307B2 (en) 2004-10-29 2008-05-20 Matsushita Electric Industrial Co., Ltd Multimode long period fiber bragg grating machined by ultrafast laser direct writing
IL165190A (en) 2004-11-14 2012-05-31 Elbit Systems Ltd System and method for stabilizing an image
US20080089073A1 (en) 2004-11-25 2008-04-17 Koninklijke Philips Electronics, N.V. Dynamic Liquid Crystal Gel Holograms
JP5282358B2 (en) 2004-12-06 2013-09-04 株式会社ニコン Image display optical system and image display apparatus
US7206107B2 (en) 2004-12-13 2007-04-17 Nokia Corporation Method and system for beam expansion in a display device
WO2006064334A1 (en) 2004-12-13 2006-06-22 Nokia Corporation General diffractive optics method for expanding an exit pupil
US20060126181A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
ATE552524T1 (en) 2004-12-13 2012-04-15 Nokia Corp SYSTEM AND METHOD FOR EXPANSION OF NEAR FOCUS RADIANT IN A DISPLAY DEVICE
US7466994B2 (en) 2004-12-31 2008-12-16 Nokia Corporation Sub-display of a mobile device
US7289069B2 (en) 2005-01-04 2007-10-30 Nokia Corporation Wireless device antenna
EP1842082A2 (en) 2005-01-20 2007-10-10 Elbit Systems Electro-Optics Elop Ltd. Laser obstacle detection and display
US8885139B2 (en) 2005-01-21 2014-11-11 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
AU2006208719B2 (en) 2005-01-26 2009-05-28 Xieon Networks S.A.R.L. Method for optically transmitting polarisation multiplex signals
WO2007097738A2 (en) 2005-01-26 2007-08-30 Wollf Robin Q Eye tracker/head tracker/camera tracker controlled camera/weapon positioner control system
GB0502453D0 (en) 2005-02-05 2005-03-16 Cambridge Flat Projection Flat panel lens
WO2006085310A1 (en) 2005-02-10 2006-08-17 Lumus Ltd. Substrate-guided optical device particularly for vision enhanced optical systems
WO2006085309A1 (en) 2005-02-10 2006-08-17 Lumus Ltd. Substrate-guided optical device utilizing thin transparent layer
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Substrate-guided optical device utilizing beam splitters
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
US7325928B2 (en) 2005-02-14 2008-02-05 Intel Corporation Resolution multiplication technique for projection display systems
CA2537751A1 (en) 2005-02-28 2006-08-28 Weatherford/Lamb, Inc. Furnace and process for drawing radiation resistant optical fiber
CN101142868A (en) 2005-03-15 2008-03-12 富士胶片株式会社 Light-transmitting electromagnetic shielding film, optical filter and plasma television
WO2006102073A2 (en) 2005-03-18 2006-09-28 Sbg Labs, Inc. Spatial light modulator
KR101210804B1 (en) 2005-03-22 2012-12-10 혼하이 프리시젼 인더스트리 컴퍼니 리미티드 optical system using total internal reflection images
US7587110B2 (en) 2005-03-22 2009-09-08 Panasonic Corporation Multicore optical fiber with integral diffractive elements machined by ultrafast laser direct writing
JP4612853B2 (en) 2005-03-29 2011-01-12 キヤノン株式会社 Pointed position recognition device and information input device having the same
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
WO2006110646A2 (en) 2005-04-08 2006-10-19 Real D Autostereoscopic display with planar pass-through
US7123421B1 (en) 2005-04-22 2006-10-17 Panavision International, L.P. Compact high performance zoom lens system
IL168581A (en) 2005-05-15 2010-12-30 Elbit Systems Electro Optics Elop Ltd Head-up display system
EP2501139A3 (en) 2005-05-26 2014-01-08 RealD Inc. Ghost-compensation for improved stereoscopic projection
AU2006253723A1 (en) 2005-05-30 2006-12-07 Elbit Systems Ltd. Combined head up display
US20090303599A1 (en) 2005-06-03 2009-12-10 Nokia Corporation General diffractive optics method for expanding an exit pupil
JP5465430B2 (en) 2005-06-07 2014-04-09 リアルディー インコーポレイテッド Control of angle range of autostereoscopic viewing zone
JP4655771B2 (en) 2005-06-17 2011-03-23 ソニー株式会社 Optical device and virtual image display device
EP1902343B1 (en) 2005-06-24 2011-05-18 RealD Inc. Autostereoscopic display with increased sharpness for non-primary viewing zones
JP4862298B2 (en) 2005-06-30 2012-01-25 ソニー株式会社 Optical device and virtual image display device
JP2009500668A (en) 2005-07-07 2009-01-08 ノキア コーポレイション Production of optical waveguides by embossing grooves by rolling
US8086030B2 (en) 2005-07-19 2011-12-27 Elbit Systems Electro-Optics Elop Ltd. Method and system for visually presenting a high dynamic range image
US7271960B2 (en) 2005-07-25 2007-09-18 Stewart Robert J Universal vehicle head up display (HUD) device and method for using the same
US7513668B1 (en) 2005-08-04 2009-04-07 Rockwell Collins, Inc. Illumination system for a head up display
US7397606B1 (en) 2005-08-04 2008-07-08 Rockwell Collins, Inc. Meniscus head up display combiner
WO2007015141A2 (en) 2005-08-04 2007-02-08 Milan Momcilo Popovich Laser illuminator
CN102681064A (en) 2005-08-29 2012-09-19 松下电器产业株式会社 Diffractive optical element and imaging apparatus
US7666331B2 (en) 2005-08-31 2010-02-23 Transitions Optical, Inc. Photochromic article
US7434940B2 (en) 2005-09-06 2008-10-14 Hewlett-Packard Development Company, L.P. Light coupling system and method
EP1922579B1 (en) 2005-09-07 2015-08-19 BAE Systems PLC A projection display with two plate-like, co-planar waveguides including gratings
ATE447726T1 (en) * 2005-09-07 2009-11-15 Bae Systems Plc PROJECTION DISPLAY WITH A ROD-LIKE WAVEGUIDE WITH A RECTANGULAR CROSS SECTION AND A PLATE-LIKE WAVEGUIDE, EACH HAVING A DIFFRACTION GRIDING
IL173361A (en) 2005-09-12 2012-03-29 Elbit Systems Ltd Near eye display system
CN101263412A (en) 2005-09-14 2008-09-10 米拉茨创新有限公司 Diffractive optical device and system
US20080043334A1 (en) 2006-08-18 2008-02-21 Mirage Innovations Ltd. Diffractive optical relay and method for manufacturing the same
US20090128911A1 (en) 2005-09-14 2009-05-21 Moti Itzkovitch Diffraction Grating With a Spatially Varying Duty-Cycle
GB0518912D0 (en) 2005-09-16 2005-10-26 Light Blue Optics Ltd Methods and apparatus for displaying images using holograms
JP2007086145A (en) 2005-09-20 2007-04-05 Sony Corp Three-dimensional display
JP4810949B2 (en) 2005-09-29 2011-11-09 ソニー株式会社 Optical device and image display device
US20070089625A1 (en) 2005-10-20 2007-04-26 Elbit Vision Systems Ltd. Method and system for detecting defects during the fabrication of a printing cylinder
US8018579B1 (en) 2005-10-21 2011-09-13 Apple Inc. Three-dimensional imaging and display system
JP5166273B2 (en) 2005-10-27 2013-03-21 リアルディー インコーポレイテッド Temperature compensation of expansion difference between autostereoscopic lens array and display screen
JP2007121893A (en) 2005-10-31 2007-05-17 Olympus Corp Polarization switching liquid crystal element and image display device equipped with element
EP1943556B1 (en) 2005-11-03 2009-02-11 Mirage Innovations Ltd. Binocular optical relay device
IL171820A (en) 2005-11-08 2014-04-30 Lumus Ltd Polarizing optical device for light coupling
US10261321B2 (en) 2005-11-08 2019-04-16 Lumus Ltd. Polarizing optical system
IL179135A (en) 2005-11-10 2010-11-30 Elbit Systems Electro Optics Elop Ltd Head up display mechanism
US7777819B2 (en) 2005-11-10 2010-08-17 Bae Systems Plc Display source
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
JP2009521137A (en) 2005-11-14 2009-05-28 リアルデー Monitor with integral interdigitation
US7477206B2 (en) 2005-12-06 2009-01-13 Real D Enhanced ZScreen modulator techniques
US7583437B2 (en) 2005-12-08 2009-09-01 Real D Projection screen with virtual compound curvature
JP4668780B2 (en) 2005-12-08 2011-04-13 矢崎総業株式会社 Luminescent display device
US7639911B2 (en) 2005-12-08 2009-12-29 Electronics And Telecommunications Research Institute Optical device having optical waveguide including organic Bragg grating sheet
US7522344B1 (en) 2005-12-14 2009-04-21 University Of Central Florida Research Foundation, Inc. Projection-based head-mounted display with eye-tracking capabilities
US20070133983A1 (en) 2005-12-14 2007-06-14 Matilda Traff Light-controlling element for a camera
US8233154B2 (en) 2005-12-22 2012-07-31 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College High precision code plates and geophones
EP1966636A2 (en) 2005-12-22 2008-09-10 Université Jean-Monnet Mirror structure and laser device comprising such a mirror structure
US20070151558A1 (en) 2005-12-22 2007-07-05 Solbeam, Inc. Variable apex angle prism
IL172797A (en) 2005-12-25 2012-09-24 Elbit Systems Ltd Real-time image scanning and processing
US7953308B2 (en) 2005-12-30 2011-05-31 General Electric Company System and method for fiber optic bundle-based illumination for imaging system
US8384504B2 (en) 2006-01-06 2013-02-26 Quantum Design International, Inc. Superconducting quick switch
US20070160325A1 (en) * 2006-01-11 2007-07-12 Hyungbin Son Angle-tunable transmissive grating
DE102006003785B4 (en) 2006-01-25 2023-02-23 Adc Automotive Distance Control Systems Gmbh Sensor with an adjustable dimming device
EP1983884B1 (en) 2006-01-26 2016-10-26 Nokia Technologies Oy Eye tracker device
US7760429B2 (en) 2006-01-27 2010-07-20 Reald Inc. Multiple mode display device
US7928862B1 (en) 2006-01-30 2011-04-19 Rockwell Collins, Inc. Display of hover and touchdown symbology on head-up display
IL173715A0 (en) 2006-02-14 2007-03-08 Lumus Ltd Substrate-guided imaging lens
JP2007219106A (en) 2006-02-16 2007-08-30 Konica Minolta Holdings Inc Optical device for expanding diameter of luminous flux, video display device and head mount display
KR101241770B1 (en) 2006-02-17 2013-03-14 삼성디스플레이 주식회사 Stereo-scopic image conversion panel and stereo-scopic image display apparatus having the same
JP4572342B2 (en) 2006-02-21 2010-11-04 セイコーエプソン株式会社 Electronics
EP2002302B1 (en) 2006-02-27 2015-11-11 Nokia Technologies Oy Diffraction gratings with tunable efficiency
US20070206155A1 (en) 2006-03-03 2007-09-06 Real D Steady state surface mode device for stereoscopic projection
US7499217B2 (en) 2006-03-03 2009-03-03 University Of Central Florida Research Foundation, Inc. Imaging systems for eyeglass-based display devices
IL174170A (en) 2006-03-08 2015-02-26 Abraham Aharoni Device and method for binocular alignment
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
WO2007130130A2 (en) 2006-04-06 2007-11-15 Sbg Labs Inc. Method and apparatus for providing a transparent display
US7679641B2 (en) 2006-04-07 2010-03-16 Real D Vertical surround parallax correction
US7733557B2 (en) 2006-04-24 2010-06-08 Micron Technology, Inc. Spatial light modulators with changeable phase masks for use in holographic data storage
US7843642B2 (en) 2006-05-04 2010-11-30 University Of Central Florida Research Foundation Systems and methods for providing compact illumination in head mounted displays
US7524053B2 (en) 2006-05-12 2009-04-28 Real D 3-D eyewear
US7740387B2 (en) 2006-05-24 2010-06-22 3M Innovative Properties Company Backlight wedge with side mounted light source
WO2007141589A1 (en) 2006-06-02 2007-12-13 Nokia Corporation Stereoscopic exit pupil expander display
WO2007141588A1 (en) 2006-06-02 2007-12-13 Nokia Corporation Split exit pupil expander
US8254031B2 (en) 2006-06-02 2012-08-28 Nokia Corporation Color distribution in exit pupil expanders
US7415173B2 (en) 2006-06-13 2008-08-19 Nokia Corporation Position sensor
DE102006027415B3 (en) 2006-06-13 2007-10-11 Siemens Ag Raman-pump laser activating and deactivating method, involves filtering pulse line with frequency of electrical service-signal from squared signal spectrum, where amplitude of line is evaluated for detection of optical service-signal
CN101512395B (en) 2006-06-30 2012-10-24 Hoya株式会社 Photochromic film, photochromic lens having the same, and process for producing photochromic lens
KR101229019B1 (en) 2006-06-30 2013-02-15 엘지디스플레이 주식회사 Liquid crystal display device and driving circuit of the same
US8199803B2 (en) 2006-07-14 2012-06-12 Nokia Siemens Neworks GmbH & Co. KG Receiver structure and method for the demodulation of a quadrature-modulated signal
WO2008011066A2 (en) 2006-07-18 2008-01-24 L-1 Identity Solutions Operating Company Methods and apparatus for self check-in of items for transportation
US7517081B2 (en) 2006-07-20 2009-04-14 Real D Low-cost circular polarizing eyewear
IL177618A (en) 2006-08-22 2015-02-26 Lumus Ltd Substrate- guided optical device
US20100177388A1 (en) 2006-08-23 2010-07-15 Mirage Innovations Ltd. Diffractive optical relay device with improved color uniformity
US8736672B2 (en) 2006-08-24 2014-05-27 Reald Inc. Algorithmic interaxial reduction
CN200944140Y (en) 2006-09-08 2007-09-05 李伯伦 Straight waveguide display panel
US8493433B2 (en) 2006-09-12 2013-07-23 Reald Inc. Shuttering eyewear for use with stereoscopic liquid crystal display
US7525448B1 (en) 2006-09-28 2009-04-28 Rockwell Collins, Inc. Enhanced vision system and method for an aircraft
US8830143B1 (en) 2006-09-28 2014-09-09 Rockwell Collins, Inc. Enhanced vision system and method for an aircraft
US8593734B2 (en) 2006-09-28 2013-11-26 Nokia Corporation Beam expansion with three-dimensional diffractive elements
DE102006046555B4 (en) 2006-09-28 2010-12-16 Grintech Gmbh Miniaturized optical imaging system with high lateral and axial resolution
GB0619226D0 (en) 2006-09-29 2006-11-08 Cambridge Flat Projection Efficient wedge projection
GB0619366D0 (en) 2006-10-02 2006-11-08 Cambridge Flat Projection Distortionless wedge projection
GB0620014D0 (en) 2006-10-10 2006-11-22 Cambridge Flat Projection Prismatic film backlight
US7670004B2 (en) 2006-10-18 2010-03-02 Real D Dual ZScreen® projection
US7857455B2 (en) 2006-10-18 2010-12-28 Reald Inc. Combining P and S rays for bright stereoscopic projection
US8000491B2 (en) 2006-10-24 2011-08-16 Nokia Corporation Transducer device and assembly
US20080106779A1 (en) * 2006-11-02 2008-05-08 Infocus Corporation Laser Despeckle Device
WO2008053063A1 (en) 2006-11-02 2008-05-08 Nokia Corporation Method for coupling light into a thin planar waveguide
US20100277803A1 (en) 2006-12-14 2010-11-04 Nokia Corporation Display Device Having Two Operating Modes
US20080151370A1 (en) 2006-12-21 2008-06-26 Real D Method of recycling eyewear
CN101583864A (en) 2006-12-21 2009-11-18 皇家飞利浦电子股份有限公司 Wiregrid waveguide
US20080155426A1 (en) 2006-12-21 2008-06-26 Microsoft Corporation Visualization and navigation of search results
US7775387B2 (en) 2006-12-21 2010-08-17 Reald Inc. Eyewear receptacle
JP5303928B2 (en) 2006-12-26 2013-10-02 東レ株式会社 Reflective polarizing plate, method for producing the same, and liquid crystal display device using the same
WO2008081071A1 (en) 2006-12-28 2008-07-10 Nokia Corporation Light guide plate and a method of manufacturing thereof
WO2008081070A1 (en) 2006-12-28 2008-07-10 Nokia Corporation Device for expanding an exit pupil in two dimensions
US8134434B2 (en) 2007-01-05 2012-03-13 Quantum Design, Inc. Superconducting quick switch
US7369911B1 (en) 2007-01-10 2008-05-06 International Business Machines Corporation Methods, systems, and computer program products for managing movement of work-in-process materials in an automated manufacturing environment
US20080172526A1 (en) 2007-01-11 2008-07-17 Akshat Verma Method and System for Placement of Logical Data Stores to Minimize Request Response Time
US8022942B2 (en) 2007-01-25 2011-09-20 Microsoft Corporation Dynamic projected user interface
US7508589B2 (en) 2007-02-01 2009-03-24 Real D Soft aperture correction for lenticular screens
US7808708B2 (en) 2007-02-01 2010-10-05 Reald Inc. Aperture correction for lenticular screens
CA2675207A1 (en) 2007-02-12 2008-07-21 E. I. Du Pont De Nemours And Company Production of arachidonic acid in oilseed plants
US8432363B2 (en) 2007-02-23 2013-04-30 Nokia Corporation Optical actuators in keypads
US20090122413A1 (en) 2007-02-28 2009-05-14 Joe Hoffman Systems and methods for aiding situational awareness
US20080226281A1 (en) 2007-03-13 2008-09-18 Real D Business system for three-dimensional snapshots
US20080273081A1 (en) 2007-03-13 2008-11-06 Lenny Lipton Business system for two and three dimensional snapshots
US8192030B2 (en) 2007-03-19 2012-06-05 Panasonic Corporation Laser illuminating device and image display device
US20080239067A1 (en) 2007-04-02 2008-10-02 Real D Optical concatenation for field sequential stereoscpoic displays
US8014050B2 (en) 2007-04-02 2011-09-06 Vuzix Corporation Agile holographic optical phased array device and applications
US20080239068A1 (en) 2007-04-02 2008-10-02 Real D Color and polarization timeplexed stereoscopic display apparatus
US8643948B2 (en) 2007-04-22 2014-02-04 Lumus Ltd. Collimating optical device and system
US7600893B2 (en) 2007-05-01 2009-10-13 Exalos Ag Display apparatus, method and light source
US8493630B2 (en) 2007-05-10 2013-07-23 L-I Indentity Solutions, Inc. Identification reader
US8469575B2 (en) 2007-05-20 2013-06-25 3M Innovative Properties Company Backlight and display system using same
JP5003291B2 (en) 2007-05-31 2012-08-15 コニカミノルタホールディングス株式会社 Video display device
US20080297731A1 (en) 2007-06-01 2008-12-04 Microvision, Inc. Apparent speckle reduction apparatus and method for mems laser projection system
IL183637A (en) 2007-06-04 2013-06-27 Zvi Lapidot Distributed head-mounted display
WO2008148927A1 (en) 2007-06-04 2008-12-11 Nokia Corporation A diffractive beam expander and a virtual display based on a diffractive beam expander
US8373744B2 (en) 2007-06-07 2013-02-12 Reald Inc. Stereoplexing for video and film applications
US8487982B2 (en) 2007-06-07 2013-07-16 Reald Inc. Stereoplexing for film and video applications
US20080316303A1 (en) 2007-06-08 2008-12-25 Joseph Chiu Display Device
BRPI0721736B1 (en) 2007-06-11 2023-05-16 Moog Limited TRANSFORMER, MOTOR CONTROLLER AND ENGINE
US20080309586A1 (en) 2007-06-13 2008-12-18 Anthony Vitale Viewing System for Augmented Reality Head Mounted Display
EP2158518B1 (en) 2007-06-14 2015-01-14 Nokia Corporation Displays with integrated backlighting
US7633666B2 (en) 2007-06-20 2009-12-15 Real D ZScreen® modulator with wire grid polarizer for stereoscopic projection
US7589901B2 (en) 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
CA2691375C (en) 2007-07-18 2014-05-20 Elbit Systems Ltd. Aircraft landing assistance
US7733571B1 (en) 2007-07-24 2010-06-08 Rockwell Collins, Inc. Phosphor screen and displays systems
US7605719B1 (en) 2007-07-25 2009-10-20 Rockwell Collins, Inc. System and methods for displaying a partial images and non-overlapping, shared-screen partial images acquired from vision systems
JP5092609B2 (en) 2007-08-01 2012-12-05 ソニー株式会社 Image display apparatus and driving method thereof
IL185130A0 (en) 2007-08-08 2008-01-06 Semi Conductor Devices An Elbi Thermal based system and method for detecting counterfeit drugs
US7672549B2 (en) 2007-09-10 2010-03-02 Banyan Energy, Inc. Solar energy concentrator
US7656585B1 (en) 2008-08-19 2010-02-02 Microvision, Inc. Embedded relay lens for head-up displays or the like
US8251521B2 (en) 2007-09-14 2012-08-28 Panasonic Corporation Projector having a projection angle adjusting mechanism
US8403490B2 (en) 2007-09-26 2013-03-26 Panasonic Corporation Beam scanning-type display device, method, program and integrated circuit
US8491121B2 (en) 2007-10-09 2013-07-23 Elbit Systems Of America, Llc Pupil scan apparatus
IL195389A (en) 2008-11-19 2013-12-31 Elbit Systems Ltd System and method for mapping a magnetic field
EP2215513B1 (en) 2007-10-18 2015-05-20 BAE Systems PLC Improvements in or relating to head mounted display systems
IL186884A (en) 2007-10-24 2014-04-30 Elta Systems Ltd System and method for imaging objects
US7969657B2 (en) 2007-10-25 2011-06-28 University Of Central Florida Research Foundation, Inc. Imaging systems for eyeglass-based display devices
KR20100087024A (en) 2007-10-26 2010-08-02 코포레이션 퍼 레이저 옵틱스 리서치 Laser illuminated backlight for flat panel displays
CN101431085A (en) 2007-11-09 2009-05-13 鸿富锦精密工业(深圳)有限公司 Camera module group with automatic exposure function
US20090128495A1 (en) 2007-11-20 2009-05-21 Microsoft Corporation Optical input device
WO2009066475A1 (en) 2007-11-21 2009-05-28 Panasonic Corporation Display
US20090136246A1 (en) 2007-11-26 2009-05-28 Kabushiki Kaisha Toshiba Image forming apparatus having paper type detection section and paper type confirmation method of the same
JP2009132221A (en) 2007-11-29 2009-06-18 Nippon Seiki Co Ltd Head-up display device
JP4395802B2 (en) 2007-11-29 2010-01-13 ソニー株式会社 Image display device
JP4450058B2 (en) 2007-11-29 2010-04-14 ソニー株式会社 Image display device
US8432372B2 (en) 2007-11-30 2013-04-30 Microsoft Corporation User input using proximity sensing
US8783931B2 (en) 2007-12-03 2014-07-22 Rambus Delaware Llc Light injection system and method for uniform luminosity of waveguide-based displays
WO2009073749A1 (en) 2007-12-03 2009-06-11 Uni-Pixel Displays, Inc. Light injection system and method for uniform luminosity of waveguide-based displays
US8132976B2 (en) 2007-12-05 2012-03-13 Microsoft Corporation Reduced impact keyboard with cushioned keys
US8830584B2 (en) 2007-12-17 2014-09-09 Nokia Corporation Exit pupil expanders with spherical and aspheric substrates
WO2009077802A1 (en) 2007-12-18 2009-06-25 Nokia Corporation Exit pupil expanders with wide field-of-view
AU2008337292A1 (en) 2007-12-18 2009-06-25 Bae Systems Plc Improvemements in or relating to display projectors
AU2008337294A1 (en) 2007-12-18 2009-06-25 Bae Systems Plc Improvements in or relating to projection displays
DE102008005817A1 (en) 2008-01-24 2009-07-30 Carl Zeiss Ag Optical display device
US8721149B2 (en) 2008-01-30 2014-05-13 Qualcomm Mems Technologies, Inc. Illumination device having a tapered light guide
US8494229B2 (en) 2008-02-14 2013-07-23 Nokia Corporation Device and method for determining gaze direction
US7742070B2 (en) 2008-02-21 2010-06-22 Otto Gregory Glatt Panoramic camera
US8786519B2 (en) 2008-03-04 2014-07-22 Elbit Systems Ltd. Head up display utilizing an LCD and a diffuser
US7589900B1 (en) 2008-03-11 2009-09-15 Microvision, Inc. Eyebox shaping through virtual vignetting
US7884593B2 (en) 2008-03-26 2011-02-08 Quantum Design, Inc. Differential and symmetrical current source
US20090242021A1 (en) 2008-03-31 2009-10-01 Noribachi Llc Solar cell with colorization layer
US8264498B1 (en) 2008-04-01 2012-09-11 Rockwell Collins, Inc. System, apparatus, and method for presenting a monochrome image of terrain on a head-up display unit
US20100149073A1 (en) 2008-11-02 2010-06-17 David Chaum Near to Eye Display System and Appliance
SG189776A1 (en) 2008-04-11 2013-05-31 Seattle Genetics Inc Detection and treatment of pancreatic, ovarian and other cancers
EP2110701A1 (en) 2008-04-14 2009-10-21 BAE Systems PLC Improvements in or relating to waveguides
WO2009127856A1 (en) 2008-04-14 2009-10-22 Bae Systems Plc Lamination of optical substrates
ES2538731T3 (en) 2008-04-14 2015-06-23 Bae Systems Plc Improvements in waveguides or related to them
WO2009128065A1 (en) 2008-04-16 2009-10-22 Elbit Systems Ltd. Multispectral enhanced vision system and method for aircraft landing in inclement weather conditions
CN102084177B (en) 2008-05-05 2013-04-10 3M创新有限公司 Light source module
US8643691B2 (en) 2008-05-12 2014-02-04 Microsoft Corporation Gaze accurate video conferencing
US7733572B1 (en) 2008-06-09 2010-06-08 Rockwell Collins, Inc. Catadioptric system, apparatus, and method for producing images on a universal, head-up display
JP4518193B2 (en) 2008-06-10 2010-08-04 ソニー株式会社 Optical device and virtual image display device
US8087698B2 (en) 2008-06-18 2012-01-03 L-1 Secure Credentialing, Inc. Personalizing ID document images
EP2141833B1 (en) 2008-07-04 2013-10-16 Nokia Siemens Networks Oy Optical I-Q-modulator
US8167173B1 (en) 2008-07-21 2012-05-01 3Habto, Llc Multi-stream draught beer dispensing system
JP4430723B2 (en) 2008-07-23 2010-03-10 トヨタ自動車株式会社 Control device for hybrid vehicle
IL193326A (en) 2008-08-07 2013-03-24 Elbit Systems Electro Optics Elop Ltd Wide field of view coverage head-up display system
US7984884B1 (en) 2008-08-08 2011-07-26 B.I.G. Ideas, LLC Artificial christmas tree stand
JP4706737B2 (en) 2008-08-18 2011-06-22 ソニー株式会社 Image display device
JP4858512B2 (en) 2008-08-21 2012-01-18 ソニー株式会社 Head-mounted display
WO2010023444A1 (en) 2008-08-27 2010-03-04 Milan Momcilo Popovich Laser display incorporating speckle reduction
US7969644B2 (en) 2008-09-02 2011-06-28 Elbit Systems Of America, Llc System and method for despeckling an image illuminated by a coherent light source
US7660047B1 (en) 2008-09-03 2010-02-09 Microsoft Corporation Flat panel lens
US8441731B2 (en) 2008-09-04 2013-05-14 Innovega, Inc. System and apparatus for pixel matrix see-through display panels
US8482858B2 (en) 2008-09-04 2013-07-09 Innovega Inc. System and apparatus for deflection optics
US8142016B2 (en) 2008-09-04 2012-03-27 Innovega, Inc. Method and apparatus for constructing a contact lens with optics
US8520309B2 (en) 2008-09-04 2013-08-27 Innovega Inc. Method and apparatus to process display and non-display information
AU2009294384A1 (en) 2008-09-16 2010-03-25 Bae Systems Plc Improvements in or relating to waveguides
EP4325209A2 (en) 2008-09-16 2024-02-21 Pacific Biosciences Of California, Inc. Integrated optical device
US7961117B1 (en) 2008-09-16 2011-06-14 Rockwell Collins, Inc. System, module, and method for creating a variable FOV image presented on a HUD combiner unit
US8552925B2 (en) 2008-09-24 2013-10-08 Kabushiki Kaisha Toshiba Stereoscopic image display apparatus
US8384730B1 (en) 2008-09-26 2013-02-26 Rockwell Collins, Inc. System, module, and method for generating HUD image data from synthetic vision system image data
US20100079865A1 (en) 2008-09-26 2010-04-01 Nokia Corporation Near-to-eye scanning display with exit-pupil expansion
FR2936613B1 (en) 2008-09-30 2011-03-18 Commissariat Energie Atomique LIGHT COUPLER BETWEEN AN OPTICAL FIBER AND A WAVEGUIDE MADE ON A SOIL SUBSTRATE.
US8132948B2 (en) 2008-10-17 2012-03-13 Microsoft Corporation Method and apparatus for directing light around an obstacle using an optical waveguide for uniform lighting of a cylindrical cavity
JP4636164B2 (en) 2008-10-23 2011-02-23 ソニー株式会社 Head-mounted display
US7949214B2 (en) 2008-11-06 2011-05-24 Microvision, Inc. Substrate guided relay with pupil expanding input coupler
US8188925B2 (en) 2008-11-07 2012-05-29 Microsoft Corporation Bent monopole antenna with shared segments
WO2010057219A1 (en) 2008-11-17 2010-05-20 Luminit Llc Holographic substrate-guided wave-based see-through display
TWI379102B (en) 2008-11-20 2012-12-11 Largan Precision Co Ltd Optical lens system for taking image
JP2010132485A (en) 2008-12-03 2010-06-17 Keio Gijuku Method for forming mesoporous silica film, the porous film, anti-reflection coating film and optical element
KR101311711B1 (en) 2008-12-08 2013-09-27 노키아 지멘스 네트웍스 오와이 Coherent optical system comprising a tunable local oscillator
US9465213B2 (en) 2008-12-12 2016-10-11 Bae Systems Plc Waveguides
US8965152B2 (en) 2008-12-12 2015-02-24 Bae Systems Plc Waveguides
EP2376971B1 (en) 2008-12-12 2019-02-20 BAE Systems PLC Improvements in or relating to waveguides
EP2197018A1 (en) 2008-12-12 2010-06-16 FEI Company Method for determining distortions in a particle-optical apparatus
JP4674634B2 (en) 2008-12-19 2011-04-20 ソニー株式会社 Head-mounted display
AU2009336872B2 (en) 2009-01-07 2015-07-23 Idemia Identity & Security Germany Ag Apparatus for a checkpoint
US8380749B2 (en) 2009-01-14 2013-02-19 Bmc Software, Inc. MDR federation facility for CMDBf
CN101793555B (en) 2009-02-01 2012-10-24 复旦大学 Bragg body grating monochromator prepared from electric tuning holographic polymer dispersed liquid crystal (HPDLC)
IL196923A (en) 2009-02-05 2014-01-30 Elbit Systems Ltd Controlling an imaging apparatus over a delayed communication link
EP2219073B1 (en) 2009-02-17 2020-06-03 Covestro Deutschland AG Holographic media and photopolymer compositions
FI20095197A0 (en) 2009-02-27 2009-02-27 Epicrystals Oy Image projector and lightness suitable for use in an image projector
IL197417A (en) 2009-03-05 2014-01-30 Elbit Sys Electro Optics Elop Imaging device and method for correcting longitudinal and transverse chromatic aberrations
US8587734B2 (en) 2009-03-06 2013-11-19 The Curators Of The University Of Missouri Adaptive lens for vision correction
US20100232003A1 (en) 2009-03-13 2010-09-16 Transitions Optical, Inc. Vision enhancing optical articles
US20100231498A1 (en) 2009-03-13 2010-09-16 Microsoft Corporation Image display via multiple light guide sections
US8746008B1 (en) 2009-03-29 2014-06-10 Montana Instruments Corporation Low vibration cryocooled system for low temperature microscopy and spectroscopy applications
US8427439B2 (en) 2009-04-13 2013-04-23 Microsoft Corporation Avoiding optical effects of touch on liquid crystal display
US8136690B2 (en) 2009-04-14 2012-03-20 Microsoft Corporation Sensing the amount of liquid in a vessel
EP2419780B1 (en) 2009-04-14 2017-09-20 BAE Systems PLC Optical waveguide and display device
US9329325B2 (en) 2009-04-20 2016-05-03 Bae Systems Plc Optical waveguides
EP2244114A1 (en) 2009-04-20 2010-10-27 BAE Systems PLC Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface
AU2010240707B2 (en) 2009-04-20 2014-01-30 Snap Inc. Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface
US8323854B2 (en) 2009-04-23 2012-12-04 Akonia Holographics, Llc Photopolymer media with enhanced dynamic range
US8639072B2 (en) 2011-10-19 2014-01-28 Milan Momcilo Popovich Compact wearable display
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
WO2010125337A2 (en) * 2009-04-27 2010-11-04 Milan Momcilo Popovich Compact holographic edge illuminated wearable display
US8842368B2 (en) 2009-04-29 2014-09-23 Bae Systems Plc Head mounted display
US8321810B2 (en) 2009-04-30 2012-11-27 Microsoft Corporation Configuring an adaptive input device with selected graphical images
GB2539107B (en) 2009-06-01 2017-04-05 Wilcox Ind Corp Helmet mount for viewing device
US20100322555A1 (en) 2009-06-22 2010-12-23 Imec Grating Structures for Simultaneous Coupling to TE and TM Waveguide Modes
US8194325B2 (en) 2009-06-30 2012-06-05 Nokia Corporation Optical apparatus and method
US20110001895A1 (en) 2009-07-06 2011-01-06 Dahl Scott R Driving mechanism for liquid crystal based optical device
US8699836B2 (en) 2009-07-07 2014-04-15 Alcatel Lucent Optical coupler
IL199763B (en) 2009-07-08 2018-07-31 Elbit Systems Ltd Automatic video surveillance system and method
US9244275B1 (en) 2009-07-10 2016-01-26 Rockwell Collins, Inc. Visual display system using multiple image sources and heads-up-display system using the same
JP5545076B2 (en) 2009-07-22 2014-07-09 ソニー株式会社 Image display device and optical device
FR2948775B1 (en) 2009-07-31 2011-12-02 Horiba Jobin Yvon Sas PLANAR OPTICAL POLYCHROMATIC IMAGING SYSTEM WITH BROAD FIELD OF VISION
US8184363B2 (en) 2009-08-07 2012-05-22 Northrop Grumman Systems Corporation All-fiber integrated high power coherent beam combination
US20120224062A1 (en) 2009-08-07 2012-09-06 Light Blue Optics Ltd Head up displays
US8447365B1 (en) 2009-08-11 2013-05-21 Howard M. Imanuel Vehicle communication system
US7884992B1 (en) 2009-08-13 2011-02-08 Darwin Optical Co., Ltd. Photochromic optical article
US8354806B2 (en) 2009-08-21 2013-01-15 Microsoft Corporation Scanning collimation of light via flat panel lamp
US20110044582A1 (en) 2009-08-21 2011-02-24 Microsoft Corporation Efficient collimation of light with optical wedge
US8120548B1 (en) 2009-09-29 2012-02-21 Rockwell Collins, Inc. System, module, and method for illuminating a target on an aircraft windshield
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
CN102792210B (en) 2009-10-01 2015-12-16 龙卷风光谱系统有限公司 For improving the optical splitter of the spectral resolution of dispersion spectrograph
US8089568B1 (en) 2009-10-02 2012-01-03 Rockwell Collins, Inc. Method of and system for providing a head up display (HUD)
US9075184B2 (en) 2012-04-17 2015-07-07 Milan Momcilo Popovich Compact edge illuminated diffractive display
US20200057353A1 (en) 2009-10-09 2020-02-20 Digilens Inc. Compact Edge Illuminated Diffractive Display
US11204540B2 (en) 2009-10-09 2021-12-21 Digilens Inc. Diffractive waveguide providing a retinal image
WO2011051660A1 (en) * 2009-10-27 2011-05-05 Milan Momcilo Popovich Compact holographic edge illuminated eyeglass display
BR112012010472A2 (en) 2009-11-03 2016-03-15 Bayer Materialscience Ag process for producing a holographic film
WO2011055109A2 (en) 2009-11-03 2011-05-12 Milan Momcilo Popovich Apparatus for reducing laser speckle
JP5925687B2 (en) 2009-11-03 2016-05-25 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG Method for manufacturing a holographic medium
US8384694B2 (en) 2009-11-17 2013-02-26 Microsoft Corporation Infrared vision with liquid crystal display device
US8578038B2 (en) 2009-11-30 2013-11-05 Nokia Corporation Method and apparatus for providing access to social content
US8698705B2 (en) 2009-12-04 2014-04-15 Vuzix Corporation Compact near eye display with scanned image generation
WO2011073673A1 (en) 2009-12-17 2011-06-23 Bae Systems Plc Projector lens assembly
WO2011080962A1 (en) 2009-12-28 2011-07-07 キヤノン・コンポーネンツ株式会社 Contact-type image sensor unit and image reading device using same
US8982480B2 (en) 2009-12-29 2015-03-17 Elbit Systems Of America, Llc System and method for adjusting a projected image
US8905547B2 (en) 2010-01-04 2014-12-09 Elbit Systems Of America, Llc System and method for efficiently delivering rays from a light source to create an image
US20110249309A1 (en) 2010-01-07 2011-10-13 Holotouch, Inc. Compact holograhic human-machine interface
GB201000835D0 (en) 2010-01-19 2010-03-03 Akzo Nobel Coatings Int Bv Method and system for determining colour from an image
US8810913B2 (en) 2010-01-25 2014-08-19 Bae Systems Plc Projection display
US8137981B2 (en) 2010-02-02 2012-03-20 Nokia Corporation Apparatus and associated methods
US8659826B1 (en) 2010-02-04 2014-02-25 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
WO2011103073A1 (en) 2010-02-16 2011-08-25 Midmark Corporation Led light for examinations and procedures
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
US8964298B2 (en) 2010-02-28 2015-02-24 Microsoft Corporation Video display modification based on sensor input for a see-through near-to-eye display
US20120194420A1 (en) 2010-02-28 2012-08-02 Osterhout Group, Inc. Ar glasses with event triggered user action control of ar eyepiece facility
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US8472120B2 (en) 2010-02-28 2013-06-25 Osterhout Group, Inc. See-through near-eye display glasses with a small scale image source
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
US20140063055A1 (en) 2010-02-28 2014-03-06 Osterhout Group, Inc. Ar glasses specific user interface and control interface based on a connected external device type
EP2539759A1 (en) 2010-02-28 2013-01-02 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
CA2789965C (en) 2010-03-03 2017-06-06 Elbit Systems Ltd. System for guiding an aircraft to a reference point in low visibility conditions
US9753297B2 (en) * 2010-03-04 2017-09-05 Nokia Corporation Optical apparatus and method for expanding an exit pupil
US8725001B2 (en) 2010-03-10 2014-05-13 Ofs Fitel, Llc Multicore fiber transmission systems and methods
WO2011110821A1 (en) 2010-03-12 2011-09-15 Milan Momcilo Popovich Biometric sensor
EP2372454A1 (en) 2010-03-29 2011-10-05 Bayer MaterialScience AG Photopolymer formulation for producing visible holograms
JP2011216701A (en) 2010-03-31 2011-10-27 Sony Corp Solid-state imaging apparatus and electronic device
US8697346B2 (en) 2010-04-01 2014-04-15 The Regents Of The University Of Colorado Diffraction unlimited photolithography
US9028123B2 (en) 2010-04-16 2015-05-12 Flex Lighting Ii, Llc Display illumination device with a film-based lightguide having stacked incident surfaces
EP2562593B1 (en) 2010-04-19 2016-10-05 Citizen Holdings Co., Ltd. Unedged lens and method of producing an edged lens
EP2381290A1 (en) 2010-04-23 2011-10-26 BAE Systems PLC Optical waveguide and display device
WO2011131978A1 (en) 2010-04-23 2011-10-27 Bae Systems Plc Optical waveguide and display device
US8477261B2 (en) 2010-05-26 2013-07-02 Microsoft Corporation Shadow elimination in the backlight for a 3-D display
CN101881936B (en) 2010-06-04 2013-12-25 江苏慧光电子科技有限公司 Holographical wave guide display and generation method of holographical image thereof
US8631333B2 (en) 2010-06-07 2014-01-14 Microsoft Corporation Feature set differentiation by tenant and user
NL2006743A (en) 2010-06-09 2011-12-12 Asml Netherlands Bv Position sensor and lithographic apparatus.
JP5488226B2 (en) 2010-06-10 2014-05-14 富士通オプティカルコンポーネンツ株式会社 Mach-Zehnder type optical modulator
US8670029B2 (en) 2010-06-16 2014-03-11 Microsoft Corporation Depth camera illuminator with superluminescent light-emitting diode
US8253914B2 (en) 2010-06-23 2012-08-28 Microsoft Corporation Liquid crystal display (LCD)
US8391656B2 (en) 2010-07-29 2013-03-05 Hewlett-Packard Development Company, L.P. Grating coupled converter
WO2012020636A1 (en) 2010-08-10 2012-02-16 シャープ株式会社 Light-controlling element, display device and illumination device
CN103262210B (en) 2010-09-10 2017-09-08 维尔雷思科技有限公司 The device that the method for electrooptical device is manufactured using the layer separated with semiconductor donor and is made up of this method
US8649099B2 (en) 2010-09-13 2014-02-11 Vuzix Corporation Prismatic multiple waveguide for near-eye display
US8582206B2 (en) 2010-09-15 2013-11-12 Microsoft Corporation Laser-scanning virtual image display
US8376548B2 (en) 2010-09-22 2013-02-19 Vuzix Corporation Near-eye display with on-axis symmetry
US8633786B2 (en) 2010-09-27 2014-01-21 Nokia Corporation Apparatus and associated methods
US20150015946A1 (en) 2010-10-08 2015-01-15 SoliDDD Corp. Perceived Image Depth for Autostereoscopic Displays
WO2012052352A1 (en) 2010-10-19 2012-04-26 Bae Systems Plc Viewing device comprising an image combiner
US20130277890A1 (en) 2010-11-04 2013-10-24 The Regents Of The University Of Colorado, A Body Corporate Dual-Cure Polymer Systems
US8305577B2 (en) 2010-11-04 2012-11-06 Nokia Corporation Method and apparatus for spectrometry
EP2450893A1 (en) 2010-11-08 2012-05-09 Bayer MaterialScience AG Photopolymer formula for producing of holographic media with highly networked matrix polymers
EP2450387A1 (en) 2010-11-08 2012-05-09 Bayer MaterialScience AG Photopolymer formulation for producing holographic media
US9235056B2 (en) 2010-11-25 2016-01-12 Rights Co., Ltd. Three-dimensional image display device
US20130021586A1 (en) 2010-12-07 2013-01-24 Laser Light Engines Frequency Control of Despeckling
JP2012138654A (en) 2010-12-24 2012-07-19 Sony Corp Head-mounted display
KR101997852B1 (en) 2010-12-24 2019-10-01 매직 립, 인코포레이티드 An ergonomic head mounted display device and optical system
JP5741901B2 (en) 2010-12-27 2015-07-01 Dic株式会社 Birefringent lens material for stereoscopic image display device and method of manufacturing birefringent lens for stereoscopic image display device
KR101807691B1 (en) * 2011-01-11 2017-12-12 삼성전자주식회사 Three-dimensional image display apparatus
BRPI1100786A2 (en) 2011-01-19 2015-08-18 André Jacobovitz Photopolymer for volume hologram engraving and process to produce it
US8619062B2 (en) 2011-02-03 2013-12-31 Microsoft Corporation Touch-pressure sensing in a display panel
US8189263B1 (en) 2011-04-01 2012-05-29 Google Inc. Image waveguide with mirror arrays
US8859412B2 (en) 2011-04-06 2014-10-14 VerLASE TECHNOLOGIES LLC Optoelectronic device containing at least one active device layer having a wurtzite crystal structure, and methods of making same
US9274349B2 (en) 2011-04-07 2016-03-01 Digilens Inc. Laser despeckler based on angular diversity
US10409059B2 (en) 2011-04-18 2019-09-10 Bae Systems Plc Projection display
CN103635891B (en) 2011-05-06 2017-10-27 奇跃公司 The world is presented in a large amount of digital remotes simultaneously
US9019595B2 (en) 2011-05-16 2015-04-28 VerLASE TECHNOLOGIES LLC Resonator-enhanced optoelectronic devices and methods of making same
US20120321149A1 (en) 2011-05-17 2012-12-20 Carver John F Fingerprint sensors
WO2012172295A1 (en) 2011-06-16 2012-12-20 Milan Momcilo Popovich Holographic beam deflector for autostereoscopic displays
KR101908468B1 (en) 2011-06-27 2018-10-17 삼성디스플레이 주식회사 Display panel
US8693087B2 (en) 2011-06-30 2014-04-08 Microsoft Corporation Passive matrix quantum dot display
US8767294B2 (en) 2011-07-05 2014-07-01 Microsoft Corporation Optic with extruded conic profile
US8672486B2 (en) 2011-07-11 2014-03-18 Microsoft Corporation Wide field-of-view projector
CN103649677A (en) 2011-07-13 2014-03-19 法罗技术股份有限公司 Device and method using a spatial light modulator to find 3D coordinates of an object
US8988474B2 (en) 2011-07-18 2015-03-24 Microsoft Technology Licensing, Llc Wide field-of-view virtual image projector
WO2013016409A1 (en) 2011-07-26 2013-01-31 Magna Electronics Inc. Vision system for vehicle
US8754831B2 (en) 2011-08-02 2014-06-17 Microsoft Corporation Changing between display device viewing modes
US9983361B2 (en) 2011-08-08 2018-05-29 Greg S. Laughlin GRIN-lensed, tuned wedge waveguide termination and method of reducing back reflection caused thereby
US8472119B1 (en) 2011-08-12 2013-06-25 Google Inc. Image waveguide having a bend
GB201114149D0 (en) 2011-08-17 2011-10-05 Bae Systems Plc Projection display
US8548290B2 (en) 2011-08-23 2013-10-01 Vuzix Corporation Dynamic apertured waveguide for near-eye display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
WO2013027006A1 (en) 2011-08-24 2013-02-28 Milan Momcilo Popovich Improvements to holographic polymer dispersed liquid crystal materials and devices
EP2748670B1 (en) 2011-08-24 2015-11-18 Rockwell Collins, Inc. Wearable data display
GB201114771D0 (en) 2011-08-26 2011-10-12 Bae Systems Plc A display
US9400395B2 (en) 2011-08-29 2016-07-26 Vuzix Corporation Controllable waveguide for near-eye display applications
WO2013034879A1 (en) 2011-09-07 2013-03-14 Milan Momcilo Popovich Method and apparatus for switching electro optical arrays
US20150148728A1 (en) 2011-09-08 2015-05-28 Children's Medical Center Corporation Isolated orthosis for thumb actuation
WO2013039897A2 (en) 2011-09-14 2013-03-21 VerLASE TECHNOLOGIES LLC Phosphors for use with leds and other optoelectronic devices
US8998414B2 (en) 2011-09-26 2015-04-07 Microsoft Technology Licensing, Llc Integrated eye tracking and display system
US20140330159A1 (en) 2011-09-26 2014-11-06 Beth Israel Deaconess Medical Center, Inc. Quantitative methods and systems for neurological assessment
JP5696017B2 (en) 2011-09-27 2015-04-08 富士フイルム株式会社 Curable composition for imprint, pattern forming method and pattern
US9377852B1 (en) 2013-08-29 2016-06-28 Rockwell Collins, Inc. Eye tracking as a method to improve the user interface
US8937772B1 (en) 2011-09-30 2015-01-20 Rockwell Collins, Inc. System for and method of stowing HUD combiners
US9599813B1 (en) 2011-09-30 2017-03-21 Rockwell Collins, Inc. Waveguide combiner system and method with less susceptibility to glare
US8903207B1 (en) 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
US8634139B1 (en) 2011-09-30 2014-01-21 Rockwell Collins, Inc. System for and method of catadioptric collimation in a compact head up display (HUD)
US9366864B1 (en) 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US8749890B1 (en) 2011-09-30 2014-06-10 Rockwell Collins, Inc. Compact head up display (HUD) for cockpits with constrained space envelopes
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
GB201117029D0 (en) 2011-10-04 2011-11-16 Bae Systems Plc Optical waveguide and display device
JP2014530581A (en) 2011-10-11 2014-11-17 ペリカン イメージング コーポレイション Lens stack array including adaptive optics
EP3666352B1 (en) 2011-10-28 2021-12-01 Magic Leap, Inc. Method and device for augmented and virtual reality
US20140140091A1 (en) 2012-11-20 2014-05-22 Sergiy Victorovich Vasylyev Waveguide illumination system
US8950867B2 (en) 2011-11-23 2015-02-10 Magic Leap, Inc. Three dimensional virtual and augmented reality display system
US8651678B2 (en) 2011-11-29 2014-02-18 Massachusetts Institute Of Technology Polarization fields for dynamic light field display
BR112014015418A8 (en) 2011-12-23 2017-07-04 Johnson & Johnson Vision Care variable optic ophthalmic device including liquid crystal elements
US8917453B2 (en) 2011-12-23 2014-12-23 Microsoft Corporation Reflective array waveguide
JP6014166B2 (en) 2011-12-28 2016-10-25 バーフェリヒト ゲゼルシャフト ミット ベシュレンクテル ハフツング Spectroscopic apparatus and spectral analysis method
US8638498B2 (en) 2012-01-04 2014-01-28 David D. Bohn Eyebox adjustment for interpupillary distance
US20150010265A1 (en) 2012-01-06 2015-01-08 Milan, Momcilo POPOVICH Contact image sensor using switchable bragg gratings
US9278674B2 (en) 2012-01-18 2016-03-08 Engineered Arresting Systems Corporation Vehicle operator display and assistive mechanisms
US8810600B2 (en) 2012-01-23 2014-08-19 Microsoft Corporation Wearable display device calibration
US20150107671A1 (en) 2012-01-24 2015-04-23 AMI Research & Development, LLC Monolithic broadband energy collector with dichroic filters and mirrors embedded in waveguide
US9000615B2 (en) 2012-02-04 2015-04-07 Sunfield Semiconductor Inc. Solar power module with safety features and related method of operation
US9001030B2 (en) 2012-02-15 2015-04-07 Google Inc. Heads up display
US8985803B2 (en) 2012-03-21 2015-03-24 Microsoft Technology Licensing, Llc Freeform-prism eyepiece with illumination waveguide
US8749886B2 (en) 2012-03-21 2014-06-10 Google Inc. Wide-angle wide band polarizing beam splitter
US9274338B2 (en) 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
US8736963B2 (en) 2012-03-21 2014-05-27 Microsoft Corporation Two-dimensional exit-pupil expansion
US11068049B2 (en) 2012-03-23 2021-07-20 Microsoft Technology Licensing, Llc Light guide display and field of view
GB2500631B (en) 2012-03-27 2017-12-27 Bae Systems Plc Improvements in or relating to optical waveguides
US8830588B1 (en) 2012-03-28 2014-09-09 Rockwell Collins, Inc. Reflector and cover glass for substrate guided HUD
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
US9558590B2 (en) 2012-03-28 2017-01-31 Microsoft Technology Licensing, Llc Augmented reality light guide display
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
EP2841991B1 (en) 2012-04-05 2020-01-08 Magic Leap, Inc. Wide-field of view (fov) imaging devices with active foveation capability
JP5994715B2 (en) 2012-04-10 2016-09-21 パナソニックIpマネジメント株式会社 Computer generated hologram display
JP6001320B2 (en) 2012-04-23 2016-10-05 株式会社ダイセル Photosensitive composition for volume hologram recording, volume hologram recording medium using the same, method for producing the same, and hologram recording method
WO2013163347A1 (en) 2012-04-25 2013-10-31 Rockwell Collins, Inc. Holographic wide angle display
US9389415B2 (en) 2012-04-27 2016-07-12 Leia Inc. Directional pixel for use in a display screen
EP2841980A4 (en) 2012-04-27 2016-01-13 Leia Inc Directional pixel for use in a display screen
US20130312811A1 (en) 2012-05-02 2013-11-28 Prism Solar Technologies Incorporated Non-latitude and vertically mounted solar energy concentrators
US8721092B2 (en) 2012-05-09 2014-05-13 Microvision, Inc. Wide field of view substrate guided relay
TW201400946A (en) * 2012-05-09 2014-01-01 Sony Corp Illumination device, and display
WO2013167864A1 (en) 2012-05-11 2013-11-14 Milan Momcilo Popovich Apparatus for eye tracking
WO2013176997A1 (en) 2012-05-19 2013-11-28 Skully Helmets, Inc. Augmented reality motorcycle helmet
US10502876B2 (en) 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
CA2885502A1 (en) 2012-05-25 2013-11-28 Cambridge Enterprise Limited Printing of liquid crystal droplet laser resonators on a wet polymer solution and product made therewith
US9459461B2 (en) 2012-05-31 2016-10-04 Leia Inc. Directional backlight
EP2856244B1 (en) 2012-05-31 2021-01-27 LEIA Inc. Directional backlight
CN104335100B (en) 2012-06-01 2017-06-13 镭亚股份有限公司 Directional backlight body with modulating layer
US9201270B2 (en) 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US20130328948A1 (en) 2012-06-06 2013-12-12 Dolby Laboratories Licensing Corporation Combined Emissive and Reflective Dual Modulation Display System
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
AU2013274359B2 (en) 2012-06-11 2017-05-25 Magic Leap, Inc. Multiple depth plane three-dimensional display using a wave guide reflector array projector
WO2013190257A1 (en) 2012-06-18 2013-12-27 Milan Momcilo Popovich Apparatus for copying a hologram
US9098111B2 (en) 2012-06-22 2015-08-04 Microsoft Technology Licensing, Llc Focus guidance within a three-dimensional interface
US9841537B2 (en) 2012-07-02 2017-12-12 Nvidia Corporation Near-eye microlens array displays
US9367036B2 (en) 2012-07-03 2016-06-14 Samsung Electronics Co., Ltd. High speed hologram recording apparatus
US8816578B1 (en) 2012-07-16 2014-08-26 Rockwell Collins, Inc. Display assembly configured for reduced reflection
US10111989B2 (en) 2012-07-26 2018-10-30 Medline Industries, Inc. Splash-retarding fluid collection system
US9175975B2 (en) 2012-07-30 2015-11-03 RaayonNova LLC Systems and methods for navigation
US8913324B2 (en) 2012-08-07 2014-12-16 Nokia Corporation Display illumination light guide
JP6291707B2 (en) 2012-08-10 2018-03-14 三菱電機株式会社 Contact image sensor, output correction device for contact image sensor, and output correction method for contact image sensor
US9146407B2 (en) 2012-08-10 2015-09-29 Mitsui Chemicals, Inc. Fail-safe electro-active lenses and methodology for choosing optical materials for fail-safe electro-active lenses
US8742952B1 (en) 2012-08-14 2014-06-03 Rockwell Collins, Inc. Traffic awareness systems and methods
US8885997B2 (en) 2012-08-31 2014-11-11 Microsoft Corporation NED polarization system for wavelength pass-through
US9563062B2 (en) 2012-09-04 2017-02-07 SoliDDD Corp. Switchable lenticular array for autostereoscopic video display
DE102012108424A1 (en) 2012-09-10 2014-03-13 Institut für Mess- und Regelungstechnik der Leibniz Universität Hannover Optical system for endoscopic applications, has image interface that is oriented parallel to object interface with surface geometry and is oriented orthogonally to optical axis of gradient index (GRIN) lens
US8731350B1 (en) 2012-09-11 2014-05-20 The United States Of America As Represented By The Secretary Of The Navy Planar-waveguide Bragg gratings in curved waveguides
US10025089B2 (en) 2012-10-05 2018-07-17 Microsoft Technology Licensing, Llc Backlight for viewing three-dimensional images from a display from variable viewing angles
GB201219126D0 (en) 2012-10-24 2012-12-05 Oxford Energy Technologies Ltd Low refractive index particles
JP2014089294A (en) 2012-10-30 2014-05-15 Toshiba Corp Liquid crystal lens device and method for driving the same
CN102928981B (en) 2012-11-14 2016-08-03 中航华东光电有限公司 Optical system of holographic optical waveguide helmet display
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
WO2014080155A1 (en) 2012-11-20 2014-05-30 Milan Momcilo Popovich Waveguide device for homogenizing illumination light
US20140146394A1 (en) 2012-11-28 2014-05-29 Nigel David Tout Peripheral display for a near-eye display device
WO2014085029A1 (en) 2012-11-28 2014-06-05 VerLASE TECHNOLOGIES LLC Optically surface-pumped edge-emitting devices and systems and methods of making same
EP2929391B1 (en) 2012-12-10 2020-04-15 BAE SYSTEMS plc Improvements in and relating to displays
GB2508661A (en) 2012-12-10 2014-06-11 Bae Systems Plc Improved display
WO2014091204A1 (en) 2012-12-10 2014-06-19 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
WO2014091200A1 (en) 2012-12-10 2014-06-19 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
US8937771B2 (en) 2012-12-12 2015-01-20 Microsoft Corporation Three piece prism eye-piece
US20140168260A1 (en) 2012-12-13 2014-06-19 Paul M. O'Brien Waveguide spacers within an ned device
KR102171914B1 (en) 2012-12-14 2020-10-30 메르크 파텐트 게엠베하 Birefringent rm lens
US10311609B2 (en) 2012-12-17 2019-06-04 Clinton B. Smith Method and system for the making, storage and display of virtual image edits
US10146053B2 (en) 2012-12-19 2018-12-04 Microsoft Technology Licensing, Llc Multiplexed hologram tiling in a waveguide display
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
US10422934B2 (en) 2013-01-08 2019-09-24 Bae Systems Plc Diffraction gratings and the manufacture thereof
GB2509536A (en) 2013-01-08 2014-07-09 Bae Systems Plc Diffraction grating
US9842562B2 (en) 2013-01-13 2017-12-12 Qualcomm Incorporated Dynamic zone plate augmented vision eyeglasses
CN105122105B (en) 2013-01-15 2018-06-15 奇跃公司 Ultrahigh resolution scans optical fiber displays
US20140204437A1 (en) 2013-01-23 2014-07-24 Akonia Holographics Llc Dynamic aperture holographic multiplexing
US8873149B2 (en) 2013-01-28 2014-10-28 David D. Bohn Projection optical system for coupling image light to a near-eye display
US9298168B2 (en) 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
KR101964177B1 (en) 2013-01-31 2019-04-01 레이아 인코포레이티드 Multiview display screen and multiview mobile device using same
US20140240842A1 (en) 2013-02-22 2014-08-28 Ian Nguyen Alignment-insensitive image input coupling
CA2905427C (en) 2013-03-11 2022-07-12 Magic Leap, Inc. System and method for augmented and virtual reality
US20160054563A9 (en) 2013-03-14 2016-02-25 Honda Motor Co., Ltd. 3-dimensional (3-d) navigation
US20140268277A1 (en) 2013-03-14 2014-09-18 Andreas Georgiou Image correction using reconfigurable phase mask
CN107656618B (en) 2013-03-15 2021-03-23 奇跃公司 Display system and method
US10065232B2 (en) 2013-03-15 2018-09-04 Station 4 Llc Devices and methods for bending a tab on a container
GB2512077B (en) 2013-03-19 2019-10-23 Univ Erasmus Med Ct Rotterdam Intravascular optical imaging system
GB201305691D0 (en) 2013-03-28 2013-05-15 Bae Systems Plc Improvements in and relating to displays
EP2979126B1 (en) 2013-03-28 2022-11-30 Snap Inc. Improvements in and relating to displays
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
WO2014176695A1 (en) 2013-04-30 2014-11-06 Lensvector Inc. Reprogrammable tuneable liquid crystal lens intraocular implant and methods therefor
US9488836B2 (en) 2013-05-02 2016-11-08 Microsoft Technology Licensing, Llc Spherical interface for binocular display
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
DE102013209436A1 (en) 2013-05-22 2014-11-27 Robert Bosch Gmbh Apparatus and method for generating a lighting pattern
USD701206S1 (en) 2013-06-04 2014-03-18 Oculus VR, Inc. Virtual reality headset
US9639985B2 (en) 2013-06-24 2017-05-02 Microsoft Technology Licensing, Llc Active binocular alignment for near eye displays
US20140375542A1 (en) 2013-06-25 2014-12-25 Steve Robbins Adjusting a near-eye display device
US10228561B2 (en) 2013-06-25 2019-03-12 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism and gaze-detection light
US9176324B1 (en) 2013-06-25 2015-11-03 Rockwell Collins, Inc. Enhanced-image presentation system, device, and method
US9625723B2 (en) 2013-06-25 2017-04-18 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism
US8913865B1 (en) 2013-06-27 2014-12-16 Microsoft Corporation Waveguide including light turning gaps
ITTO20130541A1 (en) 2013-06-28 2014-12-29 St Microelectronics Srl SEMICONDUCTOR DEVICE INTEGRATING A RESISTIVE PARTNER AND PROCESS OF MANUFACTURING A SEMICONDUCTOR DEVICE
US9664905B2 (en) 2013-06-28 2017-05-30 Microsoft Technology Licensing, Llc Display efficiency optimization by color filtering
US9754507B1 (en) 2013-07-02 2017-09-05 Rockwell Collins, Inc. Virtual/live hybrid behavior to mitigate range and behavior constraints
US10228242B2 (en) 2013-07-12 2019-03-12 Magic Leap, Inc. Method and system for determining user input based on gesture
WO2015006784A2 (en) 2013-07-12 2015-01-15 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
ES2704675T3 (en) 2013-07-30 2019-03-19 Leia Inc Multi-directional grid-based background light
US10345903B2 (en) 2013-07-30 2019-07-09 Microsoft Technology Licensing, Llc Feedback for optic positioning in display devices
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
JP6131766B2 (en) 2013-08-06 2017-05-24 株式会社デンソー Head-up display device for vehicle
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
US9785231B1 (en) 2013-09-26 2017-10-10 Rockwell Collins, Inc. Head worn display integrity monitor system and methods
US9164290B2 (en) 2013-11-06 2015-10-20 Microsoft Corporation Grating configurations for a tiled waveguide display
DE102013223964B3 (en) 2013-11-22 2015-05-13 Carl Zeiss Ag Imaging optics and display device with such imaging optics
KR102651578B1 (en) 2013-11-27 2024-03-25 매직 립, 인코포레이티드 Virtual and augmented reality systems and methods
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
US20150167868A1 (en) 2013-12-17 2015-06-18 Scott Boncha Maple sap vacuum collection systems with chew proof tubing
KR20150072151A (en) 2013-12-19 2015-06-29 한국전자통신연구원 Hologram printing apparatus and method for recording of holographic elements images using spatial light modulator
WO2015091282A1 (en) 2013-12-19 2015-06-25 Bae Systems Plc Improvements in and relating to waveguides
EP3084509B1 (en) 2013-12-19 2018-10-03 BAE Systems PLC Improvements in and relating to waveguides
US9459451B2 (en) 2013-12-26 2016-10-04 Microsoft Technology Licensing, Llc Eye tracking apparatus, method and system
JPWO2015114743A1 (en) 2014-01-29 2017-03-23 日立コンシューマエレクトロニクス株式会社 Optical information apparatus and optical information processing method
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
EP3100098B8 (en) 2014-01-31 2022-10-05 Magic Leap, Inc. Multi-focal display system and method
CN103777282A (en) 2014-02-26 2014-05-07 华中科技大学 Optical grating coupler and optical signal coupling method
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US9762895B1 (en) 2014-03-11 2017-09-12 Rockwell Collins, Inc. Dual simultaneous image presentation for a three-dimensional aviation display
JP2015172713A (en) 2014-03-12 2015-10-01 オリンパス株式会社 display device
JP6201836B2 (en) 2014-03-14 2017-09-27 ソニー株式会社 Optical device and method for assembling the same, hologram diffraction grating, display device and alignment device
WO2015145119A1 (en) 2014-03-24 2015-10-01 Wave Optics Ltd Display system
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US10048647B2 (en) 2014-03-27 2018-08-14 Microsoft Technology Licensing, Llc Optical waveguide including spatially-varying volume hologram
AU2015266586B2 (en) 2014-05-30 2020-07-23 Magic Leap, Inc. Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
TWI540401B (en) 2014-06-26 2016-07-01 雷亞有限公司 Multiview 3d wrist watch and method for generating a 3d time view in multiview 3d wrist watch
WO2016010289A1 (en) 2014-07-15 2016-01-21 Samsung Electronics Co., Ltd. Holographic see-through optical device, stereoscopic imaging system, and multimedia head mounted system
JP2016030503A (en) 2014-07-29 2016-03-07 日本精機株式会社 Head-up display device
US9557466B2 (en) 2014-07-30 2017-01-31 Leia, Inc Multibeam diffraction grating-based color backlighting
PT3175267T (en) 2014-07-30 2021-03-24 Leia Inc Multibeam diffraction grating-based color backlighting
GB2529003B (en) 2014-08-03 2020-08-26 Wave Optics Ltd Optical device
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US9377623B2 (en) 2014-08-11 2016-06-28 Microsoft Technology Licensing, Llc Waveguide eye tracking employing volume Bragg grating
US9678345B1 (en) 2014-08-15 2017-06-13 Rockwell Collins, Inc. Dynamic vergence correction in binocular displays
US9733475B1 (en) 2014-09-08 2017-08-15 Rockwell Collins, Inc. Curved waveguide combiner for head-mounted and helmet-mounted displays (HMDS), a collimated virtual window, or a head up display (HUD)
US20160077338A1 (en) 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US9494799B2 (en) 2014-09-24 2016-11-15 Microsoft Technology Licensing, Llc Waveguide eye tracking employing switchable diffraction gratings
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
EP3198192A1 (en) 2014-09-26 2017-08-02 Milan Momcilo Popovich Holographic waveguide opticaltracker
WO2016054092A1 (en) 2014-09-29 2016-04-07 Magic Leap, Inc. Architectures and methods for outputting different wavelength light out of waveguides
JP2016085430A (en) 2014-10-29 2016-05-19 セイコーエプソン株式会社 Virtual image display device
IL236491B (en) 2014-12-25 2020-11-30 Lumus Ltd A method for fabricating substrate-guided optical device
CN107209406B (en) 2015-01-10 2021-07-27 镭亚股份有限公司 Two-dimensional/three-dimensional (2D/3D) switchable display backlight and electronic display
EP3243093A4 (en) 2015-01-10 2018-09-19 LEIA Inc. Diffraction grating-based backlighting having controlled diffractive coupling efficiency
CN107111059B (en) 2015-01-10 2020-10-13 镭亚股份有限公司 Grating-coupled light guide
WO2016111706A1 (en) 2015-01-10 2016-07-14 Leia Inc. Polarization-mixing light guide and multibeam grating-based backlighting using same
CN107873086B (en) 2015-01-12 2020-03-20 迪吉伦斯公司 Environmentally isolated waveguide display
US20180275402A1 (en) 2015-01-12 2018-09-27 Digilens, Inc. Holographic waveguide light field displays
WO2016118107A1 (en) 2015-01-19 2016-07-28 Leia Inc. Unidirectional grating-based backlighting employing a reflective island
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
WO2016122679A1 (en) 2015-01-28 2016-08-04 Leia Inc. Three-dimensional (3d) electronic display
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
US20180246354A1 (en) 2015-02-23 2018-08-30 Digilens, Inc. Electrically focus-tunable lens
US10088689B2 (en) 2015-03-13 2018-10-02 Microsoft Technology Licensing, Llc Light engine with lenticular microlenslet arrays
CN107409202A (en) 2015-03-20 2017-11-28 奇跃公司 Optical combiner for augmented reality display system
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10663728B2 (en) 2015-05-08 2020-05-26 Bae Systems Plc Relating to displays
WO2016183537A1 (en) 2015-05-14 2016-11-17 Cross Match Technologies, Inc. Handheld biometric scanner device
EP4249965A3 (en) 2015-06-15 2023-12-27 Magic Leap, Inc. Display system with optical elements for in-coupling multiplexed light streams
US10670862B2 (en) 2015-07-02 2020-06-02 Microsoft Technology Licensing, Llc Diffractive optical elements with asymmetric profiles
CN107850784B (en) 2015-07-20 2021-06-01 奇跃公司 Collimated fiber scanner design with inward pointing angle in virtual/augmented reality systems
US9541763B1 (en) 2015-07-29 2017-01-10 Rockwell Collins, Inc. Active HUD alignment
US10038840B2 (en) 2015-07-30 2018-07-31 Microsoft Technology Licensing, Llc Diffractive optical element using crossed grating for pupil expansion
US9864208B2 (en) 2015-07-30 2018-01-09 Microsoft Technology Licensing, Llc Diffractive optical elements with varying direction for depth modulation
US9791694B1 (en) 2015-08-07 2017-10-17 Rockwell Collins, Inc. Transparent film display system for vehicles
US10180520B2 (en) 2015-08-24 2019-01-15 Akonia Holographics, Llc Skew mirrors, methods of use, and methods of manufacture
EP3359999A1 (en) 2015-10-05 2018-08-15 Popovich, Milan Momcilo Waveguide display
US10429645B2 (en) 2015-10-07 2019-10-01 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US10067346B2 (en) 2015-10-23 2018-09-04 Microsoft Technology Licensing, Llc Holographic display
US9946072B2 (en) 2015-10-29 2018-04-17 Microsoft Technology Licensing, Llc Diffractive optical element with uncoupled grating structures
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US9915825B2 (en) 2015-11-10 2018-03-13 Microsoft Technology Licensing, Llc Waveguides with embedded components to improve intensity distributions
US9791696B2 (en) 2015-11-10 2017-10-17 Microsoft Technology Licensing, Llc Waveguide gratings to improve intensity distributions
US10558043B2 (en) 2015-12-02 2020-02-11 Rockwell Collins, Inc. Worn display using a peripheral view
WO2017094129A1 (en) 2015-12-02 2017-06-08 株式会社日立製作所 Holographic optical information reproducing device
US9800607B2 (en) 2015-12-21 2017-10-24 Bank Of America Corporation System for determining effectiveness and allocation of information security technologies
US10038710B2 (en) 2015-12-22 2018-07-31 Sap Se Efficient identification of log events in enterprise threat detection
US9874931B1 (en) 2016-02-22 2018-01-23 Rockwell Collins, Inc. Head-tracking system and method
US10540007B2 (en) 2016-03-04 2020-01-21 Rockwell Collins, Inc. Systems and methods for delivering imagery to head-worn display systems
EP3433659A1 (en) 2016-03-24 2019-01-30 DigiLens, Inc. Method and apparatus for providing a polarization selective holographic waveguide device
WO2017178781A1 (en) 2016-04-11 2017-10-19 GRANT, Alastair, John Holographic waveguide apparatus for structured light projection
US10025093B2 (en) 2016-04-13 2018-07-17 Microsoft Technology Licensing, Llc Waveguide-based displays with exit pupil expander
US9791703B1 (en) 2016-04-13 2017-10-17 Microsoft Technology Licensing, Llc Waveguides with extended field of view
JP6780014B2 (en) 2016-04-21 2020-11-04 ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc Display with a waveguide covered with a metamaterial
GB201609026D0 (en) 2016-05-23 2016-07-06 Bae Systems Plc Waveguide manufacturing method
GB201609027D0 (en) 2016-05-23 2016-07-06 Bae Systems Plc Waveguide manufacturing method
GB2550958B (en) 2016-06-03 2022-02-23 Bae Systems Plc Waveguide structure
WO2018094292A1 (en) 2016-11-17 2018-05-24 Akonia Holographics Llc Hologram recording systems and optical recording cells
GB2556938B (en) 2016-11-28 2022-09-07 Bae Systems Plc Multiple waveguide structure for colour displays
WO2018102834A2 (en) 2016-12-02 2018-06-07 Digilens, Inc. Waveguide device with uniform output illumination
CN106848835B (en) 2016-12-22 2020-04-28 华中科技大学 DFB laser based on surface grating
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
US10295824B2 (en) 2017-01-26 2019-05-21 Rockwell Collins, Inc. Head up display with an angled light pipe
CN110383117A (en) 2017-01-26 2019-10-25 迪吉伦斯公司 Plumbing with uniform output illumination
WO2018150163A1 (en) 2017-02-14 2018-08-23 Bae Systems Plc Waveguide structure
US20190064735A1 (en) 2017-08-30 2019-02-28 Digilens, Inc. Methods and Apparatus for Compensating Image Distortion and Illumination Nonuniformity in a Waveguide
US20190094549A1 (en) 2017-09-28 2019-03-28 Thalmic Labs Inc. Systems, devices, and methods for waveguide-based eyebox expansion in wearable heads-up displays
EP3698214A4 (en) 2017-10-16 2021-10-27 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
JP2021500609A (en) 2017-10-19 2021-01-07 ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc Axial asymmetric image source for heads-up displays
WO2019122806A1 (en) 2017-12-21 2019-06-27 Bae Systems Plc Wearable devices
US20200289340A1 (en) 2017-12-27 2020-09-17 Kao Corporation Absorbent article
WO2019136470A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Low haze liquid crystal materials
JP7404243B2 (en) 2018-01-08 2023-12-25 ディジレンズ インコーポレイテッド Systems and methods for high-throughput recording of holographic gratings in waveguide cells
WO2019136471A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Liquid crystal materials and formulations
US20190212699A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Methods for Fabricating Optical Waveguides
KR20200104402A (en) 2018-01-08 2020-09-03 디지렌즈 인코포레이티드. Systems and methods for manufacturing waveguide cells
CN111902768A (en) 2018-01-08 2020-11-06 迪吉伦斯公司 Holographic material systems and waveguides incorporating low functionality monomers
US10866426B2 (en) 2018-02-28 2020-12-15 Apple Inc. Scanning mirror display devices
BR112020018059A2 (en) 2018-03-07 2020-12-22 Bae Systems Plc OPTICAL WAVES GUIDE FOR AN ALERT MONITOR
US20190339558A1 (en) 2018-05-07 2019-11-07 Digilens Inc. Methods and Apparatuses for Copying a Diversity of Hologram Prescriptions from a Common Master
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
KR20210152054A (en) 2019-04-18 2021-12-14 배 시스템즈 피엘시 Optical arrangement for display
US20200348519A1 (en) 2019-05-03 2020-11-05 Digilens Inc. Waveguide Display with Wide Angle Peripheral Field of View
GB2587709B (en) 2019-08-21 2024-04-03 Snap Inc Optical waveguide
WO2021032983A1 (en) 2019-08-21 2021-02-25 Bae Systems Plc Manufacture of surface relief structures
WO2021044121A1 (en) 2019-09-06 2021-03-11 Bae Systems Plc Waveguide and method for fabricating a waveguide master grating tool
DE202019105083U1 (en) 2019-09-13 2019-10-29 APU Schönberg GmbH Skirting board, ceiling strip and window or door frame insulating strip
ES1239649Y (en) 2019-11-13 2020-06-25 Kaviflex S L SAFETY GUIDE KIT FOR SLIDING DOORS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148302A (en) * 1986-04-10 1992-09-15 Akihiko Nagano Optical modulation element having two-dimensional phase type diffraction grating
US20050105909A1 (en) * 2003-11-18 2005-05-19 Stone Thomas W. Optical add/drop multiplexing systems
US20060146422A1 (en) * 2004-10-08 2006-07-06 Pioneer Corporation Diffractive optical element, objective lens module, optical pickup, and optical information recording and reproducing apparatus
US20100134534A1 (en) * 2007-05-04 2010-06-03 Carl Zeiss Ag Display unit, and displaying method for the binocular representation of a multicolor image
US20100231532A1 (en) * 2009-03-12 2010-09-16 Samsung Electronics Co., Ltd. Touch sensing system and display apparatus employing the same
US20110063604A1 (en) * 2009-09-11 2011-03-17 Identix Incorporated Optically based planar scanner

Cited By (251)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145533B2 (en) 2005-11-11 2018-12-04 Digilens, Inc. Compact holographic illumination device
US10234696B2 (en) 2007-07-26 2019-03-19 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US10725312B2 (en) 2007-07-26 2020-07-28 Digilens Inc. Laser illumination device
US11175512B2 (en) 2009-04-27 2021-11-16 Digilens Inc. Diffractive projection apparatus
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US10678053B2 (en) 2009-04-27 2020-06-09 Digilens Inc. Diffractive projection apparatus
US11300795B1 (en) 2009-09-30 2022-04-12 Digilens Inc. Systems for and methods of using fold gratings coordinated with output couplers for dual axis expansion
US10509241B1 (en) 2009-09-30 2019-12-17 Rockwell Collins, Inc. Optical displays
US11204540B2 (en) 2009-10-09 2021-12-21 Digilens Inc. Diffractive waveguide providing a retinal image
US9274339B1 (en) 2010-02-04 2016-03-01 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
US11487131B2 (en) 2011-04-07 2022-11-01 Digilens Inc. Laser despeckler based on angular diversity
US10185154B2 (en) 2011-04-07 2019-01-22 Digilens, Inc. Laser despeckler based on angular diversity
US10642058B2 (en) 2011-08-24 2020-05-05 Digilens Inc. Wearable data display
US11874477B2 (en) 2011-08-24 2024-01-16 Digilens Inc. Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US11287666B2 (en) 2011-08-24 2022-03-29 Digilens, Inc. Wearable data display
US9977247B1 (en) 2011-09-30 2018-05-22 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US9599813B1 (en) 2011-09-30 2017-03-21 Rockwell Collins, Inc. Waveguide combiner system and method with less susceptibility to glare
US10401620B1 (en) 2011-09-30 2019-09-03 Rockwell Collins, Inc. Waveguide combiner system and method with less susceptibility to glare
US11314084B1 (en) 2011-09-30 2022-04-26 Rockwell Collins, Inc. Waveguide combiner system and method with less susceptibility to glare
US9366864B1 (en) 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
US9507150B1 (en) 2011-09-30 2016-11-29 Rockwell Collins, Inc. Head up display (HUD) using a bent waveguide assembly
US9223138B2 (en) 2011-12-23 2015-12-29 Microsoft Technology Licensing, Llc Pixel opacity for augmented reality
US10216061B2 (en) 2012-01-06 2019-02-26 Digilens, Inc. Contact image sensor using switchable bragg gratings
US10459311B2 (en) 2012-01-06 2019-10-29 Digilens Inc. Contact image sensor using switchable Bragg gratings
US9606586B2 (en) 2012-01-23 2017-03-28 Microsoft Technology Licensing, Llc Heat transfer device
US9368546B2 (en) 2012-02-15 2016-06-14 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9684174B2 (en) 2012-02-15 2017-06-20 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9297996B2 (en) 2012-02-15 2016-03-29 Microsoft Technology Licensing, Llc Laser illumination scanning
US9779643B2 (en) 2012-02-15 2017-10-03 Microsoft Technology Licensing, Llc Imaging structure emitter configurations
US9726887B2 (en) 2012-02-15 2017-08-08 Microsoft Technology Licensing, Llc Imaging structure color conversion
US9578318B2 (en) 2012-03-14 2017-02-21 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US9807381B2 (en) 2012-03-14 2017-10-31 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US9274338B2 (en) 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
US11068049B2 (en) 2012-03-23 2021-07-20 Microsoft Technology Licensing, Llc Light guide display and field of view
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US10388073B2 (en) 2012-03-28 2019-08-20 Microsoft Technology Licensing, Llc Augmented reality light guide display
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
US10478717B2 (en) 2012-04-05 2019-11-19 Microsoft Technology Licensing, Llc Augmented reality and physical games
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
US10690915B2 (en) 2012-04-25 2020-06-23 Rockwell Collins, Inc. Holographic wide angle display
US11460621B2 (en) 2012-04-25 2022-10-04 Rockwell Collins, Inc. Holographic wide angle display
US9341846B2 (en) 2012-04-25 2016-05-17 Rockwell Collins Inc. Holographic wide angle display
US10437051B2 (en) 2012-05-11 2019-10-08 Digilens Inc. Apparatus for eye tracking
US10502876B2 (en) 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
US9581820B2 (en) 2012-06-04 2017-02-28 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US20140140653A1 (en) * 2012-11-16 2014-05-22 Rockwell Collins, Inc. Transparent waveguide display
US20180373115A1 (en) * 2012-11-16 2018-12-27 Digilens, Inc. Transparent Waveguide Display
US11815781B2 (en) 2012-11-16 2023-11-14 Rockwell Collins, Inc. Transparent waveguide display
US11320571B2 (en) * 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US20160154150A1 (en) * 2012-12-10 2016-06-02 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
US9664824B2 (en) * 2012-12-10 2017-05-30 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
US10146053B2 (en) 2012-12-19 2018-12-04 Microsoft Technology Licensing, Llc Multiplexed hologram tiling in a waveguide display
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
US11009951B2 (en) 2013-01-14 2021-05-18 Facebook Technologies, Llc Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display
US10528135B2 (en) 2013-01-14 2020-01-07 Ctrl-Labs Corporation Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display
US20140267618A1 (en) * 2013-03-15 2014-09-18 Google Inc. Capturing and Refocusing Imagery
US9654761B1 (en) 2013-03-15 2017-05-16 Google Inc. Computer vision algorithm for capturing and refocusing imagery
US9679367B1 (en) 2013-04-17 2017-06-13 Rockwell Collins, Inc. HUD system and method with dynamic light exclusion
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
US9488836B2 (en) 2013-05-02 2016-11-08 Microsoft Technology Licensing, Llc Spherical interface for binocular display
US11662590B2 (en) 2013-05-20 2023-05-30 Digilens Inc. Holographic waveguide eye tracker
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US9625723B2 (en) 2013-06-25 2017-04-18 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism
US10228561B2 (en) 2013-06-25 2019-03-12 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism and gaze-detection light
US10345903B2 (en) 2013-07-30 2019-07-09 Microsoft Technology Licensing, Llc Feedback for optic positioning in display devices
US10089516B2 (en) 2013-07-31 2018-10-02 Digilens, Inc. Method and apparatus for contact image sensing
US10423813B2 (en) 2013-07-31 2019-09-24 Digilens Inc. Method and apparatus for contact image sensing
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
US11644799B2 (en) 2013-10-04 2023-05-09 Meta Platforms Technologies, Llc Systems, articles and methods for wearable electronic devices employing contact sensors
US9164290B2 (en) 2013-11-06 2015-10-20 Microsoft Corporation Grating configurations for a tiled waveguide display
US11079846B2 (en) 2013-11-12 2021-08-03 Facebook Technologies, Llc Systems, articles, and methods for capacitive electromyography sensors
US11666264B1 (en) 2013-11-27 2023-06-06 Meta Platforms Technologies, Llc Systems, articles, and methods for electromyography sensors
US9459451B2 (en) 2013-12-26 2016-10-04 Microsoft Technology Licensing, Llc Eye tracking apparatus, method and system
US9759913B2 (en) 2013-12-26 2017-09-12 Microsoft Technology Licensing, Llc Eye tracking apparatus, method and system
US10732407B1 (en) 2014-01-10 2020-08-04 Rockwell Collins, Inc. Near eye head up display system and method with fixed combiner
US20150205134A1 (en) * 2014-01-17 2015-07-23 Thalmic Labs Inc. Systems, articles, and methods for wearable heads-up displays
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
US9766465B1 (en) 2014-03-25 2017-09-19 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US10684692B2 (en) 2014-06-19 2020-06-16 Facebook Technologies, Llc Systems, devices, and methods for gesture identification
US9632317B2 (en) 2014-06-24 2017-04-25 Commissariat à l'énergie atomique et aux énergies alternatives Image projection device
US10054788B2 (en) 2014-06-25 2018-08-21 Thalmic Labs Inc. Systems, devices, and methods for wearable heads-up displays
US10067337B2 (en) 2014-06-25 2018-09-04 Thalmic Labs Inc. Systems, devices, and methods for wearable heads-up displays
US9874744B2 (en) 2014-06-25 2018-01-23 Thalmic Labs Inc. Systems, devices, and methods for wearable heads-up displays
US10012829B2 (en) 2014-06-25 2018-07-03 Thalmic Labs Inc. Systems, devices, and methods for wearable heads-up displays
US9766449B2 (en) 2014-06-25 2017-09-19 Thalmic Labs Inc. Systems, devices, and methods for wearable heads-up displays
US9304235B2 (en) 2014-07-30 2016-04-05 Microsoft Technology Licensing, Llc Microfabrication
US10254942B2 (en) 2014-07-31 2019-04-09 Microsoft Technology Licensing, Llc Adaptive sizing and positioning of application windows
US10592080B2 (en) 2014-07-31 2020-03-17 Microsoft Technology Licensing, Llc Assisted presentation of application windows
US10678412B2 (en) 2014-07-31 2020-06-09 Microsoft Technology Licensing, Llc Dynamic joint dividers for application windows
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US11709373B2 (en) 2014-08-08 2023-07-25 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US9377623B2 (en) 2014-08-11 2016-06-28 Microsoft Technology Licensing, Llc Waveguide eye tracking employing volume Bragg grating
US11726323B2 (en) 2014-09-19 2023-08-15 Digilens Inc. Method and apparatus for generating input images for holographic waveguide displays
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US9494799B2 (en) 2014-09-24 2016-11-15 Microsoft Technology Licensing, Llc Waveguide eye tracking employing switchable diffraction gratings
US10795160B1 (en) 2014-09-25 2020-10-06 Rockwell Collins, Inc. Systems for and methods of using fold gratings for dual axis expansion
US11579455B2 (en) 2014-09-25 2023-02-14 Rockwell Collins, Inc. Systems for and methods of using fold gratings for dual axis expansion using polarized light for wave plates on waveguide faces
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US11740472B2 (en) 2015-01-12 2023-08-29 Digilens Inc. Environmentally isolated waveguide display
US20180275402A1 (en) * 2015-01-12 2018-09-27 Digilens, Inc. Holographic waveguide light field displays
US11480788B2 (en) * 2015-01-12 2022-10-25 Digilens Inc. Light field displays incorporating holographic waveguides
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
WO2016113533A3 (en) * 2015-01-12 2016-10-06 Milan Momcilo Popovich Holographic waveguide light field displays
US11726329B2 (en) 2015-01-12 2023-08-15 Digilens Inc. Environmentally isolated waveguide display
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
US11086216B2 (en) 2015-02-09 2021-08-10 Microsoft Technology Licensing, Llc Generating electronic components
US9827209B2 (en) 2015-02-09 2017-11-28 Microsoft Technology Licensing, Llc Display system
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US10345601B2 (en) * 2015-02-09 2019-07-09 Microsoft Technology Licensing, Llc Wearable image display system
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US11703645B2 (en) 2015-02-12 2023-07-18 Digilens Inc. Waveguide grating device
US10527797B2 (en) 2015-02-12 2020-01-07 Digilens Inc. Waveguide grating device
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US10031338B2 (en) 2015-02-17 2018-07-24 Thalmic Labs Inc. Systems, devices, and methods for eyebox expansion in wearable heads-up displays
US10191283B2 (en) 2015-02-17 2019-01-29 North Inc. Systems, devices, and methods for eyebox expansion displays in wearable heads-up displays
US9958682B1 (en) 2015-02-17 2018-05-01 Thalmic Labs Inc. Systems, devices, and methods for splitter optics in wearable heads-up displays
US10613331B2 (en) 2015-02-17 2020-04-07 North Inc. Systems, devices, and methods for splitter optics in wearable heads-up displays
US9989764B2 (en) 2015-02-17 2018-06-05 Thalmic Labs Inc. Systems, devices, and methods for eyebox expansion in wearable heads-up displays
US10088689B2 (en) 2015-03-13 2018-10-02 Microsoft Technology Licensing, Llc Light engine with lenticular microlenslet arrays
WO2016146963A1 (en) * 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10197805B2 (en) 2015-05-04 2019-02-05 North Inc. Systems, devices, and methods for eyeboxes with heterogeneous exit pupils
US10133075B2 (en) 2015-05-04 2018-11-20 Thalmic Labs Inc. Systems, devices, and methods for angle- and wavelength-multiplexed holographic optical elements
US10175488B2 (en) 2015-05-04 2019-01-08 North Inc. Systems, devices, and methods for spatially-multiplexed holographic optical elements
US10746989B2 (en) 2015-05-18 2020-08-18 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US11366316B2 (en) 2015-05-18 2022-06-21 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US10088675B1 (en) 2015-05-18 2018-10-02 Rockwell Collins, Inc. Turning light pipe for a pupil expansion system and method
US10126552B2 (en) 2015-05-18 2018-11-13 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US10698203B1 (en) 2015-05-18 2020-06-30 Rockwell Collins, Inc. Turning light pipe for a pupil expansion system and method
US10247943B1 (en) 2015-05-18 2019-04-02 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US10180578B2 (en) 2015-05-28 2019-01-15 North Inc. Methods that integrate visible light eye tracking in scanning laser projection displays
US10488661B2 (en) 2015-05-28 2019-11-26 North Inc. Systems, devices, and methods that integrate eye tracking and scanning laser projection in wearable heads-up displays
US10078219B2 (en) 2015-05-28 2018-09-18 Thalmic Labs Inc. Wearable heads-up display with integrated eye tracker and different optical power holograms
US10114222B2 (en) 2015-05-28 2018-10-30 Thalmic Labs Inc. Integrated eye tracking and laser projection methods with holographic elements of varying optical powers
US10139633B2 (en) 2015-05-28 2018-11-27 Thalmic Labs Inc. Eyebox expansion and exit pupil replication in wearable heads-up display having integrated eye tracking and laser projection
US10078220B2 (en) 2015-05-28 2018-09-18 Thalmic Labs Inc. Wearable heads-up display with integrated eye tracker
US10073268B2 (en) 2015-05-28 2018-09-11 Thalmic Labs Inc. Display with integrated visible light eye tracking
US10108010B2 (en) 2015-06-29 2018-10-23 Rockwell Collins, Inc. System for and method of integrating head up displays and head down displays
US10705342B2 (en) 2015-09-04 2020-07-07 North Inc. Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses
US10718945B2 (en) 2015-09-04 2020-07-21 North Inc. Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses
US10890765B2 (en) 2015-09-04 2021-01-12 Google Llc Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses
US10877272B2 (en) 2015-09-04 2020-12-29 Google Llc Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses
US10488662B2 (en) 2015-09-04 2019-11-26 North Inc. Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses
US10656822B2 (en) 2015-10-01 2020-05-19 North Inc. Systems, devices, and methods for interacting with content displayed on head-mounted displays
US11754842B2 (en) 2015-10-05 2023-09-12 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11281013B2 (en) 2015-10-05 2022-03-22 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US9904051B2 (en) 2015-10-23 2018-02-27 Thalmic Labs Inc. Systems, devices, and methods for laser eye tracking
US10228558B2 (en) 2015-10-23 2019-03-12 North Inc. Systems, devices, and methods for laser eye tracking
US10606072B2 (en) 2015-10-23 2020-03-31 North Inc. Systems, devices, and methods for laser eye tracking
US10802190B2 (en) 2015-12-17 2020-10-13 Covestro Llc Systems, devices, and methods for curved holographic optical elements
US11215834B1 (en) 2016-01-06 2022-01-04 Rockwell Collins, Inc. Head up display for integrating views of conformally mapped symbols and a fixed image source
US10598932B1 (en) 2016-01-06 2020-03-24 Rockwell Collins, Inc. Head up display for integrating views of conformally mapped symbols and a fixed image source
US10126815B2 (en) 2016-01-20 2018-11-13 Thalmic Labs Inc. Systems, devices, and methods for proximity-based eye tracking
US10241572B2 (en) 2016-01-20 2019-03-26 North Inc. Systems, devices, and methods for proximity-based eye tracking
US10303246B2 (en) 2016-01-20 2019-05-28 North Inc. Systems, devices, and methods for proximity-based eye tracking
US10151926B2 (en) 2016-01-29 2018-12-11 North Inc. Systems, devices, and methods for preventing eyebox degradation in a wearable heads-up display
US10437067B2 (en) 2016-01-29 2019-10-08 North Inc. Systems, devices, and methods for preventing eyebox degradation in a wearable heads-up display
US10451881B2 (en) 2016-01-29 2019-10-22 North Inc. Systems, devices, and methods for preventing eyebox degradation in a wearable heads-up display
US10429639B2 (en) * 2016-01-31 2019-10-01 Paul Lapstun Head-mounted light field display
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
CN112285931A (en) * 2016-02-18 2021-01-29 奥里姆光学有限公司 Compact head-mounted display system
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US11604314B2 (en) 2016-03-24 2023-03-14 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US10365550B2 (en) 2016-04-13 2019-07-30 North Inc. Systems, devices, and methods for focusing laser projectors
US10365549B2 (en) 2016-04-13 2019-07-30 North Inc. Systems, devices, and methods for focusing laser projectors
US10365548B2 (en) 2016-04-13 2019-07-30 North Inc. Systems, devices, and methods for focusing laser projectors
US10230929B2 (en) 2016-07-27 2019-03-12 North Inc. Systems, devices, and methods for laser projectors
US10277874B2 (en) 2016-07-27 2019-04-30 North Inc. Systems, devices, and methods for laser projectors
US10250856B2 (en) 2016-07-27 2019-04-02 North Inc. Systems, devices, and methods for laser projectors
US10901205B1 (en) 2016-08-09 2021-01-26 Facebook Technologies, Llc Focus adjusting liquid crystal lenses in a head-mounted display
US10459221B2 (en) 2016-08-12 2019-10-29 North Inc. Systems, devices, and methods for variable luminance in wearable heads-up displays
US10459223B2 (en) 2016-08-12 2019-10-29 North Inc. Systems, devices, and methods for variable luminance in wearable heads-up displays
US10459222B2 (en) 2016-08-12 2019-10-29 North Inc. Systems, devices, and methods for variable luminance in wearable heads-up displays
US9959818B2 (en) * 2016-09-22 2018-05-01 Microsoft Technology Licensing, Llc Display engines for use with optical waveguides
US10345596B2 (en) 2016-11-10 2019-07-09 North Inc. Systems, devices, and methods for astigmatism compensation in a wearable heads-up display
US10215987B2 (en) 2016-11-10 2019-02-26 North Inc. Systems, devices, and methods for astigmatism compensation in a wearable heads-up display
US10371872B1 (en) 2016-11-16 2019-08-06 Facebook Technologies, Llc Varifocal structure comprising a liquid lens structure in optical series with a liquid crystal lens in a head-mounted display and method of adjusting an optical power of the varifocal structure
US10248001B1 (en) 2016-11-16 2019-04-02 Facebook Technologies, Llc Varifocal structure comprising a liquid lens structure in optical series with a liquid crystal lens in a head-mounted display
US10539829B1 (en) 2016-11-16 2020-01-21 Facebook Technologies, Llc Method of selecting a state of a switchable half waveplate and selecting an optical power of a liquid lens structure in optical series with a liquid crystal lens in a head-mounted display
US11009765B1 (en) 2016-11-23 2021-05-18 Facebook Technologies, Llc Focus adjusting pancharatnam berry phase liquid crystal lenses in a head-mounted display
US10379419B1 (en) 2016-11-23 2019-08-13 Facebook Technologies, Llc Focus adjusting pancharatnam berry phase liquid crystal lenses in a head-mounted display
US10459220B2 (en) 2016-11-30 2019-10-29 North Inc. Systems, devices, and methods for laser eye tracking in wearable heads-up displays
US10409057B2 (en) 2016-11-30 2019-09-10 North Inc. Systems, devices, and methods for laser eye tracking in wearable heads-up displays
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
WO2018102834A3 (en) * 2016-12-02 2018-11-15 Digilens, Inc. Waveguide device with uniform output illumination
US10663732B2 (en) 2016-12-23 2020-05-26 North Inc. Systems, devices, and methods for beam combining in wearable heads-up displays
US10365492B2 (en) 2016-12-23 2019-07-30 North Inc. Systems, devices, and methods for beam combining in wearable heads-up displays
US10151961B2 (en) * 2016-12-29 2018-12-11 Facebook Technologies, Llc Switchable bragg gratings for chromatic error correction of pancharatnam berry phase (PBP) components
US20180188631A1 (en) * 2016-12-29 2018-07-05 Oculus Vr, Llc Switchable bragg gratings for chromatic error correction of pancharatnam berry phase (pbp) components
US11231593B1 (en) 2016-12-29 2022-01-25 Facebook Technologies, Llc Optical structure comprising a plurality of optical elements each configured to convert received light having a first polarization into output light having a second polarization focused to a common focal point
US10317772B1 (en) * 2016-12-29 2019-06-11 Facebook Technologies, Llc Switchable bragg gratings for chromatic error correction of pancharatnam berry phase (PBP) components
US10690930B1 (en) 2016-12-29 2020-06-23 Facebook Technologies, Llc Optical structure comprising a structure of stacked optical elements that receives circularly polarized light having a first handedness and outputs circularly polarized light having a second handedness to a focal point
US10935804B1 (en) 2016-12-29 2021-03-02 Facebook Technologies, Llc Optical structure comprising a plurality of stacked optical elements that receive light having a first polarization and output light having a second polarization to a focal point
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US11586046B2 (en) 2017-01-05 2023-02-21 Digilens Inc. Wearable heads up displays
US11194162B2 (en) 2017-01-05 2021-12-07 Digilens Inc. Wearable heads up displays
US10437073B2 (en) 2017-01-25 2019-10-08 North Inc. Systems, devices, and methods for beam combining in laser projectors
US10437074B2 (en) 2017-01-25 2019-10-08 North Inc. Systems, devices, and methods for beam combining in laser projectors
US10718951B2 (en) 2017-01-25 2020-07-21 North Inc. Systems, devices, and methods for beam combining in laser projectors
US10295824B2 (en) 2017-01-26 2019-05-21 Rockwell Collins, Inc. Head up display with an angled light pipe
US10705337B2 (en) 2017-01-26 2020-07-07 Rockwell Collins, Inc. Head up display with an angled light pipe
WO2018152235A1 (en) * 2017-02-14 2018-08-23 Optecks, Llc Optical display system for augmented reality and virtual reality
US10955668B2 (en) * 2017-02-14 2021-03-23 Optecks, Llc Optical display system for augmented reality and virtual reality
US10838212B2 (en) * 2017-06-16 2020-11-17 Journey Technology, Ltd. Optical apparatus and waveguide display apparatus
US20180364486A1 (en) * 2017-06-16 2018-12-20 Journey Technology, Ltd. Optical apparatus and waveguide display apparatus
CN111465888A (en) * 2017-10-16 2020-07-28 奥里姆光学有限公司 High-efficient compact head-mounted display system
US10942430B2 (en) 2017-10-16 2021-03-09 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US11635736B2 (en) 2017-10-19 2023-04-25 Meta Platforms Technologies, Llc Systems and methods for identifying biological structures associated with neuromuscular source signals
US10901216B2 (en) 2017-10-23 2021-01-26 Google Llc Free space multiple laser diode modules
US11300788B2 (en) 2017-10-23 2022-04-12 Google Llc Free space multiple laser diode modules
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11726261B2 (en) 2018-03-16 2023-08-15 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11150408B2 (en) 2018-03-16 2021-10-19 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11327330B2 (en) * 2018-06-04 2022-05-10 The Regents Of The University Of Colorado, A Body Corporate 3D diffractive optics
US10546523B2 (en) * 2018-06-22 2020-01-28 Microsoft Technology Licensing, Llc Display system with a single plate optical waveguide and independently adjustable micro display arrays
US10909902B2 (en) * 2018-06-22 2021-02-02 Microsoft Technology Licensing, Llc Display system with a single plate optical waveguide and independently adjustable micro display arrays
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US11941176B1 (en) 2018-11-27 2024-03-26 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US11797087B2 (en) 2018-11-27 2023-10-24 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US10976483B2 (en) 2019-02-26 2021-04-13 Facebook Technologies, Llc Variable-etch-depth gratings
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11681143B2 (en) 2019-07-29 2023-06-20 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11592614B2 (en) 2019-08-29 2023-02-28 Digilens Inc. Evacuated gratings and methods of manufacturing
US11899238B2 (en) 2019-08-29 2024-02-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11961494B1 (en) 2020-03-27 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
US11709422B2 (en) 2020-09-17 2023-07-25 Meta Platforms Technologies, Llc Gray-tone lithography for precise control of grating etch depth
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof
EP4089470A1 (en) 2021-05-12 2022-11-16 Commissariat à l'énergie atomique et aux énergies alternatives Device for projecting an image into the eye of a user
FR3122929A1 (en) * 2021-05-12 2022-11-18 Commissariat à l'Energie Atomique et aux Energies Alternatives Device for projecting an image into the user's eye

Also Published As

Publication number Publication date
EP2748670A1 (en) 2014-07-02
US20220260847A1 (en) 2022-08-18
EP2995986A1 (en) 2016-03-16
WO2013027004A1 (en) 2013-02-28
US20200249491A1 (en) 2020-08-06
US20240077742A1 (en) 2024-03-07
US10642058B2 (en) 2020-05-05
US11287666B2 (en) 2022-03-29
US20160004090A1 (en) 2016-01-07
US11874477B2 (en) 2024-01-16
EP2748670B1 (en) 2015-11-18
EP2995986B1 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
US11874477B2 (en) Wearable data display
US11175512B2 (en) Diffractive projection apparatus
US11460621B2 (en) Holographic wide angle display
US11681143B2 (en) Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US8639072B2 (en) Compact wearable display
US11204540B2 (en) Diffractive waveguide providing a retinal image
US10942430B2 (en) Systems and methods for multiplying the image resolution of a pixelated display
EP2494388B1 (en) Compact holographic eyeglass display
US20200264378A1 (en) Methods and Apparatuses for Providing a Holographic Waveguide Display Using Integrated Gratings
US9726540B2 (en) Diffractive waveguide providing structured illumination for object detection
US11726332B2 (en) Diffractive projection apparatus
WO2010125337A2 (en) Compact holographic edge illuminated wearable display
US20200400946A1 (en) Methods and Apparatuses for Providing a Waveguide Display with Angularly Varying Optical Power

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCKWELL COLLINS, INC., IOWA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POPOVICH, MILAN MOMCILO;WALDERN, JONATHAN DAVID;SIGNING DATES FROM 20161102 TO 20161103;REEL/FRAME:040220/0509

Owner name: DIGILENS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POPOVICH, MILAN MOMCILO;WALDERN, JONATHAN DAVID;SIGNING DATES FROM 20161102 TO 20161103;REEL/FRAME:040220/0509

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: DIGILENS INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 040220 FRAME 0509. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:POPOVICH, MILAN MOMCILO;WALDERN, JONATHAN DAVID;SIGNING DATES FROM 20190410 TO 20190415;REEL/FRAME:054263/0418