US20140031943A1 - Vertebral interbody spacer - Google Patents

Vertebral interbody spacer Download PDF

Info

Publication number
US20140031943A1
US20140031943A1 US14/041,656 US201314041656A US2014031943A1 US 20140031943 A1 US20140031943 A1 US 20140031943A1 US 201314041656 A US201314041656 A US 201314041656A US 2014031943 A1 US2014031943 A1 US 2014031943A1
Authority
US
United States
Prior art keywords
spacer
side walls
leading end
vertebrae
extending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/041,656
Inventor
Kidong Yu
Keith E. Miller
William D. Armstrong
Charles Branch
Kevin T. Foley
Peter McCombe
Anthony J. Melkent
William R. Sears
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warsaw Orthopedic Inc
Original Assignee
Warsaw Orthopedic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Warsaw Orthopedic Inc filed Critical Warsaw Orthopedic Inc
Priority to US14/041,656 priority Critical patent/US20140031943A1/en
Publication of US20140031943A1 publication Critical patent/US20140031943A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/447Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages substantially parallelepipedal, e.g. having a rectangular or trapezoidal cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/3008Properties of materials and coating materials radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30261Three-dimensional shapes parallelepipedal
    • A61F2002/30266Three-dimensional shapes parallelepipedal wedge-shaped parallelepipeds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/3028Three-dimensional shapes polyhedral different from parallelepipedal and pyramidal
    • A61F2002/30281Three-dimensional shapes polyhedral different from parallelepipedal and pyramidal wedge-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30593Special structural features of bone or joint prostheses not otherwise provided for hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • A61F2002/30616Sets comprising a plurality of prosthetic parts of different sizes or orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30774Apertures or holes, e.g. of circular cross section internally-threaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/448Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4622Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof having the shape of a forceps or a clamp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4625Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
    • A61F2002/4627Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4629Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof connected to the endoprosthesis or implant via a threaded connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00131Tantalum or Ta-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00359Bone or bony tissue

Definitions

  • the present invention relates generally to treatment of the spinal column, and more particularly relates to a vertebral interbody spacer for placement between adjacent vertebral bodies of a spine to create and maintain a desired orientation and spacing between the adjacent vertebral bodies.
  • an intervertebral disc is damaged, it can be removed and the resulting space between the two adjacent vertebrae may be filled with a bone growth inducing substance to promote a boney fusion across the disc space.
  • Fixation devices external to the disc space have been utilized to maintain the position of the adjacent vertebrae while the intervening material fuses with adjacent bone to form a boney bridge.
  • load bearing spacers such as artificial devices or bone grafts, may be placed in the empty disc space. These spacers transmit the loading from one adjacent vertebra to the other adjacent vertebra during the healing process.
  • spacers may also be used to restore the height and angle (lordosis) of a damaged intervertebral disc.
  • Such spacers may be provided in a variety of forms.
  • the present invention provides an improved interbody spacer adapted for spacing two adjacent vertebral bodies.
  • the invention provides mechanisms to achieve the desired goals of distracting the intervertebral space and, when desired, of increasing the lordosis angle between the adjacent vertebral bodies.
  • the initial increase in height is obtained by insertion of the spacer body into the disc space in one orientation whereby distraction is obtained by means of a small radius bullet shaped nose.
  • Further increase in height and increase in lordosis is obtained by rotation of the spacer body about its longitudinal axis by, for example, a quarter turn.
  • the interbody spacer includes an elongated body extending on a center longitudinal axis with opposite upper and lower bearing surfaces and opposite side walls that are convexly rounded along the longitudinal axis.
  • side walls convexly rounded along the longitudinal axis means that the side walls are curved outwardly from the longitudinal axis from a leading end portion to a trailing end of the spacer when the spacer is viewed from a direction looking orthogonally toward either its upper or lower bearing surface.
  • the side walls diverge from the trailing end toward the leading end portion so that that spacer provides a maximum width at a location that is offset from a mid-length plane of the spacer in a direction toward the leading portion.
  • the side walls converge from this maximum width location to the leading end portion of the spacer where the side walls define a bullet-shaped tip when viewed in a direction looking orthogonally toward one of the upper and lower bearing surfaces.
  • the bullet-shaped tip connecting the side walls facilitates insertion of the spacer between and distraction of adjacent vertebrae when the spacer is oriented in an insertion orientation in which the side walls are positioned to face the endplates of the vertebrae.
  • the side walls When viewed from a direction looking on the longitudinal axis of the interbody spacer toward either the leading end portion or the trailing end of the spacer, the side walls are linear from the upper bearing surface to the lower bearing surface.
  • the leading end portion forms a blunt, convexly rounded nose extending between the upper and lower bearing surfaces that is substantially larger than the bullet-shaped tip in the transverse direction so that the length of the upper and lower bearing surfaces along the longitudinal axis available to contact the endplates is maximized.
  • the complex rounded nose in the transverse direction includes a complex curve with at least two different radii from the nose to the adjacent side wall. This complex curve allows the leading end of the spacer body to have a small radius that transitions to a larger radius before intersecting the upper and lower bearing surfaces.
  • the smaller radius curvature enhances the ability of the leading edge to distract the narrowed disc space on initial insertion while the larger radius maintains the point of intersection with the upper and lower surface at a position such that sufficient surface area of the upper and lower bearing surfaces is maintained.
  • the upper and lower bearing surfaces define a height of the spacer and are convexly rounded along the longitudinal axis from the leading end portion to the trailing end of the spacer.
  • the upper and lower bearing surfaces define a maximum height at a second location that is offset from the mid-length plane of the spacer toward the leading end portion of the spacer.
  • the side walls also each define an elongated slot extending from the trailing end toward the leading end portion.
  • the slots diverge from one another in a direction toward the leading end portion and are configured to receive an inserter instrument therein.
  • the trailing end includes a receptacle between the slots to receive the inserter instrument.
  • the interbody spacer also includes a central cavity that extends through the upper and lower bearing surfaces.
  • the slots each include at least one hole that opens into the cavity.
  • the upper and lower bearing surfaces also include elongated projections that extend between the side walls orthogonally to the longitudinal axis of the spacer.
  • the present invention also provides an inserter instrument for use in combination with an interbody spacer.
  • the inserter has a gripping end with fingers that are wedged into diverging slots formed along opposite side walls of the interbody spacer when a holding member of the inserter is engaged to a trailing end of the interbody spacer.
  • the present invention also provides a method for inserting an improved interbody spacer.
  • the inserter is oriented so that the spacer is positioned with its side walls facing respective ones of the adjacent endplates the vertebrae, and then the spacer is inserted into the disc space so that its bullet-shaped nose leads its entry into the disc space and the longitudinal convexly rounded side walls separate the adjacent vertebrae.
  • the spacer is then rotated in situ to further distract the vertebrae as its upper and lower bearing surfaces are positioned in contact with the endplates of the adjacent vertebrae.
  • the spacer includes transverse projections extending across the upper and lower bearing surfaces.
  • the ends of the transverse projections lie on an arc defined by a first radius that is substantially smaller than a second arc defined by a second radius on which the upper and lower bearing surfaces lie.
  • the increased curvature of the ridges facilitates in situ rotation of the spacer about its longitudinal axis and the smaller curvature of the upper and lower bearing surfaces provides increases stability for the spacer in its implanted orientation than would be provided if the curvature of the bearing surfaces between the side walls was the same as or greater than the curvature of the projections.
  • the curvature of the bearing surfaces between the sidewalls reduces point loading of the interbody spacer at the edges where the upper and lower bearing surfaces join with the respective adjacent side walls, this reducing subsidence.
  • the ends of the projections can be chamfered where they connect to the side walls to further facilitate rotation of the spacer in situ.
  • FIG. 1 is a perspective view of an interbody spacer.
  • FIG. 2A is a section view of the interbody spacer of FIG. 1 along line 2 A- 2 A of FIG. 2B .
  • FIG. 2B is a side elevation view of the interbody spacer of FIG. 2A .
  • FIG. 2C is a plan view of the interbody spacer of FIG. 2A looking from line 2 C- 2 C of FIG. 2B .
  • FIG. 2D is a left end elevation view of the interbody spacer of FIG. 2B looking toward the leading end portion of the interbody spacer.
  • FIG. 2E is a right end side elevation view of the interbody spacer of FIG. 2B looking toward the trailing end of the interbody spacer.
  • FIG. 2F illustrates one embodiment of a corner configuration for the interbody spacer.
  • FIG. 3 is a perspective view of the interbody spacer coupled to one embodiment inserter instrument.
  • FIG. 4A is a plan view of an implant holding member of the inserter.
  • FIG. 4B is a section view along line 4 B- 4 B of FIG. 4A .
  • FIG. 4C is a left end elevation view of the holding member shown in FIG. 4B .
  • FIG. 4D is a plan view of the holding member shown in FIG. 4B .
  • FIG. 5 is a partially exploded perspective view of another embodiment inserter instrument.
  • FIG. 6 is a longitudinal section view of the inserter instrument of FIG. 5 .
  • FIG. 7 is a side elevation view of a spinal column segment showing the interbody spacer in an insertion orientation while positioned in the disc space.
  • FIG. 8 is a side elevation view of the spinal column segment showing the interbody spacer rotated to an implantation orientation while positioned in the disc space.
  • FIG. 9 is a plan view of a vertebral body showing a pair of interbody spacers positioned in the disc space and external fixation devices.
  • FIG. 10 is a side elevation view of the spinal column segment showing an interbody spacer in the disc space in its implanted orientation and external fixation devices engaged to the vertebrae.
  • FIG. 11 is a side elevation view of a spinal column segment showing another embodiment interbody spacer being inserted to initially distract the adjacent vertebrae.
  • FIG. 12 is a side elevation view of a spinal column segment showing the interbody spacer in an insertion orientation while positioned in the disc space.
  • FIG. 13 is a side elevation view of the spinal column segment showing the interbody spacer rotated to an implantation orientation while positioned in the disc space.
  • FIG. 14 is a side elevation view of a spinal column segment showing another embodiment interbody spacer being inserted to initially distract the adjacent vertebrae.
  • FIG. 15 is a side elevation view of a spinal column segment showing the interbody spacer in an insertion orientation while positioned in the disc space.
  • FIG. 16 is a side elevation view of the spinal column segment showing the interbody spacer rotated to an implantation orientation while positioned in the disc space.
  • Spacer 20 with a height in the sagittal plane, a length in the axial plane, and a width in the coronal plane configured for placement between two adjacent vertebral bodies.
  • Spacer 20 includes an elongated body extending along and centered on a longitudinal axis 21 .
  • the body of spacer 20 includes an upper bearing surface 22 and an oppositely facing lower bearing surface 24 spaced from one another by a first lateral side wall 30 and an oppositely facing second lateral side wall 36 .
  • Upper bearing surface 22 and lower bearing surface 24 terminate at a trailing end 28 and at an opposite leading end portion 26 .
  • Upper bearing surface 22 includes a series of projections 32 and lower bearing surface 24 includes a similar series of projections 34 .
  • Projections 32 and projections 34 are spaced longitudinally from the adjacent projection and each projection extends across the width of the body between side walls 30 , 36 orthogonally to longitudinal axis 21 .
  • Each of the lateral side walls 30 , 36 includes a slot 42 , 44 , respectively, extending therein. Slots 42 , 44 are concavely curved into the respective side wall 30 , 36 in a direction between bearing surfaces 22 , 24 , and also extend linearly and longitudinally from trailing end 28 to an end of the respective slot that is offset toward leading end portion 26 from mid-length plane M ( FIG. 2B .)
  • Each of the slots 42 , 44 includes a hole 46 , 48 therein that communicates with cavity 25 . In other embodiments, slots 42 , 44 do not include any holes 46 , 48 and are isolated from cavity 25 . Trailing end 28 also includes a receptacle 50 extending on longitudinal axis 21 to cavity 25 .
  • the body of spacer 20 is formed of a radiolucent material and includes a series of radiopaque markers embedded therein to accommodate visualization of spacer 20 during and after insertion into an intervertebral disc space when the implant is formed of substantially radiolucent material.
  • Radiopaque markers 40 are positioned at the leading end 26 of spacer 20 at the transition point between leading end portion 26 and upper bearing surface 22 and lower bearing surface 24 , respectively.
  • Radiopaque markers 52 are positioned in opposite corners of trailing end 28 , respectively, adjacent respective ones of upper and lower bearing surfaces 22 , 24 .
  • radiopaque markers 40 and 52 are pins inserted into the spacer material prior to formation of its exterior geometry.
  • Each of the radiopaque markers 40 , 52 has an exterior surface substantially identical to and co-terminus with the geometry of the adjacent exterior surface of spacer 20 .
  • a surgeon may be able to correctly visualize through x-ray imaging or other techniques the exact relationship between the surfaces of spacer 20 and the surrounding bone structures.
  • spacer materials are contemplated that may include PEEK, other polymers including resorbable polymers, ceramics, composites, bone or bone substitute materials, and biocompatible metals such as stainless steel, titanium, or tantalum. Materials are listed by way of example, and any suitable biocompatible may form the spacer body described herein.
  • spacer 20 is illustrated as a body with an internal cavity 25 and of substantially uniform material.
  • teachings of the present invention may be applied to interbody spacers having solid bodies or pores for receiving bone growth promoting material.
  • the body of the spacer may be formed with layers of uniform or non-uniform materials, such as bone and other composite materials, to form a spacer body as described herein.
  • FIGS. 2A through 2E there are shown various views of interbody spacer 20 .
  • Upper bearing surface 22 has a convex shape with a radius of curvature R 1 extending from leading end portion 26 to trailing end 28 .
  • lower bearing surface 24 has a convex shape with a radius of curvature from leading end portion 26 to trailing end 28 substantially identical to R 1 .
  • the height of the body of spacer 20 at leading end portion 26 is H 2 .
  • the height of the body of spacer 20 at trailing end 28 is H 1 .
  • H 2 is substantially greater than H 1 .
  • the body of spacer 20 forms a maximum height H 3 at a location defined by the crests of at least one of the set of projections 30 , 32 , which are offset toward trailing end 28 from the junction of leading portion 26 and bearing surfaces 22 , 24 .
  • the relationship between H 1 and H 2 is created by the location of the center point for the radius of curvature R 1 for upper bearing surface 22 and the corresponding location of the center point for the radius of curvature forming lower bearing surface 24 . More specifically, the center point for R 1 is offset from mid-length plane M towards the leading end portion 26 .
  • “mid-length” means located one half the distance between the terminus ends of the leading end portion 26 and the trailing end 28 on longitudinal axis 21 .
  • the center point for R 1 is longitudinally offset from mid-length plane M toward leading end portion 26 of the spacer 20 .
  • the differing heights H 1 , H 2 establish a lordosis angle A 1 between upper and lower bearing surfaces 22 , 24 to establish a desired angulation between endplates of the adjacent vertebrae.
  • heights H 1 , H 2 are the same when lordosis is not required, and the maximum height between bearing surfaces 22 , 24 is located at near or adjacent mid-length plane M.
  • the non-lordotic maximum height location is located within 5 millimeters of the midpoint plane.
  • Spacer 20 has a length L 1 from leading end portion 26 to trailing end 28 .
  • Length L 1 is sized to extend substantially across a vertebral endplate of the vertebrae to be supported.
  • length L 1 can vary from 18 millimeters to 32 millimeters, although other lengths are not precluded.
  • the convexly curved upper and lower bearing surfaces 22 , 24 fit with the concavity of the vertebral endplates to provide an intimate fit therewith.
  • Each of the upper bearing surface 22 and the lower bearing surface 24 include a series of projections 32 and 34 , respectively.
  • Each projection includes a truncated crest defined by a curved surface that is connected with the respective bearing surface 22 , 24 with concavely rounded transitions that blend into the respective portion of the bearing surface 22 , 24 extending between adjacent projections.
  • the truncated ends of projections 32 , 34 lie on an arc defined by a radius R 2 with the arc extending orthogonally to longitudinal axis 21 between side walls 30 , 36 .
  • Bearing surfaces 22 , 24 lie on an arc defined by a radius R 3 with the arc extending orthogonally to longitudinal axis 21 between side walls 30 , 36 .
  • Radius R 2 is substantially less than radius R 3 so that the projections are more pronounced at the center of spacer 20 to provide better engagement and bite or penetrate into the vertebrae to resist counter-rotation after spacer 20 is rotated to its implantation orientation.
  • point loading at or near the junction of the bearing surface and its respective projections with the adjacent side wall is reduced.
  • the reduced height of the projections 32 , 34 at the junction with the adjacent side wall minimizes disruption to the endplates during rotation of spacer 20 .
  • the larger radius R 3 provides bearing surfaces in the transverse direction with increased stability for spacer 20 in the disc space when its final rotated implantation orientation has been obtained.
  • radius R 2 is about 35-40% less than radius R 3 .
  • each of the ends of each projection 32 , 34 that transition to the respective side wall 30 , 36 is rounded from its respective crest to the adjacent side wall to provide a smooth transition to eliminate an abrupt surface change at the corners of the spacer body that may have a tendency to engage or tear tissue during rotation of spacer 20 about longitudinal axis 21 .
  • Each of the corners or edges of spacer body 20 that connect the adjacent side wall 30 , 36 with the adjacent upper or lower bearing surface 22 , 24 are defined by an arcuate surface, such as arcuate surface S 1 in FIG. 2D .
  • Surface S 1 can include a simple curvature that lies on a single arc defined by a radius. However, it is also contemplated that surface S 1 can be defined by multiple continuous arcs having varying radii to facilitate rotation of the corner or edge along the vertebral endplate. In another embodiment shown, shown in FIG.
  • surface S 1 can intersect the adjacent outer surface of side wall 30 , 36 so that a tangent of surface S 1 at the intersection of surface S 1 and the lateral side wall lies on or forms a small angle, such as angle B 1 , with the outer surface of the side wall.
  • the tangent of surface S 1 at the intersection of surface S 1 with the respective adjacent upper or lower bearing surface 22 , 24 does not lie on or substantially parallel to the respective upper or lower bearing surface 22 , 24 , but forms an angle B 2 that is larger than angle B 1 .
  • the tangent of surface S 1 at the side wall intersection is substantially closer to lying on the adjacent side wall than the tangent of surface S 1 at its bearing surface intersection is to lying on or parallel to the bearing surface.
  • FIGS. 2D and 2E there is shown end views from the trailing end and leading end portion of spacer 20 .
  • Lateral side walls 30 and 36 are substantially linear in a direction extending from upper bearing surface 22 to lower bearing surface 24 .
  • side walls 30 , 36 are convexly and laterally outwardly curved from trailing end 28 to leading end 25 .
  • a major portion of the length of each side wall 30 , 36 lies on an arc defined by a radius R 4 and this major length portion extends from trailing end 28 to a location offset from mid-length plane M toward leading end portion 26 .
  • the size of radius R 4 varies depending on length L 1 of spacer 20 and increases as the length L 1 increases.
  • one specific embodiment provides a radius R 4 of 35 millimeters for spacer with length L 1 of 18 millimeter and an R 4 of 80 millimeters for a spacer length L 1 of 32 millimeters.
  • Side walls 30 , 36 are more aggressively curved on an arc defined by a radius R 5 from leading end portion 26 to the location to form a junction with the major length portion of side walls 30 , 36 lying on the arc defined by radius R 4 .
  • Side walls 30 , 36 define a maximum width W 1 at the junction, and a smaller width W 2 at trailing end 28 .
  • radius R 5 is about 7 millimeters and radius R 4 is about 5 to 11 times larger than radius R 4 .
  • Leading end portion 26 forms a bullet shape between side walls 30 , 36 that is defined by an arc having a small radius R 6 between and connecting side walls 30 , 36 .
  • radius R 6 is about 2 millimeters
  • maximum width W 1 is about 9 millimeters
  • width W 2 is about 4.5 millimeters.
  • Other embodiments contemplate other values for these dimensions that maintain the general proportions between various portions of spacer 20 .
  • leading end portion 26 in the direction between side walls 30 , 36 facilitates insertion of spacer 20 into a collapsed disc space with spacer 20 oriented so that side walls 30 , 36 face respective ones of the vertebral endplates. Furthermore, the transition of the aggressively rounded leading end portion 26 to the more subtly rounded side wall portions defined by radius R 5 allows spacer 20 to initially distract and maintain this initial distraction with a sufficient length of weight bearing surface along side walls 30 , 36 without cutting into the vertebral endplates. In addition, the length of upper and lower bearings surfaces 22 , 24 can be maximized and extended to a location that is only slightly offset from the leading most end nose portion 26 , as shown in FIG. 2C . As shown in FIG.
  • leading end portion 26 in the direction between bearing surfaces 22 , 24 , leading end portion 26 includes a terminal end surface that defines a blunt nose that extends on a convex arc defined by a radius R 7 .
  • Radius R 7 varies based on height H 1 of spacer 20 . In one specific example, when height H 1 is 10 millimeters radius R 7 is about 7.5 millimeters, and when height H 1 is 18 millimeters radius R 7 is about 14 millimeters.
  • the large radius of leading end portion 26 between bearing surfaces 22 , 24 also maximizes the length of bearing surfaces 20 , 22 available to contact the vertebral endplates when spacer 20 is rotated around longitudinal axis 21 from its insertion orientation to its implanted orientation.
  • FIG. 2A illustrates a section view of spacer 20 that shows slots 42 , 44 in side walls 30 , 36 .
  • Slots 42 , 44 diverge from trailing end 28 in a direction toward leading end portion 26 at an angle A 2 . This provides a wedge fit with the inserter, discussed further below.
  • the height of slots 42 , 44 increases in the direction toward leading end portion 26 so that the upper and lower edges of slots 42 , 44 parallel respective ones of upper and lower bearing surfaces 20 , 22 along a major portion of the length of slots 42 , 44 .
  • Trailing end 28 includes a planar surface at the terminal end of spacer 20 , and slots 42 , 44 extend through the planar wall surface of trailing end 28 .
  • Slots 42 , 44 may have a length ranging from 4 millimeters to 17 millimeters from trailing end 28 .
  • slots 42 , 44 extend from trailing end 28 to an opposite end thereof that is located adjacent to midpoint plane M.
  • receptacle 50 extends between trailing end 28 and cavity 25 , although receptacle 50 may also include a blind end.
  • receptacle 50 includes an inner thread profile to threadingly engage an inserter.
  • Other embodiments contemplate non-threaded and/or non-circular receptacles, multiple receptacle, or spacers without a receptacle.
  • trailing end 28 includes slots, ridges, or other features to enhance engagement with an inserter, either with or without a receptacle 50 and slots 42 , 44 .
  • Cavity 25 includes an elongated ovular shape extending from leading end portion 26 toward trailing end 28 . The width of cavity 25 tapers in a direction toward trailing end 28 to maintain a minimum wall thickness for spacer 20 along cavity 25 .
  • Inserter 100 includes an elongated holding member 102 and a handle 104 removably or permanently connected to the proximal end of holding member 102 .
  • Handle 104 includes a T-shaped grip to facilitate application of rotational forces to holding member 102 to rotate spacer 20 when it is implanted in the disc space.
  • Inserter 100 also includes a locking member 106 extending through handle 104 and holding member 102 to engage receptacle 50 of spacer 20 .
  • holding member 102 includes a distal end structure with a pair of fingers 108 , 110 that are received in slots 42 , 44 of spacer 20 .
  • Holding member 102 also defines a longitudinal passage 112 that receives locking member 106 so that a threaded distal end portion of locking member 106 projects between fingers 108 , 110 to engage receptacle 50 of spacer 20 .
  • the holding structure also includes a pair of upper and lower flanges 114 , 116 that extend along upper and lower bearing surfaces 22 , 24 , or in recesses in upper and lower bearing surfaces 22 , 24 , to further enhance the grip of inserter 100 with spacer 20 as it is rotated in the disc space.
  • Inserter 120 for engaging spacer 20 .
  • Inserter 120 includes an inner locking member 126 slidably disposed within an outer tube 122 .
  • Outer tube 122 includes a distal holding structure 124 that includes a pair of opposing fingers 128 , 130 spaced apart by gap that receives spacer 20 therebetween.
  • Outer tube 122 also includes a handle 123 that is shown in exploded view from outer tube 122 but normally is rigidly attached to outer tube 122 .
  • thumb wheel 132 may be rotated with respect to outer tube 122 to engage end member 134 of locking member 126 in receptacle 50 and draw spacer 20 between fingers 128 , 130 with fingers 128 , 130 received in slots 42 , 44 .
  • Fingers 128 , 130 include convexly curved facing surfaces that match the concave profile of slots 42 , 44 and diverge to provide an intimate fit therewith.
  • rotational force applied to the spacer by inserter 120 is distributed along a major portion of the length and height of spacer 20 .
  • the mating of the concave and convex surfaces of the spacer and inserter inhibits the concentration of force at a particular location on the spacer during rotation. As a result, less implant material is needed, or a weaker material such as bone may be employed, to counteract the rotational forces that may be experienced during rotation of the spacer within the disc space.
  • a spacer includes a variety of improved features. While all of these features have been disclosed with reference to the described embodiment, it will be appreciated that one or any combination of features may be utilized with an improved interbody spacer. Further, while specific dimensions were disclosed suitable for spinal anatomy in the lumbar spine of some patients, a spacer may be configured with other dimensions suitable for interbody spacers at various levels, lumbar, thoracic, and cervical, of the spine for a variety of patient populations. For example, in an average patient population the anterior height of the device may range from 4 millimeters to 18 millimeters. Similarly, the posterior height of the device may range from 2 millimeters to 16 millimeters. Within this range, the longitudinal offset of the center point defining the arc of the upper and lower bearing surfaces may be adjusted to create lordotic angulations ranging from 0 to 30 degrees.
  • FIGS. 7-8 illustrate a spacer 20 implanted in a disc space between two adjacent vertebrae V 1 and V 2 .
  • Spacer 20 may be inserted into the disc space from a posterior approach P with the bone engaging surfaces positioned laterally, as shown by the orientation of spacer 20 ′ in FIG. 7 , and rotated into the spacing position after insertion into the disc space, as shown by spacer 20 in FIG. 8 .
  • spacer 20 may be impacted directly into the disc space with the upper and lower bearing surfaces positioned for immediate engagement with the endplates of vertebrae V 1 and V 2 .
  • spacer 20 may inserted into the disc space from an anterior approach A, a lateral approach, or an oblique approach.
  • spacer 20 may be inserted directly by impaction without rotation, or oriented with the bone engaging surfaces facing laterally and then rotated after the spacer 20 is positioned in the disc space.
  • the smooth, rounded features of the spacers described herein may limit the potential of the spacer to snag or abrade soft tissue, including neurological structures, during the insertion and/or rotation procedure.
  • the bullet nose shape of the leading end of the spacer allows insertion in a collapsed disc space with the spacer in orientation of spacer 20 ′ and prevents damage to the anterior annulus in the event that the spacer is advanced too far anteriorly during implantation.
  • the convexly rounded lateral side walls recapitulate the adjacent vertebrae during insertion.
  • graft material G may be positioned around the lateral aspects of each spacer 20 to completely or partially fill the disc space with graft material between and outside the spacers 20 .
  • Cavity 25 may alternatively or additionally be filled with graft material G.
  • Fixation devices 150 in the form of bone anchors and connecting rods may be provided outside the disc space to provide further stabilization if desired such as shown in FIG. 10 . If slight adjustments to the angle of lordosis between vertebrae V 1 and V 2 are desired, a distraction or compression tool may be applied to devices 150 to move the vertebrae across the convex upper or lower surface of the fixation devices 150 to modify the angulation between V 1 and V 2 .
  • FIGS. 11-13 illustrate another embodiment spacer 220 for implantation in a disc space.
  • Spacer 220 can be the same or similar to spacer 20 discussed above, but includes an aggressively tapered height so that the leading end portion is substantially greater in height the trailing end portion to establish lordosis in rotated to its final position.
  • spacer 220 includes smooth upper and lower bearing surfaces that lack projections.
  • spacer 220 includes projections like spacer 20 discussed above.
  • spacer 220 ′ is shown rotated to an insertion orientation with its leading end portion positioned at an entrance between the endplates for insertion into the spinal disc space to initially distract vertebrae V 1 and V 2 from a posterior approach P.
  • spacer 220 ′ Insertion of spacer 220 ′ (and also spacer 20 ′) into a collapsed disc space D as shown in FIG. 12 is facilitated by the configuration the lateral side walls of the spacer that face the endplates of the vertebrae V 1 , V 2 when in its insertion orientation.
  • Spacer 220 ′ is advanced into the disc space to provide an initial distraction of vertebrae V 1 , V 2 .
  • spacer 220 is rotated a quarter turn about its axis so that the upper and lower bearing surfaces of spacer 220 contact the endplates of the adjacent vertebrae V 1 , V 2 .
  • Rotation of spacer 22 creates lordosis angle A 1 between the endplates when spacer 22 is in its final implanted orientation.
  • FIGS. 14-16 illustrate another embodiment spacer 320 for implantation in a disc space.
  • Spacer 320 can be the same or similar to spacer 20 or 220 discussed above, but includes projections on its lateral side walls so that the surgeon can select to leave the spacer implanted in its initial insertion orientation if a desired fit is achieved, or later rotate the spacer if a better fit is desired.
  • spacer 320 ′ is shown rotated to an insertion orientation with its leading end portion positioned at an entrance between the endplates for insertion into the spinal disc space to initially distract vertebrae V 1 and V 2 from a posterior approach P.
  • Spacer 320 ′ is advanced into the disc space to provide an initial distraction of vertebrae V 1 , V 2 as shown in FIG. 15 .
  • projections 322 on its side walls engage the vertebral endplates and provide stability for the implanted spacer 320 ′ in this initial insertion orientation. If a better fit is desired, spacer 320 is rotated a quarter turn about its axis so that the upper and lower bearing surfaces of spacer 320 and their projections 324 contact the endplates of the adjacent vertebrae V 1 , V 2 in its final implanted orientation.
  • proximal and distal refer to the direction closer to and away from, respectively, an operator (e.g., surgeon, physician, nurse, technician, etc.) who would insert the medical implant and/or instruments into the patient.
  • an operator e.g., surgeon, physician, nurse, technician, etc.
  • the portion of a medical instrument first inserted inside the patient's body would be the distal portion, while the opposite portion of the medical device (e.g., the portion of the medical device closest to the operator) would be the proximal portion.

Abstract

An interbody spacer includes an elongated body with a maximum width between opposite side walls and a maximum height between upper and lower bearing surfaces. The interbody spacer also includes a leading end nose connecting the side walls to facilitate insertion of the interbody spacer into a disc space between vertebrae in an insertion orientation, from which the interbody device is then rotated to position the upper and lower bearing surfaces in contact with the endplates of the adjacent vertebrae. The leading end nose forms a blunt convex nose between the upper and lower bearing surfaces to maximize the bearing surface area available to contact the adjacent endplates.

Description

    BACKGROUND
  • The present invention relates generally to treatment of the spinal column, and more particularly relates to a vertebral interbody spacer for placement between adjacent vertebral bodies of a spine to create and maintain a desired orientation and spacing between the adjacent vertebral bodies.
  • It is known that if an intervertebral disc is damaged, it can be removed and the resulting space between the two adjacent vertebrae may be filled with a bone growth inducing substance to promote a boney fusion across the disc space. Fixation devices external to the disc space have been utilized to maintain the position of the adjacent vertebrae while the intervening material fuses with adjacent bone to form a boney bridge. As an alternative or in conjunction with fixation devices, load bearing spacers, such as artificial devices or bone grafts, may be placed in the empty disc space. These spacers transmit the loading from one adjacent vertebra to the other adjacent vertebra during the healing process. Further, when an intervertebral disc is damaged there is often a loss of height of the disc and a loss of the normal angle (lordosis) between the vertebra on each side of the disc. Spacers may also be used to restore the height and angle (lordosis) of a damaged intervertebral disc. Such spacers may be provided in a variety of forms.
  • A need exists for improvements to interbody spacers and the present invention is directed to such need.
  • SUMMARY
  • The present invention provides an improved interbody spacer adapted for spacing two adjacent vertebral bodies. The invention provides mechanisms to achieve the desired goals of distracting the intervertebral space and, when desired, of increasing the lordosis angle between the adjacent vertebral bodies. The initial increase in height is obtained by insertion of the spacer body into the disc space in one orientation whereby distraction is obtained by means of a small radius bullet shaped nose. Further increase in height and increase in lordosis is obtained by rotation of the spacer body about its longitudinal axis by, for example, a quarter turn.
  • Various aspects are summarized below, but it should be understood that embodiments are contemplated that incorporate any one or combination of these features, omit one or more of the following features, or include other features not specifically discussed. The interbody spacer includes an elongated body extending on a center longitudinal axis with opposite upper and lower bearing surfaces and opposite side walls that are convexly rounded along the longitudinal axis. As used herein, side walls convexly rounded along the longitudinal axis means that the side walls are curved outwardly from the longitudinal axis from a leading end portion to a trailing end of the spacer when the spacer is viewed from a direction looking orthogonally toward either its upper or lower bearing surface. The side walls diverge from the trailing end toward the leading end portion so that that spacer provides a maximum width at a location that is offset from a mid-length plane of the spacer in a direction toward the leading portion. The side walls converge from this maximum width location to the leading end portion of the spacer where the side walls define a bullet-shaped tip when viewed in a direction looking orthogonally toward one of the upper and lower bearing surfaces. The bullet-shaped tip connecting the side walls facilitates insertion of the spacer between and distraction of adjacent vertebrae when the spacer is oriented in an insertion orientation in which the side walls are positioned to face the endplates of the vertebrae. When viewed from a direction looking on the longitudinal axis of the interbody spacer toward either the leading end portion or the trailing end of the spacer, the side walls are linear from the upper bearing surface to the lower bearing surface. The leading end portion forms a blunt, convexly rounded nose extending between the upper and lower bearing surfaces that is substantially larger than the bullet-shaped tip in the transverse direction so that the length of the upper and lower bearing surfaces along the longitudinal axis available to contact the endplates is maximized. In one embodiment the complex rounded nose in the transverse direction includes a complex curve with at least two different radii from the nose to the adjacent side wall. This complex curve allows the leading end of the spacer body to have a small radius that transitions to a larger radius before intersecting the upper and lower bearing surfaces. The smaller radius curvature enhances the ability of the leading edge to distract the narrowed disc space on initial insertion while the larger radius maintains the point of intersection with the upper and lower surface at a position such that sufficient surface area of the upper and lower bearing surfaces is maintained. The upper and lower bearing surfaces define a height of the spacer and are convexly rounded along the longitudinal axis from the leading end portion to the trailing end of the spacer. The upper and lower bearing surfaces define a maximum height at a second location that is offset from the mid-length plane of the spacer toward the leading end portion of the spacer. The side walls also each define an elongated slot extending from the trailing end toward the leading end portion. The slots diverge from one another in a direction toward the leading end portion and are configured to receive an inserter instrument therein. The trailing end includes a receptacle between the slots to receive the inserter instrument. The interbody spacer also includes a central cavity that extends through the upper and lower bearing surfaces. The slots each include at least one hole that opens into the cavity. The upper and lower bearing surfaces also include elongated projections that extend between the side walls orthogonally to the longitudinal axis of the spacer.
  • The present invention also provides an inserter instrument for use in combination with an interbody spacer. According to one aspect, the inserter has a gripping end with fingers that are wedged into diverging slots formed along opposite side walls of the interbody spacer when a holding member of the inserter is engaged to a trailing end of the interbody spacer.
  • The present invention also provides a method for inserting an improved interbody spacer. In one aspect of the method and the spacer, the inserter is oriented so that the spacer is positioned with its side walls facing respective ones of the adjacent endplates the vertebrae, and then the spacer is inserted into the disc space so that its bullet-shaped nose leads its entry into the disc space and the longitudinal convexly rounded side walls separate the adjacent vertebrae. The spacer is then rotated in situ to further distract the vertebrae as its upper and lower bearing surfaces are positioned in contact with the endplates of the adjacent vertebrae. In one aspect, the spacer includes transverse projections extending across the upper and lower bearing surfaces. In a direction between the side walls, the ends of the transverse projections lie on an arc defined by a first radius that is substantially smaller than a second arc defined by a second radius on which the upper and lower bearing surfaces lie. The increased curvature of the ridges facilitates in situ rotation of the spacer about its longitudinal axis and the smaller curvature of the upper and lower bearing surfaces provides increases stability for the spacer in its implanted orientation than would be provided if the curvature of the bearing surfaces between the side walls was the same as or greater than the curvature of the projections. In addition, the curvature of the bearing surfaces between the sidewalls reduces point loading of the interbody spacer at the edges where the upper and lower bearing surfaces join with the respective adjacent side walls, this reducing subsidence. The ends of the projections can be chamfered where they connect to the side walls to further facilitate rotation of the spacer in situ.
  • These and other aspects and advantages of the present invention will become apparent to those skilled in the art from the description of the illustrated embodiments set forth below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an interbody spacer.
  • FIG. 2A is a section view of the interbody spacer of FIG. 1 along line 2A-2A of FIG. 2B.
  • FIG. 2B is a side elevation view of the interbody spacer of FIG. 2A.
  • FIG. 2C is a plan view of the interbody spacer of FIG. 2A looking from line 2C-2C of FIG. 2B.
  • FIG. 2D is a left end elevation view of the interbody spacer of FIG. 2B looking toward the leading end portion of the interbody spacer.
  • FIG. 2E is a right end side elevation view of the interbody spacer of FIG. 2B looking toward the trailing end of the interbody spacer.
  • FIG. 2F illustrates one embodiment of a corner configuration for the interbody spacer.
  • FIG. 3 is a perspective view of the interbody spacer coupled to one embodiment inserter instrument.
  • FIG. 4A is a plan view of an implant holding member of the inserter.
  • FIG. 4B is a section view along line 4B-4B of FIG. 4A.
  • FIG. 4C is a left end elevation view of the holding member shown in FIG. 4B.
  • FIG. 4D is a plan view of the holding member shown in FIG. 4B.
  • FIG. 5 is a partially exploded perspective view of another embodiment inserter instrument.
  • FIG. 6 is a longitudinal section view of the inserter instrument of FIG. 5.
  • FIG. 7 is a side elevation view of a spinal column segment showing the interbody spacer in an insertion orientation while positioned in the disc space.
  • FIG. 8 is a side elevation view of the spinal column segment showing the interbody spacer rotated to an implantation orientation while positioned in the disc space.
  • FIG. 9 is a plan view of a vertebral body showing a pair of interbody spacers positioned in the disc space and external fixation devices.
  • FIG. 10 is a side elevation view of the spinal column segment showing an interbody spacer in the disc space in its implanted orientation and external fixation devices engaged to the vertebrae.
  • FIG. 11 is a side elevation view of a spinal column segment showing another embodiment interbody spacer being inserted to initially distract the adjacent vertebrae.
  • FIG. 12 is a side elevation view of a spinal column segment showing the interbody spacer in an insertion orientation while positioned in the disc space.
  • FIG. 13 is a side elevation view of the spinal column segment showing the interbody spacer rotated to an implantation orientation while positioned in the disc space.
  • FIG. 14 is a side elevation view of a spinal column segment showing another embodiment interbody spacer being inserted to initially distract the adjacent vertebrae.
  • FIG. 15 is a side elevation view of a spinal column segment showing the interbody spacer in an insertion orientation while positioned in the disc space.
  • FIG. 16 is a side elevation view of the spinal column segment showing the interbody spacer rotated to an implantation orientation while positioned in the disc space.
  • DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any such alterations and further modifications in the illustrated devices, and such further applications of the principles of the invention as illustrated herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
  • Referring now to FIG. 1, there is shown an interbody spacer 20 with a height in the sagittal plane, a length in the axial plane, and a width in the coronal plane configured for placement between two adjacent vertebral bodies. Spacer 20 includes an elongated body extending along and centered on a longitudinal axis 21. The body of spacer 20 includes an upper bearing surface 22 and an oppositely facing lower bearing surface 24 spaced from one another by a first lateral side wall 30 and an oppositely facing second lateral side wall 36. Upper bearing surface 22 and lower bearing surface 24 terminate at a trailing end 28 and at an opposite leading end portion 26. Upper bearing surface 22 includes a series of projections 32 and lower bearing surface 24 includes a similar series of projections 34. Projections 32 and projections 34 are spaced longitudinally from the adjacent projection and each projection extends across the width of the body between side walls 30, 36 orthogonally to longitudinal axis 21. Each of the lateral side walls 30, 36 includes a slot 42, 44, respectively, extending therein. Slots 42, 44 are concavely curved into the respective side wall 30, 36 in a direction between bearing surfaces 22, 24, and also extend linearly and longitudinally from trailing end 28 to an end of the respective slot that is offset toward leading end portion 26 from mid-length plane M (FIG. 2B.) Each of the slots 42, 44 includes a hole 46, 48 therein that communicates with cavity 25. In other embodiments, slots 42, 44 do not include any holes 46, 48 and are isolated from cavity 25. Trailing end 28 also includes a receptacle 50 extending on longitudinal axis 21 to cavity 25.
  • In one embodiment, the body of spacer 20 is formed of a radiolucent material and includes a series of radiopaque markers embedded therein to accommodate visualization of spacer 20 during and after insertion into an intervertebral disc space when the implant is formed of substantially radiolucent material. Radiopaque markers 40 are positioned at the leading end 26 of spacer 20 at the transition point between leading end portion 26 and upper bearing surface 22 and lower bearing surface 24, respectively. Radiopaque markers 52 are positioned in opposite corners of trailing end 28, respectively, adjacent respective ones of upper and lower bearing surfaces 22, 24. In one specific embodiment, radiopaque markers 40 and 52 are pins inserted into the spacer material prior to formation of its exterior geometry. Each of the radiopaque markers 40, 52 has an exterior surface substantially identical to and co-terminus with the geometry of the adjacent exterior surface of spacer 20. Thus, upon implantation, a surgeon may be able to correctly visualize through x-ray imaging or other techniques the exact relationship between the surfaces of spacer 20 and the surrounding bone structures. Various spacer materials are contemplated that may include PEEK, other polymers including resorbable polymers, ceramics, composites, bone or bone substitute materials, and biocompatible metals such as stainless steel, titanium, or tantalum. Materials are listed by way of example, and any suitable biocompatible may form the spacer body described herein. Furthermore, spacer 20 is illustrated as a body with an internal cavity 25 and of substantially uniform material. It will be appreciated that teachings of the present invention may be applied to interbody spacers having solid bodies or pores for receiving bone growth promoting material. Still further, the body of the spacer may be formed with layers of uniform or non-uniform materials, such as bone and other composite materials, to form a spacer body as described herein.
  • Referring now to FIGS. 2A through 2E, there are shown various views of interbody spacer 20. Upper bearing surface 22 has a convex shape with a radius of curvature R1 extending from leading end portion 26 to trailing end 28. In a similar manner, lower bearing surface 24 has a convex shape with a radius of curvature from leading end portion 26 to trailing end 28 substantially identical to R1. The height of the body of spacer 20 at leading end portion 26 is H2. The height of the body of spacer 20 at trailing end 28 is H1. As illustrated in FIG. 2B, H2 is substantially greater than H1. Furthermore, the body of spacer 20 forms a maximum height H3 at a location defined by the crests of at least one of the set of projections 30, 32, which are offset toward trailing end 28 from the junction of leading portion 26 and bearing surfaces 22, 24. The relationship between H1 and H2 is created by the location of the center point for the radius of curvature R1 for upper bearing surface 22 and the corresponding location of the center point for the radius of curvature forming lower bearing surface 24. More specifically, the center point for R1 is offset from mid-length plane M towards the leading end portion 26. As used herein, “mid-length” means located one half the distance between the terminus ends of the leading end portion 26 and the trailing end 28 on longitudinal axis 21. Thus, the center point for R1 is longitudinally offset from mid-length plane M toward leading end portion 26 of the spacer 20. The differing heights H1, H2 establish a lordosis angle A1 between upper and lower bearing surfaces 22, 24 to establish a desired angulation between endplates of the adjacent vertebrae. In other embodiments, heights H1, H2 are the same when lordosis is not required, and the maximum height between bearing surfaces 22, 24 is located at near or adjacent mid-length plane M. In one specific embodiment, the non-lordotic maximum height location is located within 5 millimeters of the midpoint plane.
  • Spacer 20 has a length L1 from leading end portion 26 to trailing end 28. Length L1 is sized to extend substantially across a vertebral endplate of the vertebrae to be supported. For example, length L1 can vary from 18 millimeters to 32 millimeters, although other lengths are not precluded. The convexly curved upper and lower bearing surfaces 22, 24 fit with the concavity of the vertebral endplates to provide an intimate fit therewith. Each of the upper bearing surface 22 and the lower bearing surface 24 include a series of projections 32 and 34, respectively. Each projection includes a truncated crest defined by a curved surface that is connected with the respective bearing surface 22, 24 with concavely rounded transitions that blend into the respective portion of the bearing surface 22, 24 extending between adjacent projections. As shown in FIGS. 2D and 2E, the truncated ends of projections 32, 34 lie on an arc defined by a radius R2 with the arc extending orthogonally to longitudinal axis 21 between side walls 30, 36. Bearing surfaces 22, 24 lie on an arc defined by a radius R3 with the arc extending orthogonally to longitudinal axis 21 between side walls 30, 36. Radius R2 is substantially less than radius R3 so that the projections are more pronounced at the center of spacer 20 to provide better engagement and bite or penetrate into the vertebrae to resist counter-rotation after spacer 20 is rotated to its implantation orientation. In addition, point loading at or near the junction of the bearing surface and its respective projections with the adjacent side wall is reduced. Furthermore, the reduced height of the projections 32, 34 at the junction with the adjacent side wall minimizes disruption to the endplates during rotation of spacer 20. The larger radius R3 provides bearing surfaces in the transverse direction with increased stability for spacer 20 in the disc space when its final rotated implantation orientation has been obtained. In one specific embodiment, radius R2 is about 35-40% less than radius R3. Furthermore, each of the ends of each projection 32, 34 that transition to the respective side wall 30, 36 is rounded from its respective crest to the adjacent side wall to provide a smooth transition to eliminate an abrupt surface change at the corners of the spacer body that may have a tendency to engage or tear tissue during rotation of spacer 20 about longitudinal axis 21.
  • Each of the corners or edges of spacer body 20 that connect the adjacent side wall 30, 36 with the adjacent upper or lower bearing surface 22, 24 are defined by an arcuate surface, such as arcuate surface S1 in FIG. 2D. Surface S1 can include a simple curvature that lies on a single arc defined by a radius. However, it is also contemplated that surface S1 can be defined by multiple continuous arcs having varying radii to facilitate rotation of the corner or edge along the vertebral endplate. In another embodiment shown, shown in FIG. 2F, surface S1 can intersect the adjacent outer surface of side wall 30, 36 so that a tangent of surface S1 at the intersection of surface S1 and the lateral side wall lies on or forms a small angle, such as angle B1, with the outer surface of the side wall. In contrast, the tangent of surface S1 at the intersection of surface S1 with the respective adjacent upper or lower bearing surface 22, 24 does not lie on or substantially parallel to the respective upper or lower bearing surface 22, 24, but forms an angle B2 that is larger than angle B1. Thus, the tangent of surface S1 at the side wall intersection is substantially closer to lying on the adjacent side wall than the tangent of surface S1 at its bearing surface intersection is to lying on or parallel to the bearing surface.
  • In FIGS. 2D and 2E, there is shown end views from the trailing end and leading end portion of spacer 20. Lateral side walls 30 and 36 are substantially linear in a direction extending from upper bearing surface 22 to lower bearing surface 24. As shown in FIGS. 2A and 2C, side walls 30, 36 are convexly and laterally outwardly curved from trailing end 28 to leading end 25. A major portion of the length of each side wall 30, 36 lies on an arc defined by a radius R4 and this major length portion extends from trailing end 28 to a location offset from mid-length plane M toward leading end portion 26. The size of radius R4 varies depending on length L1 of spacer 20 and increases as the length L1 increases. For example, one specific embodiment provides a radius R4 of 35 millimeters for spacer with length L1 of 18 millimeter and an R4 of 80 millimeters for a spacer length L1 of 32 millimeters. Side walls 30, 36 are more aggressively curved on an arc defined by a radius R5 from leading end portion 26 to the location to form a junction with the major length portion of side walls 30, 36 lying on the arc defined by radius R4. Side walls 30, 36 define a maximum width W1 at the junction, and a smaller width W2 at trailing end 28. In one specific example, radius R5 is about 7 millimeters and radius R4 is about 5 to 11 times larger than radius R4. Leading end portion 26 forms a bullet shape between side walls 30, 36 that is defined by an arc having a small radius R6 between and connecting side walls 30, 36. In one specific embodiment, radius R6 is about 2 millimeters, maximum width W1 is about 9 millimeters, and width W2 is about 4.5 millimeters. Other embodiments contemplate other values for these dimensions that maintain the general proportions between various portions of spacer 20.
  • The bullet-shape profile of leading end portion 26 in the direction between side walls 30, 36 facilitates insertion of spacer 20 into a collapsed disc space with spacer 20 oriented so that side walls 30, 36 face respective ones of the vertebral endplates. Furthermore, the transition of the aggressively rounded leading end portion 26 to the more subtly rounded side wall portions defined by radius R5 allows spacer 20 to initially distract and maintain this initial distraction with a sufficient length of weight bearing surface along side walls 30, 36 without cutting into the vertebral endplates. In addition, the length of upper and lower bearings surfaces 22, 24 can be maximized and extended to a location that is only slightly offset from the leading most end nose portion 26, as shown in FIG. 2C. As shown in FIG. 2B, in the direction between bearing surfaces 22, 24, leading end portion 26 includes a terminal end surface that defines a blunt nose that extends on a convex arc defined by a radius R7. Radius R7 varies based on height H1 of spacer 20. In one specific example, when height H1 is 10 millimeters radius R7 is about 7.5 millimeters, and when height H1 is 18 millimeters radius R7 is about 14 millimeters. The large radius of leading end portion 26 between bearing surfaces 22, 24 also maximizes the length of bearing surfaces 20, 22 available to contact the vertebral endplates when spacer 20 is rotated around longitudinal axis 21 from its insertion orientation to its implanted orientation.
  • FIG. 2A illustrates a section view of spacer 20 that shows slots 42, 44 in side walls 30, 36. Slots 42, 44 diverge from trailing end 28 in a direction toward leading end portion 26 at an angle A2. This provides a wedge fit with the inserter, discussed further below. In addition, as shown in FIG. 2B, the height of slots 42, 44 increases in the direction toward leading end portion 26 so that the upper and lower edges of slots 42,44 parallel respective ones of upper and lower bearing surfaces 20, 22 along a major portion of the length of slots 42, 44. Trailing end 28 includes a planar surface at the terminal end of spacer 20, and slots 42, 44 extend through the planar wall surface of trailing end 28. Slots 42, 44 may have a length ranging from 4 millimeters to 17 millimeters from trailing end 28. In one specific embodiment, slots 42, 44 extend from trailing end 28 to an opposite end thereof that is located adjacent to midpoint plane M. In addition, receptacle 50 extends between trailing end 28 and cavity 25, although receptacle 50 may also include a blind end. In the illustrated embodiment, receptacle 50 includes an inner thread profile to threadingly engage an inserter. Other embodiments contemplate non-threaded and/or non-circular receptacles, multiple receptacle, or spacers without a receptacle. In still other embodiments, trailing end 28 includes slots, ridges, or other features to enhance engagement with an inserter, either with or without a receptacle 50 and slots 42, 44. Cavity 25 includes an elongated ovular shape extending from leading end portion 26 toward trailing end 28. The width of cavity 25 tapers in a direction toward trailing end 28 to maintain a minimum wall thickness for spacer 20 along cavity 25.
  • Referring now to FIG. 3, spacer 20 is shown connected to one embodiment inserter 100. Inserter 100 includes an elongated holding member 102 and a handle 104 removably or permanently connected to the proximal end of holding member 102. Handle 104 includes a T-shaped grip to facilitate application of rotational forces to holding member 102 to rotate spacer 20 when it is implanted in the disc space. Inserter 100 also includes a locking member 106 extending through handle 104 and holding member 102 to engage receptacle 50 of spacer 20. As further shown in FIGS. 4A-4D, holding member 102 includes a distal end structure with a pair of fingers 108, 110 that are received in slots 42, 44 of spacer 20. Holding member 102 also defines a longitudinal passage 112 that receives locking member 106 so that a threaded distal end portion of locking member 106 projects between fingers 108, 110 to engage receptacle 50 of spacer 20. The holding structure also includes a pair of upper and lower flanges 114, 116 that extend along upper and lower bearing surfaces 22, 24, or in recesses in upper and lower bearing surfaces 22, 24, to further enhance the grip of inserter 100 with spacer 20 as it is rotated in the disc space.
  • Referring now to FIGS. 5-6, there is shown another embodiment inserter 120 for engaging spacer 20. Inserter 120 includes an inner locking member 126 slidably disposed within an outer tube 122. Outer tube 122 includes a distal holding structure 124 that includes a pair of opposing fingers 128, 130 spaced apart by gap that receives spacer 20 therebetween. Outer tube 122 also includes a handle 123 that is shown in exploded view from outer tube 122 but normally is rigidly attached to outer tube 122. It will be appreciated that thumb wheel 132 may be rotated with respect to outer tube 122 to engage end member 134 of locking member 126 in receptacle 50 and draw spacer 20 between fingers 128, 130 with fingers 128, 130 received in slots 42, 44. Fingers 128, 130 include convexly curved facing surfaces that match the concave profile of slots 42, 44 and diverge to provide an intimate fit therewith. As a result, rotational force applied to the spacer by inserter 120 is distributed along a major portion of the length and height of spacer 20. Further, the mating of the concave and convex surfaces of the spacer and inserter inhibits the concentration of force at a particular location on the spacer during rotation. As a result, less implant material is needed, or a weaker material such as bone may be employed, to counteract the rotational forces that may be experienced during rotation of the spacer within the disc space.
  • The above described spacer includes a variety of improved features. While all of these features have been disclosed with reference to the described embodiment, it will be appreciated that one or any combination of features may be utilized with an improved interbody spacer. Further, while specific dimensions were disclosed suitable for spinal anatomy in the lumbar spine of some patients, a spacer may be configured with other dimensions suitable for interbody spacers at various levels, lumbar, thoracic, and cervical, of the spine for a variety of patient populations. For example, in an average patient population the anterior height of the device may range from 4 millimeters to 18 millimeters. Similarly, the posterior height of the device may range from 2 millimeters to 16 millimeters. Within this range, the longitudinal offset of the center point defining the arc of the upper and lower bearing surfaces may be adjusted to create lordotic angulations ranging from 0 to 30 degrees.
  • FIGS. 7-8 illustrate a spacer 20 implanted in a disc space between two adjacent vertebrae V1 and V2. Spacer 20 may be inserted into the disc space from a posterior approach P with the bone engaging surfaces positioned laterally, as shown by the orientation of spacer 20′ in FIG. 7, and rotated into the spacing position after insertion into the disc space, as shown by spacer 20 in FIG. 8. Alternatively, spacer 20 may be impacted directly into the disc space with the upper and lower bearing surfaces positioned for immediate engagement with the endplates of vertebrae V1 and V2. In addition, spacer 20 may inserted into the disc space from an anterior approach A, a lateral approach, or an oblique approach. In any approach, spacer 20 may be inserted directly by impaction without rotation, or oriented with the bone engaging surfaces facing laterally and then rotated after the spacer 20 is positioned in the disc space. It will be appreciated that the smooth, rounded features of the spacers described herein may limit the potential of the spacer to snag or abrade soft tissue, including neurological structures, during the insertion and/or rotation procedure. Still further, the bullet nose shape of the leading end of the spacer allows insertion in a collapsed disc space with the spacer in orientation of spacer 20′ and prevents damage to the anterior annulus in the event that the spacer is advanced too far anteriorly during implantation. The convexly rounded lateral side walls recapitulate the adjacent vertebrae during insertion.
  • As shown in FIG. 9, graft material G may be positioned around the lateral aspects of each spacer 20 to completely or partially fill the disc space with graft material between and outside the spacers 20. Cavity 25 may alternatively or additionally be filled with graft material G. Fixation devices 150 in the form of bone anchors and connecting rods may be provided outside the disc space to provide further stabilization if desired such as shown in FIG. 10. If slight adjustments to the angle of lordosis between vertebrae V1 and V2 are desired, a distraction or compression tool may be applied to devices 150 to move the vertebrae across the convex upper or lower surface of the fixation devices 150 to modify the angulation between V1 and V2.
  • FIGS. 11-13 illustrate another embodiment spacer 220 for implantation in a disc space. Spacer 220 can be the same or similar to spacer 20 discussed above, but includes an aggressively tapered height so that the leading end portion is substantially greater in height the trailing end portion to establish lordosis in rotated to its final position. In one embodiment, spacer 220 includes smooth upper and lower bearing surfaces that lack projections. In another embodiment, spacer 220 includes projections like spacer 20 discussed above. In FIG. 11, spacer 220′ is shown rotated to an insertion orientation with its leading end portion positioned at an entrance between the endplates for insertion into the spinal disc space to initially distract vertebrae V1 and V2 from a posterior approach P. Insertion of spacer 220′ (and also spacer 20′) into a collapsed disc space D as shown in FIG. 12 is facilitated by the configuration the lateral side walls of the spacer that face the endplates of the vertebrae V1, V2 when in its insertion orientation. Spacer 220′ is advanced into the disc space to provide an initial distraction of vertebrae V1, V2. In FIG. 13, spacer 220 is rotated a quarter turn about its axis so that the upper and lower bearing surfaces of spacer 220 contact the endplates of the adjacent vertebrae V1, V2. Rotation of spacer 22 creates lordosis angle A1 between the endplates when spacer 22 is in its final implanted orientation.
  • FIGS. 14-16 illustrate another embodiment spacer 320 for implantation in a disc space. Spacer 320 can be the same or similar to spacer 20 or 220 discussed above, but includes projections on its lateral side walls so that the surgeon can select to leave the spacer implanted in its initial insertion orientation if a desired fit is achieved, or later rotate the spacer if a better fit is desired. In FIG. 14, spacer 320′ is shown rotated to an insertion orientation with its leading end portion positioned at an entrance between the endplates for insertion into the spinal disc space to initially distract vertebrae V1 and V2 from a posterior approach P. Spacer 320′ is advanced into the disc space to provide an initial distraction of vertebrae V1, V2 as shown in FIG. 15. If the desired fit is achieved, then projections 322 on its side walls engage the vertebral endplates and provide stability for the implanted spacer 320′ in this initial insertion orientation. If a better fit is desired, spacer 320 is rotated a quarter turn about its axis so that the upper and lower bearing surfaces of spacer 320 and their projections 324 contact the endplates of the adjacent vertebrae V1, V2 in its final implanted orientation.
  • Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having a combination of any features and/or components from any of embodiments as discussed above. As used in this specification, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a member” is intended to mean a single member or a combination of members, “a material” is intended to mean one or more materials, or a combination thereof. Furthermore, the terms “proximal” and “distal” refer to the direction closer to and away from, respectively, an operator (e.g., surgeon, physician, nurse, technician, etc.) who would insert the medical implant and/or instruments into the patient. For example, the portion of a medical instrument first inserted inside the patient's body would be the distal portion, while the opposite portion of the medical device (e.g., the portion of the medical device closest to the operator) would be the proximal portion.
  • While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (21)

1-25. (canceled)
26. A method for positioning an interbody spacer between vertebrae, comprising:
providing an interbody spacer comprising a body extending along a longitudinal axis between a leading end and an opposite trailing end, the body comprising a pair of opposite lateral side walls extending between the leading and trailing ends, the body comprising opposite upper and lower surfaces each extending between the leading and trailing ends and between the side walls, the upper and lower surfaces each including a series of spaced apart projections that extend transverse to the longitudinal axis;
positioning the spacer between the vertebrae such that one of the side walls faces a superior vertebra and the other one of the side walls faces an adjacent inferior vertebra; and
rotating the spacer between the vertebrae about the longitudinal axis such that the projections of one of the top and bottom surfaces engage the superior vertebra and the projections on the other of the top and bottom surfaces engages the inferior vertebra.
27. A method according to claim 26, wherein:
the leading end defines a bullet-shaped nose; and
positioning the spacer between the vertebrae includes inserting the spacer into a disc space between the vertebrae such that the bullet-shaped nose leads entry of the spacer into the disc space.
28. A method according to claim 26, wherein a corner connects each of the side walls to a respective one of the upper and lower surfaces and each of the corners is defined by an arcuate surface.
29. A method according to claim 28, wherein a tangent of at least one of the arcuate surfaces at an intersection of the arcuate surface with the side wall is closer to lying on the side wall than a tangent of the arcuate surface at an intersection with the respective one of the upper and lower surfaces is to lying on the respective surface.
30. A method according to claim 26, wherein:
the body defines a mid-length plane that is orthogonal to the longitudinal axis; and
the side walls each define a continuous convexly curved profile extending from the leading end to the trailing end, the continuous convexly curved profiles defining a maximum width of the body between the side walls at a second location that is offset from the mid-length plane toward the leading end portion.
31. A method according to claim 30, wherein the continuous convexly curved profile of each of the side walls are defined by a first arc having a first radius with the first arc extending from the trailing end to the second location, and the continuous convexly curved profile of each of the side walls is defined by a second arc having a second radius with the second arc extending from the second location to the leading end, the first radius being greater than the second radius so that the side walls converge toward the leading end.
32. A method according to claim 26, wherein:
the projections each have a truncated crest extending between the side walls, each of the truncated crests defining a first arc having a first radius; and
the upper and lower surfaces are each defined by a second arc having a second radius, the second radius being greater than the first radius.
33. A method according to claim 32, wherein opposite ends of each projection are rounded from an adjacent one of the side walls to the crest of the projection to facilitate rotation of the spacer about the longitudinal axis.
34. A method according to claim 32, wherein:
the truncated crests of the projections on at least one of the upper and lower surfaces lie on a third arc having a third radius with the third arc extending from the leading end to the trailing end;
at least one of the upper and lower surfaces lies on a fourth arc having a fourth radius with the fourth arc extending from the leading end to the trailing end; and
the truncated crests define a maximum height of the body portion at a location that is offset toward the trailing end from a junction of the upper and lower surfaces and the leading end.
35. A method according to claim 26, wherein:
the upper surface is continuously curved between the leading end and the trailing end; and
the lower surface is continuously curved between the leading end and the trailing end.
36. A method according to claim 26, wherein:
the body defines a mid-length plane that is orthogonal to the longitudinal axis; and
the upper and lower surfaces define a maximum height between the upper and lower surfaces at a first location that is offset from the mid-length plane toward the leading end.
37. A method according to claim 36, wherein the side walls each include an elongated slot therein that extends from the trailing end to an opposite end of the slot that is located adjacent the mid-length plane.
38. A method according to claim 36, wherein the slots each include a height that increases from the trailing end toward the leading end.
39. A method according to claim 26, wherein at least one of the side walls includes projections.
40. A method according to claim 26, wherein:
the body defines a cavity that extends between and opens at each of the upper and lower surfaces;
the side walls each include an opening extending therethrough that is in communication with the cavity; and
the method comprises inserting bone growth promoting material in the cavity prior to positioning the spacer between the vertebrae.
41. A method for positioning an interbody spacer between vertebrae, comprising:
providing an interbody spacer comprising a body extending along a longitudinal axis between a leading end and an opposite trailing end, the leading end defining a bullet-shaped nose, the body comprising a pair of opposite side walls extending between the leading and trailing ends, the side walls each defining a continuous convexly curved profile extending from the leading end to the trailing end, wherein a corner connects each of the side walls to a respective one of the upper and lower surfaces and each of the corners is defined by an arcuate surface, the body comprising an upper surface and an opposite lower surface each extending between the leading and trailing ends and between the side walls, the upper and lower surfaces being continuously curved between the leading and trailing ends, the upper and lower surfaces each including a series of spaced apart projections that extend transverse to the longitudinal axis, the body defining a cavity that extends between and opens at each of the upper and lower surfaces, the side walls each including an opening extending therethrough that is in communication with the cavity;
inserting bone growth promoting material in the cavity;
inserting the spacer into a disc space between the vertebrae such that the bullet-shaped nose leads its entry into the disc space;
positioning the spacer between the vertebrae such that one of the side walls faces a superior vertebra and the other one of the side walls faces an adjacent inferior vertebra; and
rotating the spacer between the vertebrae about the longitudinal axis such that the projections of one of the top and bottom surfaces engage the superior vertebra and the projections on the other of the top and bottom surfaces engages the inferior vertebra.
42. A method for positioning an interbody spacer between vertebrae, comprising:
providing an inserter comprising an outer member comprising an inner surface defining a passage and an outer surface engaging a handle, a distal end of the outer member comprising a pair of spaced apart fingers, the inserter comprising an inner member movably disposed within the passage,
providing an interbody spacer comprising a body extending along a longitudinal axis between a leading end and an opposite trailing end including a central receptacle, the body comprising a pair of opposite lateral side walls extending between the leading and trailing ends, the side walls each including an elongated slot therein that has a concave profile and extends from the trailing end, the body comprising an upper surface and an opposite lower surface each extending between the leading and trailing ends and between the side walls, the upper and lower surfaces each including a series of spaced apart projections that extend transverse to the longitudinal axis;
engaging the fingers with the slots to prevent rotation of the inserter relative to the spacer;
disposing a distal end of the inner member in the receptacle;
positioning the spacer between the vertebrae with the inserter such that one of the side walls faces a superior vertebra and the other one of the side walls faces an adjacent inferior vertebra; and
rotating the outer member to rotate the spacer between the vertebrae about the longitudinal axis such that the projections of one of the top and bottom surfaces engage the superior vertebra and the projections on the other of the top and bottom surfaces engages the inferior vertebra.
43. A method according to claim 42, wherein the fingers include convexly curved facing surfaces that match the concave profile of the slots and diverge to provide an intimate fit therewith.
44. A method according to claim 42, wherein:
the distal end of the outer member comprises a first flange positioned between the fingers and a second flange positioned between the fingers opposite the first flange; and
the method further comprises engaging the first flange with one of the upper surface and the lower surface and engaging the second flange with the other one of the upper surface and the lower surface simultaneously with engaging the fingers with the slots.
45. A method according to claim 42, wherein:
the distal end of the inner member includes a first thread form and the receptacle includes a second thread form; and
engaging a distal end of the inner member in the receptacle engaging the first thread form with the second thread form.
US14/041,656 2011-07-14 2013-09-30 Vertebral interbody spacer Abandoned US20140031943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/041,656 US20140031943A1 (en) 2011-07-14 2013-09-30 Vertebral interbody spacer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/182,942 US9095445B2 (en) 2011-07-14 2011-07-14 Vertebral interbody spacer
US14/041,656 US20140031943A1 (en) 2011-07-14 2013-09-30 Vertebral interbody spacer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/182,942 Continuation US9095445B2 (en) 2011-07-14 2011-07-14 Vertebral interbody spacer

Publications (1)

Publication Number Publication Date
US20140031943A1 true US20140031943A1 (en) 2014-01-30

Family

ID=47506788

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/182,942 Active 2031-08-02 US9095445B2 (en) 2011-07-14 2011-07-14 Vertebral interbody spacer
US14/041,656 Abandoned US20140031943A1 (en) 2011-07-14 2013-09-30 Vertebral interbody spacer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/182,942 Active 2031-08-02 US9095445B2 (en) 2011-07-14 2011-07-14 Vertebral interbody spacer

Country Status (6)

Country Link
US (2) US9095445B2 (en)
EP (1) EP2731524B1 (en)
JP (2) JP6122429B2 (en)
CN (1) CN103648421B (en)
AU (1) AU2012283068B2 (en)
WO (1) WO2013009462A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160370523A1 (en) * 2014-03-05 2016-12-22 Fujifilm Corporation Polarizing plate composition, polarizing plate protective film, polarizer, polarizing plate, and liquid crystal display device
US9730802B1 (en) 2014-01-14 2017-08-15 Nuvasive, Inc. Spinal fusion implant and related methods
WO2019052681A1 (en) * 2017-09-13 2019-03-21 Joimax Gmbh Intervertebral implant
US10292834B2 (en) 2016-06-27 2019-05-21 Globus Medical, Inc. Intervertebral spacer with chamfered edges
US10292825B2 (en) * 2016-06-27 2019-05-21 Globus Medical, Inc. Intervertebral spacer with chamfered edges

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287597B1 (en) 2009-04-16 2012-10-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
US8986388B2 (en) 2010-07-15 2015-03-24 N.L.T. Spine Ltd. Surgical systems and methods for implanting deflectable implants
US9095445B2 (en) * 2011-07-14 2015-08-04 Warsaw Orthopedic, Inc. Vertebral interbody spacer
US9132021B2 (en) 2011-10-07 2015-09-15 Pioneer Surgical Technology, Inc. Intervertebral implant
CN104582639A (en) 2012-05-29 2015-04-29 Nlt-脊椎有限公司 Laterally deflectable implant
US20140277505A1 (en) * 2013-03-15 2014-09-18 Dale Mitchell Spinal implants with bioactive glass markers
US9456856B2 (en) * 2013-09-26 2016-10-04 Warsaw Orthopedic, Inc. Intrabody osteotomy implant and methods of use
US9918848B2 (en) * 2013-10-07 2018-03-20 Warsaw Orthopedic, Inc. Spinal implant system and method
US10555818B2 (en) 2015-04-23 2020-02-11 Institute for Musculoskeletal Science and Education, Ltd. Spinal fusion implant for oblique insertion
RU2624350C2 (en) * 2015-12-24 2017-07-03 Общество с ограниченной ответственностью "Медико-инженерный центр сплавов с памятью формы" Implant for interbody fusion made of porous material and implant holder for its installation and removal
JP6813968B2 (en) * 2016-07-01 2021-01-13 日本特殊陶業株式会社 Pelvic spacer
CN106073952A (en) * 2016-07-18 2016-11-09 中国人民解放军第二军医大学第二附属医院 A kind of vertebral body booster treating compression fracture of vertabral body
CN106236330B (en) * 2016-08-22 2019-03-05 浙江康慈医疗科技有限公司 Dypass waist Invasive lumbar fusion device
CN106308982A (en) * 2016-08-22 2017-01-11 浙江康慈医疗科技有限公司 Lumbar interbody fusion cage
US11058551B2 (en) 2016-12-16 2021-07-13 Advance Research System, Llc Interbody implant with concave profiled nose
USD879295S1 (en) 2017-02-13 2020-03-24 Advance Research System, Llc Spinal fusion cage
USD847339S1 (en) 2017-06-26 2019-04-30 Advanced Research System, LLC Spinal fusion cage
WO2019051260A1 (en) 2017-09-08 2019-03-14 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
USD930160S1 (en) * 2019-09-11 2021-09-07 L&K Biomed Co., Ltd. End plate for a spinal fusion cage
USD929594S1 (en) * 2019-09-11 2021-08-31 L&K Biomed Co., Ltd. End plate for a spinal fusion cage
US11737888B1 (en) 2019-09-19 2023-08-29 Advance Research System, Llc Spinal fusion implant system and method
USD950060S1 (en) * 2019-12-24 2022-04-26 PrinterPrezz, Inc. Posterior lumbar interbody fusion device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834757A (en) * 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
US20080288076A1 (en) * 2006-09-27 2008-11-20 Teck Soo Spinal interbody spacer
US20090248163A1 (en) * 2008-03-31 2009-10-01 King Emily E Spinal surgery interbody
US20090299479A1 (en) * 2007-10-19 2009-12-03 Jones Robert J Suture guided implant
US20100152853A1 (en) * 2008-12-17 2010-06-17 X-Spine Systems, Inc. Prosthetic implant with biplanar angulation and compound angles
US20110190889A1 (en) * 2010-01-29 2011-08-04 Warsaw Orthopedic, Inc. Lordotic interbody device with different sizes rails
US20110295372A1 (en) * 2005-03-28 2011-12-01 Peterman Marc M Spinal system and method including lateral approach
US8343224B2 (en) * 2010-03-16 2013-01-01 Pinnacle Spine Group, Llc Intervertebral implants and graft delivery systems and methods
US8540718B2 (en) * 2007-10-23 2013-09-24 Aesculap Implant Systems, Llc Rod persuader

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863477A (en) 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
EP0610837B1 (en) 1993-02-09 2001-09-05 Acromed Corporation Spine disc
US5584831A (en) 1993-07-09 1996-12-17 September 28, Inc. Spinal fixation device and method
US5425772A (en) * 1993-09-20 1995-06-20 Brantigan; John W. Prosthetic implant for intervertebral spinal fusion
BE1007549A3 (en) 1993-09-21 1995-08-01 Beckers Louis Francois Charles Implant.
US5443514A (en) 1993-10-01 1995-08-22 Acromed Corporation Method for using spinal implants
CN1156255C (en) 1993-10-01 2004-07-07 美商-艾克罗米德公司 Spinal implant
US6093207A (en) 1994-03-18 2000-07-25 Pisharodi; Madhavan Middle expanded, removable intervertebral disk stabilizer disk
US5658336A (en) 1994-03-18 1997-08-19 Pisharodi; Madhavan Rotating, locking, middle-expanded intervertebral disk stabilizer
US5653762A (en) 1994-03-18 1997-08-05 Pisharodi; Madhavan Method of stabilizing adjacent vertebrae with rotating, lockable, middle-expanded intervertebral disk stabilizer
US6309421B1 (en) 1994-03-18 2001-10-30 Madhavan Pisharodi Rotating, locking intervertebral disk stabilizer and applicator
US5766252A (en) 1995-01-24 1998-06-16 Osteonics Corp. Interbody spinal prosthetic implant and method
US5782919A (en) * 1995-03-27 1998-07-21 Sdgi Holdings, Inc. Interbody fusion device and method for restoration of normal spinal anatomy
DE69737130T2 (en) * 1996-02-22 2007-11-15 Warsaw Orthopedic, Inc.( n.d.Ges.d.Staates Indiana), Minneapolis Instruments for vertebral body fusion
US6224631B1 (en) 1998-03-20 2001-05-01 Sulzer Spine-Tech Inc. Intervertebral implant with reduced contact area and method
WO1999060837A2 (en) 1998-05-27 1999-12-02 Nuvasive, Inc. Bone blocks and methods for inserting
WO1999060956A1 (en) 1998-05-27 1999-12-02 Nuvasive, Inc. Interlocking spinal inserts
US6290724B1 (en) 1998-05-27 2001-09-18 Nuvasive, Inc. Methods for separating and stabilizing adjacent vertebrae
US6030390A (en) 1999-01-08 2000-02-29 Mehdizadeh; Hamid M. Disc space spreader
US6325827B1 (en) 1999-02-01 2001-12-04 Blacksheep Technologies, Inc. Intervertebral implant
US6245108B1 (en) 1999-02-25 2001-06-12 Spineco Spinal fusion implant
US6080158A (en) 1999-08-23 2000-06-27 Lin; Chih-I Intervertebral fusion device
WO2001013807A2 (en) * 1999-08-26 2001-03-01 Sdgi Holdings, Inc. Devices and methods for implanting fusion cages
CA2386328C (en) 1999-10-19 2008-08-19 Sdgi Holdings, Inc. Spinal implant and cutting tool preparation accessory for mounting the implant
US7169183B2 (en) 2000-03-14 2007-01-30 Warsaw Orthopedic, Inc. Vertebral implant for promoting arthrodesis of the spine
US8137402B2 (en) 2002-01-17 2012-03-20 Concept Matrix Llc Vertebral defect device
US7618423B1 (en) * 2002-06-15 2009-11-17 Nuvasive, Inc. System and method for performing spinal fusion
JP4164315B2 (en) * 2002-08-20 2008-10-15 昭和医科工業株式会社 Intervertebral spacer
FR2848414B1 (en) * 2002-12-17 2005-02-25 Vitatech INTERSOMATIC IMPLANT FOR VERTEBRATES
US7326251B2 (en) * 2003-04-01 2008-02-05 Sdgi Holdings, Inc. Interbody fusion device
AU2003240354A1 (en) * 2003-06-24 2005-01-04 Synthes Gmbh Implant for the intervertebral space
US7749270B2 (en) 2005-04-29 2010-07-06 Warsaw Orthopedic, Inc. Expandable intervertebral implant and associated instrumentation
ITPD20050231A1 (en) * 2005-07-28 2007-01-29 2B1 Srl APPARATUS FOR THE NEUROCURGURGICAL-ORTHOPEDIC TREATMENT OF PATHOLOGIES OF THE HUMAN VERTEBRAL COLUMN
US8172905B2 (en) * 2007-04-27 2012-05-08 Atlas Spine, Inc. Spinal implant
CN201064501Y (en) * 2007-08-08 2008-05-28 上海通悦医疗器械有限公司 Medical orthopaedics vertebral column interspinal dynamic fixing implantation device
JP5266069B2 (en) * 2008-02-07 2013-08-21 昭和医科工業株式会社 cage
US20100262244A1 (en) * 2009-04-14 2010-10-14 Warsaw Orthopedic, Inc. Metal Coated Implant
TW201302858A (en) * 2011-06-24 2013-01-16 Du Pont Colored polyimide films and methods relating thereto
US9095445B2 (en) * 2011-07-14 2015-08-04 Warsaw Orthopedic, Inc. Vertebral interbody spacer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834757A (en) * 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
US20110295372A1 (en) * 2005-03-28 2011-12-01 Peterman Marc M Spinal system and method including lateral approach
US20080288076A1 (en) * 2006-09-27 2008-11-20 Teck Soo Spinal interbody spacer
US20090299479A1 (en) * 2007-10-19 2009-12-03 Jones Robert J Suture guided implant
US8540718B2 (en) * 2007-10-23 2013-09-24 Aesculap Implant Systems, Llc Rod persuader
US20090248163A1 (en) * 2008-03-31 2009-10-01 King Emily E Spinal surgery interbody
US20100152853A1 (en) * 2008-12-17 2010-06-17 X-Spine Systems, Inc. Prosthetic implant with biplanar angulation and compound angles
US20110190889A1 (en) * 2010-01-29 2011-08-04 Warsaw Orthopedic, Inc. Lordotic interbody device with different sizes rails
US8343224B2 (en) * 2010-03-16 2013-01-01 Pinnacle Spine Group, Llc Intervertebral implants and graft delivery systems and methods

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9730802B1 (en) 2014-01-14 2017-08-15 Nuvasive, Inc. Spinal fusion implant and related methods
US10335287B2 (en) 2014-01-14 2019-07-02 Nuvasive, Inc. Spinal fusion implant and related methods
US11497621B2 (en) 2014-01-14 2022-11-15 Nuvasive, Inc. Inserter for implanting a spinal implant
US20160370523A1 (en) * 2014-03-05 2016-12-22 Fujifilm Corporation Polarizing plate composition, polarizing plate protective film, polarizer, polarizing plate, and liquid crystal display device
US10292834B2 (en) 2016-06-27 2019-05-21 Globus Medical, Inc. Intervertebral spacer with chamfered edges
US10292825B2 (en) * 2016-06-27 2019-05-21 Globus Medical, Inc. Intervertebral spacer with chamfered edges
US10925740B2 (en) 2016-06-27 2021-02-23 Globus Medical Inc. Intervertebral spacer with chamfered edges
WO2019052681A1 (en) * 2017-09-13 2019-03-21 Joimax Gmbh Intervertebral implant
KR20200053515A (en) * 2017-09-13 2020-05-18 요이막스 게엠베하 Intervertebral implant
US11376133B2 (en) * 2017-09-13 2022-07-05 Joimax Gmbh Intervertebral implant
KR102628245B1 (en) * 2017-09-13 2024-01-24 요이막스 게엠베하 intervertebral implant

Also Published As

Publication number Publication date
WO2013009462A2 (en) 2013-01-17
EP2731524A2 (en) 2014-05-21
AU2012283068A1 (en) 2014-01-16
EP2731524A4 (en) 2014-12-17
AU2012283068B2 (en) 2016-12-22
JP6122429B2 (en) 2017-04-26
US20130018466A1 (en) 2013-01-17
JP6312888B2 (en) 2018-04-18
EP2731524B1 (en) 2019-03-27
JP2017136410A (en) 2017-08-10
CN103648421A (en) 2014-03-19
WO2013009462A3 (en) 2013-03-07
US9095445B2 (en) 2015-08-04
JP2014529310A (en) 2014-11-06
CN103648421B (en) 2016-10-19

Similar Documents

Publication Publication Date Title
US9095445B2 (en) Vertebral interbody spacer
US20210000608A1 (en) Facet joint implant
US8617244B2 (en) Intervertebral implant
US7951203B2 (en) Interbody fusion device
US10512548B2 (en) Intervertebral implant with fixation geometry
US20060241760A1 (en) Spinal implant
EP2065016A1 (en) Trans-vertebral and intra-vertebral plate and fusion cage device for spinal interbody fusion and method of operation
US20230165690A1 (en) Spinal implant device
CN113747862A (en) Spinal implant system and method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION