US20140177499A1 - Mesh network control using common designation wake-up - Google Patents

Mesh network control using common designation wake-up Download PDF

Info

Publication number
US20140177499A1
US20140177499A1 US14/108,290 US201314108290A US2014177499A1 US 20140177499 A1 US20140177499 A1 US 20140177499A1 US 201314108290 A US201314108290 A US 201314108290A US 2014177499 A1 US2014177499 A1 US 2014177499A1
Authority
US
United States
Prior art keywords
wake
broadcast
communication device
data communication
identifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/108,290
Inventor
Robert W. Twitchell, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2008/054633 external-priority patent/WO2008103863A1/en
Application filed by Google LLC filed Critical Google LLC
Priority to US14/108,290 priority Critical patent/US20140177499A1/en
Publication of US20140177499A1 publication Critical patent/US20140177499A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Mesh networks utilize timers to synchronize the nodes participating in the networks.
  • each node typically utilizes a crystal oscillator to coordinate its operation with that of other nodes in the network.
  • timers by mesh networks to control communications causes throughput, synchronization, power consumption, bit error rate (BER), RF “stealth” and RF noise issues.
  • Mesh networks suffer from a geometric loss of throughput because the state in which the nodes wake up is random. Many schemes are employed to mitigate the issues listed above but at the expense of other parameters.
  • mesh networks synchronize their nodes using timers. Timing issues and crystal oscillator tolerances make time alignment and frequency drift a problem that causes the nodes to wake-up outside their designated time slot. Waking up at the wrong time can lead to the total inability of the nodes to communicate with each other. Other disadvantages include that a large number of nodes can cause interference issues because the nodes are able to receive signals of all of the nodes in range. Further, BER is adversely affected because so many nodes are communicating simultaneously. In addition, RF signatures are readily seen and preclude the use of the networks for surveillance applications.
  • a method of activating and deactivating a mesh network for mesh network communications includes: transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, activates the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications; and transmitting a second broadcast that includes a second identifier such that the two-way communications component of each data communication device identified by the second identifier, upon receiving the second broadcast, will cease its mesh networking communications and will return to the dormant state
  • the second broadcast is transmitted by the first transmitter of the two-way communications component of a data communication device; the second receiver of a data communication device is part of a wake-up transceiver of in data communication device, and wherein the second broadcast is transmitted by a second transmitter of the wake-up transceiver; the second broadcast is received by the first receiver of the two-way communications component of a data communication device; the second broadcast is received by the second receiver of a data communication device; the second receiver of a data communication device is part of a wake-up transceiver in the data communication device, and wherein the second broadcast is received by the second receiver of the wake-up transceiver; the two-way communications component of each data communication device is off when in the dormant state; the second receiver of a data communication device draws substantially less current while listening for a wake-up broadcast than the two-way communications component would draw while listening for a wake-up broadcast; the second receiver of a data communication device draws less current while listening for a wake-up broadcast than the two-
  • the wake-up identifier represents a node performance characteristic.
  • the performance characteristic may include bit error rate; throughput of the node; strength of the radiofrequency communication link; and range, determined using values such as Received Signal Strength Indication, or “RSSI”
  • the mesh network that is activated may include only a subset of nodes out of a plurality of nodes that otherwise are available for making a larger mesh network.
  • the selection of nodes preferably is determined based on the wake-up identifier included in the wake-up broadcast that is transmitted
  • a portion of a time interval T of the mesh network, during which interval mesh networking communications are performed, is measured beginning with a time of the wake-up broadcast, whereby all nodes participating in the mesh network are synchronized for mesh communications.
  • the time of the wake-up broadcast may be the time of initial transmission of the wake-up broadcast
  • the second wake-up broadcast is transmitted after transmitting the first wake-up broadcast such that a portion of a first time interval T 1 of the first mesh network, during which mesh networking communications are performed, does not overlap with a portion of a second time interval T 2 of the second mesh network, during which mesh networking communications are performed.
  • the method also includes the step of transmitting a third broadcast that includes a third identifier such that the two-way communications component of each data communication device identified by the first wake-up identifier, upon receiving the third broadcast, will cease its mesh networking communications and will return to the dormant state; and the step of transmitting a fourth broadcast that includes a fourth identifier such that the two-way communications component of each data communication device identified by the second wake-up identifier, upon receiving the fourth broadcast, will cease its mesh networking communications and will return to the dormant state.
  • the method further includes the step of transmitting a third broadcast that includes a third identifier such that the two-way communications component of each data communication device identified by either of the first wake-up identifier or the second wake-up identifier, upon receiving the third broadcast, will cease its mesh networking communications and will return to the dormant state.
  • a method of activating a mesh network for mesh network communications includes the step of transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, activates the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications.
  • an ad hoc mesh networking system includes an ad hoc mesh network utilizing a plurality of data communication devices as nodes of the network; wherein each data communication device includes both a two-way communications component, comprising a first receiver and transmitter, and a second receiver, wherein the second receiver activates the two-way communications component from a dormant state upon receipt by the second receiver of a wake-up broadcast that includes a wake-up identifier of the data communication device; and wherein a mesh network is activated for mesh network communications by transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, will activate the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications.
  • a data communication device for utilization as a node in an ad hoc mesh network includes a two-way communications component comprising a first receiver and transmitter; and a second receiver, wherein the second receiver activates the two-way communications component from a dormant state upon receipt by the second receiver of a wake-up broadcast that includes a wake-up identifier of the data communication device; wherein a mesh network is activated for mesh network communications by transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, will activate the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications.
  • FIGS. 1A-1D are schematic diagrams illustrating the use of common designation wake-up broadcasts or signals, shown propagating through a group of participating nodes, to control the operation of a common designation mesh network in accordance with one or more preferred embodiments of the present invention
  • FIG. 2A is a timing diagram illustrating the use of periodic event-related communication, triggered by a common designation wake-up broadcast, by the nodes in FIGS. 1A-1D communicating with each other in a mesh network;
  • FIG. 2B is a timing diagram illustrating a first example of a communication event of the type generically illustrated in FIG. 2A ;
  • FIG. 2C is a timing diagram illustrating a second example of a communication event of the type generically illustrated in FIG. 2A ;
  • FIG. 2D is a timing diagram illustrating the completion of two successive communication events in the group of nodes of FIGS. 1A-1D ;
  • FIG. 3B is a timing diagram illustrating an example of a communication event of the type generically illustrated in FIG. 3A ;
  • FIG. 3C is a timing diagram illustrating the completion of two successive communication events in the group of nodes of FIGS. 1A-1D ;
  • FIG. 4A is a schematic diagram illustrating the relative signal strengths in a group of participating nodes in a mesh network
  • FIGS. 4B-4C are schematic diagrams illustrating the use of common designations based on relative signal strengths, and the resulting common designation mesh network formed based on a weak signal designation, in accordance with one or more preferred embodiments of the present invention
  • FIG. 5 is a schematic diagram illustrating the bit error rate (BER) in a group of participating nodes in a mesh network, whereby BER may be used to establish common designations for forming common designation mesh networks, in accordance with one or more preferred embodiments of the present invention.
  • BER bit error rate
  • FIG. 6 is a timing diagram illustrating the use of the techniques described herein in avoiding the simultaneous occurrence of communication events on two or more different common designation mesh networks.
  • any sequence(s) and/or temporal order of steps of various processes or methods that are described herein are illustrative and not restrictive. Accordingly, it should be understood that, although steps of various processes or methods may be shown and described as being in a sequence or temporal order, the steps of any such processes or methods are not limited to being carried out in any particular sequence or order, absent an indication otherwise. Indeed, the steps in such processes or methods generally may be carried out in various different sequences and orders while still falling within the scope of the present invention. Accordingly, it is intended that the scope of patent protection afforded the present invention is to be defined by the appended claims rather than the description set forth herein.
  • a picnic basket having an apple describes “a picnic basket having at least one apple” as well as “a picnic basket having apples.”
  • a picnic basket having a single apple describes “a picnic basket having only one apple.”
  • FIGS. 1A-1D are schematic diagrams illustrating the use of a common designation wake-up broadcast, shown propagating through a group of participating nodes 20 , to control the operation of a mesh network 10 in accordance with one or more preferred embodiments of the present invention.
  • a “node” refers to a wireless radio frequency data communication device that comprises a two-way communications component in the form of a transceiver that receives and transmits information wirelessly with one or more other nodes.
  • the data communication device preferably includes a low-power radio frequency (“LPRF”) data communication device that communicates via data packets.
  • LPRF low-power radio frequency
  • TCP transmission control protocol
  • the two-way communications component of the data communication device also preferably is standards-based radio (“SBR”) and comprises, for example, a WiFi, WiMAX, CDMA, WCDMA, GSM, Zigbee®, Ultra-Wideband, or Bluetooth radio.
  • the SBR preferably comprises a Bluetooth radio.
  • the data communication device of a node of the wireless network may be mobile or fixed at a particular location, and the data communication device may include an internal power supply source or utilize an external power supply source.
  • the data communication device also may include an interface for communicating with an associated sensor or other data acquisition device, which sensor may or may not form part of the node.
  • the data communication device constituting the node also or alternatively may be attached to an asset that is to be monitored and/or tracked; alternatively, the data communication device constituting the node may be permanently affixed to a structure for monitoring and/or tracking assets that come within proximity thereto.
  • the nodes utilize common designation networking in combination with wake-up technologies.
  • Common designation networking is perhaps best disclosed in the incorporated U.S. Pat. Nos. 6,745,027 and 7,221,668.
  • common designation identifiers representing attributes or characteristics of the assets are typically used, which common designations often are referred to as “class” designations.
  • ad hoc networks formed based thereon are often referred to as “class-based” networks and communications in such networks are often referred to as “class-based” communications.
  • a node screens each transmission for a data identifier that represents a common designation of that node.
  • the node does not process, route, or respond to an incoming transmission if the data identifier is not found.
  • common designation networking greatly reduces RF noise when many nodes are within broadcast range of each other and greatly increase operating life of mobile nodes that dependent on battery sources, as the nodes do not needlessly respond to all transmissions, filtering out and processing, routing, and/or responding to only those transmission bearing its common designation.
  • a node may have more than one common designation at any given time, and that a common designation may represent a subset or a superset of another common designation (sometimes referred to as class and subclass).
  • each node of the wireless ad hoc network includes—in connection with the SBR—a wake-up receiver that listens for a wake-up broadcast that includes a common designation of that node.
  • the wake-up receiver Upon receiving such a wake-up broadcast, the wake-up receiver provides an electronic signal that activates the SBR, which resides in a dormant state (either off or in a reduced power standby mode) while the wake-up receiver is listening for an applicable broadcast.
  • the wake-up receiver is a simplified receiver that draws much less current when listening for an applicable broadcast compared to the current that would be drawn by the SBR when listening for an applicable broadcast. Hence, significant power conservation and long battery life is achieved using such a wake-up receiver.
  • this wake-up receiver may screen only for a predetermined common designation, as disclosed in U.S. Patent Appl. Publication No. 2006/0287008.
  • a more complicated stepped wake up of the SBR may be performed using the wake-up receiver, wherein the wake-up receiver first screens for one or more criteria before screening for the common designation in the wake-up broadcast.
  • Such a stepped wake-up methodology is disclosed, for example, in the incorporated U.S. Patent Appl. Publication No. US 2006 / 0276161 . Screening for criteria that is indicative of an actual wake-up broadcast being received can be beneficial when significant RF noise is present, whereby false indications of the receipt of a wake-up broadcast can be reduced.
  • a wake-up transceiver is disclosed.
  • the wake-up transceiver is similar to the aforementioned wake-up receiver, but further includes a transmitter by which a wake-up broadcast may be transmitted without necessarily having to activate the SBR.
  • the SBR sends a wake-up broadcast whereas, in U.S. Patent Appl. Publication No. 2006/0287008, the wake-up broadcast may be sent by the wake-up transceiver without having to activate the SBR. Avoiding booting up of the SBR has been found to result in significant power savings, and while the SBR has additional features and functionality not provided by the wake-up transceiver, such features and functionality is not required in transmitting a wake-up broadcast.
  • wake-up component is intended to mean either a wake-up receiver or wake-up transceiver, as disclosed in these incorporated references, and each node of FIG. 1 preferably includes such a wake-up component.
  • a common designation wake-up broadcast is shown by dashed arrows originating from node 20 labeled “N1.”
  • the wake-up broadcast includes a wake-up identifier that preferably corresponds to a common designation shared by two-way communication components of the nodes forming a common designation mesh network.
  • Each two-way communications component of each node illustrated in the drawings includes an exemplary standards-based radio comprising a Bluetooth radio, and two-way Bluetooth communications between the two-way communications components are indicated by solid double arrow lines with the label “BT”.
  • Each node further preferably includes a wake-up receiver or wake-up transceiver (i.e., a “wake-up component”) that activates the two-way communication component from its dormant state upon receipt of a wake-up broadcast that includes a common designation of the node.
  • a wake-up receiver or wake-up transceiver i.e., a “wake-up component” that activates the two-way communication component from its dormant state upon receipt of a wake-up broadcast that includes a common designation of the node.
  • the nodes 20 preferably remain in a dormant state, shown in FIG. 1A , until a communication event occurs. During this time the mesh network is considered to be deactivated or “off”. In at least one embodiment, the nodes 20 generally remain in a dormant state and wake up only when such a communication event 30 occurs, while in at least one other embodiment, the nodes 20 may also wake-up periodically, too.
  • a communication event 30 is shown as occurring at the node 20 labeled “N1” in FIG. 1B .
  • the node N1 wakes up and transmits a wake-up broadcast to activate or “turn on” a common designation mesh network.
  • the initial wake-up broadcast sent by the node 20 designated N1 is received only by those nodes 20 within range of the initial wake-up identifier signal, i.e., by the nodes 32 designated N2, N3 and N4. This may be referred to as a first wave of wake-ups.
  • the nodes 20 in the first wave of wake-ups in turn propagate the wake-up broadcast to the nodes 20 within their range and establish Bluetooth communications with the nodes that have awoken, thereby activating the mesh network 10 .
  • the wake-up of the nodes designated N5, N6 and N7 that occurs because of the propagation of the wake-up broadcast may be referred to as a second wave of wake-ups.
  • any node 20 that has already received the wake-up broadcast will not propagate the broadcast again.
  • FIG. 2A is a timing diagram illustrating the use of periodic event-related communication, triggered by a common designation wake-up broadcast 32 , by the nodes 20 in the mesh network 10 .
  • the wake-up broadcast 32 serves as a means for “synchronizing” the nodes 20 forming the common designation mesh network 10 .
  • the wake-up broadcast 32 causes each node 20 in the network 10 to be prepared to participate in individual node communication 34 , labeled “IRC,” using the two-way communications component (or SBR) of the node, during a designated portion of each predetermined period, labeled “T,” following the wake-up broadcast 32 .
  • the wake-up broadcast synchronizes the nodes in that the predetermined period “T” is keyed off of the wake-up broadcast. This is shown generically in FIG. 2A as occurring for any number of periods after the wake-up broadcast 32 .
  • each node 20 in the network 10 remains prepared to participate in individual node communication 34 pertaining to the respective communication event 30 during a designated portion of each predetermined period following the wake-up broadcast 32 until the event 30 is over.
  • the event 30 is over when the necessary individual node communication 34 is complete.
  • a message may be sent by the originating node N1, via the final individual node communication 34 , once the event 30 is complete, in order to end the transmissions and place all of the nodes back into the dormant state described above to await another common designation wake-up broadcast 32 that signifies the beginning of another event 30 .
  • the periodic communications during interval T in the mesh nodes only occurs during a communication event and, when no communication event is occurring, no transmissions are made in the mesh network, even if such period of inactivity exceeds interval T.
  • the operation of the mesh network in an otherwise conventional manner can be turned off and on as needed.
  • FIG. 2D is a timing diagram illustrating the completion of two successive communication events 30 in the group of nodes 20 of FIGS. 1A-1D .
  • a wake-up broadcast 32 is propagated to initiate and synchronize a network 10 , and individual node communication 34 is carried out as necessary to complete the event 30 .
  • Each event referred to generically as node communication or “RC,” includes one or more periods of individual node communication 34 .
  • the first event 30 designated Event A
  • Event B is two periods in length.
  • each event 30 involves the creation of a common designation ad hoc mesh network 10 , and that the group of nodes 20 participating in the network 10 during the first event 30 may or may not be exactly the same as the group of nodes 20 participating in the network 10 during the second event 30 , and in fact that the makeup of the group of participating nodes 20 may even change during a particular event 30 , particularly a longer one.
  • FIG. 3A is a timing diagram illustrating the use of periodic event-related communication, triggered and terminated by common designation wake-up broadcasts 32 , 36 , by the nodes 20 in FIGS. 1A-1D communicating with each other in a mesh network 10 .
  • a wake-up broadcast 32 labeled “W” in FIGS. 3A-3C , serves to activate the two-way communication components of the nodes (having the targeted common designation identified in the wake-up broadcast) from a dormant state, and further serves as a means by which the awaken nodes 20 can synchronize the time interval T for conventional mesh network communications.
  • the wake-up broadcast 32 causes each node 20 in the network 10 to be prepared to participate in individual node communication 34 , labeled “IRC,” such as by standards-based radio, during a designated portion of each predetermined period following the wake-up broadcast 32 .
  • the wake-up broadcast 32 is propagated through the nodes 20 in the manner shown in FIGS. 1A-1D and described above. Any node 20 that has already received the wake-up broadcast can resynchronize its timer, and any node 20 that has not heard the wake-up broadcast can add itself to the network 10 .
  • the wake-up broadcast 32 may be retransmitted periodically (not illustrated) to activate and synchronize any nodes 20 that arrive after the initial start of the event 30 (or that arrive after the last synchronizing wake-up broadcast 32 in the event 30 )
  • a wake-up broadcast 36 may be utilized to terminate the event 30 , break the event 30 up into multiple sequences or delay the completion of the event 30 given application requirements.
  • a wake-up broadcast 36 labeled “E,” is illustrated in FIGS. 3A-3C .
  • Such a signal 36 may or may not utilize the same common designation as the wake-up broadcast 32 .
  • the initial wake-up broadcast 32 includes the same identifier as the end “wake-up” signal 36 , and the nodes 20 may be aware that the next wake-up broadcast is to be interpreted as an end signal rather than a new wake-up broadcast 32 .
  • a first identifier and a second identifier are assigned or configured in conjunction with each other, wherein both identifiers are assigned to the same group of nodes 20 , and the first identifier is used in wake-up broadcasts 32 and the second identifier is used in end signals 36 .
  • a wide variety of approaches may likewise be utilized to accomplish this functionality.
  • each node 20 in the network 10 remains prepared to participate in individual node communication 34 pertaining to the respective communication event 30 during a designated portion of each predetermined period following the wake-up broadcast 32 until the event 30 is over, with the event 30 generally being over when the necessary individual node communication 34 is complete.
  • the event 30 is ended by transmitting a wake-up broadcast 36 , generally sent by the originating node N1.
  • the nodes 20 then return to the sleep state described above to await another common designation wake-up broadcast 32 that signals the beginning of another event 30 .
  • FIG. 3B is a timing diagram illustrating an example of a communication event of the type generically illustrated in FIG. 3A .
  • the communication event 30 lasts two periods and part of a third, with an end signal 36 being used to terminate the event 30 .
  • FIG. 3C is a timing diagram illustrating the completion of two successive communication events 30 in the group of nodes 20 of FIGS. 1A-1D .
  • a wake-up broadcast 32 is propagated to initiate and synchronize a network 10
  • individual node communication 34 is carried out as necessary to accomplish the purpose of the event 30
  • an end signal 36 is propagated to terminate the event and quickly put each node 20 back into a sleep state.
  • FIG. 3B is a timing diagram illustrating an example of a communication event of the type generically illustrated in FIG. 3A .
  • the communication event 30 lasts two periods and part of a third, with an end signal 36 being used to terminate the event 30 .
  • FIG. 3C is a timing diagram illustrating the completion of two successive communication events 30
  • the first event 30 is two periods and part of third in length, as shown in FIG. 3B
  • the second event 30 designated Event B
  • each event 30 involves the creation of a common designation ad hoc mesh network 10
  • the group of nodes 20 participating in the network 10 during the first event 30 may or may not be exactly the same as the group of nodes 20 participating in the network 10 during the second event 30 , and in fact that the makeup of the group of participating nodes 20 may even change during a particular event 30 , particularly a longer one.
  • Common designations used as identifiers preferably are used to sort the nodes 20 into a plurality of mesh networks. Moreover, the common designations may be based on various performance factors, including, for example, throughput of the node, strength of the RF link, range (using values in the node such as Received Signal Strength Indication, or “RSSI”), and other characteristics that could affect overall performance.
  • the nodes 20 measure these parameters and activate common designations stored in tables on the nodes 20 thereby allowing network 110 to be selectively formed based on desired network performance metrics.
  • FIG. 4A is a schematic diagram illustrating the relative signal strengths in a group of participating nodes 20 in a mesh network 10 that has been formed using all nodes N1 through N7.
  • two or more common designations may be provided and activated in each node's common designation table, as conditions change, based on the relative signal strengths found in node-to-node communications.
  • common designations are established, one for “stronger” signal strength and one for “weaker” signal strength relative to the triggering node N1 20 , with the mesh network that is formed with (N1 being the originating node) based on a wake-up broadcast having a “weaker” signal strength designation that is transmitted by node N1.
  • the nodes 20 may remain in a dormant state until a communication event 30 occurs, shown in FIG. 4B as being triggered at the node 20 labeled “N1.”
  • a common designation wake-up broadcast that identifies, for example, only the weaker signal strength is be transmitted as shown in FIG. 4B .
  • the only nodes 20 that are awakened are the three nodes 20 , labeled “N5,” “N6” and “N7,” in the weaker signal range.
  • the receiving nodes 20 in the stronger signal range which are the ones labeled “N2,” “N3” and “N4,” are not in the “weak signal” class and thus remain in a dormant state.
  • the nodes 20 in the first wave of wake-ups i.e., those labeled “N5,” “N6” and “N7,” start their communication sequence by transmitting the wake-up identifier to the nodes 20 within their range, thereby propagating and initiating the network 110 .
  • Some nodes 20 may receive the wake-up broadcast for the first time, while the node 20 labeled “N1” is already awake.
  • the receiving nodes 20 in the stronger signal range which are again the ones labeled “N2,” “N3” and “N4,” are not in the “weak signal” common designation and thus still remain in a dormant state, but full communication is established with the node 20 labeled “N1,” as shown in FIG. 4C .
  • nodes with higher bit error rates (“BER”) could also be chosen to chose longer hops. This technique would minimize delay and move smaller amounts of data through the network 210 quickly.
  • BER bit error rates
  • a wake-up could choose strong RF links to minimize retransmissions.
  • direct node links could be established between two points, thus optimizing data throughput.
  • FIG. 5 is a schematic diagram illustrating relative throughput of node-to-node communications which could be used in defining common designations, similar to the example in FIGS. 4B-4C that used relative signal strength.
  • nodes 20 would keep track of the bit error rate for communications with each other node 20 and respond to wake-ups based on the that configure the network 210 based on network throughput parameters.
  • communication event 30 occurs at the node 20 labeled “N1,” and nodes 20 that would be used to form the “low BER” mesh network 210 would be those labeled “N1,” “N4,” “N7,” “N6,” “N2” and “N5.”
  • This sorting lowers the number of nodes 20 in the mesh 210 , thereby reducing noise and minimizing RF transmissions.
  • the network 210 can then be configured to satisfy the event 30 based, for example, on the size of the file transfer.
  • common designations may further configured using a combination of network parameters. For example, four common designations may be established, wherein a first common designation is configured for strong signal strength and high throughput, a second common designation is configured for weak signal strength and high throughput, a third common designation is configured for strong signal strength and low throughput, and a fourth common designation is configured for weak signal strength and low throughput.
  • a first common designation is configured for strong signal strength and high throughput
  • a second common designation is configured for weak signal strength and high throughput
  • a third common designation is configured for strong signal strength and low throughput
  • a fourth common designation is configured for weak signal strength and low throughput.
  • FIG. 6 is a timing diagram illustrating the use of the techniques described herein in avoiding the simultaneous occurrence of communication events 30 on two or more different common designation networks 10 .
  • server communications, triggered sensors, and the like occur semi-randomly in time
  • nodes in a mesh network are transmitting at different intervals.
  • a time slot can be assigned so that fewer collisions occur.
  • nodes 20 in a first common designation may wait until mesh network communications between nodes 20 in a second common designation are complete before initiating their own mesh network communications
  • nodes 20 in a third common designation may wait until mesh network communications between nodes 20 in the first common designation are complete before initiating their own mesh network communications.
  • the mesh communications in the nodes of the first and third common designations, respectively, may be initiated and synchronized using the techniques described herein.
  • means may be provided for recognizing that nodes 20 in another common designation are currently communicating, thereby delaying the triggering of an event 30 .
  • Such means may themselves utilize wake-up identifiers or any other means. The end result is that, as shown in FIG. 6 , in many situations, the mesh communications do not collide with each other, thereby improving reception and throughput.

Abstract

Each of a plurality of network nodes in an ad hoc mesh network utilizes a data communication device that includes a two-way communications component, comprising a first receiver and transmitter, and a second receiver. The second receiver activates the communications component from a dormant state when it receives a broadcast including a wake-up identifier of the communication device. A method of activating and deactivating a mesh network includes, first, transmitting a broadcast that includes a wake-up identifier such that each second receiver of each communication device identified by the wake-up identifier, upon receipt, activates the communications component of the communication device, which then engages in mesh networking communications, and, second, transmitting a second broadcast including a second identifier such that the communications component of each communication device identified by the second identifier, upon receipt, will cease its mesh networking communications and will return to the dormant state.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a U.S. continuation patent application of, and claims priority under 35 U.S.C. §120 to, U.S. nonprovisional patent application Ser. No. 13/548,958, filed Jul. 13, 2012, which '958 application issued as U.S. Pat. No. 8,223,680 on Dec. 17, 2013 and published as U.S. Patent Application Publication No. 2013/0016641, which patent application, patent, and publication are hereby incorporated herein by reference, and which '958 application is a U.S. continuation patent application of, and claims priority under 35 U.S.C. §120 to, U.S. nonprovisional patent application Ser. No. 12/352,992, filed Jan. 13, 2009, which '992 application issued as U.S. Pat. No. 8,223,680 on Jul. 17, 2012, which patent application and patent are hereby incorporated herein by reference, and which '992 application is a U.S. continuation patent application of, and claims priority under 35 U.S.C. §120 to, international patent application serial number PCT/US2008/054633 filed on Feb. 21, 2008, and designating the United States, which published as WO2008/103863 on Aug. 28, 2008, and which is a U.S. nonprovisional patent application of, and claims priority under 35 U.S.C. §119(e) to, U.S. provisional patent application Ser. No. 60/890,990, filed Feb. 21, 2007. Each of these patent applications and patent application publications is hereby incorporated herein by reference.
  • The present application incorporates herein by reference each of: U.S. Pat. Nos. 6,745,027; 6,934,540; 7,209,771; and 7,221,668 as well as U.S. patent application publication nos. 2006/0276161; 2006/0287008; 2007/0002792; and 2007/0155327.
  • COPYRIGHT STATEMENT
  • All of the material in this patent document is subject to copyright protection under the copyright laws of the United States and other countries. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in official governmental records but, otherwise, all other copyright rights whatsoever are reserved.
  • BACKGROUND OF THE INVENTION
  • Mesh networks utilize timers to synchronize the nodes participating in the networks. In particular, each node typically utilizes a crystal oscillator to coordinate its operation with that of other nodes in the network. Unfortunately, the use of such timers by mesh networks to control communications causes throughput, synchronization, power consumption, bit error rate (BER), RF “stealth” and RF noise issues. Mesh networks suffer from a geometric loss of throughput because the state in which the nodes wake up is random. Many schemes are employed to mitigate the issues listed above but at the expense of other parameters.
  • As previously mentioned, mesh networks synchronize their nodes using timers. Timing issues and crystal oscillator tolerances make time alignment and frequency drift a problem that causes the nodes to wake-up outside their designated time slot. Waking up at the wrong time can lead to the total inability of the nodes to communicate with each other. Other disadvantages include that a large number of nodes can cause interference issues because the nodes are able to receive signals of all of the nodes in range. Further, BER is adversely affected because so many nodes are communicating simultaneously. In addition, RF signatures are readily seen and preclude the use of the networks for surveillance applications.
  • Based on the foregoing, a need exists for improvement in mesh network control in order to avoid problems presently associated with the use of timers.
  • SUMMARY OF THE INVENTION
  • Broadly described, the present invention includes many aspects and features.
  • The invention relates to ad hoc wireless mesh networking utilizing a data communication device for each of a plurality of nodes thereof, wherein the data communication device includes both a two-way communications component comprising a first receiver and transmitter, and a second receiver, and wherein the second receiver activates the two-way communications component from a dormant state upon receipt by the second receiver of a wake-up broadcast that includes a wake-up identifier of the data communication device.
  • In accordance with an aspect of the invention, a method of activating and deactivating a mesh network for mesh network communications includes: transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, activates the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications; and transmitting a second broadcast that includes a second identifier such that the two-way communications component of each data communication device identified by the second identifier, upon receiving the second broadcast, will cease its mesh networking communications and will return to the dormant state
  • In features of this aspect, the second broadcast is transmitted by the first transmitter of the two-way communications component of a data communication device; the second receiver of a data communication device is part of a wake-up transceiver of in data communication device, and wherein the second broadcast is transmitted by a second transmitter of the wake-up transceiver; the second broadcast is received by the first receiver of the two-way communications component of a data communication device; the second broadcast is received by the second receiver of a data communication device; the second receiver of a data communication device is part of a wake-up transceiver in the data communication device, and wherein the second broadcast is received by the second receiver of the wake-up transceiver; the two-way communications component of each data communication device is off when in the dormant state; the second receiver of a data communication device draws substantially less current while listening for a wake-up broadcast than the two-way communications component would draw while listening for a wake-up broadcast; the second receiver of a data communication device draws less current while listening for a wake-up broadcast than the two-way communications component would draw while listening for a wake-up broadcast, the difference in current draw being at least an order of magnitude (such as milliamps versus microamps); the second receiver of a data communication device utilizes a stepped wake-up sequence based on at least two criteria, and wherein the last criteria before awakening the two-way communications component comprises identifying a wake-up identifier of the data communication device in the wake-up broadcast; and the second receiver of a data communication device is part of a wake-up transceiver, the wake-up transceiver further comprising a second transmitter of the data communication device that is configured to transmit a wake-up broadcast for receipt by another wake-up receiver of another data communication device
  • In an additional feature, the wake-up identifier represents a node performance characteristic. The performance characteristic may include bit error rate; throughput of the node; strength of the radiofrequency communication link; and range, determined using values such as Received Signal Strength Indication, or “RSSI”
  • Furthermore, the mesh network that is activated may include only a subset of nodes out of a plurality of nodes that otherwise are available for making a larger mesh network. In this respect, the selection of nodes preferably is determined based on the wake-up identifier included in the wake-up broadcast that is transmitted
  • Still yet, in a feature of this aspect, a portion of a time interval T of the mesh network, during which interval mesh networking communications are performed, is measured beginning with a time of the wake-up broadcast, whereby all nodes participating in the mesh network are synchronized for mesh communications. The time of the wake-up broadcast may be the time of initial transmission of the wake-up broadcast
  • In another aspect, a method of activating two mesh networks for independent and separate mesh network communications includes the steps of: transmitting a first wake-up broadcast that includes a first wake-up identifier such that each second receiver of each data communication device identified by the first wake-up identifier, upon receiving the first wake-up broadcast, will activate the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications via a first mesh network; and transmitting a second wake-up broadcast that includes a second wake-up identifier such that each second receiver of each data communication device identified by the second wake-up identifier, upon receiving the second wake-up broadcast, will activate the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications via a second mesh network.
  • In a feature of this aspect, the second wake-up broadcast is transmitted after transmitting the first wake-up broadcast such that a portion of a first time interval T1 of the first mesh network, during which mesh networking communications are performed, does not overlap with a portion of a second time interval T2 of the second mesh network, during which mesh networking communications are performed.
  • In further features of this aspect, the method also includes the step of transmitting a third broadcast that includes a third identifier such that the two-way communications component of each data communication device identified by the first wake-up identifier, upon receiving the third broadcast, will cease its mesh networking communications and will return to the dormant state; and the step of transmitting a fourth broadcast that includes a fourth identifier such that the two-way communications component of each data communication device identified by the second wake-up identifier, upon receiving the fourth broadcast, will cease its mesh networking communications and will return to the dormant state.
  • In another feature, the method further includes the step of transmitting a third broadcast that includes a third identifier such that the two-way communications component of each data communication device identified by either of the first wake-up identifier or the second wake-up identifier, upon receiving the third broadcast, will cease its mesh networking communications and will return to the dormant state.
  • In yet another aspect of the invention, a method of activating a mesh network for mesh network communications includes the step of transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, activates the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications.
  • In still another aspect of the invention, an ad hoc mesh networking system includes an ad hoc mesh network utilizing a plurality of data communication devices as nodes of the network; wherein each data communication device includes both a two-way communications component, comprising a first receiver and transmitter, and a second receiver, wherein the second receiver activates the two-way communications component from a dormant state upon receipt by the second receiver of a wake-up broadcast that includes a wake-up identifier of the data communication device; and wherein a mesh network is activated for mesh network communications by transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, will activate the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications.
  • In yet still another aspect of the invention, a data communication device for utilization as a node in an ad hoc mesh network includes a two-way communications component comprising a first receiver and transmitter; and a second receiver, wherein the second receiver activates the two-way communications component from a dormant state upon receipt by the second receiver of a wake-up broadcast that includes a wake-up identifier of the data communication device; wherein a mesh network is activated for mesh network communications by transmitting a wake-up broadcast that includes a wake-up identifier such that each second receiver of each data communication device identified by the wake-up identifier, upon receiving the wake-up broadcast, will activate the two-way communications component of the data communication device, and thereafter the data communication device will engage in mesh networking communications.
  • Another aspect of the invention includes computer executable instructions stored in a computer readable medium for performing any of the foregoing aspects and features, including any combinations thereof.
  • In addition to the aforementioned aspects and features of the invention, it should be noted that the invention further includes the various possible combinations of such aspects and features, including the combinations of such aspects and features with those aspects and features of the incorporated references from which priority is claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • One or more preferred embodiments of the present invention now will be described in detail with reference to the accompanying drawings, wherein:
  • FIGS. 1A-1D are schematic diagrams illustrating the use of common designation wake-up broadcasts or signals, shown propagating through a group of participating nodes, to control the operation of a common designation mesh network in accordance with one or more preferred embodiments of the present invention;
  • FIG. 2A is a timing diagram illustrating the use of periodic event-related communication, triggered by a common designation wake-up broadcast, by the nodes in FIGS. 1A-1D communicating with each other in a mesh network;
  • FIG. 2B is a timing diagram illustrating a first example of a communication event of the type generically illustrated in FIG. 2A;
  • FIG. 2C is a timing diagram illustrating a second example of a communication event of the type generically illustrated in FIG. 2A;
  • FIG. 2D is a timing diagram illustrating the completion of two successive communication events in the group of nodes of FIGS. 1A-1D;
  • FIG. 3A is a timing diagram illustrating the use of periodic event-related communication, triggered and terminated by common designation wake-up broadcasts, by the nodes in FIGS. 1A-1D communicating with each other in a mesh network;
  • FIG. 3B is a timing diagram illustrating an example of a communication event of the type generically illustrated in FIG. 3A;
  • FIG. 3C is a timing diagram illustrating the completion of two successive communication events in the group of nodes of FIGS. 1A-1D;
  • FIG. 4A is a schematic diagram illustrating the relative signal strengths in a group of participating nodes in a mesh network;
  • FIGS. 4B-4C are schematic diagrams illustrating the use of common designations based on relative signal strengths, and the resulting common designation mesh network formed based on a weak signal designation, in accordance with one or more preferred embodiments of the present invention;
  • FIG. 5 is a schematic diagram illustrating the bit error rate (BER) in a group of participating nodes in a mesh network, whereby BER may be used to establish common designations for forming common designation mesh networks, in accordance with one or more preferred embodiments of the present invention; and
  • FIG. 6 is a timing diagram illustrating the use of the techniques described herein in avoiding the simultaneous occurrence of communication events on two or more different common designation mesh networks.
  • DETAILED DESCRIPTION
  • As a preliminary matter, it will readily be understood by one having ordinary skill in the relevant art (“Ordinary Artisan”) that the present invention has broad utility and application. Furthermore, any embodiment discussed and identified as being “preferred” is considered to be part of a best mode contemplated for carrying out the present invention. Other embodiments also may be discussed for additional illustrative purposes in providing a full and enabling disclosure of the present invention. Moreover, many embodiments, such as adaptations, variations, modifications, and equivalent arrangements, will be implicitly disclosed by the embodiments described herein and fall within the scope of the present invention.
  • Accordingly, while the present invention is described herein in detail in relation to one or more embodiments, it is to be understood that this disclosure is illustrative and exemplary of the present invention, and is made merely for the purposes of providing a full and enabling disclosure of the present invention. The detailed disclosure herein of one or more embodiments is not intended, nor is to be construed, to limit the scope of patent protection afforded the present invention, which scope is to be defined by the claims and the equivalents thereof. It is not intended that the scope of patent protection afforded the present invention be defined by reading into any claim a limitation found herein that does not explicitly appear in the claim itself.
  • Thus, for example, any sequence(s) and/or temporal order of steps of various processes or methods that are described herein are illustrative and not restrictive. Accordingly, it should be understood that, although steps of various processes or methods may be shown and described as being in a sequence or temporal order, the steps of any such processes or methods are not limited to being carried out in any particular sequence or order, absent an indication otherwise. Indeed, the steps in such processes or methods generally may be carried out in various different sequences and orders while still falling within the scope of the present invention. Accordingly, it is intended that the scope of patent protection afforded the present invention is to be defined by the appended claims rather than the description set forth herein.
  • Additionally, it is important to note that each term used herein refers to that which the Ordinary Artisan would understand such term to mean based on the contextual use of such term herein. To the extent that the meaning of a term used herein—as understood by the Ordinary Artisan based on the contextual use of such term—differs in any way from any particular dictionary definition of such term, it is intended that the meaning of the term as understood by the Ordinary Artisan should prevail.
  • Furthermore, it is important to note that, as used herein, “a” and “an” each generally denotes “at least one,” but does not exclude a plurality unless the contextual use dictates otherwise. Thus, reference to “a picnic basket having an apple” describes “a picnic basket having at least one apple” as well as “a picnic basket having apples.” In contrast, reference to “a picnic basket having a single apple” describes “a picnic basket having only one apple.”
  • When used herein to join a list of items, “or” denotes “at least one of the items,” but does not exclude a plurality of items of the list. Thus, reference to “a picnic basket having cheese or crackers” describes “a picnic basket having cheese without crackers”, “a picnic basket having crackers without cheese”, and “a picnic basket having both cheese and crackers.” Finally, when used herein to join a list of items, “and” denotes “all of the items of the list.” Thus, reference to “a picnic basket having cheese and crackers” describes “a picnic basket having cheese, wherein the picnic basket further has crackers,” as well as describes “a picnic basket having crackers, wherein the picnic basket further has cheese.”
  • Referring now to the drawings, one or more preferred embodiments of the present invention are next described. The following description of one or more preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its applications, or uses.
  • FIGS. 1A-1D are schematic diagrams illustrating the use of a common designation wake-up broadcast, shown propagating through a group of participating nodes 20, to control the operation of a mesh network 10 in accordance with one or more preferred embodiments of the present invention.
  • In this respect, a “node” refers to a wireless radio frequency data communication device that comprises a two-way communications component in the form of a transceiver that receives and transmits information wirelessly with one or more other nodes. The data communication device preferably includes a low-power radio frequency (“LPRF”) data communication device that communicates via data packets. The transmission of the data packets may utilize, for example, transmission control protocol (“TCP”). The two-way communications component of the data communication device also preferably is standards-based radio (“SBR”) and comprises, for example, a WiFi, WiMAX, CDMA, WCDMA, GSM, Zigbee®, Ultra-Wideband, or Bluetooth radio. Indeed, in connection with the one or more preferred embodiments described below, the SBR preferably comprises a Bluetooth radio.
  • The data communication device of a node of the wireless network may be mobile or fixed at a particular location, and the data communication device may include an internal power supply source or utilize an external power supply source. The data communication device also may include an interface for communicating with an associated sensor or other data acquisition device, which sensor may or may not form part of the node. The data communication device constituting the node also or alternatively may be attached to an asset that is to be monitored and/or tracked; alternatively, the data communication device constituting the node may be permanently affixed to a structure for monitoring and/or tracking assets that come within proximity thereto.
  • In accordance with the invention, the nodes utilize common designation networking in combination with wake-up technologies. Common designation networking is perhaps best disclosed in the incorporated U.S. Pat. Nos. 6,745,027 and 7,221,668. When the nodes are associated with assets, common designation identifiers representing attributes or characteristics of the assets are typically used, which common designations often are referred to as “class” designations. Similarly, ad hoc networks formed based thereon are often referred to as “class-based” networks and communications in such networks are often referred to as “class-based” communications. In accordance with common designation networking, a node screens each transmission for a data identifier that represents a common designation of that node. The node does not process, route, or respond to an incoming transmission if the data identifier is not found. As will be appreciated, common designation networking greatly reduces RF noise when many nodes are within broadcast range of each other and greatly increase operating life of mobile nodes that dependent on battery sources, as the nodes do not needlessly respond to all transmissions, filtering out and processing, routing, and/or responding to only those transmission bearing its common designation.
  • As further disclosed in the incorporated references, it will be appreciated that a node may have more than one common designation at any given time, and that a common designation may represent a subset or a superset of another common designation (sometimes referred to as class and subclass).
  • The wake-up technologies that are utilized in accordance with the invention are perhaps best disclosed in U.S. Pat. No. 7,209,771 and U.S. Patent Appl. Publication No. 2006/0287008. These two incorporated references disclose alternative approaches for the wake-up technologies that may be used.
  • Specifically, in incorporated U.S. Pat. No. 7,209,771, each node of the wireless ad hoc network includes—in connection with the SBR—a wake-up receiver that listens for a wake-up broadcast that includes a common designation of that node. Upon receiving such a wake-up broadcast, the wake-up receiver provides an electronic signal that activates the SBR, which resides in a dormant state (either off or in a reduced power standby mode) while the wake-up receiver is listening for an applicable broadcast. The wake-up receiver is a simplified receiver that draws much less current when listening for an applicable broadcast compared to the current that would be drawn by the SBR when listening for an applicable broadcast. Hence, significant power conservation and long battery life is achieved using such a wake-up receiver.
  • Furthermore, this wake-up receiver may screen only for a predetermined common designation, as disclosed in U.S. Patent Appl. Publication No. 2006/0287008. Alternatively, a more complicated stepped wake up of the SBR may be performed using the wake-up receiver, wherein the wake-up receiver first screens for one or more criteria before screening for the common designation in the wake-up broadcast. Such a stepped wake-up methodology is disclosed, for example, in the incorporated U.S. Patent Appl. Publication No. US 2006/0276161. Screening for criteria that is indicative of an actual wake-up broadcast being received can be beneficial when significant RF noise is present, whereby false indications of the receipt of a wake-up broadcast can be reduced.
  • In incorporated U.S. Patent Appl. Publication No. 2006/0287008, a wake-up transceiver is disclosed. The wake-up transceiver is similar to the aforementioned wake-up receiver, but further includes a transmitter by which a wake-up broadcast may be transmitted without necessarily having to activate the SBR. In the data communication devices of U.S. Pat. No. 7,209,771, the SBR sends a wake-up broadcast whereas, in U.S. Patent Appl. Publication No. 2006/0287008, the wake-up broadcast may be sent by the wake-up transceiver without having to activate the SBR. Avoiding booting up of the SBR has been found to result in significant power savings, and while the SBR has additional features and functionality not provided by the wake-up transceiver, such features and functionality is not required in transmitting a wake-up broadcast.
  • As used herein, “wake-up component” is intended to mean either a wake-up receiver or wake-up transceiver, as disclosed in these incorporated references, and each node of FIG. 1 preferably includes such a wake-up component.
  • Returning to FIG. 1, a common designation wake-up broadcast is shown by dashed arrows originating from node 20 labeled “N1.” The wake-up broadcast includes a wake-up identifier that preferably corresponds to a common designation shared by two-way communication components of the nodes forming a common designation mesh network. Each two-way communications component of each node illustrated in the drawings includes an exemplary standards-based radio comprising a Bluetooth radio, and two-way Bluetooth communications between the two-way communications components are indicated by solid double arrow lines with the label “BT”. Each node further preferably includes a wake-up receiver or wake-up transceiver (i.e., a “wake-up component”) that activates the two-way communication component from its dormant state upon receipt of a wake-up broadcast that includes a common designation of the node.
  • The nodes 20 preferably remain in a dormant state, shown in FIG. 1A, until a communication event occurs. During this time the mesh network is considered to be deactivated or “off”. In at least one embodiment, the nodes 20 generally remain in a dormant state and wake up only when such a communication event 30 occurs, while in at least one other embodiment, the nodes 20 may also wake-up periodically, too.
  • A communication event 30 is shown as occurring at the node 20 labeled “N1” in FIG. 1B. As a result, mesh network communications are required, and so the node N1 wakes up and transmits a wake-up broadcast to activate or “turn on” a common designation mesh network. As shown in FIG. 1B, the initial wake-up broadcast sent by the node 20 designated N1 is received only by those nodes 20 within range of the initial wake-up identifier signal, i.e., by the nodes 32 designated N2, N3 and N4. This may be referred to as a first wave of wake-ups. Furthermore, the dashed arrows illustrated in FIG. 1B (and the remainder of the drawings) serve to indicate a wake-up broadcast that is received and processed by the indicated node resulting in the waking up of such node. For those nodes that receive but do not respond to a wake-up broadcast by waking up, the dashed arrows are not illustrated in the drawings in order to preserve clarity of illustration.
  • As shown in FIG. 1C, the nodes 20 in the first wave of wake-ups (i.e., within range of the initial wake-up identifier signal) in turn propagate the wake-up broadcast to the nodes 20 within their range and establish Bluetooth communications with the nodes that have awoken, thereby activating the mesh network 10. The wake-up of the nodes designated N5, N6 and N7 that occurs because of the propagation of the wake-up broadcast may be referred to as a second wave of wake-ups. Preferably, any node 20 that has already received the wake-up broadcast will not propagate the broadcast again. Ultimately, all of the nodes 20 in the common designation identified in the wake-up broadcast 32 via the wake-up identifier are awakened and, as a result, the mesh network 10 is “up and running” in a conventional mesh networking manner as shown in FIG. 1D.
  • FIG. 2A is a timing diagram illustrating the use of periodic event-related communication, triggered by a common designation wake-up broadcast 32, by the nodes 20 in the mesh network 10.
  • Importantly, the wake-up broadcast 32, labeled “W” in FIGS. 2A-2D, serves as a means for “synchronizing” the nodes 20 forming the common designation mesh network 10. In other words, the wake-up broadcast 32 causes each node 20 in the network 10 to be prepared to participate in individual node communication 34, labeled “IRC,” using the two-way communications component (or SBR) of the node, during a designated portion of each predetermined period, labeled “T,” following the wake-up broadcast 32. The wake-up broadcast synchronizes the nodes in that the predetermined period “T” is keyed off of the wake-up broadcast. This is shown generically in FIG. 2A as occurring for any number of periods after the wake-up broadcast 32. However, it will be appreciated that many communication events 30 may last for only a single period, as shown in the communication event 30 labeled “Event A” in FIG. 2B, or for two periods, as shown in the communication event 30 labeled “Event B” in FIG. 2C.
  • It will be appreciated that longer communication events 30, i.e., those that require multiple periods to complete, may be long enough that individual nodes 20 may enter or leave the mesh network 10 during the event 30. For this reason, it may be useful, during longer events 30, to retransmit the wake-up broadcast 32 (not illustrated) periodically to activate and synchronize any nodes 20 that arrive after the initial start of the event 30 (or that arrive after the last synchronizing wake-up broadcast 32 in the event 30).
  • As noted previously, once awakened, each node 20 in the network 10 remains prepared to participate in individual node communication 34 pertaining to the respective communication event 30 during a designated portion of each predetermined period following the wake-up broadcast 32 until the event 30 is over. Generally, the event 30 is over when the necessary individual node communication 34 is complete. In at least some embodiments, a message may be sent by the originating node N1, via the final individual node communication 34, once the event 30 is complete, in order to end the transmissions and place all of the nodes back into the dormant state described above to await another common designation wake-up broadcast 32 that signifies the beginning of another event 30. Thus, as will now be appreciated, the periodic communications during interval T in the mesh nodes only occurs during a communication event and, when no communication event is occurring, no transmissions are made in the mesh network, even if such period of inactivity exceeds interval T. Using wake-up broadcasts, the operation of the mesh network in an otherwise conventional manner can be turned off and on as needed.
  • FIG. 2D is a timing diagram illustrating the completion of two successive communication events 30 in the group of nodes 20 of FIGS. 1A-1D. In each event, a wake-up broadcast 32 is propagated to initiate and synchronize a network 10, and individual node communication 34 is carried out as necessary to complete the event 30. Each event, referred to generically as node communication or “RC,” includes one or more periods of individual node communication 34. In FIG. 2D, the first event 30, designated Event A, is only a single period in length, while the second event 30, designated Event B, is two periods in length. It will be appreciated that each event 30 involves the creation of a common designation ad hoc mesh network 10, and that the group of nodes 20 participating in the network 10 during the first event 30 may or may not be exactly the same as the group of nodes 20 participating in the network 10 during the second event 30, and in fact that the makeup of the group of participating nodes 20 may even change during a particular event 30, particularly a longer one.
  • FIG. 3A is a timing diagram illustrating the use of periodic event-related communication, triggered and terminated by common designation wake-up broadcasts 32, 36, by the nodes 20 in FIGS. 1A-1D communicating with each other in a mesh network 10. As with the operation illustrated in FIGS. 2A-2D, a wake-up broadcast 32, labeled “W” in FIGS. 3A-3C, serves to activate the two-way communication components of the nodes (having the targeted common designation identified in the wake-up broadcast) from a dormant state, and further serves as a means by which the awaken nodes 20 can synchronize the time interval T for conventional mesh network communications. In other words, the wake-up broadcast 32 causes each node 20 in the network 10 to be prepared to participate in individual node communication 34, labeled “IRC,” such as by standards-based radio, during a designated portion of each predetermined period following the wake-up broadcast 32. The wake-up broadcast 32 is propagated through the nodes 20 in the manner shown in FIGS. 1A-1D and described above. Any node 20 that has already received the wake-up broadcast can resynchronize its timer, and any node 20 that has not heard the wake-up broadcast can add itself to the network 10. As with the communication described previously, during longer events 30, the wake-up broadcast 32 may be retransmitted periodically (not illustrated) to activate and synchronize any nodes 20 that arrive after the initial start of the event 30 (or that arrive after the last synchronizing wake-up broadcast 32 in the event 30)
  • In addition, however, a wake-up broadcast 36 may be utilized to terminate the event 30, break the event 30 up into multiple sequences or delay the completion of the event 30 given application requirements. Such a wake-up broadcast 36, labeled “E,” is illustrated in FIGS. 3A-3C. Such a signal 36 may or may not utilize the same common designation as the wake-up broadcast 32. In at least some embodiments, the initial wake-up broadcast 32 includes the same identifier as the end “wake-up” signal 36, and the nodes 20 may be aware that the next wake-up broadcast is to be interpreted as an end signal rather than a new wake-up broadcast 32. In at least some other embodiments, a first identifier and a second identifier are assigned or configured in conjunction with each other, wherein both identifiers are assigned to the same group of nodes 20, and the first identifier is used in wake-up broadcasts 32 and the second identifier is used in end signals 36. A wide variety of approaches may likewise be utilized to accomplish this functionality.
  • Again, once awakened, each node 20 in the network 10 remains prepared to participate in individual node communication 34 pertaining to the respective communication event 30 during a designated portion of each predetermined period following the wake-up broadcast 32 until the event 30 is over, with the event 30 generally being over when the necessary individual node communication 34 is complete. However, unlike the approach described with regard to FIGS. 2A-2D, the event 30 is ended by transmitting a wake-up broadcast 36, generally sent by the originating node N1. The nodes 20 then return to the sleep state described above to await another common designation wake-up broadcast 32 that signals the beginning of another event 30.
  • FIG. 3B is a timing diagram illustrating an example of a communication event of the type generically illustrated in FIG. 3A. In this example, the communication event 30 lasts two periods and part of a third, with an end signal 36 being used to terminate the event 30. FIG. 3C is a timing diagram illustrating the completion of two successive communication events 30 in the group of nodes 20 of FIGS. 1A-1D. In each event, a wake-up broadcast 32 is propagated to initiate and synchronize a network 10, individual node communication 34 is carried out as necessary to accomplish the purpose of the event 30, and then an end signal 36 is propagated to terminate the event and quickly put each node 20 back into a sleep state. In FIG. 3C, the first event 30, designated Event A, is two periods and part of third in length, as shown in FIG. 3B, while the second event 30, designated Event B, would be of whatever length necessary to accomplish the purpose of the event 30. Once again, it will be appreciated that each event 30 involves the creation of a common designation ad hoc mesh network 10, and that the group of nodes 20 participating in the network 10 during the first event 30 may or may not be exactly the same as the group of nodes 20 participating in the network 10 during the second event 30, and in fact that the makeup of the group of participating nodes 20 may even change during a particular event 30, particularly a longer one.
  • Common designations used as identifiers preferably are used to sort the nodes 20 into a plurality of mesh networks. Moreover, the common designations may be based on various performance factors, including, for example, throughput of the node, strength of the RF link, range (using values in the node such as Received Signal Strength Indication, or “RSSI”), and other characteristics that could affect overall performance. The nodes 20 measure these parameters and activate common designations stored in tables on the nodes 20 thereby allowing network 110 to be selectively formed based on desired network performance metrics.
  • For instance, nodes 20 with weaker signal strengths can be triggered with the expectation of sending data across a longer distance with a fewer number of hops. FIG. 4A is a schematic diagram illustrating the relative signal strengths in a group of participating nodes 20 in a mesh network 10 that has been formed using all nodes N1 through N7. In accordance with one or more preferred embodiments of the present invention, two or more common designations may be provided and activated in each node's common designation table, as conditions change, based on the relative signal strengths found in node-to-node communications. In the illustrated example, common designations are established, one for “stronger” signal strength and one for “weaker” signal strength relative to the triggering node N1 20, with the mesh network that is formed with (N1 being the originating node) based on a wake-up broadcast having a “weaker” signal strength designation that is transmitted by node N1.
  • In particular, the nodes 20 may remain in a dormant state until a communication event 30 occurs, shown in FIG. 4B as being triggered at the node 20 labeled “N1.” A common designation wake-up broadcast that identifies, for example, only the weaker signal strength is be transmitted as shown in FIG. 4B. Although received by all of the other nodes 20, labeled “N2” through “N7,” the only nodes 20 that are awakened are the three nodes 20, labeled “N5,” “N6” and “N7,” in the weaker signal range. The receiving nodes 20 in the stronger signal range, which are the ones labeled “N2,” “N3” and “N4,” are not in the “weak signal” class and thus remain in a dormant state. The nodes 20 in the first wave of wake-ups, i.e., those labeled “N5,” “N6” and “N7,” start their communication sequence by transmitting the wake-up identifier to the nodes 20 within their range, thereby propagating and initiating the network 110. Some nodes 20 (not illustrated) may receive the wake-up broadcast for the first time, while the node 20 labeled “N1” is already awake. Again, the receiving nodes 20 in the stronger signal range, which are again the ones labeled “N2,” “N3” and “N4,” are not in the “weak signal” common designation and thus still remain in a dormant state, but full communication is established with the node 20 labeled “N1,” as shown in FIG. 4C.
  • In addition, nodes with higher bit error rates (“BER”) could also be chosen to chose longer hops. This technique would minimize delay and move smaller amounts of data through the network 210 quickly. Alternatively, if higher bandwidth is required, a wake-up could choose strong RF links to minimize retransmissions. Further, direct node links could be established between two points, thus optimizing data throughput.
  • FIG. 5 is a schematic diagram illustrating relative throughput of node-to-node communications which could be used in defining common designations, similar to the example in FIGS. 4B-4C that used relative signal strength. In this regard, nodes 20 would keep track of the bit error rate for communications with each other node 20 and respond to wake-ups based on the that configure the network 210 based on network throughput parameters. As illustrated, communication event 30 occurs at the node 20 labeled “N1,” and nodes 20 that would be used to form the “low BER” mesh network 210 would be those labeled “N1,” “N4,” “N7,” “N6,” “N2” and “N5.” This sorting lowers the number of nodes 20 in the mesh 210, thereby reducing noise and minimizing RF transmissions. The network 210 can then be configured to satisfy the event 30 based, for example, on the size of the file transfer.
  • It will be appreciated that common designations may further configured using a combination of network parameters. For example, four common designations may be established, wherein a first common designation is configured for strong signal strength and high throughput, a second common designation is configured for weak signal strength and high throughput, a third common designation is configured for strong signal strength and low throughput, and a fourth common designation is configured for weak signal strength and low throughput. A wide variety of combinations and approaches may likewise be utilized without departing from the scope of the present invention.
  • It will also be appreciated that the use of classes configured in correspondence with any of the various network parameters, including for example the signal strength or throughput illustrated herein, or combination thereof, may be used to control the operation of a mesh network 10, 110, 210 by controlling the triggering and synchronization of communications as described previously.
  • FIG. 6 is a timing diagram illustrating the use of the techniques described herein in avoiding the simultaneous occurrence of communication events 30 on two or more different common designation networks 10. Typically, because server communications, triggered sensors, and the like occur semi-randomly in time, nodes in a mesh network are transmitting at different intervals. However, using a wake-up node or the mesh node, a time slot can be assigned so that fewer collisions occur. For example, nodes 20 in a first common designation may wait until mesh network communications between nodes 20 in a second common designation are complete before initiating their own mesh network communications, and nodes 20 in a third common designation may wait until mesh network communications between nodes 20 in the first common designation are complete before initiating their own mesh network communications. The mesh communications in the nodes of the first and third common designations, respectively, may be initiated and synchronized using the techniques described herein. In conjunction with this, means may be provided for recognizing that nodes 20 in another common designation are currently communicating, thereby delaying the triggering of an event 30. Such means may themselves utilize wake-up identifiers or any other means. The end result is that, as shown in FIG. 6, in many situations, the mesh communications do not collide with each other, thereby improving reception and throughput.
  • The method of the present invention has many advantages. It enables the ability to turn parts of the network on and off to optimize throughput. It reduces RF noise so that throughput can be significantly improved. It enables direct connect of nodes and node resources. It enables the use of Class 1 Bluetooth radios (average 300 ft range) as opposed to Class 2 Bluetooth radios (average 100 ft range) since the nodes are in a low power wake-up mode most of the time. It enables tighter control of nodes thereby enabling network formation based on application and/or environment. It also enables the transmission to be offset in time thereby reducing collisions and RF noise. In addition, RF noise is significantly reduced, and RF collisions are minimized thereby enabling lower BER and increasing usable data throughput.
  • Based on the foregoing description, it will be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those specifically described herein, as well as many variations, modifications, and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing descriptions thereof, without departing from the substance or scope of the present invention.
  • Accordingly, while the present invention has been described herein in detail in relation to one or more preferred embodiments, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for the purpose of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended to be construed to limit the present invention or otherwise exclude any such other embodiments, adaptations, variations, modifications or equivalent arrangements, the present invention being limited only by the claims appended hereto and the equivalents thereof.

Claims (20)

1-23. (canceled)
24. In ad hoc mesh networking utilizing a data communication device for each of a plurality of network nodes, each data communication device being configured to transition from a dormant state to an active state upon receipt of a wake-up broadcast that includes a wake-up identifier of the data communication device,
a method of activating and deactivating a mesh network for mesh network communications comprising:
transmitting a wake-up broadcast that includes a wake-up identifier such that each data communication device identified by the wake-up identifier, upon receiving a wake-up broadcast which includes the wake-up identifier, will transition to an active state, and thereafter the data communication device will engage in mesh networking communications,
propagating, by each data communication device that receives a wake-up broadcast that includes the wake-up identifier, such wake-up broadcast,
periodically retransmitting a wake-up broadcast that includes the wake-up identifier such that each data communication device identified by the wake-up identifier, upon receiving a wake-up broadcast which includes the wake-up identifier, will transition to an active state, and thereafter the data communication device will engage in mesh networking communications, and
transmitting a second broadcast that includes a second identifier such that each data communication device identified by the second identifier, upon receiving the second broadcast, will cease its mesh networking communications and will return to the dormant state,
wherein each data communication device is configured such that, after receiving and propagating a wake-up broadcast, the data communication device will not propagate that wake-up broadcast again even if that wake-up broadcast is received again.
25. The method of claim 24, wherein the second broadcast is transmitted by a first transmitter of a two-way communications component of a data communication device.
26. The method of claim 24, wherein a second receiver of a data communication device is part of a wake-up transceiver of a data communication device, and wherein the second broadcast is transmitted by a second transmitter of the wake-up transceiver.
27. The method of claim 24, wherein the second broadcast is received by the first receiver of the two-way communications component of a data communication device.
28. The method of claim 24, wherein the second broadcast is received by a second receiver of a data communication device.
29. The method of claim 24, wherein a second receiver of a data communication device is part of a wake-up transceiver in the data communication device, and wherein the second broadcast is received by the second receiver of the wake-up transceiver.
30. The method of claim 29, wherein the second receiver of a data communication device draws substantially less current while listening for a wake-up broadcast than a two-way communications component would draw while listening for a wake-up broadcast.
31. The method of claim 24, wherein a two-way communications component of each data communication device is off when in the dormant state.
32. The method of claim 24, wherein a second receiver of a data communication device draws less current while listening for a wake-up broadcast than a two-way communications component would draw while listening for a wake-up broadcast, the difference in current draw being at least an order of magnitude.
33. The method of claim 24, wherein a second receiver of a data communication device utilizes a stepped wake-up sequence based on at least two criteria, and wherein the last criteria before awakening a two-way communications component comprises identifying a wake-up identifier of the data communication device in a wake-up broadcast.
34. The method of claim 24, wherein a second receiver of a data communication device is part of a wake-up transceiver, the wake-up transceiver further comprising a second transmitter of the data communication device that is configured to transmit a wake-up broadcast for receipt by another wake-up receiver of another data communication device.
35. The method of claim 24, wherein the wake-up identifier represents a node performance characteristic.
36. The method of claim 35, wherein the performance characteristic comprises one of the group of bit error rate; throughput of the node; strength of the radio frequency communication link; and range, determined using values such as Received Signal Strength Indication, or “RSSI”.
37. The method of claim 24, wherein the mesh network that is activated comprises a subset of nodes out of a plurality of available nodes, the selection of nodes being determined based on the wake-up identifier included in a wake-up broadcast that is transmitted.
38. The method of claim 24, wherein a portion of a time interval T of the mesh network during which mesh networking communications are performed is measured beginning with a time of a wake-up broadcast, whereby all nodes participating in the mesh network are synchronized for mesh communications.
39. In ad hoc mesh networking utilizing a data communication device for each of a plurality of network nodes, each data communication device being configured to transition from a dormant state to an active state upon receipt of a wake-up broadcast that includes a wake-up identifier of the data communication device
a method of activating two mesh networks for independent and separate mesh network communications comprising:
transmitting a first wake-up broadcast that includes a first wake-up identifier such that each data communication device identified by the first wake-up identifier, upon receiving the first wake-up broadcast, will transition to the active state, and thereafter engage in mesh networking communications via a first mesh network,
propagating, by each data communication device that receives the first wake-up broadcast, the first wake-up broadcast, and
transmitting a second wake-up broadcast that includes a second wake-up identifier such that each data communication device identified by the second wake-up identifier, upon receiving the second wake-up broadcast, will transition to the active state, and thereafter engage in mesh networking communications via a second mesh network,
wherein each data communication device is configured such that, after receiving and propagating a particular wake-up broadcast, the data communication device will not propagate that wake-up broadcast again even if that wake-up broadcast is received again,
wherein the second wake-up broadcast is transmitted after transmitting the first wake-up broadcast such that a portion of a first time interval T1 of the first mesh network, during which mesh networking communications are performed, does not overlap with a portion of a second time interval T2 of the second mesh network, during which mesh networking communications are performed.
40. The method of claim 39, further comprising transmitting a third broadcast that includes a third identifier such that each data communication device identified by the first wake-up identifier, upon receiving the third broadcast, will cease its mesh networking communications and will return to the dormant state.
41. The method of claim 40, further comprising transmitting a fourth broadcast that includes a fourth identifier such that each data communication device identified by the second wake-up identifier, upon receiving the fourth broadcast, will cease its mesh networking communications and will return to the dormant state.
42. In ad hoc mesh networking utilizing a data communication device for each of a plurality of network nodes, each data communication device being configured to transition from a dormant state to an active state upon receipt of a wake-up broadcast that includes a wake-up identifier of the data communication device
a method of activating two mesh networks for independent and separate mesh network communications comprising:
transmitting a first wake-up broadcast that includes a first wake-up identifier such that each data communication device identified by the first wake-up identifier, upon receiving the first wake-up broadcast, will transition to the active state, and thereafter engage in mesh networking communications via a first mesh network,
propagating, by each data communication device that receives the first wake-up broadcast, the first wake-up broadcast, and
transmitting a second wake-up broadcast that includes a second wake-up identifier such that each data communication device identified by the second wake-up identifier, upon receiving the second wake-up broadcast, will transition to the active state, and thereafter engage in mesh networking communications via a second mesh network,
wherein each data communication device is configured such that, after receiving and propagating a particular wake-up broadcast, the data communication device will not propagate that wake-up broadcast again even if that wake-up broadcast is received again,
transmitting a third broadcast that includes a third identifier such that the each data communication device identified by either of the first wake-up identifier or the second wake-up identifier, upon receiving the third broadcast, will cease its mesh networking communications and will return to the dormant state.
US14/108,290 2007-02-21 2013-12-16 Mesh network control using common designation wake-up Abandoned US20140177499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/108,290 US20140177499A1 (en) 2007-02-21 2013-12-16 Mesh network control using common designation wake-up

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US89099007P 2007-02-21 2007-02-21
PCT/US2008/054633 WO2008103863A1 (en) 2007-02-21 2008-02-21 Mesh network control using common designation wake-up
US12/352,992 US8223680B2 (en) 2007-02-21 2009-01-13 Mesh network control using common designation wake-up
US13/548,958 US8611269B2 (en) 2007-02-21 2012-07-13 Mesh network control using common designation wake-up
US14/108,290 US20140177499A1 (en) 2007-02-21 2013-12-16 Mesh network control using common designation wake-up

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/548,958 Continuation US8611269B2 (en) 2007-02-21 2012-07-13 Mesh network control using common designation wake-up

Publications (1)

Publication Number Publication Date
US20140177499A1 true US20140177499A1 (en) 2014-06-26

Family

ID=40623631

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/352,992 Active 2030-02-22 US8223680B2 (en) 2007-02-21 2009-01-13 Mesh network control using common designation wake-up
US13/548,958 Active US8611269B2 (en) 2007-02-21 2012-07-13 Mesh network control using common designation wake-up
US14/108,290 Abandoned US20140177499A1 (en) 2007-02-21 2013-12-16 Mesh network control using common designation wake-up

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/352,992 Active 2030-02-22 US8223680B2 (en) 2007-02-21 2009-01-13 Mesh network control using common designation wake-up
US13/548,958 Active US8611269B2 (en) 2007-02-21 2012-07-13 Mesh network control using common designation wake-up

Country Status (1)

Country Link
US (3) US8223680B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183407A1 (en) * 2015-05-14 2016-11-17 Aruba Networks, Inc. Rf signature based wlan identity management

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8024055B1 (en) 2004-05-15 2011-09-20 Sonos, Inc. Method and system for controlling amplifiers
US7142107B2 (en) 2004-05-27 2006-11-28 Lawrence Kates Wireless sensor unit
EP1905200A1 (en) 2005-07-01 2008-04-02 Terahop Networks, Inc. Nondeterministic and deterministic network routing
US7995467B2 (en) * 2007-12-12 2011-08-09 Synapsense Corporation Apparatus and method for adapting to failures in gateway devices in mesh networks
WO2009140669A2 (en) 2008-05-16 2009-11-19 Terahop Networks, Inc. Securing, monitoring and tracking shipping containers
US8391435B2 (en) 2008-12-25 2013-03-05 Google Inc. Receiver state estimation in a duty cycled radio
US8848622B2 (en) * 2009-07-22 2014-09-30 Qualcomm Incorporated Methods and apparatus for improving power efficiency and latency of mobile devices using an external timing source
US8565169B2 (en) * 2010-01-12 2013-10-22 Qualcomm Incorporated Timing synchronization methods and apparatus
DE102010002331A1 (en) * 2010-02-25 2011-08-25 Siemens Aktiengesellschaft, 80333 Synchronization of network devices
KR101118788B1 (en) * 2010-04-29 2012-03-12 삼성전기주식회사 Wireless communication system using multiple wakeup frames
KR101349406B1 (en) * 2012-05-15 2014-01-09 엘지이노텍 주식회사 Display apparatus and power saving method
US9585091B2 (en) 2012-08-17 2017-02-28 Qualcomm Incorporated Systems and methods for low power wake up signal and operations for WLAN
US9191890B2 (en) 2012-10-24 2015-11-17 Qualcomm Incorporated Systems and methods for low power operations on wireless networks
US9191891B2 (en) 2012-11-02 2015-11-17 Qualcomm Incorporated Systems and methods for low power wake-up signal implementation and operations for WLAN
US9854515B2 (en) * 2012-12-07 2017-12-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Energy saving operations for wireless networks
CA2813285A1 (en) 2013-04-18 2014-10-18 Bluenica Corporation Sensing device and method to monitor perishable goods
US9244516B2 (en) 2013-09-30 2016-01-26 Sonos, Inc. Media playback system using standby mode in a mesh network
US9571986B2 (en) 2014-05-07 2017-02-14 Johnson Controls Technology Company Systems and methods for detecting and using equipment location in a building management system
WO2016036581A1 (en) * 2014-09-05 2016-03-10 Google Inc. Systems and methods for waking up devices of a fabric network
US9801129B2 (en) 2014-09-05 2017-10-24 Google Inc. Systems and methods for disseminating messages among a fabric network
US9674781B2 (en) 2014-09-05 2017-06-06 Google Inc. Systems and methods for waking up devices of a fabric network
US10448332B2 (en) 2014-12-02 2019-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Wake-up for D2D communication
US10204505B2 (en) * 2015-02-06 2019-02-12 Google Llc Systems and methods for processing coexisting signals for rapid response to user input
US9958948B2 (en) 2015-02-06 2018-05-01 Google Llc Systems and methods for altering a state of a system using a remote device that processes gestures
US10982868B2 (en) 2015-05-04 2021-04-20 Johnson Controls Technology Company HVAC equipment having locating systems and methods
US10481574B2 (en) 2016-05-04 2019-11-19 Johnson Controls Technology Company Building alarm management system with mobile device notifications
US10742429B2 (en) 2017-11-14 2020-08-11 Silicon Laboratories Inc. Ultra low power mesh network
RU2702079C1 (en) * 2018-05-31 2019-10-03 Общество с ограниченной ответственностью "ТСТ" Method of reducing power consumption of sensor units in a wireless sensor network
EP3831021A1 (en) 2018-07-27 2021-06-09 Gotenna Inc. VINEtm ZERO-CONTROL ROUTING USING DATA PACKET INSPECTION FOR WIRELESS MESH NETWORKS
CN114615724A (en) * 2020-12-08 2022-06-10 瑞昱半导体股份有限公司 Bluetooth mesh network system with wake-up management mechanism and online method thereof

Family Cites Families (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805265A (en) * 1971-10-06 1974-04-16 Rcds Enterprises Inc Radiant wave locating system
US4165024A (en) * 1977-09-09 1979-08-21 Cato Oil And Grease Co. Bulk shipping container
US6919803B2 (en) 2002-06-11 2005-07-19 Intelligent Technologies International Inc. Low power remote asset monitoring
US4613990A (en) * 1984-06-25 1986-09-23 At&T Bell Laboratories Radiotelephone transmission power control
CA1246681A (en) * 1985-01-30 1988-12-13 Northern Telecom Limited Terminal address assignment in a broadcast transmission system
US4688244A (en) * 1986-11-10 1987-08-18 Marwan Hannon Integrated cargo security system
US4750197A (en) * 1986-11-10 1988-06-07 Denekamp Mark L Integrated cargo security system
US4817537A (en) * 1987-03-16 1989-04-04 Cripe Alan R Container carrying convertible rail-highway vehicle
US5425051A (en) * 1992-11-09 1995-06-13 Norand Corporation Radio frequency communication network having adaptive parameters
US5117501A (en) * 1988-08-08 1992-05-26 General Electric Company Dynamic regrouping in a trunked radio communications system
JPH0773385B2 (en) * 1989-04-03 1995-08-02 三菱電機株式会社 Mobile phone equipment
GB8910997D0 (en) * 1989-05-12 1989-06-28 Tunstall Telecom Ltd Radio transmission system
US5682379A (en) * 1993-12-23 1997-10-28 Norand Corporation Wireless personal local area network
US5805807A (en) * 1990-05-25 1998-09-08 Norand Corporation Multilevel data communication system including local and host systems
US6006100A (en) * 1990-05-25 1999-12-21 Norand Corporation Multi-level, hierarchical radio-frequency communication system
DE69116946T2 (en) 1990-06-15 1996-06-20 Savi Techn Inc Radio identification and targeting method and apparatus
US5640151A (en) * 1990-06-15 1997-06-17 Texas Instruments Incorporated Communication system for communicating with tags
US5040238A (en) * 1990-06-29 1991-08-13 Motorola, Inc. Trunking system communication resource reuse method
JPH0470584A (en) * 1990-07-11 1992-03-05 Mitsubishi Electric Corp Satellite navigation system
JPH04369492A (en) * 1991-06-18 1992-12-22 Pioneer Electron Corp Gps position measurement device
ZA925728B (en) * 1991-08-01 1993-04-28 City Communications Ltd Improvements in a radio communication system
EP0606396B1 (en) * 1991-10-01 2002-06-12 Norand Corporation A radio frequency local area network
US5974236A (en) * 1992-03-25 1999-10-26 Aes Corporation Dynamically reconfigurable communications network and method
JP2798557B2 (en) * 1992-06-19 1998-09-17 シャープ株式会社 Track display device for navigation system
CA2143652C (en) * 1992-09-01 2000-10-17 David J. H. Nuttall Information model based on a physical system
US5790946A (en) * 1993-07-15 1998-08-04 Rotzoll; Robert R. Wake up device for a communications system
US5442758A (en) * 1993-07-19 1995-08-15 Sequent Computer Systems, Inc. Apparatus and method for achieving reduced overhead mutual exclusion and maintaining coherency in a multiprocessor system utilizing execution history and thread monitoring
US5331637A (en) * 1993-07-30 1994-07-19 Bell Communications Research, Inc. Multicast routing using core based trees
DE4329898A1 (en) * 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
CA2135856A1 (en) * 1993-12-10 1995-06-11 Steven Peter Allen Low power, addressable data communication device and method
JP2974274B2 (en) * 1994-05-12 1999-11-10 エヌ・ティ・ティ移動通信網株式会社 Transmission power control method and transmission power control device
US5579306A (en) * 1994-09-01 1996-11-26 Ericsson Inc. Time and frequency slot allocation system and method
US5565858A (en) * 1994-09-14 1996-10-15 Northrop Grumman Corporation Electronic inventory system for stacked containers
US5511232A (en) * 1994-12-02 1996-04-23 Motorola, Inc. Method for providing autonomous radio talk group configuration
US5596652A (en) * 1995-03-23 1997-01-21 Portable Data Technologies, Inc. System and method for accounting for personnel at a site and system and method for providing personnel with information about an emergency site
US5793882A (en) * 1995-03-23 1998-08-11 Portable Data Technologies, Inc. System and method for accounting for personnel at a site and system and method for providing personnel with information about an emergency site
ZA959074B (en) * 1995-04-12 1996-05-22 Lo Jack Corp Vehicle tracking transponder system and transponding method
US5577029A (en) * 1995-05-04 1996-11-19 Interwave Communications Cellular communication network having intelligent switching nodes
RU95107478A (en) * 1995-05-18 1997-02-10 А.И. Грушин Method for removal of most insignificant digits in computations with floating point
US6097707A (en) * 1995-05-19 2000-08-01 Hodzic; Migdat I. Adaptive digital wireless communications network apparatus and process
US5686888A (en) 1995-06-07 1997-11-11 General Electric Company Use of mutter mode in asset tracking for gathering data from cargo sensors
US5691980A (en) 1995-06-07 1997-11-25 General Electric Company Local communication network for power reduction and enhanced reliability in a multiple node tracking system
US5950124A (en) * 1995-09-06 1999-09-07 Telxon Corporation Cellular communication system with dynamically modified data transmission parameters
US5833910A (en) * 1995-10-03 1998-11-10 Mecanismos Auxiliares Industiales S.A. Mold and method for manufacturing conduit grommet elements
US5933354A (en) * 1995-10-13 1999-08-03 Matsushita Electric Industrial Co., Ltd. System for controlling physical distribution pallets
US6005884A (en) * 1995-11-06 1999-12-21 Ems Technologies, Inc. Distributed architecture for a wireless data communications system
GB2308947A (en) 1996-01-04 1997-07-09 I D Systems Ltd Identification tag with environmental sensing facility
US5850592A (en) * 1996-01-11 1998-12-15 Gte Internetworking Incorporated Method for self-organizing mobile wireless station network
US5652751A (en) * 1996-03-26 1997-07-29 Hazeltine Corporation Architecture for mobile radio networks with dynamically changing topology using virtual subnets
JP2803626B2 (en) * 1996-04-05 1998-09-24 日本電気株式会社 Transmission power control method for mobile radio terminals
US5881366A (en) * 1996-05-01 1999-03-09 Logitech, Inc. Wireless peripheral interface
US6128549A (en) * 1996-06-21 2000-10-03 Symbol Technologies, Inc. RF interrogatable processing system
US5892441A (en) * 1996-06-26 1999-04-06 Par Government Systems Corporation Sensing with active electronic tags
US5907491A (en) * 1996-08-23 1999-05-25 Csi Technology, Inc. Wireless machine monitoring and communication system
US6201974B1 (en) * 1996-09-06 2001-03-13 Nokia Mobile Phones Limited Mobile station and network having hierarchical index for cell broadcast service
US5892764A (en) 1996-09-16 1999-04-06 Sphere Communications Inc. ATM LAN telephone system
US5890054A (en) * 1996-11-14 1999-03-30 Telxon Corporation Emergency mobile routing protocol
JP3097581B2 (en) * 1996-12-27 2000-10-10 日本電気株式会社 Ad-hoc local area network configuration method, communication method and terminal
US5977913A (en) * 1997-02-07 1999-11-02 Dominion Wireless Method and apparatus for tracking and locating personnel
CA2207371A1 (en) * 1997-06-09 1998-12-09 Andre Gagnon Apparatus for monitoring opening of sealed containers
US5963134A (en) * 1997-07-24 1999-10-05 Checkpoint Systems, Inc. Inventory system using articles with RFID tags
US6409082B1 (en) * 1997-07-25 2002-06-25 Perseu Administration (Proprietary) Limited Tracking of products
US6072784A (en) * 1997-07-25 2000-06-06 At&T Corp. CDMA mobile station wireless transmission power management with adaptive scheduling priorities based on battery power level
KR100284257B1 (en) * 1997-08-31 2001-03-02 윤종용 Automatic starting device of electronic toll collection system
US6091724A (en) * 1997-11-20 2000-07-18 International Business Machines Corporation Routing messages within a network using the data content of the message
US6104512A (en) * 1998-01-23 2000-08-15 Motorola, Inc. Method for adjusting the power level of an infrared signal
US5936527A (en) * 1998-02-10 1999-08-10 E-Tag Systems, Inc. Method and apparatus for locating and tracking documents and other objects
KR100291413B1 (en) * 1998-03-02 2001-07-12 김영환 Apparatus for controlling transmission power in mobile terminal
US6476708B1 (en) 1998-03-20 2002-11-05 Hid Corporation Detection of an RFID device by an RF reader unit operating in a reduced power state
US6473607B1 (en) 1998-06-01 2002-10-29 Broadcom Corporation Communication device with a self-calibrating sleep timer
US6437692B1 (en) * 1998-06-22 2002-08-20 Statsignal Systems, Inc. System and method for monitoring and controlling remote devices
DE69939875D1 (en) * 1998-09-03 2008-12-18 Wherenet Inc MULTIPLE LATERAL NETWORK WITH CIRCULAR POLARIZED ANTENNA
AU6032699A (en) * 1998-09-11 2000-04-03 Key-Trak, Inc. Mobile object tracking system
EP1121812A4 (en) * 1998-09-11 2003-04-09 Key Trak Inc Object control and tracking system with zonal transition detection
US6525648B1 (en) 1999-01-29 2003-02-25 Intermec Ip Corp Radio frequency identification systems and methods for waking up data storage devices for wireless communication
US6700533B1 (en) 1999-05-06 2004-03-02 Rf Technologies, Inc. Asset and personnel tagging system utilizing GPS
JP2003500975A (en) * 1999-05-21 2003-01-07 ケーナー,ラルフ・ジェイ Identification system for monitoring the presence / absence of members of a defined set
US7027773B1 (en) 1999-05-28 2006-04-11 Afx Technology Group International, Inc. On/off keying node-to-node messaging transceiver network with dynamic routing and configuring
CN100387030C (en) 1999-05-28 2008-05-07 基础能源公司 Wireless transceiver network employing node-to-node data messaging
US6761312B2 (en) 1999-07-30 2004-07-13 Salamander Technologies, Inc. System and method for tracking victims of a mass casualty incident
US6404082B1 (en) * 1999-09-24 2002-06-11 Siemens Westinghouse Power Corporation Exciter having thermally isolated diode wheel and method of removing diode wheel for same
US6256303B1 (en) * 1999-10-15 2001-07-03 Akoo, Inc. Wireless broadcast link to remote receiver
US6614349B1 (en) 1999-12-03 2003-09-02 Airbiquity Inc. Facility and method for tracking physical assets
US6512478B1 (en) * 1999-12-22 2003-01-28 Rockwell Technologies, Llc Location position system for relay assisted tracking
US6354493B1 (en) * 1999-12-23 2002-03-12 Sensormatic Electronics Corporation System and method for finding a specific RFID tagged article located in a plurality of RFID tagged articles
US6617962B1 (en) 2000-01-06 2003-09-09 Samsys Technologies Inc. System for multi-standard RFID tags
US6313745B1 (en) * 2000-01-06 2001-11-06 Fujitsu Limited System and method for fitting room merchandise item recognition using wireless tag
EP1182154A4 (en) 2000-01-31 2007-12-26 Ishikawajima Transp Machinery Method and apparatus for container management
US6547137B1 (en) * 2000-02-29 2003-04-15 Larry J. Begelfer System for distribution and control of merchandise
JP2001242210A (en) * 2000-02-29 2001-09-07 Murata Mfg Co Ltd High frequency part, communication device and characteristic measuring method of high frequency part
GB0013619D0 (en) 2000-06-06 2000-07-26 Glaxo Group Ltd Sample container
US7103344B2 (en) 2000-06-08 2006-09-05 Menard Raymond J Device with passive receiver
US6381467B1 (en) * 2000-06-22 2002-04-30 Motorola, Inc. Method and apparatus for managing an ad hoc wireless network
US6559620B2 (en) * 2001-03-21 2003-05-06 Digital Angel Corporation System and method for remote monitoring utilizing a rechargeable battery
US6847892B2 (en) 2001-10-29 2005-01-25 Digital Angel Corporation System for localizing and sensing objects and providing alerts
US6587755B1 (en) * 2000-07-12 2003-07-01 International Business Machines Corporation Virtual signs for improving information communicated to the automotive driver
US6529142B2 (en) * 2000-07-24 2003-03-04 Shipong Norman Yeh Parked vehicle location finder
US7161476B2 (en) 2000-07-26 2007-01-09 Bridgestone Firestone North American Tire, Llc Electronic tire management system
US6717241B1 (en) * 2000-08-31 2004-04-06 Micron Technology, Inc. Magnetic shielding for integrated circuits
US6542114B1 (en) * 2000-09-07 2003-04-01 Savi Technology, Inc. Method and apparatus for tracking items using dual frequency tags
US6720888B2 (en) 2000-09-07 2004-04-13 Savi Technology, Inc. Method and apparatus for tracking mobile devices using tags
CA2421544C (en) 2000-09-07 2011-11-08 Savi Technology, Inc. Method and apparatus for tracking devices using tags
US6765484B2 (en) 2000-09-07 2004-07-20 Savi Technology, Inc. Method and apparatus for supplying commands to a tag
US6940392B2 (en) 2001-04-24 2005-09-06 Savi Technology, Inc. Method and apparatus for varying signals transmitted by a tag
US6360169B1 (en) * 2000-09-07 2002-03-19 Umesh Dudabey System for determining and tracking changes in location
GB2367720B (en) * 2000-10-04 2004-08-18 Hewlett Packard Co Method and apparatus for disabling mobile telephones
US6883710B2 (en) 2000-10-11 2005-04-26 Amerasia International Technology, Inc. Article tracking system and method
US6424264B1 (en) * 2000-10-12 2002-07-23 Safetzone Technologies Corporation System for real-time location of people in a fixed environment
US6741174B2 (en) 2000-10-30 2004-05-25 Ocean Systems Engineering Corporation Environment and hazard condition monitoring system
US7034683B2 (en) * 2000-11-06 2006-04-25 Loran Technologies, Inc. Electronic vehicle product and personnel monitoring
US6747562B2 (en) 2001-11-13 2004-06-08 Safetzone Technologies Corporation Identification tag for real-time location of people
US6600418B2 (en) * 2000-12-12 2003-07-29 3M Innovative Properties Company Object tracking and management system and method using radio-frequency identification tags
US7221668B2 (en) * 2000-12-22 2007-05-22 Terahop Networks, Inc. Communications within population of wireless transceivers based on common designation
US7209468B2 (en) * 2000-12-22 2007-04-24 Terahop Networks, Inc. Forming communication cluster of wireless AD HOC network based on common designation
US7522568B2 (en) * 2000-12-22 2009-04-21 Terahop Networks, Inc. Propagating ad hoc wireless networks based on common designation and routine
US20020098861A1 (en) * 2001-01-19 2002-07-25 International Business Machines Corporation Method and system for preventing wireless devices from interfering with other equipment in a sensitive area
US20020146985A1 (en) * 2001-01-31 2002-10-10 Axonn Corporation Battery operated remote transceiver (BORT) system and method
EP1246094A1 (en) 2001-03-27 2002-10-02 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Container surveillance system and related method
GB0110759D0 (en) 2001-05-02 2001-06-27 Marks Roger J Antenna clamp
US6822432B2 (en) 2001-06-22 2004-11-23 Network Technologies Group, Llc Methods and systems for automated pipeline testing
US6894600B2 (en) * 2001-07-05 2005-05-17 The Goodyear Tire & Rubber Company Energy conservation in battery powered tag
US20030141973A1 (en) * 2001-07-24 2003-07-31 Hen-Geul Yeh Smart object locator
US6737974B2 (en) 2001-09-18 2004-05-18 Kent H. Dickinson Shipping container and system along with shipping method employing the same
US6766169B2 (en) * 2001-10-30 2004-07-20 Qualcomm Incorporated Scheduling acquisition attempts of service providing systems
US6980823B2 (en) * 2002-01-31 2005-12-27 Qualcomm Inc. Intermediate wake mode to track sleep clock frequency in a wireless communication device
US20030179073A1 (en) 2002-03-20 2003-09-25 Ohanes Ghazarian Electronic secure locking system
US6876945B2 (en) 2002-03-25 2005-04-05 Nicholas Jon Emord Seamless sensory system
GB0208449D0 (en) 2002-04-10 2002-05-22 Zarlink Semiconductor Ab Method of saving power in RF devices
US7230933B2 (en) 2002-04-17 2007-06-12 Microsoft Corporation Reducing idle power consumption in a networked battery operated device
US20040021572A1 (en) 2002-08-05 2004-02-05 Schoen Marc L. Electronic baggage tracking and identification
US6753775B2 (en) 2002-08-27 2004-06-22 Hi-G-Tek Ltd. Smart container monitoring system
US6961021B2 (en) 2002-08-29 2005-11-01 Omron Corporation Wireless node that uses a circular polarized antenna and a mechanism for preventing corner reflections of an inside of a metal box space
US6975614B2 (en) 2002-09-04 2005-12-13 Harris Corporation Intelligent communication node object beacon framework in a mobile ad hoc network
US20040110508A1 (en) * 2002-09-20 2004-06-10 Jacobus Haartsen Methods and electronic devices for wireless ad-hoc network communications using receiver determined channels and transmitted reference signals
US7072697B2 (en) 2002-10-22 2006-07-04 Nokia Corporation Method and device for transponder aided wake-up of a low power radio device by a wake-up event
US20040100394A1 (en) 2002-10-28 2004-05-27 Hitt Dale K. Distributed environmental control in a wireless sensor system
CA2427369A1 (en) 2002-12-24 2004-06-24 Research In Motion Limited Methods and apparatus for controlling power to electrical circuitry of a wireless communication device having a subscriber identity module (sim) interface
US7091859B2 (en) 2003-01-13 2006-08-15 Symbol Technologies, Inc. Package-integrated RF relay
KR100778623B1 (en) 2003-01-14 2007-11-22 유나이티드 테크놀로지스 코포레이션 Shipping container and method of using same
US20040246463A1 (en) 2003-01-29 2004-12-09 Milinusic Tomislav F. Method and apparatus for optical inertial measurement
US20040183673A1 (en) 2003-01-31 2004-09-23 Nageli Hans Peter Portable detachable self-contained tracking unit for two-way satellite communication with a central server
US7038585B2 (en) 2003-02-21 2006-05-02 Washington Government Enviromental Services, Llc Cargo lock and monitoring apparatus and process
US7135976B2 (en) 2003-03-31 2006-11-14 Rftrax, Inc. Wireless monitoring device
US6927688B2 (en) 2003-04-02 2005-08-09 Caci International Inc. Method for enabling communication and condition monitoring from inside of a sealed shipping container using impulse radio wireless techniques
US20100033330A1 (en) 2003-04-09 2010-02-11 Visible Assets, Inc. Auditable security for cargo containers and other repositories
US7196622B2 (en) 2003-04-09 2007-03-27 Savi Technology, Inc. State monitoring of a container
KR100796878B1 (en) 2003-06-17 2008-01-22 유나이티드 시큐리티 애플리케이션즈 아이디, 인코포레이티드 Electronic security system for monitoring and recording activity and data relating to cargo
US7191934B2 (en) 2003-07-21 2007-03-20 Salamander Technologies, Inc. Technique for creating incident-specific credentials at the scene of a large-scale incident or WMD event
US7282944B2 (en) 2003-07-25 2007-10-16 Power Measurement, Ltd. Body capacitance electric field powered device for high voltage lines
US7098784B2 (en) 2003-09-03 2006-08-29 System Planning Corporation System and method for providing container security
US20050087235A1 (en) 2003-10-22 2005-04-28 Skorpik James R. Sensor assembly, system including RFID sensor assemblies, and method
US7148803B2 (en) 2003-10-24 2006-12-12 Symbol Technologies, Inc. Radio frequency identification (RFID) based sensor networks
US7136667B2 (en) 2003-10-28 2006-11-14 Nokia Corporation Method and radio terminal equipment arrangement for power control, radio terminal equipment and secondary terminal unit
US20050125325A1 (en) 2003-12-08 2005-06-09 Chai Zhong H. Efficient aggregate summary views of massive numbers of items in highly concurrent update environments
JP5185533B2 (en) 2003-12-09 2013-04-17 サビ テクノロジー、インク. Item level visualization technology for nested and adjacent containers
US7212122B2 (en) 2003-12-30 2007-05-01 G2 Microsystems Pty. Ltd. Methods and apparatus of meshing and hierarchy establishment for tracking devices
US7049982B2 (en) 2003-12-31 2006-05-23 Lear Corporation Vehicle information display and communication system having an antenna array
US7526944B2 (en) 2004-01-07 2009-05-05 Ashok Sabata Remote monitoring of pipelines using wireless sensor network
KR100689550B1 (en) 2004-02-28 2007-03-02 삼성전자주식회사 method for transmitting hello packet MANET
US7165722B2 (en) 2004-03-10 2007-01-23 Microsoft Corporation Method and system for communicating with identification tags
US7126470B2 (en) 2004-03-31 2006-10-24 Harris Corporation Wireless ad-hoc RFID tracking system
KR100624792B1 (en) 2004-04-22 2006-09-20 엘지전자 주식회사 Wireless network system
US7348875B2 (en) 2004-05-04 2008-03-25 Battelle Memorial Institute Semi-passive radio frequency identification (RFID) tag with active beacon
US20050261037A1 (en) 2004-05-18 2005-11-24 Raghunath Mandayam T Conservation of battery power in mobile devices having communication capabilities
US7376507B1 (en) 2004-05-27 2008-05-20 Sandia Corporation Geophysics-based method of locating a stationary earth object
US7142121B2 (en) 2004-06-04 2006-11-28 Endicott Interconnect Technologies, Inc. Radio frequency device for tracking goods
US7088229B2 (en) 2004-06-14 2006-08-08 Oracle International Corporation Methods and systems for verifying the position and status of hierarchically arranged objects
US7349803B2 (en) 2004-10-18 2008-03-25 Trex Enterprises Corp. Daytime stellar imager
US7349804B2 (en) 2004-10-18 2008-03-25 Trex Enterprises Corp. Daytime stellar imager
US7339469B2 (en) 2004-11-22 2008-03-04 Maersk Logistics Usa, Inc. Shipping container monitoring and tracking system
TW200617792A (en) 2004-11-26 2006-06-01 Ind Tech Res Inst Method and device applying RFID system tag to serve as local card reader and for power detection
US7596152B2 (en) * 2004-12-07 2009-09-29 Intel Corporation Apparatus, system and method capable of low duty cycle hierarchical AD HOC networks
US7330736B2 (en) 2004-12-17 2008-02-12 Bbn Technologies Corp. Methods and apparatus for reduced energy communication in an ad hoc network
US7121502B2 (en) 2005-01-26 2006-10-17 Raytheon Company Pseudo GPS aided multiple projectile bistatic guidance
EP1872087A4 (en) 2005-04-19 2012-10-17 Jaymart Sensors Llc Miniaturized inertial measurement unit and associated methods
US20070008408A1 (en) 2005-06-22 2007-01-11 Ron Zehavi Wide area security system and method
KR100766039B1 (en) 2005-07-06 2007-10-12 삼성전자주식회사 Frame Structure of Superframe Transmitted in Wireless Network, Method For Transmitting the Superframe, and Method for Controlling Devices' Wakeup by using the Superframe
US7440781B2 (en) 2005-10-07 2008-10-21 Symbol Technologies, Inc. System and method for power conservation in a wireless device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183407A1 (en) * 2015-05-14 2016-11-17 Aruba Networks, Inc. Rf signature based wlan identity management
US9998998B2 (en) 2015-05-14 2018-06-12 Aruba Networks, Inc. RF signature-based WLAN identity management
US10397873B2 (en) 2015-05-14 2019-08-27 Hewlett Packard Enterprise Development Lp RF signature-based WLAN identity management

Also Published As

Publication number Publication date
US8611269B2 (en) 2013-12-17
US8223680B2 (en) 2012-07-17
US20130016641A1 (en) 2013-01-17
US20090122737A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US8611269B2 (en) Mesh network control using common designation wake-up
JP4630875B2 (en) Method and wireless device for saving power
US8588119B2 (en) Asynchronous low-power multi-channel media access control
US8295217B2 (en) Method and apparatus for a device power savings class
EP3024289B1 (en) Communication system, communication apparatus and communication method, and computer program
US9288752B2 (en) Method and apparatus for reducing energy consumption of radio communications in a wireless sensor network
US7881755B1 (en) Wireless LAN power savings
US7356561B2 (en) Adaptive sleeping and awakening protocol for an energy-efficient adhoc network
EP2250838B1 (en) Wireless network including post groupcast time
KR101190864B1 (en) Asynchronous MAC protocol based sensor node using Wake-Up transceiver and data transmitting/receiving method in the sensor
US9439147B2 (en) Mechanisms of reducing power consumption for NAN devices
JP2018110422A (en) System and method for synchronizing within neighbor aware network
US8345660B2 (en) Wireless mesh network controller synchronization
CN109479182B (en) Event clustering for BLE-MESH devices
JP2006148906A (en) Beaconless communication system
US10070388B2 (en) Coordinated duty cycle assignment in mesh networks
KR20140113335A (en) Power saving for low latency deterministic networks in wireless personal area networks
CN103906207A (en) Wireless sensor network data transmission method based on self-adaptation required awakening technology
US20090225731A1 (en) Wireless network including request to trigger function
JP2011525057A (en) System and method for multi-resolution packet communication for ultra-low power wireless networks
WO2014080568A1 (en) Method for transmitting and receiving data
US7167732B2 (en) Method for enhanced power saving on DCF based wireless networks
Girling et al. The design and implementation of a low power ad hoc protocol stack
WO2017036327A1 (en) Random access repeater, relay system and relay method therefor
WO2008103863A1 (en) Mesh network control using common designation wake-up

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION