US20130047757A1 - Bending apparatus - Google Patents

Bending apparatus Download PDF

Info

Publication number
US20130047757A1
US20130047757A1 US13/596,294 US201213596294A US2013047757A1 US 20130047757 A1 US20130047757 A1 US 20130047757A1 US 201213596294 A US201213596294 A US 201213596294A US 2013047757 A1 US2013047757 A1 US 2013047757A1
Authority
US
United States
Prior art keywords
pulley
disposed
members
bending
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/596,294
Inventor
Yasuhiro Okamoto
Hiroki Moriyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Medical Systems Corp
Original Assignee
Olympus Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp filed Critical Olympus Medical Systems Corp
Assigned to OLYMPUS MEDICAL SYSTEMS CORP. reassignment OLYMPUS MEDICAL SYSTEMS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORIYAMA, HIROKI, OKAMOTO, YASUHIRO
Publication of US20130047757A1 publication Critical patent/US20130047757A1/en
Priority to US14/631,459 priority Critical patent/US9936860B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0057Constructional details of force transmission elements, e.g. control wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00066Proximal part of endoscope body, e.g. handles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/0016Holding or positioning arrangements using motor drive units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0052Constructional details of control elements, e.g. handles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/18832Reciprocating or oscillating to or from alternating rotary including flexible drive connector [e.g., belt, chain, strand, etc.]
    • Y10T74/18848Reciprocating or oscillating to or from alternating rotary including flexible drive connector [e.g., belt, chain, strand, etc.] with pulley
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20396Hand operated
    • Y10T74/20402Flexible transmitter [e.g., Bowden cable]
    • Y10T74/2042Flexible transmitter [e.g., Bowden cable] and hand operator

Definitions

  • the present invention relates to a bending apparatus in which, by performing a tilt operation that changes a tilt direction and a tilt angle of an operation element provided in an operation portion, it is possible to move a pulling member and effect a bending operation of a bending portion provided in an insertion portion.
  • endoscopes that include an elongated insertion portion are being utilized in a medical field and an industrial field.
  • Endoscopes utilized in the medical field are used to perform observation and the like by inserting the insertion portion into a body from an oral cavity or an anus or the like.
  • an observation can be conducted by inserting the insertion portion into a pipe of a boiler or inside an engine or the like.
  • an endoscope In an endoscope, generally, in order to be able to point an observation optical system provided in a distal end portion of the insertion portion in a desired direction, a bending portion that bends, for example, in the vertical and lateral directions is provided on a distal end side of the insertion portion.
  • a bending knob for effecting a bending operation of the bending portion is pivotably arranged in an operation portion that is provided at a proximal end of the insertion portion.
  • An angle wire is connected at a predetermined position of the bending portion and at a predetermined position of the bending operation knob.
  • the configuration is such that when an operator rotates the bending operation knob clockwise or counterclockwise using fingers of a hand that is grasping the operation portion, the angle wire is pulled or slackened and the bending portion bends.
  • an endoscope having this configuration is referred to as a “conventional endoscope.”
  • endoscopes have been proposed which have driving means that is provided inside an operation portion of the endoscope, and in which a bending operation of a bending portion can be effected by operating an operation element that is a bending mechanism with a single finger.
  • an endoscope is illustrated in which a bending pipe is bent vertically and laterally by operating a joystick that is an operation element provided in a casing.
  • a controller converts the tilt operation into a bending angle in a vertical or lateral direction, and drives a driving actuator for vertical bending and/or a driving actuator for lateral bending. Thereupon, a wire is pulled/slackened by the driving force of the actuator and the bending portion performs a bending operation. Therefore, the surgeon can easily adjust the bending portion of the distal end portion.
  • Japanese Patent Application Laid-Open Publication No. 2003-325437 discloses an endoscope that is equipped with a pulling member operation apparatus with which it is possible to effect a bending operation of a bending portion by tilting an operation instruction lever as an operation element using a slight amount of operation force thereby to directly move a desired pulling member by a desired amount.
  • this endoscope by tilting a bending lever thereby to change a tension state of an operation wire that corresponds to the tilt operation direction that is fixed to an arm member, a drag between the operation wire and a pulley that is being rotated by a motor is changed. Thereupon, the operation wire is moved in the direction of rotation of the pulley and the bending portion bends.
  • the relevant wire is directly pulled when a tilt operation of the bending lever is performed.
  • operability is obtained such that, for example, when the distal end portion contacts against living tissue during a bending operation, the amount of tilt operation force increases along with an increase in a load that is applied to the relevant wire, and thus the above described problem can be solved.
  • Japanese Patent Application Laid-Open Publication No. 2010-207598 discloses an endoscope equipped with the pulling member operation apparatus described in Japanese Patent Application Laid-Open Publication No. 2003-325437.
  • An operation portion of this endoscope includes an operation portion body, and a grasping portion that is provided on a side opposite to an insertion portion of the operation portion body so that an axis direction intersects with an insertion axis of the insertion portion and inclines downward relative to the insertion axis.
  • a bending operation lever of this endoscope protrudes from a middle position on a front surface side of the operation portion body that is a position at which an operation can be performed with the thumb. Further, in this endoscope, a plurality of operation switches are disposed on a front surface side of the operation portion body on the grasping portion side that is in the vicinity of the bending operation lever.
  • a bending apparatus includes: a bending portion; a grasping portion that is included in an operation portion and has a longitudinal axis, and that is grasped when effecting a bending operation of the bending portion; an operation element that is erected vertically from the operation portion, and that has a shaft portion in which a tilt direction and a tilt angle are changeable; a pulling member having one end connected to the bending portion; a pulley that is disposed at a position that is deviated in the longitudinal axis direction relative to the operation element, and on which a rotary body around which an intermediate portion of the pulling member is wound is arranged in a loosely fitting state; a motor that is disposed at a position that is deviated in the longitudinal axis direction relative to the operation element, and that generates a driving force that rotates the pulley to pull the pulling member that is wound around the rotary body arranged on the pulley in a winding direction; a hanging frame that extends in
  • FIG. 1 to FIG. 5 relate to a first embodiment of the present invention, in which:
  • FIG. 1 is a view that illustrates an endoscope in which an operation element included in a pulling member operation apparatus is erected vertically in an operation portion;
  • FIG. 2 is a view that illustrates a configuration of a pulling member operation apparatus that contains a motor and a pulley in an operation portion that includes a grasping portion and an operation portion body;
  • FIG. 3 is a view that illustrates a rotary body
  • FIG. 4 is a view that mainly illustrates a configuration of the motor and the pulley of the pulling member operation apparatus as viewed from an arrow Y 4 direction in FIG. 2 ;
  • FIG. 5 is a view that mainly illustrates a configuration of an attachment path setting member and a hanging frame of the pulling member operation apparatus as viewed from the arrow Y 4 direction in FIG. 2 .
  • FIG. 6 to FIG. 9 relate to an application example of the present invention, in which:
  • FIG. 6 is a view that illustrates a pulling member operation apparatus that includes two pulleys that are arranged on two pulley shafts that are provided in a perpendicular positional relationship with respect to a motor shaft, and a driving force transmitting mechanism portion that transmits a driving force of the motor to the two pulleys;
  • FIG. 7 is a view that illustrates a relation between the two pulleys and a plurality of guide rollers as viewed from an arrow Y 7 direction in FIG. 6 ;
  • FIG. 8 is a view that illustrates a different relation between a plurality of guide rollers, two pulleys, and rotary bodies;
  • FIG. 9 is a view that illustrates a relation between rotary bodies that are disposed on two pulleys and guide rollers as viewed from an arrow Y 9 direction in FIG. 8 .
  • FIG. 10 to FIG. 15 relate to a second embodiment of the present invention, in which:
  • FIG. 10 is a view that illustrates another configuration of a pulling member operation apparatus that contains a motor and a pulley in an operation portion that includes a grasping portion and an operation portion body;
  • FIG. 11 is a view that illustrates the pulling member operation apparatus as viewed from an arrow Y 11 direction in FIG. 10 ;
  • FIG. 12 is a view that illustrates a configuration example of a second guide roller, a third guide roller, and a plurality of rotary bodies disposed on a pulley as viewed from the direction of a line indicated by arrows Y 12 -Y 12 in FIG. 10 ;
  • FIG. 13 is a view that illustrates a configuration example of a plurality of second guide rollers, a plurality of third guide rollers, and a plurality of rotary bodies disposed on a pulley as viewed from the direction of a line indicated by arrows Y 13 -Y 13 in FIG. 10 , that is a modification example of the arrangement positions of guide rollers;
  • FIG. 14 is a view that illustrates a pulley having a configuration that includes a plurality of shaft bodies, that is a modification example of a pulley;
  • FIG. 15 is a view that illustrates the pulley as viewed from the direction of a line indicated by arrows Y 15 -Y 15 in FIG. 14 .
  • FIG. 16 to FIG. 24 relate to a third embodiment of the present invention, in which:
  • FIG. 16 is a view that illustrates an operation portion that includes a pulling member operation apparatus in which a motor having a motor shaft that is disposed so as to be orthogonal to a longitudinal axis of the operation portion, and a pulley having a pulley shaft that is disposed so as to be orthogonal to the longitudinal axis are contained in an operation portion body;
  • FIG. 17 is a view that illustrates the pulling member operation apparatus that is provided inside the operation portion body
  • FIG. 18 is a perspective view that illustrates the configuration of the pulling member operation apparatus
  • FIG. 19 is a top view of the pulling member operation apparatus illustrated in FIG. 18 ;
  • FIG. 20 is a side view of the pulling member operation apparatus illustrated in FIG. 18 ;
  • FIG. 21 is a top view of a pulling member operation apparatus in which the arrangement positions of the guide rollers are different;
  • FIG. 22 is a side view of the pulling member operation apparatus illustrated in FIG. 21 ;
  • FIG. 23 is a top view of a pulling member operation apparatus in which coil pipes are used as travel path changing members.
  • FIG. 24 is a side view of the pulling member operation apparatus shown in FIG. 23 .
  • FIG. 25 is a view that illustrates a configuration example of a pulling member operation apparatus that is disposed inside a connector that is provided in a proximal end portion of a universal cord in which a pulley and a motor are outside an operation portion.
  • FIG. 1 to FIG. 5 A first embodiment will now be described referring to FIG. 1 to FIG. 5 .
  • an endoscope 1 of the present embodiment includes an elongated insertion portion 2 , an operation portion 3 that is connected in series to a proximal end of the insertion portion 2 , and a universal cord 4 that extends from a side portion of the operation portion 3 .
  • the insertion portion 2 includes a distal end portion 2 a , a bending portion 2 b , and a flexible tube portion 2 c that are connected in series in that order from the distal end side.
  • An image pickup apparatus (unshown) that includes an image pickup device is contained inside the distal end portion 2 a .
  • the bending portion 2 b is configured to be capable of bending in, for example, the vertical and lateral directions.
  • the flexible tube portion 2 c is long and has flexibility.
  • the operation portion 3 includes a grasping portion 3 a and an operation portion body 3 b .
  • the grasping portion 3 a is connected in series to the insertion portion 2
  • the operation portion body 3 b is connected in series to the grasping portion 3 a .
  • the longitudinal axis of the grasping portion 3 a and the insertion axis of the insertion portion 2 are in a coaxial or a parallel positional relationship with each other.
  • An operation element 5 configured to cause the bending portion 2 b to perform a bending operation is provided at a position corresponding to a portion at which the largest amount of vacant space exists on the distal end side of the operation portion body 3 b .
  • the longitudinal axis of the operation portion body 3 b (also referred to as “longitudinal axis of the operation portion 3 ”) and the longitudinal axis of the grasping portion 3 a are in a coaxial or a parallel positional relationship with each other.
  • the operation element 5 is provided in a manner that intersects with the longitudinal axis of the operation portion 3 from an operation element protrusion port (unshown) that is an opening provided in one face of the operation portion body 3 b.
  • the bending portion 2 b is configured so as to bend in accordance with a tilt operation that includes a tilt direction and a tilt angle of the operation element 5 , as shown by the arrows Yu, Yd, Yl, and Yr in FIG. 1 . More specifically, in accordance with a tilting operation of the operation element 5 , a bending operation wire (hereunder, abbreviated to “bending wire”) that is described later is pulled/slackened and the bending portion 2 b bends in the upward direction, the right direction, the downward direction, the left direction, a direction between the upward direction and the right direction, or the like.
  • a bending operation wire hereunder, abbreviated to “bending wire”
  • the bending portion 2 b is configured to bend in the four directions of upward, downward, left and right. However, the bending portion 2 b may be configured to bend only in the upward and downward directions.
  • the aforementioned reference characters “u,” “d,” “l” and “r” denote the upward, downward, left and right directions that are the bending directions of the bending portion 2 b .
  • reference symbol “ 8 u ” denotes a wire for upward bending
  • reference symbol “ 9 d ” denotes a rotary body for the downward direction.
  • small letter “l” is shown in cursive style.
  • a switch 6 a an air/water supply button 6 b , and a suction button 6 c are provided at predetermined positions on the exterior of the operation portion body 3 b , in addition to the operation element 5 .
  • the switch 6 a is operated, for example, to input an instruction to perform various kinds of image pickup operations of the image pickup apparatus provided inside the distal end portion 2 a .
  • a channel insertion port 6 d that communicates with a treatment instrument channel (unshown) is provided on the exterior of the grasping portion 3 a.
  • the operation element 5 is provided at a position at which the operation element 5 is operated by a thumb of the hand which grasps the operation portion 3 in a case where the operator grasps the grasping portion 3 a of the operation portion 3 with the left hand in the same manner as for a conventional endoscope
  • the air/water supply button 6 b and the suction button 6 c are provided at positions at which the air/water supply button 6 b and the suction button 6 c are operated by fingers other than the thumb of the hand with which the operator grasps the operation portion 3
  • the switch 6 a is provided at a position at which the switch 6 a can be operated by the thumb or another finger of the hand with which the operator grasps the operation portion 3 .
  • Reference numeral 7 in FIG. 1 and FIG. 2 denotes a cover member.
  • the cover member 7 blocks the operation element protrusion port in a watertight state, and adheres to a shaft portion 5 a to retain the operation element 5 in a manner that enables a tilt operation thereof.
  • a signal cable, an electric wire, a light guide fiber bundle, an air supply tube, a water supply tube, a suction tube and the like are inserted through the inside of the universal cord 4 .
  • the signal cable is connected to the image pickup apparatus.
  • the electric wire supplies electric power to a motor that is described later (see reference numeral 12 in FIG. 2 ).
  • the light guide fiber bundle transmits illuminating light of a light source apparatus.
  • a pulling member operation apparatus 10 is provided inside the operation portion 3 .
  • the pulling member operation apparatus 10 is mainly constituted by four bending wires 8 , an elongated pulley 11 on which four rotary bodies 9 are arranged, a motor 12 that is driving means, a substantially cruciform shaped hanging frame 13 , the operation element 5 , and a guide roller set 21 that includes a plurality of guide rollers that is described later.
  • the bending wires 8 are pulling members. An intermediate portion of each wire 8 is wound around each rotary body 9 , respectively.
  • the motor 12 has a driving force that causes a predetermined rotary body 9 arranged on the pulley 11 to rotate with a predetermined torque at the time of a bending operation.
  • the hanging frame 13 has wire attachment portions to which the proximal end portions of the respective wires 8 are respectively connected.
  • the shaft portion 5 a of the operation element 5 is integrally connected to the hanging frame 13 .
  • the plurality of guide rollers of the guide roller set 21 are wire travel path changing members that change a travel path of the four wires 8 inside the operation portion 3 .
  • reference numeral 51 denotes a signal cable
  • reference numeral 52 denotes a light guide cable
  • reference numeral 53 denotes a coil pipe stopper
  • reference numeral 59 denotes a partition plate.
  • the present embodiment is configured so that the center of gravity of the operation portion 3 is positioned inside the grasping portion 3 a.
  • the four bending wires 8 include a pair of a wire for upward bending (hereunder, referred to as “upward bending wire”) 8 u and a wire for downward bending (hereunder, referred to as “downward bending wire”) 8 d that are used for bending operations in the upward and downward directions, and a pair of a wire for left bending (hereunder, referred to as “left bending wire”) 8 l and a wire for right bending (hereunder, referred to as “right bending wire”) 8 r that are used for bending operations in the left and right directions.
  • the longitudinal axis of the pulley 11 and the longitudinal axis of the motor 12 intersect. More specifically, a drive shaft of the motor 12 is disposed at a predetermined position inside the grasping portion 3 a so as to be in a parallel positional relationship with respect to the longitudinal axis of the grasping portion 3 a .
  • a motor shaft 12 b of the motor 12 and a pulley shaft 11 b that is a rotary shaft of the pulley 11 are set so as to be disposed in a perpendicular positional relationship with each other.
  • the pulley 11 and the motor 12 are disposed in respectively different spaces inside the operation portion 3 that is partitioned by the partition plate 59 , in a manner that interposes the partition plate 59 therebetween.
  • the configuration is such that a driving force of the motor 12 is transmitted to the pulley 11 by a driving force transmitting mechanism portion 30 .
  • the driving force transmitting mechanism portion 30 includes a first bevel gear 31 and a second bevel gear 32 .
  • the first bevel gear 31 is integrally fixed to the shaft portion 12 a of the motor 12 .
  • the second bevel gear 32 is integrally fixed to the shaft portion 11 a of the pulley 11 . According to this configuration, the pulley 11 is rotated around its axis when the driving force of the motor 12 is transmitted to the shaft portion 11 a through the bevel gears 31 and 32 .
  • the rotary body 9 is elastically deformable. As shown in FIG. 3 , the rotary body 9 includes, for example, an annular portion 9 a and a rotation amount adjustment portion 9 b . A gap 9 c is formed in the annular portion 9 a of the rotary body 9 . An unshown wire guide portion is formed in the annular portion 9 a and the rotation amount adjustment portion 9 b . The wire guide portion is configured in a predetermined shape so as to smoothly guide the relevant wire 8 from a winding start position 9 s to a winding end position 9 e .
  • rotary bodies 9 u , 9 d , 9 l , and 9 r are disposed in a predetermined loosely fitting state on the outer circumferential face of the pulley 11 , and each of the rotary bodies 9 u , 9 d , 9 l , and 9 r rotates independently.
  • the hanging frame 13 shown in FIG. 5 is disposed so as to be in a predetermined positional relationship within a vacant space on the distal end side of the operation portion body 3 b shown in FIG. 2 .
  • the hanging frame 13 includes four frames 13 u , 13 d , 13 l , and 13 r , and is formed in a substantially cruciform shape.
  • a frame for an upward direction (hereunder, referred to as “upward frame”) 13 u and a frame for a downward direction (hereunder, referred to as “downward frame”) 13 d that correspond to the pair of bending wires 8 u and 8 d are collinearly disposed in a manner that interposes the shaft portion 5 a therebetween.
  • An upward wire attachment portion 13 u 2 is provided at an end portion of the upward frame 13 u
  • a downward wire attachment portion 13 d 2 is provided at an end portion of the downward frame 13 d.
  • a frame for a left direction (hereunder, referred to as “left frame”) 13 l and a frame for a right direction (hereunder, referred to as “right frame”) 13 r that correspond to the pair of bending wires 8 l and 8 r are collinearly disposed in a perpendicular manner with respect to an upward/downward frame center line (hereunder, referred to as “frame center line”) 13 a in a manner that interposes the shaft portion 5 a therebetween.
  • a left wire attachment portion 13 l 2 is provided at an end portion of the left frame 13 l
  • a right wire attachment portion 13 r 2 is provided at an end portion of the right frame 13 r.
  • the upward frame 13 u includes, at an end portion thereof, an upward frame distal end curved portion 13 ub that is curved in one direction relative to the frame center line 13 a .
  • the downward frame 13 d includes, at an end portion thereof, a downward frame distal end curved portion 13 db that is curved in one direction relative to the frame center line 13 a.
  • the upward wire attachment portion 13 u 2 is provided in the upward frame distal end curved portion 13 ub
  • the downward wire attachment portion 13 d 2 is provided in the downward frame distal end curved portion 13 db .
  • an interval w 1 in a direction that is orthogonal to the longitudinal axis of the operation portion 3 between the upward wire attachment portion 13 u 2 and the downward wire attachment portion 13 d 2 is set to a predetermined size.
  • the upward frame 13 u and the upward wire attachment portion 13 u 2 and the like are components that are set by taking into consideration the tilt directions of the operation element 5 and the bending directions of the bending portion 2 b .
  • a configuration is adopted such that when the operation element 5 is tilted in the arrow Yu direction in FIG. 1 , the upward wire attachment portion 13 u 2 sways and is tilted in the arrow Yu direction in FIG. 5 and the bending portion 2 b bends in the upward direction.
  • the downward wire attachment portion 13 d 2 sways and is tilted in the arrow Yd direction in FIG.
  • the operation element 5 and the bending portion 2 b bends in the downward direction.
  • the left wire attachment portion 13 l 2 sways and is tilted in the arrow Yl direction in FIG. 5 and the bending portion 2 b bends in the left direction.
  • the operation element 5 is tilted in the arrow Yr direction in FIG. 1
  • the right wire attachment portion 13 r 2 sways and is tilted in the arrow Yr direction in FIG. 5 and the bending portion 2 b bends in the right direction.
  • the hanging frame 13 is disposed at a predetermined position inside the operation portion 3 so that the frame center line 13 a and the longitudinal axis of the grasping portion 3 a are parallel.
  • the guide roller set 21 includes a roller shaft 21 p and four guide rollers 21 u , 21 d , 21 l , and 21 r .
  • the roller shaft 21 p is a support body that is, for example, a cylindrical shape.
  • the four guide rollers 21 u , 21 d , 21 l , and 21 r are pivotably disposed on the roller shaft 21 p.
  • the four guide rollers 21 u , 21 d , 21 l , and 21 r correspond to the four bending wires 8 u , 8 d , 8 l , and 8 r , respectively.
  • the four guide rollers 21 u , 21 d , 21 l , and 21 r are provided at positions that are separated by a predetermined distance from the pulley 11 and the hanging frame 13 .
  • the four guide rollers 21 u , 21 d , 21 l and 21 r are attachment path setting members that guide the four bending wires 8 u , 8 d , 8 l , and 8 r to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 , and 13 r 2 of the hanging frame 13 .
  • the roller shaft 21 p is disposed at a predetermined position directly below the shaft portion 5 a , in an intersecting positional relationship with respect to the longitudinal axis of the grasping portion 3 a .
  • the center of the roller shaft 21 p is positioned on the central axis of the shaft portion 5 a in an upright state.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r are configured so as to arrive at the upward wire attachment portion 13 u 2 , the downward wire attachment portion 13 d 2 , the left wire attachment portion 13 l 2 and the right wire attachment portion 13 r 2 of the hanging frame 13 , respectively, after the respective travel paths of the bending wires 8 u , 8 d , 8 l and 8 r have been changed by the guide rollers 21 u , 21 d , 21 l and 21 r.
  • the guide rollers 21 will now be described referring to FIG. 5 .
  • the four guide rollers 21 u , 21 d , 21 l and 21 r are disposed in the order of guide rollers 21 r , 21 d , 21 u and 21 l as shown by the arrow Y 5 a in FIG. 5 with respect to the roller shaft 21 p.
  • an interval between the center of the guide roller 21 u and the center of the guide roller 21 d is set to an interval w 1 that is an interval between the upward wire attachment portion 13 u 2 and the downward wire attachment portion 13 d 2 .
  • a relation w 4 >w 5 is set with respect to an interval w 4 between the left wire attachment portion 13 l 2 and the right wire attachment portion 13 r 2 , and an interval w 5 between an outer end of the left guide roller 21 l disposed on the roller shaft 21 p and an outer end of the right guide roller 21 r disposed on the roller shaft 21 p.
  • the four rotary bodies 9 disposed on the pulley 11 are disposed in the order of rotary bodies 9 r , 9 d , 9 u and 9 l as shown by the arrow Y 4 a in FIG. 4 .
  • the respective proximal end portions of the four bending wires 8 u , 8 d , 8 l and 8 r are fixed to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 that are at predetermined positions of the hanging frame 13 .
  • the respective distal end portions of the bending wires 8 u , 8 d , 8 l and 8 r are fixed at positions corresponding to up, down, left and right of unshown distal end bending pieces that are included in the bending portion 2 b .
  • the distal end bending pieces are bending pieces that constitute the most distal end of a bending portion set that is configured so as to bend in the vertical and lateral directions, in which a plurality of unshown bending pieces included in the bending portion 2 b are connected in series.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r are inserted so as to freely advance and retract inside guides 24 that are formed, for example, with coil pipes made of metal that have through-holes that correspond to the wires 8 u , 8 d , 8 l and 8 r inside the insertion portion 2 , respectively.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that are fixed to the distal end bending pieces extend inside the operation portion 3 through the guides 24 .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r are wound around the rotary bodies 9 u , 9 d , 9 l and 9 r disposed on the pulley 11 , respectively. More specifically, each of the bending wires 8 u , 8 d , 8 l and 8 r are wound around the rotary bodies 9 u , 9 d , 9 l and 9 r so as to be in a predetermined slackened state from the respective winding start positions 9 s of the corresponding rotary body 9 u , 9 d , 9 l or 9 r .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that are led from the respective rotary bodies 9 u , 9 d , 9 l and 9 r are guided to the respective guide rollers 21 u , 21 d , 21 l and 21 r , and the wire travel paths are changed thereby so that the bending wires 8 u , 8 d , 8 l and 8 r are guided to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 provided in the hanging frame 13 .
  • the respective proximal end portions of the bending wires 8 u , 8 d , 8 l and 8 r are fixed to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 .
  • the width dimensions of the guide rollers 21 l and 21 r are set so as to be wider than the width dimensions of the guide rollers 21 u and 21 d , and the interval w 4 is set so as to be greater than the interval w 5 .
  • the bending wires 8 l and 8 r pass smoothly through the guide rollers 21 l and 21 r and are guided to the wire attachment portions 13 l 2 and 13 r 2 .
  • the shaft portion 5 a of the operation element 5 and a frame convex portion 13 f that is a central shaft of the hanging frame 13 are coaxially mounted and fixed through a pivotably arranged universal joint 14 to an unshown frame.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that extend from the guide rollers 21 u , 21 d , 21 l and 21 r towards the hanging frame 13 are all in a predetermined slackened state.
  • Reference symbol 5 b denotes a finger contact portion that is a spherical shape.
  • the finger contact portion 5 b is integrally fixed to a distal end of the shaft portion 5 a.
  • a configuration may also be adopted in which a partition member is provided between adjacent bending wires 8 , to thereby prevent the bending wires 8 from tangling together.
  • the motor shaft 12 b of the motor 12 is disposed parallel to the longitudinal axis of the grasping portion 3 a , and the pulley shaft 11 b of the pulley 11 is made orthogonal to the motor shaft 12 b of the motor 12 .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that are led inside the operation portion 3 and travel towards the proximal end side of the operation portion 3 are wound around the respective rotary bodies 9 u , 9 d , 9 l and 9 r disposed on the pulley 11 from the respective winding start positions 9 s .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r are wound around the respective rotary bodies 9 u , 9 d , 9 l and 9 r in a slackened state and led out from the respective winding end positions.
  • the bending wires 8 u , 8 d , 8 l and 8 r that are led out are guided towards the guide rollers 21 u , 21 d , 21 l and 21 r . Thereafter, the travel path of the bending wires 8 u , 8 d , 8 l and 8 r is changed by the guide rollers 21 u , 21 d , 21 l and 21 r , respectively, and the bending wires 8 u , 8 d , 8 l and 8 r are led to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 of the hanging frame 13 and fixed thereto.
  • each of the bending wires 8 u , 8 d , 8 l and 8 r that are wound around the rotary bodies 9 u , 9 d , 9 l and 9 r disposed on the pulley 11 enters a predetermined slackened state.
  • all of the rotary bodies 9 u , 9 d , 9 l and 9 r enter a sliding state with respect to the pulley 11 , and the bending portion 2 b is maintained in a straight state.
  • the operator places the ball of the thumb on the finger contact portion 5 b of the operation element 5 and tilts the shaft portion 5 a in the direction of the arrow Yu in FIG. 1 .
  • the hanging frame 13 inclines, and the upward bending wire 8 u fixed to the upward wire attachment portion 13 u 2 gradually changes from a slackened state to a tensed state.
  • the other bending wires 8 d , 8 l and 8 r change to a state in which the bending wires 8 d , 8 l and 8 r are more slackened.
  • each of the bending wires 8 d , 8 l and 8 r is in a slackened state. Accordingly, by continuing to retain the operation element 5 in this tilt operation state, the tensed state of the upward bending wire 8 u and the slackened states of the bending wires 8 d , 8 l and 8 r are retained, respectively, and the bending portion 2 b is maintained in a bent state that corresponds to the tilt operation.
  • the operator performs a tilt operation with respect to the operation element 5 to bend the bending portion 2 b further in the same direction, to bend the bending portion 2 b in another direction, or to return the bending portion 2 b to the original state thereof.
  • the bending wires 8 u , 8 d , 8 l and 8 r are pulled or slackened in accordance with the tilt operation, a change arises in the loosely fitting state or the closely contacting state of the pulley 11 and the rotary bodies 9 that correspond to the bending wires 8 , and the bending portion 2 b changes to a state that corresponds to the tilt operation of the operation element 5 .
  • the end portions of the respective bending wires 8 u , 8 d , 8 l and 8 r are fixed to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 of the hanging frame 13 that is fixed to the shaft portion 5 a of the operation element 5 , by using the guide roller set 21 to change the wire travel paths of the respective bending wires 8 u , 8 d , 8 l and 8 r that are led inside the operation portion 3 .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r can be smoothly pulled or slackened by a tilt operation of the operation element 5 .
  • the operator can easily operate not just the operation element 5 , but also the air/water supply button 6 b , the suction button 6 c and the switch 6 a.
  • FIG. 6 is a view that illustrates the configuration of a pulling member operation apparatus including pulleys that are provided in a perpendicular positional relationship with respect to a motor shaft.
  • FIG. 7 is a view that illustrates a relation between a plurality of guide rollers, two pulleys, and rotary bodies as viewed from an arrow Y 7 direction in FIG. 6 .
  • FIG. 8 is a view that illustrates a different relation between a plurality of guide rollers, two pulleys, and rotary bodies.
  • FIG. 9 is a view that illustrates guide rollers and rotary bodies as viewed from an arrow Y 9 direction in FIG. 8 .
  • a pulling member operation apparatus 10 A of the present embodiment includes two pulleys 11 A 1 and 11 A 2 , a driving force transmitting mechanism portion 30 A, the four bending wires 8 , the four rotary bodies 9 , the motor 12 , the hanging frame 13 (not shown in FIG. 6 and FIG. 7 ) and the operation element 5 (not shown in FIG. 6 and FIG. 7 ) that are described above, and a plurality of guide roller sets 21 , 22 and 23 .
  • the first pulley 11 A 1 and the second pulley 11 A 2 are disposed at predetermined positions in a parallel positional relationship with each other.
  • the travel paths of the respective bending wires 8 u , 8 d , 8 l and 8 r are changed by the plurality of guide roller sets 21 , 22 and 23 .
  • the plurality of guide roller sets 21 , 22 and 23 each include wire travel path changing members.
  • a first guide roller set 21 is an attachment path setting member that includes the above described guide rollers 21 u , 21 d , 21 l and 21 r as first wire travel path changing members, and is not shown in FIG. 6 and FIG. 7 .
  • a second guide roller set 22 includes second guide rollers 22 u , 22 d , 22 l and 22 r , described later, as second wire travel path changing members.
  • a third guide roller set 23 includes third guide rollers 23 u , 23 d , 23 l and 23 r , described later, as third wire travel path changing members.
  • the guide rollers 21 u , 21 d , 21 l and 21 r are the first guide rollers 21 u , 21 d , 21 l and 21 r.
  • Reference numerals 54 and 55 denote pulley shafts
  • reference numerals 56 a , 56 b , 57 a and 57 b denote roller shafts.
  • the first pulley 11 A 1 is pivotably attached to a first pulley shaft 54 that is provided orthogonal to the longitudinal axis of the grasping portion 3 a that is fixed to the partition plate 59 .
  • the second pulley 11 A 2 is pivotably attached to a second pulley shaft 55 that is provided orthogonal to the longitudinal axis of the grasping portion 3 a that is fixed to the partition plate 59 .
  • the motor shaft 12 b of the motor 12 and the pulley shafts 54 and 55 are set in a perpendicular positional relationship with each other. Further, the configuration is such that the driving force of the motor 12 is transmitted to the pulleys 11 A 1 and 11 A 2 by the driving force transmitting mechanism portion 30 A.
  • the driving force transmitting mechanism portion 30 A is a gear train, and in addition to the first bevel gear 31 and the second bevel gear 32 , includes a first spur gear 33 , a second spur gear 34 , and a third spur gear 35 .
  • the first bevel gear 31 is fixed to the shaft portion 12 a of the motor 12 .
  • the second bevel gear 32 and the first spur gear 33 are fixed to predetermined positions of a gear shaft 36 that is pivotably supported by the partition plate 59 .
  • the second bevel gear 32 is fixed to an end portion of the gear shaft 36 , and intermeshes with the first bevel gear 31 .
  • the first spur gear 33 is fixed to a predetermined position on the other end portion side of the gear shaft 36 .
  • the second spur gear 34 is fixed to the second pulley 11 B, and intermeshes with the first spur gear 33 .
  • the third spur gear 35 is fixed to the first pulley 11 A, and intermeshes with the second spur gear 34 .
  • the single motor 12 and the two pulleys 11 A 1 and 11 A 2 can be disposed in different spaces inside the operation portion 3 , in manner that interposes the partition plate 59 therebetween.
  • first pulley 11 A 1 and the second pulley 11 A 2 rotate in different directions. More specifically, the first pulley 11 A 1 shown in FIG. 7 rotates clockwise, and the second pulley 11 A 2 shown in FIG. 7 rotates counterclockwise.
  • a rotary body for the left direction (hereunder, referred to as “left rotary body”) 9 l and a rotary body for the right direction (hereunder, referred to as “right rotary body”) 9 r are disposed at predetermined positions with a predetermined interval therebetween on the first pulley 11 A 1 .
  • the upward rotary body 9 u and a rotary body for the downward direction (hereunder, referred to as “downward rotary body”) 9 d are disposed at predetermined positions on the second pulley 11 A 2 with an interval therebetween that is the same as the interval between the left rotary body 9 l and the right rotary body 9 r.
  • the winding start position 9 s of the left rotary body 9 l and the winding start position 9 s of the right rotary body 9 r that are disposed on the first pulley 11 A 1 are set on the upper side in the drawing.
  • the winding start position 9 s of the upward rotary body 9 u and the winding start position 9 s of the downward rotary body 9 d that are disposed on the second pulley 11 A 2 are set on the lower side in the drawing. Consequently, the winding direction of the bending wires 8 u and 8 d and the winding direction of the bending wires 8 l and 8 r are opposite directions to each other.
  • the second guide roller set 22 includes a second guide roller set for the upward/downward directions (hereunder, referred to as “second upward/downward guide roller set”) 22 A, and a second guide roller set for the left/right directions (hereunder, referred to as “second left/right guide roller set”) 22 B.
  • the second upward/downward guide roller set 22 A includes a second roller shaft for the upward/downward directions (hereunder, referred to as “second upward/downward roller shaft) 56 a as one first support body, and the second guide rollers 22 u and 22 d .
  • the second guide rollers 22 u and 22 d are pivotably disposed on the second upward/downward roller shaft 56 a , respectively.
  • the second left/right guide roller set 22 B includes a second roller shaft for the left/right directions 56 b as the other first support body, and the second guide rollers 22 l and 22 r .
  • the second guide rollers 22 l and 22 r are pivotably disposed on the second roller shaft for the left/right directions 56 b , respectively.
  • the second guide rollers 22 u and 22 d of the second upward/downward guide roller set 22 A are disposed so as to correspond to the winding start positions 9 s that are set on the lower side in the drawings of the upward rotary body 9 u and the downward rotary body 9 d that are disposed on the second pulley 11 A 2 .
  • the second guide rollers 22 l and 22 r of the second left/right guide roller set 22 B are disposed so as to correspond to the winding start positions 9 s that are set on the upper side in the drawings of the left rotary body 9 l and the right rotary body 9 r that are disposed on the first pulley 11 A 1 .
  • the respective second guide rollers 22 u , 22 d , 22 l and 22 r are pulley lead-in members that guide the respective bending wires 8 u , 8 d , 8 l and 8 r to the pulleys 11 A 1 and 11 A 2 .
  • the third guide roller set 23 includes a third guide roller set for the upward/downward directions (hereunder, referred to as “third upward/downward guide roller set”) 23 A and a third guide roller set for the left/right directions (hereunder, referred to as “third left/right guide roller set”) 23 B.
  • the third upward/downward guide roller set 23 A includes a third roller shaft for the upward/downward directions 57 a as one second support body, and the third guide rollers 23 u and 23 d .
  • the third guide rollers 23 u and 23 d are pivotably disposed on the third roller shaft for the upward/downward directions 57 a.
  • the third left/right guide roller set 23 B includes a third roller shaft for the left/right directions 57 b as the other second support body, and the third guide rollers 23 l and 23 r .
  • the third guide rollers 23 l and 23 r are pivotably disposed on the third roller shaft for the left/right directions 57 b.
  • the third guide rollers 23 u and 23 d of the third upward/downward guide roller set 23 A are disposed so as to correspond to the winding end positions 9 e that are set on the lower side in the drawings of the upward rotary body 9 u and the downward rotary body 9 d that are disposed on the second pulley 11 A 2 .
  • the third guide rollers 23 l and 23 r of the third left/right guide roller set 23 B are disposed so as to correspond to the winding end positions 9 e that are set on the upper side in the drawings of the left rotary body 9 l and the right rotary body 9 r that are disposed on the first pulley 11 A 1 .
  • the respective third guide rollers 23 u , 23 d , 23 l and 23 r are pulley lead-out members that guide the respective bending wires 8 u , 8 d , 8 l and 8 r from the pulleys 11 A 1 and 11 A 2 towards a desired direction.
  • the second guide rollers 22 u and 22 d that correspond to the bending wires 8 u and 8 d and the third guide rollers 23 l and 23 r that correspond to the bending wires 8 l and 8 r are disposed at predetermined positions in a positional relationship such that the second guide rollers 22 u and 22 d and the third guide rollers 23 l and 23 r are facing in a manner that interposes therebetween a hypothetical line (see the chain double-dashed line in FIG. 7 ) that links together the centers of the pulley shafts 54 and 55 that are disposed in parallel.
  • a distance w 6 between the winding start positions 9 s of the rotary bodies 9 u and 9 d and the winding start positions 9 s of the rotary bodies 9 l and 9 r is configured so that the winding start positions 9 s of the rotary bodies 9 u and 9 d and the winding start positions 9 s of the rotary bodies 9 l and 9 r are separated by a maximum distance amount of the rotary bodies 9 .
  • the second guide roller 22 r , the right rotary body 9 r , and the third guide roller 23 r are disposed in a straight line, and the second guide roller 21 d , the downward rotary body 9 d , and the third guide roller 23 d are disposed in a straight line.
  • the second guide roller 22 l , the left rotary body 9 l , and the third guide roller 23 l are disposed in a straight line, and the second guide roller 22 u , the upward rotary body 9 u , and the third guide roller 23 u are disposed in a straight line.
  • the bending wires 8 u and 8 d are extended to the lower side in FIG. 7 that is one side inside the operation portion 3 through the guides 24 , and guided to the second guide rollers 22 u and 22 d .
  • the bending wires 8 l and 8 r are extended to the upper side in FIG. 7 that is the other side inside the operation portion 3 through the guides 24 , and guided to the second guide rollers 22 l and 22 r.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r are extended in straight lines to the rotary bodies 9 u , 9 d , 9 l and 9 r from the second guide rollers 22 u , 22 d , 22 l and 22 r , and are extended in straight lines to the third guide rollers 23 u , 23 d , 23 l and 23 r from the rotary bodies 9 u , 9 d , 9 l and 9 r.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that are extended from the third guide rollers 23 u , 23 d , 23 l and 23 r are guided to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 of the hanging frame 13 through the aforementioned first guide rollers 21 u , 21 d , 21 l and 21 r and fixed thereto.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r are smoothly pulled/slackened by a tilt operation of the operation element 5 .
  • the operator tilts the operation element 5 in the arrow Yu direction in FIG. 1 .
  • the hanging frame 13 inclines, and the upward bending wire 8 u fixed to the upward wire attachment portion 13 u 2 gradually changes from a slackened state to a tensed state.
  • the other bending wires 8 d , 8 l and 8 r change to a state in which the bending wires are more slackened.
  • the bending portion 2 b bends further in the upward direction as described above. Further, if the operator continues to maintain the tilt position of the operation element 5 , the tensed state of the upward bending wire 8 u and the slackened state of the bending wires 8 d , 8 l and 8 r that are described above are maintained, and the bent state of the bending portion 2 b is maintained.
  • the bending portion 2 b changes to a state that corresponds to the tilt operation of the operation element 5 .
  • the configuration of the pulling member operation apparatus 10 A includes the two pulleys 11 A 1 and 11 A 2 that are disposed in a perpendicular positional relationship with respect to the motor shaft 12 b , and is provided with the driving force transmitting mechanism portion 30 A that transmits a driving force of the motor 12 to the two pulleys 11 A 1 and 11 A 2 .
  • the bending portion 2 b can be bent by a tilt operation of the operation element 5 which is erected vertically on the operation portion 3 that has a longitudinal axis parallel to the longitudinal axis of the insertion portion 2 , and which intersects with the aforementioned longitudinal axis.
  • the bending wire 8 u that is led inside the operation portion 3 is guided to the first guide roller 21 u by the second guide roller 22 u , the rotary body 9 u , and the third guide roller 23 u that are disposed in a straight line, and is thereafter led to the wire attachment portion 13 u 2 of the hanging frame 13 .
  • the bending wire 8 d is guided to the first guide roller 21 d by the second guide roller 22 d , the rotary body 9 d , and the third guide roller 23 d that are disposed in a straight line, and is thereafter led to the wire attachment portion 13 d 2 of the hanging frame 13 .
  • the bending wire 8 l is guided to the first guide roller 21 l by the second guide roller 22 l , the rotary body 9 l , and the third guide roller 23 l that are disposed in a straight line, and is thereafter led to the wire attachment portion 13 l 2 of the hanging frame 13 .
  • the bending wire 8 r is guided to the first guide roller 21 r by the second guide roller 22 r , the rotary body 9 r , and the third guide roller 23 r that are disposed in a straight line, and is thereafter led to the wire attachment portion 13 r 2 of the hanging frame 13 . Consequently, the bending wire travel paths can be simplified and a load applied to the respective bending wires 8 u , 8 d , 8 l and 8 r can be reduced.
  • the rotary bodies 9 l , 9 r , 9 u and 9 d are disposed on the pulleys 11 A 1 and 11 A 2 so that the winding start positions 9 s of the upward rotary body 9 u and the downward rotary body 9 d disposed on the second pulley 11 A 2 and the winding start positions 9 s of the left rotary body 9 l and the right rotary body 9 r disposed on the first pulley 11 A 1 are separated by the maximum amount. Consequently, it is possible to reliably prevent the wires 8 from tangling together along the wire travel path.
  • a configuration may also be adopted in which the winding start positions 9 s of the upward rotary body 9 u and the downward rotary body 9 d disposed on the second pulley 11 A 2 and the winding start positions 9 s of the left rotary body 9 l and the right rotary body 9 r disposed on the first pulley 11 A 1 are disposed in the same direction.
  • a configuration is adopted in which a fourth gear (not shown) is added between the second spur gear 34 and the third spur gear 35 included in the driving force transmitting mechanism portion 30 A, so that the first pulley 11 A 1 and the second pulley 11 A 2 are rotated in the same direction.
  • an interval between the upward rotary body 9 u and the downward rotary body 9 d that are disposed on the second pulley 11 A 2 is set to a wider width than an interval between the left rotary body 9 l and the right rotary body 9 r that are disposed on the first pulley 11 A 1 .
  • the second guide rollers 22 u , 22 d , 22 l and 22 r and the third guide rollers 23 u , 23 d , 23 l and 23 r are disposed in a predetermined positional relationship with respect to the rotary bodies 9 u , 9 d , 9 l and 9 r.
  • FIG. 10 to FIG. 15 A second embodiment of the present invention will now be described referring to FIG. 10 to FIG. 15 .
  • FIG. 10 is a view that illustrates another configuration of a pulling member operation apparatus that contains a motor and a pulley in an operation portion that includes a grasping portion and an operation portion body.
  • FIG. 11 is a view that illustrates the pulling member operation apparatus as viewed from the arrow Y 11 direction in FIG. 10 .
  • FIG. 12 is a view that illustrates a configuration example of a second guide roller, a third guide roller, and a plurality of rotary bodies disposed on a pulley as viewed from the direction of a line indicated by arrows Y 12 -Y 12 in FIG. 10 .
  • FIG. 10 is a view that illustrates another configuration of a pulling member operation apparatus that contains a motor and a pulley in an operation portion that includes a grasping portion and an operation portion body.
  • FIG. 11 is a view that illustrates the pulling member operation apparatus as viewed from the arrow Y 11 direction in FIG. 10 .
  • FIG. 12 is a view that illustrates a configuration example
  • FIG. 13 is a view that illustrates a configuration example of a plurality of second guide rollers, a plurality of third guide rollers, and a plurality of rotary bodies disposed on a pulley as viewed from the direction of a line indicated by arrows Y 13 -Y 13 in FIG. 10 , that is a modification example of the arrangement positions of guide rollers.
  • FIG. 14 is a view that illustrates a pulley having a configuration that includes a plurality of shaft bodies, that is a modification example of a pulley.
  • FIG. 15 is a view that illustrates the pulley as viewed from the direction of a line indicated by arrows Y 15 -Y 15 in FIG. 14 .
  • a pulling member operation apparatus 10 B that is provided inside an operation portion 3 is mainly constituted by four bending wires 8 , an elongated pulley 11 on which four rotary bodies 9 are arranged, a motor 12 , a hanging frame 13 , an operation element 5 , and a plurality of guide roller sets 21 , 22 and 23 that include a plurality of guide rollers that are wire travel path changing members.
  • the pulley 11 and the motor 12 are disposed at predetermined positions inside the grasping portion 3 a so that the longitudinal axis of the pulley 11 and the drive shaft of the motor 12 are in a parallel positional relationship with respect to the longitudinal axis of the grasping portion 3 a , respectively.
  • the pulley 11 is integrally fixed to a shaft portion 12 a of the motor 12 , and is configured to be directly rotated around its axis by the driving force of the motor 12 .
  • a configuration may also be adopted in which the longitudinal axis of the pulley 11 and the drive shaft of the motor 12 are coaxial with respect to the longitudinal axis of the grasping portion 3 a.
  • the first guide roller set 21 is an attachment path setting member that includes the first guide rollers 21 u , 21 d , 21 l and 21 r that are the aforementioned first wire travel path changing member.
  • the second guide roller set 22 is a pulley lead-in member that includes the second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 that are second wire travel path changing members.
  • the third guide roller set 23 is a pulley lead-out member that includes the third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 that are third wire travel path changing members.
  • the second guide roller set 22 includes, for example, a cylindrical second roller shaft 22 p that is a support body, and second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 that change wire travel paths.
  • the second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 are pivotably disposed on the second roller shaft 22 p.
  • the third guide roller set 23 includes a third roller shaft 23 p , and third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 that change wire travel paths.
  • the third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 are pivotably disposed on the third roller shaft 23 p.
  • the second roller shaft 22 p and the third roller shaft 23 p are disposed at predetermined positions in a parallel positional relationship with respect to the longitudinal axis of the grasping portion 3 a.
  • first roller shaft 21 p the second roller shaft 22 p , and the third roller shaft 23 p may be different members or may be the same member.
  • the travel paths thereof are changed by the second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 of the second guide roller set 22 , and thereafter the respective bending wires 8 u , 8 d , 8 l and 8 r pass through the winding start positions 9 s of the rotary bodies 9 u , 9 d , 9 l and 9 r and are wound around the rotary bodies 9 u , 9 d , 9 l and 9 r , respectively.
  • the travel paths of the respective bending wires 8 u , 8 d , 8 l and 8 r that are led out from the winding end positions 9 e are changed by the third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 of the third guide roller set 23 so that the respective bending wires 8 u , 8 d , 8 l and 8 r travel in the direction of the first guide rollers 21 u , 21 d , 21 l and 21 r of the first guide roller set 21 .
  • the travel paths of the respective bending wires 8 u , 8 d , 8 l and 8 r are changed by the first guide rollers 21 u , 21 d , 21 l and 21 r as described above so that the bending wires 8 u , 8 d , 8 l and 8 r arrive at the upward wire attachment portion 13 u 2 , the downward wire attachment portion 13 d 2 , the left wire attachment portion 13 l 2 , and the right wire attachment portion 13 r 2 of the hanging frame 13 .
  • FIG. 11 in order to describe the positional relation between the respective bending wires 8 u , 8 d , 8 l and 8 r and the respective wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 , the position of the hanging frame 13 is displaced in the right direction in the drawing with respect to the roller shaft 21 p.
  • the first guide rollers 21 u , 21 d , 21 l and 21 r are configured in the same manner as in the above described embodiment and are disposed on the first roller shaft 21 p.
  • the diametrical dimensions thereof are set so that the diametrical dimensions of the second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 increase in the order of second guide roller 22 r 1 , second guide roller 22 d 1 , second guide roller 22 u 1 and second guide roller 22 l 1 .
  • the second roller shaft 22 p is disposed so that the diametrical dimension thereof increases from the insertion portion 2 side toward the operation element 5 side.
  • the diametrical dimensions of the third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 are also different to each other.
  • the diametrical dimensions are set so that the diametrical dimensions decrease in the order of third guide roller 23 r 1 , third guide roller 23 d 1 , third guide roller 23 u 1 and third guide roller 23 l 1 .
  • the third roller shaft 23 p is disposed so that the diametrical dimension thereof decreases from the insertion portion 2 side toward the operation element 5 side.
  • the rotary bodies 9 r , 9 d , 9 u and 9 l are disposed on the pulley 11 from the insertion portion 2 side towards the operation element 5 side.
  • the second guide rollers 22 r 1 , 22 d 1 , 22 u 1 and 22 l 1 of the second guide roller set 22 and the guide rollers 23 r 1 , 23 d 1 , 23 u 1 and 23 l 1 of the third guide roller set 23 are disposed at predetermined positions in a positional relationship in which the second guide rollers 22 r 1 , 22 d 1 , 22 u 1 and 22 l 1 and the guide rollers 23 r 1 , 23 d 1 , 23 u 1 and 23 l 1 face each other in a manner such that the rotary bodies 9 r , 9 d , 9 u and 9 l of the pulley 11 are interposed therebetween.
  • the respective proximal end portions of the four bending wires 8 u , 8 d , 8 l and 8 r are fixed to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 .
  • the distal end portions of the respective bending wires 8 u , 8 d , 8 l and 8 r are fixed at positions corresponding to upward, downward, left and right of the distal end bending pieces.
  • the bending wires 8 u , 8 d , 8 l and 8 r that are fixed to the distal end bending pieces are extended inside the operation portion 3 through the guides 24 .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r are guided to the second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 , and the wire travel paths are changed.
  • the diametrical dimensions of the second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 are different to each other, and the second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 are disposed on the second roller shaft 22 p so that the diametrical dimensions increase from the insertion portion 2 side towards the operation element 5 side. Consequently, the respective bending wires 8 u , 8 d , 8 l and 8 r enter onto the second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 and thereafter exit therefrom without the wires interfering with each other. As a result, the travel paths are changed without the bending wires 8 u , 8 d , 8 l and 8 r tangling together.
  • the bending wires 8 u , 8 d , 8 l and 8 r whose travel paths have been changed at the second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 are wound around the rotary bodies 9 u , 9 d , 9 l and 9 r that are disposed in a loosely fitting state on the pulley 11 . More specifically, the respective bending wires 8 u , 8 d , 8 l and 8 r are wound around the rotary bodies 9 u , 9 d , 9 l and 9 r , respectively, so as to be in a predetermined slackened state from the respective winding start positions 9 s .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r are led out towards the third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 from the winding end positions 9 e of the rotary bodies 9 u , 9 d , 9 l and 9 r.
  • the second guide rollers 22 r 1 , 22 d 1 , 22 u 1 and 22 l 1 and the third guide rollers 23 r 1 , 23 d 1 , 23 u 1 and 23 l 1 are disposed in a facing positional relationship in a manner that interposes the rotary bodies 9 r , 9 d , 9 u and 9 l therebetween. Accordingly, the bending wires 8 u , 8 d , 8 l and 8 r are led out from the rotary bodies 9 u , 9 d , 9 l and 9 r without the wires tangling together.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that are led out from the rotary bodies 9 u , 9 d , 9 l and 9 r are led into the third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 , and thereafter the wire travel paths thereof are changed in the direction of the first guide rollers 21 u 1 , 21 d 1 , 21 l 1 , and 21 r 1 .
  • the diametrical dimensions of the third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 are different, and the third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 are disposed on the third roller shaft 23 p so that the diametrical dimensions decrease from the insertion portion 2 side to the operation element 5 side. Consequently, the respective bending wires 8 u , 8 d , 8 l and 8 r enter onto the third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 and thereafter exit therefrom without the wires interfering with each other. As a result, the travel paths are changed without the bending wires 8 u , 8 d , 8 l and 8 r tangling together.
  • the first wires 8 u , 8 d , 8 l and 8 r whose travel paths have been changed at the first guide rollers 21 u , 21 d , 21 l and 21 r are guided to and fixed to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 included in the hanging frame 13 as described above.
  • the longitudinal axis of the pulley 11 and the drive shaft of the motor 12 are disposed parallel to the longitudinal axis of the grasping portion 3 a.
  • the guide roller sets 22 and 23 having the roller shafts 22 p and 23 p that are parallel to the longitudinal axis of the operation portion 3 , and the first guide roller set 21 having the first roller shaft 21 p that intersects at right angles with the longitudinal axis of the operation portion 3 are disposed at predetermined positions as wire travel path changing members.
  • the travel paths of the respective bending wires 8 u , 8 d , 8 l and 8 r that are led into the operation portion 3 and travel towards the proximal end side of the operation portion 3 are changed in the direction of the winding start positions 9 s of the rotary bodies 9 u , 9 d , 9 l and 9 r that are disposed on the pulley 11 by the second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 .
  • the travel paths of the respective bending wires 8 u , 8 d , 8 l and 8 r that are led out from the winding end positions of the rotary bodies 9 u , 9 d , 9 l and 9 r are changed in the direction of the first guide rollers 21 u , 21 d , 21 l and 21 r by the third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 .
  • each of the bending wires 8 u , 8 d , 8 l and 8 r that are wound around the rotary bodies 9 u , 9 d , 9 l and 9 r disposed on the pulley 11 respectively, enters a predetermined slackened state, and the bending portion 2 b is maintained in a straight state.
  • the operator places the ball of the thumb on the finger contact portion 5 b of the operation element 5 and tilts the shaft portion 5 a in the direction of the arrow Yu in FIG. 1 .
  • the hanging frame 13 inclines, and the upward bending wire 8 u that is fixed to the upward wire attachment portion 13 u 2 gradually changes from a slackened state to a tensed state.
  • each of the bending wires 8 d , 8 l and 8 r is in a slackened state. Accordingly, by continuing to maintain the operation element 5 in this tilted state, the tensed state of the upward bending wire 8 u and the slackened state of the bending wires 8 d , 8 l and 8 r are maintained, respectively, and the bending portion 2 b is maintained in the bent state.
  • a configuration is adopted in which the second guide roller set 22 that includes the second guide rollers 22 u 1 , 22 d 1 , 22 l 1 and 22 r 1 and the third guide roller set 23 that includes the third guide rollers 23 u 1 , 23 d 1 , 23 l 1 and 23 r 1 are disposed in a facing positional relationship in a manner that interposes the rotary bodies 9 u , 9 d , 9 l and 9 r disposed on the pulley 11 therebetween.
  • a configuration may also be adopted in which, as shown in FIG.
  • the second guide rollers 22 r , 22 d , 22 u and 22 l and the third guide rollers 23 r , 23 d , 23 u and 23 l are not configured as a guide roller set, but are individually disposed at predetermined positions.
  • the diametrical dimensions of the second guide rollers 22 r 2 , 22 d 2 , 22 u 2 and 2212 of the present embodiment and the third guide rollers 23 r 2 , 23 d 2 , 22 u 2 and 23 l 2 are the same.
  • each of the second guide rollers 22 r 2 , 22 d 2 , 22 u 2 and 2212 and each of the third guide rollers 23 r 2 , 23 d 2 , 23 u 2 and 23 l 2 are pivotably provided in an individual manner on a roller shaft 25 .
  • each of the second guide rollers 22 r 2 , 22 d 2 , 22 u 2 and 2212 and each of the third guide rollers 23 r 2 , 23 d 2 , 23 u 2 and 23 l 2 are individually disposed at a predetermined position by deviating the positions thereof in the circumferential direction with respect to the outer circumference of the pulley 11 on which the rotary bodies 9 r , 9 d , 9 u and 9 l are disposed.
  • the remaining configuration of the pulling member operation apparatus 10 B 1 is the same as in the above described embodiment.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that are extended into the operation portion 3 through the guides 24 are guided to the corresponding second guide rollers 22 u 2 , 22 d 2 , 2212 and 22 r 2 and the wire travel paths are changed.
  • the second guide rollers 22 u 2 , 22 d 2 , 2212 and 22 r 2 are pivotably disposed at predetermined positions with respect to the rotary bodies 9 u , 9 d , 9 l and 9 r .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that are led out from the rotary bodies 9 u , 9 d , 9 l and 9 r are led into the third guide rollers 23 u 2 , 23 d 2 , 23 l 2 and 23 r 2 , and thereafter the wire travel paths are changed in the direction of the first guide rollers 21 u , 21 d , 21 l , and 21 r.
  • the third guide rollers 23 u 2 , 23 d 2 , 23 l 2 and 23 r 2 are pivotably disposed at predetermined positions with respect to the rotary bodies 9 u , 9 d , 9 l and 9 r . Consequently, the respective bending wires 8 u , 8 d , 8 l and 8 r enter onto the third guide rollers 23 u 2 , 23 d 2 , 23 l 2 and 23 r 2 and thereafter exit therefrom without the wires interfering with each other. As a result, the travel paths are changed without the bending wires 8 u , 8 d , 8 l and 8 r tangling together.
  • a configuration is adopted in which the four rotary bodies 9 u , 9 d , 9 l and 9 r are disposed on the elongated pulley 11 .
  • the configuration of the pulley 11 and the rotary bodies 9 u , 9 d , 9 l and 9 r are not limited thereto, and a configuration of a pulley 111 as shown in FIG. 14 and FIG. 15 may be adopted.
  • the pulley 111 in a pulling member operation apparatus 10 B 2 of the present embodiment that is shown in FIG. 14 and FIG. 15 includes a first shaft body 112 that is fixed to the shaft portion 12 a of the motor 12 on which the rotary body 9 is disposed in a predetermined loosely fitting state, two second shaft bodies 113 and 114 on which the rotary bodies 9 are disposed in a predetermined loosely fitting state, respectively, and a third shaft body 115 on which the rotary body 9 is disposed in a predetermined loosely fitting state.
  • the first shaft body 112 includes a fixing section (unshown) on which the shaft portion 12 a of the motor 12 is arranged on one surface side, and has a geared protrusion 116 on the other surface side.
  • the second shaft bodies 113 and 114 each have a geared protrusion 117 on one surface side and have a geared protrusion 118 on the other surface side.
  • the third shaft body 115 has a geared protrusion 119 on one surface side.
  • the geared protrusion 117 of the second shaft body 113 intermeshes with the geared protrusion 116 of the first shaft body 112 .
  • the geared protrusion 117 of the second shaft body 114 intermeshes with the geared protrusion 118 of the second shaft body 113 .
  • the geared protrusion 119 of the third shaft body 115 intermeshes with the geared protrusion 118 of the second shaft body 114 .
  • the first shaft body 112 included in the pulley 111 is rotated by the driving force of the motor 12 .
  • the second shaft body 113 , the second shaft body 114 and the third shaft body 115 included in the pulley 111 are respectively rotated as the result of the rotation of the first pulley 11 being transmitted thereto via the geared protrusions 116 , 117 , 118 and 119 .
  • the first shaft body 112 and the second shaft body 114 for example, rotate counterclockwise
  • the second shaft body 113 and the third shaft body 115 for example, rotate clockwise.
  • the rotary body 9 disposed on the first shaft body 112 acts as the left rotary body 9 l
  • the rotary body 9 disposed on the second shaft body 113 acts as the downward rotary body 9 d
  • the rotary body 9 disposed on the second shaft body 114 acts as the upward rotary body 9 u
  • the rotary body 9 disposed on the third shaft body 115 acts as the right rotary body 9 r.
  • reference symbol 11 p 1 denotes a first pulley shaft that pivotably supports the second shaft body 114 .
  • Reference symbol 11 p 2 denotes a second pulley shaft that pivotably supports the second shaft body 113 and the third shaft body 115 .
  • the axis of the left rotary body 9 l and the axis of the upward rotary body 9 u deviate with respect to the axis of the downward rotary body 9 d and the axis of the right rotary body 9 r . Further, the left rotary body 9 l and the upward rotary body 9 u are disposed in an opposite direction to the downward rotary body 9 d and the right rotary body 9 r.
  • the second guide rollers 22 r 2 and 22 d 2 and the second guide rollers 22 u 2 and 2212 are disposed at predetermined positions with respect to the rotary bodies 9 u , 9 d , 9 l and 9 r in a facing positional relationship in a manner that interposes a dividing line 11 d therebetween.
  • the dividing line 11 d is orthogonal to the center of a line segment that joins the shaft center of the motor shaft 12 a and the shaft center of the second pulley shaft 11 p 2 .
  • third guide rollers 23 r 2 and 23 d 2 and the third guide rollers 23 u 2 and 23 l 2 are also disposed at predetermined positions with respect to the rotary bodies 9 u , 9 d , 9 l and 9 r in a facing positional relationship in a manner that interposes the dividing line 11 d therebetween.
  • the remaining configuration is the same as in the above described embodiment.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that extend inside the operation portion 3 through the guides 24 are guided to the second guide rollers 22 u 2 , 22 d 2 , 2212 and 22 r 2 that are provided in pairs on either side of the dividing line 11 d , and the wire travel paths are changed.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that are led out from the rotary bodies 9 u , 9 d , 9 l and 9 r are also guided on the third guide rollers 23 u 2 , 23 d 2 , 23 l 2 and 23 r 2 that are provided in pairs on either side of the dividing line 11 d , and thereafter the wire travel paths are changed in the direction of the first guide rollers 21 u , 21 d , 21 l and 21 r.
  • the travel paths of the bending wires 8 are changed by the second guide rollers 22 u 2 and 2212 and the second guide rollers 22 d 2 and 22 r 2 , as well as the third guide rollers 23 u 2 and 23 l 2 and the third guide rollers 23 d 2 and 23 r 2 that are provided in pairs on either side of the dividing line 11 d . Consequently, interference between the bending wires 8 u , 8 d , 8 l and 8 r can be reliably prevented, and the travel paths can be changed without the bending wires 8 u , 8 d , 8 l and 8 r tangling together.
  • FIG. 16 to FIG. 24 relate to a third embodiment of the present invention.
  • FIG. 16 is a view that illustrates an operation portion that includes a pulling member operation apparatus in which a motor having a motor shaft that is disposed so as to be orthogonal to a longitudinal axis of the operation portion, and a pulley having a pulley shaft that is disposed so as to be orthogonal to the longitudinal axis are contained in an operation portion body.
  • FIG. 17 is a view that illustrates the pulling member operation apparatus that is provided inside the operation portion body.
  • FIG. 18 is a perspective view that illustrates the configuration of the pulling member operation apparatus.
  • FIG. 19 is a top view of the pulling member operation apparatus illustrated in FIG. 18 .
  • FIG. 20 is a side view of the pulling member operation apparatus illustrated in FIG. 18 .
  • FIG. 21 is a top view of a pulling member operation apparatus in which the arrangement positions of the guide rollers are different.
  • FIG. 22 is a side view of the pulling member operation apparatus illustrated in FIG. 21 .
  • FIG. 22 is a top view of a pulling member operation apparatus in which coil pipes are used as travel path changing members.
  • FIG. 24 is a side view of the pulling member operation apparatus shown in FIG. 23 .
  • an endoscope 1 A of the present embodiment includes an insertion portion 2 , an operation portion 3 A, and a universal cord 4 .
  • An operation element 5 that is included in a pulling member operation apparatus 10 C is erected vertically on the operation portion 3 A.
  • the insertion portion 2 includes a distal end portion 2 a , a bending portion 2 b , and a flexible tube portion 2 c that are connected in series in that order from the distal end side.
  • the operation portion 3 A includes a grasping portion 3 a that is connected in series to the insertion portion 2 , and an operation portion body 3 b 1 that is connected in series to the grasping portion 3 a .
  • the operation element 5 that is used to perform an operation to cause the bending portion 2 b to carry out a bending operation is provided inside the operation portion body 3 b 1 .
  • the longitudinal axis of the insertion portion 2 and the longitudinal axis of the grasping portion 3 a included in the operation portion 3 A are set so as to be in a parallel positional relationship with each other.
  • the longitudinal axis of the insertion portion 2 and the longitudinal axis of the grasping portion 3 a are coaxial.
  • an axial line of the shaft portion 5 a included in the operation element 5 and the longitudinal axis of the operation portion 3 are set in a mutually intersecting positional relationship.
  • a switch (unshown) that is operated to input an instruction to perform various kinds of image pickup operations of an image pickup apparatus (unshown) that is provided inside the distal end portion 2 a
  • an air/water supply button 6 b 1 and a suction button 6 c 1 are provided at predetermined positions on the exterior of the operation portion body 3 b 1 .
  • a channel insertion port 6 d is provided on the exterior of the grasping portion 3 a.
  • the operation element 5 is provided at a position at which the operation element 5 is operated by a thumb of the hand of the operator which grasps the grasping portion 3 a of the operation portion 3 A in a case where the operator grasps the grasping portion 3 a with the left hand in the same manner as for a conventional endoscope, and the air/water supply button 6 b 1 and the suction button 6 c 1 are provided at positions at which the air/water supply button 6 b 1 and the suction button 6 c 1 are operated by fingers other than the thumb of the hand with which the operator grasps the grasping portion 3 a .
  • Reference symbol 3 b 2 in FIG. 16 denotes an operation portion body casing that can be detached from a body portion 3 b 3 that is shown in FIG. 16 and FIG. 17 .
  • the pulling member operation apparatus 10 C is mainly constituted by the above described four bending wires 8 u , 8 d , 8 l and 8 r , four rotary bodies 9 u , 9 d , 9 l and 9 r , pulley 11 , motor 12 , hanging frame 13 , and operation element 5 , as well as a plurality of guide roller sets 41 , 42 , 43 , and 44 that change the travel paths of the four wires 8 u , 8 d , 8 l and 8 r inside the operation portion 3 .
  • the pulley 11 and the motor 12 are disposed at predetermined positions inside the operation portion body 3 b 1 so that the longitudinal axis of the pulley 11 and the drive shaft of the motor 12 are in a perpendicular positional relationship with respect to the longitudinal axis of the operation portion 3 (grasping portion 3 a ), respectively.
  • the pulley 11 and the motor 12 are separate elements, and as shown in FIG. 17 , for example, the pulley 11 and the motor 12 are arranged side-by-side in the axis direction of the operation element 5 .
  • a motor-side gear (unshown) is provided on a shaft (unshown) of the motor 12 , and a pulley-side gear (see reference numeral 49 in FIG. 19 ) is provided at a predetermined position on the pulley 11 .
  • the pulley-side gear 49 is arranged so as to intermesh with the motor-side gear.
  • the pulley 11 configured in this manner rotates around its axis when rotation of the motor 12 is transmitted to the pulley 11 through the motor-side gear and the pulley-side gear 49 . That is, the motor-side gear and the pulley-side gear are driving force transmitting means.
  • the motor 12 is not shown in FIG. 18 to FIG. 20
  • the pulley 11 is not shown in FIG. 18
  • the upward frame 13 u and the downward frame 13 d of the hanging frame 13 are represented by a dashed line in FIG. 19 .
  • the pulley 11 on which the four rotary bodies 9 u , 9 d , 9 l and 9 r are disposed is displaced further to the right direction in the drawings relative to the fourth guide roller set 44 to show the travel paths of the bending wires 8 u , 8 d , 8 l and 8 r.
  • the guide roller sets 41 , 42 , 43 and 44 that are wire travel path changing members of the present embodiment will now be described.
  • Reference symbols 41 A and 41 B shown in FIG. 18 and FIG. 19 denote the first guide roller set 41 .
  • Reference symbol 41 A denotes a first guide roller set for the upward/downward directions (hereunder, abbreviated to “upward/downward guide roller set”) 41 A.
  • the upward/downward guide roller set 41 A includes a first roller shaft for the upward/downward directions 41 p as a first support body, and two first guide rollers 41 u and 41 d .
  • the two first guide rollers 41 u and 41 d are wire travel path changing members, and are pivotably disposed on the first roller shaft for the upward/downward directions 41 p.
  • Reference symbol 41 B denotes a first guide roller set for the left/right directions (hereunder, abbreviated to “left/right guide roller set”) 41 B.
  • the left/right guide roller set 41 B includes a first roller shaft for the left/right directions 41 p as a first support body, and two first guide rollers 41 l and 41 r .
  • the two first guide rollers 41 l and 41 r are wire travel path changing members, and are pivotably disposed on the first roller shaft for the left/right directions 41 p.
  • the second guide roller set 42 includes a second roller shaft 42 p , and second guide rollers 42 u , 42 d , 42 l and 42 r and guide rollers 21 u , 21 d , 21 l and 21 r .
  • the two kinds of guide rollers namely the second guide rollers 42 u , 42 d , 42 l and 42 r and the guide rollers 21 u , 21 d , 21 l and 21 r are pivotably disposed in a collective manner on the second roller shaft 42 p .
  • the second guide rollers 42 u , 42 d , 42 l and 42 r are wire travel path changing members, and are wire delivery members.
  • the guide rollers 21 u , 21 d , 21 l and 21 r are attachment path setting member that are described above.
  • the third guide roller set 43 includes a third roller shaft 43 p and third guide rollers 43 u , 43 d , 43 l and 43 r .
  • the third guide rollers 43 u , 43 d , 43 l and 43 r are pivotably disposed on the third roller shaft 43 p and change the wire travel paths.
  • the third guide rollers 43 u , 43 d , 43 l and 43 r are pulley lead-in members.
  • the fourth guide roller set 44 includes a fourth roller shaft 44 p and fourth guide rollers 44 u , 44 d , 44 l and 44 r .
  • the fourth guide rollers 44 u , 44 d , 44 l and 44 r are pivotably disposed on the fourth roller shaft 43 p and change the wire travel paths.
  • the fourth guide rollers 44 u , 44 d , 44 l and 44 r are pulley lead-out members.
  • all of the roller shafts 41 p , 42 p , 43 p and 44 p are disposed at predetermined positions in an intersecting positional relationship with respect to the longitudinal axis of the operation portion 3 .
  • the second roller shaft 42 p is disposed directly below the shaft portion 5 a , and the center of the second roller shaft 42 p is positioned on the central axis of the shaft portion 5 a in an upright state.
  • the upward/downward guide roller set 41 A and the left/right guide roller set 41 B are disposed, for example, in a stacked arrangement in the axis direction of the operation element 5 inside the grasping portion 3 a . Further, the upward/downward guide roller set 41 A and the left/right guide roller set 41 B are disposed at positions that are further to the distal end side than the operation element 5 , in other words, at positions that are further to the distal end side than the second guide roller set 42 .
  • the third guide roller set 43 and the fourth guide roller set 44 are disposed at positions that are further to the proximal end side than the operation element 5 , in other words, at positions that are further to the proximal end side than the second guide roller set 42 .
  • the pulley 11 is disposed at a position that is furthest on the proximal end side. Specifically, the third guide roller set 43 , the fourth guide roller set 44 and the pulley 11 are disposed in that order on the proximal end side from the operation element 5 side.
  • First guide rollers 41 d and 41 u are disposed in that order in the arrow Y 19 direction on the first roller shaft for the upward/downward directions 41 p of the upward/downward guide roller set 41 A. Further, first guide rollers 41 r and 41 l are disposed in that order in the arrow Y 19 direction on the first roller shaft for the left/right directions 41 p of the left/right guide roller set 41 B.
  • the third guide rollers 43 r , 43 d , 43 u and 44 l are disposed in that order in the arrow Y 19 direction on the third roller shaft 43 p .
  • the fourth guide rollers 44 r , 44 d , 44 u and 44 l are disposed in that order in the arrow Y 19 direction on the fourth roller shaft 44 p .
  • the rotary bodies 9 r , 9 d , 9 u and 9 l are disposed in that order in the arrow Y 19 direction on the pulley 11 .
  • the second guide rollers 42 u , 42 d , 42 l and 42 r and the guide rollers 21 u , 21 d , 21 l and 21 r are disposed in the following order in the arrow Y 19 direction on the second roller shaft 42 p of the second guide roller set 42 .
  • the order is guide roller for right 21 r , second guide roller for right 42 r , second guide roller for downward 42 d , guide roller for downward 21 d , guide roller for upward 21 u , second guide roller for upward 42 u , second guide roller for left 42 l , and guide roller for left 21 l.
  • the respective width dimensions and diameters of the guide roller for right 21 r and the guide roller for left 21 l that are disposed at the two ends are set to predetermined width dimensions and predetermined diameters that are wider than and larger than, respectively, the respective width dimensions and diameters of the other guide rollers 42 u , 42 d , 42 l , 42 r , 21 u , and 21 d that are disposed between the guide roller for right 21 r and the guide roller for left 21 l.
  • an interval between the guide roller for upward 21 u and the guide roller for downward 21 d is set to the interval w 1 between the upward wire attachment portion 13 u 2 and the downward wire attachment portion 13 d 2 that is described above.
  • a relation between the interval w 4 between the left wire attachment portion 13 l 2 and the right wire attachment portion 13 r 2 and the interval w 10 between the outer end of the guide roller for right 21 r and the outer end of the guide roller for left 21 l that are disposed on the second roller shaft 42 p is set so that w 4 >w 10 .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that are fixed to distal end bending pieces are extended inside the grasping portion 3 a through guides (unshown).
  • the bending wires 8 u , 8 d , 8 l and 8 r are guided to the first guide rollers 41 u and 41 d , of the upward/downward guide roller set 41 A and the first guide rollers 41 l and 41 r of the left/right guide roller set 41 B that are disposed in the grasping portion 3 a , and the wire travel paths thereof are changed.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r whose travel paths have been changed at the first guide rollers 41 u , 41 d , 41 l and 41 r are guided to the second guide rollers 42 u , 42 d , 42 l and 42 r of the second guide roller set 42 , and the wire travel paths thereof are changed.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r whose travel paths have been changed at the second guide rollers 42 u , 42 d , 42 l and 42 r are guided to the third guide rollers 43 u , 43 d , 43 l and 43 r of the third guide roller set 43 , and the wire travel paths thereof are changed.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r whose travel paths have been changed at the third guide rollers 43 u , 43 d , 43 l and 43 r are guided to the winding start positions 9 s of the respective rotary bodies 9 u , 9 d , 9 l and 9 r that are disposed in a slackened state on the pulley 11 .
  • the bending wires 8 u , 8 d , 8 l , and 8 r that have been guided to the winding start positions 9 s of the respective rotary bodies 9 u , 9 d , 9 l and 9 r are wound around the respective rotary bodies 9 u , 9 d , 9 l and 9 r in a predetermined slackened state, and are extended from the respective winding end positions 9 e.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that have been extended from the winding end positions 9 e of the respective rotary bodies 9 u , 9 d , 9 l and 9 r are guided to the fourth guide rollers 44 u , 44 d , 44 l and 44 r of the fourth guide roller set 44 , and the wire travel paths thereof are changed.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r whose travel paths have been changed at the fourth guide rollers 44 u , 44 d , 44 l and 44 r are guided to the guide rollers 21 u , 21 d , 21 l and 21 r of the second guide roller set 42 , and the wire travel paths are changed to guide the respective bending wires 8 u , 8 d , 8 l and 8 r to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 , and the respective bending wires 8 u , 8 d , 8 l and 8 r are fixed thereto.
  • the third guide rollers 43 u , 43 d , 43 l and 43 r are disposed facing the rotary bodies 9 u , 9 d , 9 l and 9 r in a manner that takes into consideration the winding start positions 9 s of the rotary bodies 9 u , 9 d , 9 l and 9 r .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r are smoothly wound around the respective rotary bodies 9 u , 9 d , 9 l and 9 r.
  • the fourth guide rollers 44 u , 44 d , 44 l and 44 r are disposed in a manner that takes into consideration the winding end positions 9 e of the rotary bodies 9 u , 9 d , 9 l and 9 r and the positions of the guide rollers 21 u , 21 d , 21 l and 21 r .
  • the travel paths of the bending wires 8 u , 8 d , 8 l and 8 r that are extended from the winding end positions 9 e can be smoothly changed at the third guide rollers 43 u , 43 d , 43 l and 43 r towards the guide rollers 21 u , 21 d , 21 l and 21 r of the second guide roller set 42 .
  • the bending wires 8 u , 8 d , 8 l and 8 r that extend from the guide rollers 21 u , 21 d , 21 l and 21 r towards the hanging frame 13 are all in a predetermined slackened state.
  • partition members 48 that are shown in FIG. 12 are provided between adjacent bending wires 8 to prevent the bending wires 8 from tangling together.
  • the longitudinal axis of the pulley 11 and the drive shaft of the motor 12 are disposed in a perpendicular positional relationship with respect to the longitudinal axis of the operation portion 3 .
  • the guide roller sets 41 , 42 , 43 and 44 are disposed at predetermined positions as wire travel path changing members.
  • the travel paths of the respective bending wires 8 u , 8 d , 8 l and 8 r that are led into the operation portion 3 and travel towards the proximal end side of the operation portion 3 are changed by the first guide rollers 41 u , 41 d , 41 l and 41 r , the second guide rollers 42 u 2 , 42 d 2 , 42 l 2 and 42 r 2 , and the third guide rollers 43 u , 43 d , 43 l and 43 r so that the travel paths change in the direction of the winding start positions 9 s of the rotary bodies 9 u , 9 d , 9 l and 9 r that are disposed on the pulley 11 .
  • the travel paths of the respective bending wires 8 u , 8 d , 8 l and 8 r that are led out from the respective winding end positions after being wound around the rotary bodies 9 u , 9 d , 9 l and 9 r are changed by the fourth guide rollers 44 u , 44 d , 44 l and 44 r and the guide rollers 21 u , 21 d , 21 l and 21 r and led and fixed to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 of the hanging frame 13 that is fixed to the shaft portion 5 a of the operation element 5 .
  • each of the bending wires 8 u , 8 d , 8 l and 8 r that are wound around the rotary bodies 9 u , 9 d , 9 l and 9 r disposed on the pulley 11 enters a predetermined slackened state.
  • the bending portion 2 b is maintained in a straight state.
  • the operator tilts the operation element 5 in the direction of the arrow Yu in FIG. 16 .
  • the hanging frame 13 inclines, and the upward bending wire 8 u that is fixed to the upward wire attachment portion 13 u 2 as described above gradually changes from a slackened state to a tensed state and the bending portion 2 b bends in the upward direction.
  • the bending wires 8 u , 8 d , 8 l and 8 r are pulled or slackened in accordance with the tilt operation, and the bending portion 2 b changes to a state that corresponds to the tilt operation of the operation element 5 .
  • the end portions of the bending wires 8 u , 8 d , 8 l and 8 r can be fixed to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 of the hanging frame 13 that is fixed to the shaft portion 5 a of the operation element 5 having an axis line that intersects with the longitudinal axis of
  • the endoscope 1 A in a state in which the operator has grasped the operation portion 3 A, that is, during endoscopy, the operator can easily operate not just the operation element 5 , but also the air/water supply button 6 b , the suction button 6 c and the switch 6 a.
  • the second guide rollers 42 u , 42 d , 42 l and 42 r and the guide rollers 21 u , 21 d , 21 l and 21 r are disposed on the second roller shaft 42 p of the second guide roller set 42 .
  • a configuration may also be adopted in which, instead of the second guide roller set 42 on which two kinds of guide rollers are disposed, a second guide roller set 42 A on which only the second guide rollers 42 u , 42 d , 42 l and 42 r are disposed and a guide roller set 21 on which only the guide rollers 21 u , 21 d , 21 l and 21 r are disposed are arranged as separate elements at predetermined positions.
  • a configuration may be adopted that changes the wire travel paths by disposing a plurality of coils pipes in the manner shown in FIG. 23 and FIG. 24 .
  • the second guide roller set 42 is divided into the second guide roller set 42 A in which the second guide rollers 42 u , 42 d , 42 l and 42 r are disposed at predetermined positions on the second roller shaft 42 p 1 , and the guide roller set 21 in which the guide rollers 21 u , 21 d , 21 l and 21 r are disposed at predetermined position on the roller shaft 21 p.
  • the second guide roller set 42 A is disposed directly below the guide roller set 21 .
  • the guide rollers 21 u , 21 d , 21 l and 21 r and the second guide rollers 42 u , 42 d , 42 l and 42 r are disposed in the order of guide roller for right 21 r , second guide roller for right 42 r , second guide roller for downward 42 d , guide roller for downward 21 d , guide roller for upward 21 u , second guide roller for upward 42 u , second guide roller for left 42 l , and guide roller for left 21 l.
  • the fourth guide roller set 44 is disposed at a predetermined position with respect to the rotary bodies 9 u , 9 d , 9 l and 9 r of the pulley 11 as a single dual-purpose guide roller set that is used as both the third guide roller set 43 and the fourth guide roller set 44 . That is, the third guide rollers 43 u , 43 d , 43 l and 43 r of the third guide roller set 43 are removed, and the fourth guide rollers 44 u , 44 d , 44 l and 44 r are used both as pulley lead-in members and pulley lead-out members.
  • the fourth guide rollers 44 of the fourth guide roller set 44 are disposed in a manner that takes into consideration the winding start positions 9 s of the rotary bodies 9 u , 9 d , 9 l and 9 r , and are also disposed in a manner that takes into consideration the winding end positions 9 e of the winding end positions 9 e of the rotary bodies 9 u , 9 d , 9 l and 9 r and the position of the guide roller set 21 .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r are smoothly wound around the rotary bodies 9 u , 9 d , 9 l and 9 r , and the travel paths of the respective bending wires 8 u , 8 d , 8 l and 8 r that are extended from the winding end positions 9 e of the respective rotary bodies 9 u , 9 d , 9 l and 9 r can be smoothly changed in the direction of the guide rollers 21 u , 21 d , 21 l and 21 r of the guide roller set 21 .
  • the bending wires 8 u , 8 d , 8 l and 8 r are extended within the grasping portion 3 a through guides (unshown). Further, the bending wires 8 u , 8 d , 8 l and 8 r are guided to the first guide rollers 41 u and 41 d of the upward/downward guide roller set 41 A and the first guide rollers 41 l and 41 r of the left/right guide roller set 41 B that are disposed in the grasping portion 3 a , and the wire travel paths are changed.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r whose travel paths have been changed at the first guide rollers 41 u , 41 d , 41 l and 41 r are guided to the second guide rollers 42 u , 42 d , 42 l and 42 r of the second guide roller set 42 A, and the wire travel paths are changed.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r whose travel paths have been changed at the second guide rollers 42 u , 42 d , 42 l and 42 r are guided to the fourth guide rollers 44 u , 44 d , 44 l and 44 r of the fourth guide roller set 44 , and the wire travel paths are changed.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r whose travel paths have been changed at the fourth guide rollers 44 u , 44 d , 44 l and 44 r are guided to the winding start positions 9 s of the rotary bodies 9 u , 9 d , 9 l and 9 r that are disposed in a slackened state on the pulley 11 .
  • the respective bending wires 8 u , 8 d , 8 l and 8 r that have been guided to the winding start positions 9 s of the rotary bodies 9 u , 9 d , 9 l and 9 r are wound around the respective rotary bodies 9 u , 9 d , 9 l and 9 r so as to enter a predetermined slackened state, and are extended from the respective winding end positions 9 e.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r whose travel paths have been changed at the fourth guide rollers 44 u , 44 d , 44 l and 44 r are guided to the guide rollers 21 u , 21 d , 21 l and 21 r of the guide roller set 21 , at which the wire travel paths are changed, and are then guided and fixed to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 .
  • the number of components can be decreased and the size of the operation portion body can be reduced.
  • the other actions and effects are the same as in the above described third embodiment.
  • the travel paths of the bending wires 8 are changed by providing the first guide roller set 41 , a plurality of coil pipes 45 a , 45 b , 45 c , 45 d , and 45 e , and a plurality of coil pipe brackets 46 a and 46 b.
  • the coil pipes 45 a , 45 b , 45 c , 45 d and 45 e are travel path changing members and, for example, are made of metal.
  • Each of the coil pipes 45 a , 45 b , 45 c , 45 d and 45 e has a through-hole through which the bending wire 8 can be inserted so as to freely advance and retract.
  • the first coil pipe bracket 46 a is a rectangular parallelepiped shape, and is disposed directly below the operation element 5 .
  • a plurality of pipe connection ports (unshown) are provided in a first face 46 a 1 , a second face 46 a 2 , and a third face 46 a 3 of the first coil pipe bracket 46 a .
  • Predetermined pipe connection ports communicate with each other through communicating holes 45 ah 1 and 45 ah 2 .
  • the second coil pipe bracket 46 b is a rectangular parallelepiped shape, and is disposed in the vicinity of the pulley 11 .
  • Eight pipe connection ports (unshown) are provided on a first face 46 b 1 and a second face 46 b 2 of the second coil pipe bracket 46 b , respectively. Predetermined pipe connection ports communicate with each other through communicating holes 46 bh 1 and 46 bh 2 .
  • the first coil pipes 45 a guide the bending wires 8 to a first communicating hole 46 ah 1 of the first coil pipe bracket 46 a .
  • the first coil pipes 45 a are disposed between the first guide roller set 41 and the first coil pipe bracket 46 a .
  • the distal end portions of the first coil pipes 45 a are provided in the vicinity of the first guide rollers 41 u and 41 d of the upward/downward guide roller set 41 A and the vicinity of the first guide rollers 41 l and 41 r of the left/right guide roller set 41 B.
  • the proximal end portions of the first coil pipes 45 a are fixed to pipe connection ports provided in the first face 46 a 1 of the first coil pipe bracket 46 a.
  • the second coil pipes 45 b guide the bending wires 8 from the first communicating hole 46 ah 1 of the first coil pipe bracket 46 a to a first communicating hole 46 bh 1 of the second coil pipe bracket 46 b .
  • the distal end portions of the second coil pipes 45 b are fixed to pipe connection ports provided in the second face 46 a 2 of the first coil pipe bracket 46 a .
  • the proximal end portions of the second coil pipes 45 b are fixed to pipe connection ports provided in the first face 46 b 1 of the second coil pipe brackets 46 b.
  • the third coil pipes 45 c guide the bending wires 8 to winding start positions 9 s of the rotary bodies 9 disposed on the pulley 11 .
  • the distal end portions of the third coil pipe 45 c are fixed to pipe connection ports provided in the second face 46 b 2 of the second coil pipe bracket 46 b . Openings of the proximal end portions of the third coil pipes 45 c are disposed at predetermined positions facing the winding start positions 9 s of the rotary bodies 9 u , 9 d , 9 l and 9 r .
  • the third coil pipes 45 c are pulley lead-in members.
  • the fourth coil pipes 45 d guide the bending wires 8 that are extended from the winding end positions 9 e of the rotary bodies 9 to a second communicating hole 46 bh 2 of the second coil pipe bracket 46 b .
  • the distal end portions of the fourth coil pipes 45 d are fixed to pipe connection ports provided in the second face 46 b 2 of the second coil pipe bracket 46 b . Openings of the proximal end portions of the fourth coil pipes 45 d are disposed at predetermined positions facing the winding end positions 9 e of the rotary bodies 9 u , 9 d , 9 l and 9 r .
  • the fourth coil pipes 45 d are pulley lead-out members.
  • the fifth coil pipes 45 e guide the bending wires 8 from the second communicating hole 46 bh 2 of the second coil pipe bracket 46 b to the second communicating hole 46 ah 2 of the first coil pipe bracket 46 a .
  • the distal end portions of the fifth coil pipes 45 e are fixed to pipe connection ports provided in the second face 46 a 2 of the first coil pipe bracket 46 a .
  • the proximal end portions of the fifth coil pipes 45 e are fixed to pipe connection ports provided in the first face 46 b 1 of the second coil pipe bracket 46 b.
  • the sixth coil pipes 45 f guide the bending wires 8 that are extended from the second communicating hole 46 ah 2 of the first coil pipe bracket 46 a to the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 of the hanging frame 13 .
  • the proximal end portions of the sixth coil pipes 45 f are fixed to pipe connection ports provided in the third face 46 a 3 of the first coil pipe bracket 46 a . Openings of the distal end portions of the sixth coil pipes 45 f are disposed at predetermined positions facing the wire attachment portions 13 u 2 , 13 d 2 , 13 l 2 and 13 r 2 .
  • the sixth coil pipes 45 f are attachment path setting members.
  • the respective bending wires 8 u , 8 d , 8 l and 8 r are extended inside the grasping portion 3 a through guides (unshown).
  • the bending wires 8 u , 8 d , 8 l and 8 r are guided to the first guide rollers 41 u and 41 d of the upward/downward guide roller set 41 A and the first guide rollers 41 l and 41 r of the left/right guide roller set 41 B that are disposed in the grasping portion 3 a , at which the wire travel paths are changed.
  • the upward bending wire 8 u is led into a through-hole of a first coil pipe for the upward direction 45 au . Thereafter, the upward bending wire 8 u passes through the first communicating hole 46 ah 1 of the first coil pipe bracket 46 a , a through-hole of a second coil pipe for the upward direction 45 bu , the first communicating hole 46 bh 1 of the second coil pipe bracket 46 b , and a through-hole of a third coil pipe for the upward direction 45 cu , and is guided to the winding start position 9 s of the upward rotary body 9 u that is disposed in a slackened state on the pulley 11 .
  • the upward bending wire 8 u that has been guided to the winding start position 9 s of the upward rotary body 9 u is wound around the upward rotary body 9 u so as to be in a predetermined slackened state, and is extended from the winding end position 9 e.
  • the upward bending wire 8 u that is extended from the winding end position 9 e of the upward rotary body 9 u is led into a through-hole of a fourth coil pipe for the upward direction 45 du . Thereafter, the upward bending wire 8 u passes through the second communicating hole 46 bh 2 of the second coil pipe bracket 46 b , a through-hole of a fifth coil pipe for the upward direction 45 eu , the second communicating hole 46 ah 2 of the first coil pipe bracket 46 a , and a through-hole of a sixth coil pipe for the upward direction 45 fu , and arrives at the vicinity of the wire attachment portion 13 u 2 to be fixed thereto.
  • the bending wires 8 d , 8 l and 8 r similarly to the upward bending wire 8 u , after the travel paths have been changed at the respective first guide rollers 41 d , 41 l and 41 r , the bending wires 8 d , 8 l and 8 r are led into through-holes of the respective first coil pipes 45 a , and pass through through-holes of the third coil pipes 45 cu and are wound around the respective rotary bodies 9 u , 9 d , 9 l and 9 r .
  • the bending wires 8 d , 8 l and 8 r are led into through-holes of the respective fourth coil pipes 45 d , and pass through through-holes of the sixth coil pipes 45 fu and arrive at the vicinity of the wire attachment portions 13 d 2 , 13 l 2 and 13 r 2 and are fixed to the respective wire attachment portions 13 d 2 , 13 l 2 and 13 r 2 .
  • the bending wires 8 u , 8 d , 8 l and 8 r are changed at the first guide rollers 41 d , 41 l and 41 r of the first guide roller set 41 , the bending wires 8 u , 8 d , 8 l and 8 r are led into through-holes of the first coil pipes 45 a that correspond to the respective bending wires 8 , and are wound around the respective rotary bodies 9 u , 9 d , 9 l and 9 r .
  • the bending wires 8 u , 8 d , 8 l and 8 r are led into through-holes of the respective fourth coil pipes 45 d , and thereafter fixed to the wire attachment portions 13 d 2 , 13 l 2 and 13 r 2 , respectively.
  • the pulley 11 and the motor 12 are disposed inside the operation portion 3 .
  • the arrangement positions of the pulley 11 and the motor 12 are not limited to the inside of the operation portion 3 , and as shown in FIG. 25 , a configuration may also be adopted in which the pulley 11 and the motor (unshown) are arranged inside a connector 4 c that is provided at a proximal end portion of the universal cord 4 .
  • the bending wire 8 is extended into the grasping portion 3 a through a guide (unshown), the wire travel path thereof is changed by a plurality of guide roller sets 61 , 62 , 63 and the like that are disposed in the grasping portion 3 a to thereby guide the bending wire 8 into the universal cord 4 . Thereafter, the bending wire 8 passes through a first coil pipe 64 disposed inside the universal cord 4 , and the travel path is then changed by a guide roller set 65 so that the bending wire 8 is guided to the winding start position 9 s of the rotary body 9 disposed in a slackened state on the pulley 11 .
  • the bending wire 8 that has been guided to the winding start position 9 s of the rotary body 9 is wound around the rotary body 9 so as to be in a predetermined slackened state, and is extended from the winding end position 9 e.
  • the travel path of the bending wire 8 that has been extended from the winding end position 9 e of the rotary body 9 is changed by the guide roller set 66 so that the bending wire 8 is guided into the operation portion 3 through a second coil pipe 67 disposed inside the universal cord 4 . Thereafter, the wire travel path of the bending wire 8 is changed by a plurality of guide roller sets 68 , 69 and the like, and the bending wire 8 arrives at the vicinity of the wire attachment portion 13 u 2 and is fixed thereto.
  • the weight of the operation portion 3 can be reduced by disposing the pulley 11 and the motor 12 that were disposed inside the operation portion 3 in the above configuration, inside the connector 4 c .
  • the other actions and effects are the same as in the above described third embodiment.

Abstract

A bending apparatus includes: a bending portion; an operation element erected vertically from an operation portion having a longitudinal axis and has a shaft portion in which a tilt direction and tilt angle are changeable; a pulling member having one end connected to the bending portion; a pulley on which a rotary body around which the pulling member is wound is arranged; a motor that generates a driving force that rotates the pulley to pull the pulling member wound around the rotary body in a winding direction; a hanging frame that extends in a diameter direction of the shaft portion, and includes an attachment portion to which the other end of the pulling member is attached; and an attachment path setting member provided inside the operation portion, which changes a path of the pulling to the longitudinal axis direction and guides the pulling member to the attachment portion.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation application of PCT/JP2012/053243 filed on Feb. 13, 2012 and claims benefit of Japanese Application No. 2011-042551 filed in Japan on Feb. 28, 2011, the entire contents of which are incorporated herein by this reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a bending apparatus in which, by performing a tilt operation that changes a tilt direction and a tilt angle of an operation element provided in an operation portion, it is possible to move a pulling member and effect a bending operation of a bending portion provided in an insertion portion.
  • 2. Description of the Related Art
  • In recent years, endoscopes that include an elongated insertion portion are being utilized in a medical field and an industrial field. Endoscopes utilized in the medical field are used to perform observation and the like by inserting the insertion portion into a body from an oral cavity or an anus or the like. Further, with an endoscope used in the industrial field, an observation can be conducted by inserting the insertion portion into a pipe of a boiler or inside an engine or the like.
  • In an endoscope, generally, in order to be able to point an observation optical system provided in a distal end portion of the insertion portion in a desired direction, a bending portion that bends, for example, in the vertical and lateral directions is provided on a distal end side of the insertion portion. A bending knob for effecting a bending operation of the bending portion is pivotably arranged in an operation portion that is provided at a proximal end of the insertion portion. An angle wire is connected at a predetermined position of the bending portion and at a predetermined position of the bending operation knob. In an endoscope configured in this manner, the configuration is such that when an operator rotates the bending operation knob clockwise or counterclockwise using fingers of a hand that is grasping the operation portion, the angle wire is pulled or slackened and the bending portion bends. (Hereunder, an endoscope having this configuration is referred to as a “conventional endoscope.”)
  • In recent years, endoscopes have been proposed which have driving means that is provided inside an operation portion of the endoscope, and in which a bending operation of a bending portion can be effected by operating an operation element that is a bending mechanism with a single finger. For example, in FIG. 6 in Japanese Patent Application Laid-Open Publication No. 08-224241, an endoscope is illustrated in which a bending pipe is bent vertically and laterally by operating a joystick that is an operation element provided in a casing. According to this endoscope, when a surgeon subjects the joystick to a tilt operation, a controller converts the tilt operation into a bending angle in a vertical or lateral direction, and drives a driving actuator for vertical bending and/or a driving actuator for lateral bending. Thereupon, a wire is pulled/slackened by the driving force of the actuator and the bending portion performs a bending operation. Therefore, the surgeon can easily adjust the bending portion of the distal end portion.
  • However, in an endoscope in which a wire is pulled by a driving actuator, the wire is not directly pulled by the joystick that the surgeon operates. Consequently, a change does not occur in the operability of the joystick even if, during a bending operation of the bending portion, for example, the distal end portion contacts against living tissue and a load that is applied to the wire increases.
  • Japanese Patent Application Laid-Open Publication No. 2003-325437 discloses an endoscope that is equipped with a pulling member operation apparatus with which it is possible to effect a bending operation of a bending portion by tilting an operation instruction lever as an operation element using a slight amount of operation force thereby to directly move a desired pulling member by a desired amount. In this endoscope, by tilting a bending lever thereby to change a tension state of an operation wire that corresponds to the tilt operation direction that is fixed to an arm member, a drag between the operation wire and a pulley that is being rotated by a motor is changed. Thereupon, the operation wire is moved in the direction of rotation of the pulley and the bending portion bends. According to this endoscope, the relevant wire is directly pulled when a tilt operation of the bending lever is performed. As a result, operability is obtained such that, for example, when the distal end portion contacts against living tissue during a bending operation, the amount of tilt operation force increases along with an increase in a load that is applied to the relevant wire, and thus the above described problem can be solved.
  • In addition, Japanese Patent Application Laid-Open Publication No. 2010-207598 discloses an endoscope equipped with the pulling member operation apparatus described in Japanese Patent Application Laid-Open Publication No. 2003-325437. An operation portion of this endoscope includes an operation portion body, and a grasping portion that is provided on a side opposite to an insertion portion of the operation portion body so that an axis direction intersects with an insertion axis of the insertion portion and inclines downward relative to the insertion axis. When the grasping portion is grasped with the little finger, the ring finger, and the middle finger, a bending operation lever of this endoscope protrudes from a middle position on a front surface side of the operation portion body that is a position at which an operation can be performed with the thumb. Further, in this endoscope, a plurality of operation switches are disposed on a front surface side of the operation portion body on the grasping portion side that is in the vicinity of the bending operation lever.
  • SUMMARY OF THE INVENTION
  • According to one aspect of the present invention, a bending apparatus includes: a bending portion; a grasping portion that is included in an operation portion and has a longitudinal axis, and that is grasped when effecting a bending operation of the bending portion; an operation element that is erected vertically from the operation portion, and that has a shaft portion in which a tilt direction and a tilt angle are changeable; a pulling member having one end connected to the bending portion; a pulley that is disposed at a position that is deviated in the longitudinal axis direction relative to the operation element, and on which a rotary body around which an intermediate portion of the pulling member is wound is arranged in a loosely fitting state; a motor that is disposed at a position that is deviated in the longitudinal axis direction relative to the operation element, and that generates a driving force that rotates the pulley to pull the pulling member that is wound around the rotary body arranged on the pulley in a winding direction; a hanging frame that extends in a diameter direction of the shaft portion of the operation element, and that includes an attachment portion to which the other end of the pulling member that is wound around the rotary body is attached; and an attachment path setting member that is provided inside the operation portion and that leads the pulling member that is wound around the rotary body in the longitudinal axis direction, and changes a path of the pulling member that is led to a direction of a longitudinal axis of the shaft portion to guide the pulling member to the attachment portion.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 to FIG. 5 relate to a first embodiment of the present invention, in which:
  • FIG. 1 is a view that illustrates an endoscope in which an operation element included in a pulling member operation apparatus is erected vertically in an operation portion;
  • FIG. 2 is a view that illustrates a configuration of a pulling member operation apparatus that contains a motor and a pulley in an operation portion that includes a grasping portion and an operation portion body;
  • FIG. 3 is a view that illustrates a rotary body;
  • FIG. 4 is a view that mainly illustrates a configuration of the motor and the pulley of the pulling member operation apparatus as viewed from an arrow Y4 direction in FIG. 2; and
  • FIG. 5 is a view that mainly illustrates a configuration of an attachment path setting member and a hanging frame of the pulling member operation apparatus as viewed from the arrow Y4 direction in FIG. 2.
  • FIG. 6 to FIG. 9 relate to an application example of the present invention, in which:
  • FIG. 6 is a view that illustrates a pulling member operation apparatus that includes two pulleys that are arranged on two pulley shafts that are provided in a perpendicular positional relationship with respect to a motor shaft, and a driving force transmitting mechanism portion that transmits a driving force of the motor to the two pulleys;
  • FIG. 7 is a view that illustrates a relation between the two pulleys and a plurality of guide rollers as viewed from an arrow Y7 direction in FIG. 6;
  • FIG. 8 is a view that illustrates a different relation between a plurality of guide rollers, two pulleys, and rotary bodies; and
  • FIG. 9 is a view that illustrates a relation between rotary bodies that are disposed on two pulleys and guide rollers as viewed from an arrow Y9 direction in FIG. 8.
  • FIG. 10 to FIG. 15 relate to a second embodiment of the present invention, in which:
  • FIG. 10 is a view that illustrates another configuration of a pulling member operation apparatus that contains a motor and a pulley in an operation portion that includes a grasping portion and an operation portion body;
  • FIG. 11 is a view that illustrates the pulling member operation apparatus as viewed from an arrow Y11 direction in FIG. 10;
  • FIG. 12 is a view that illustrates a configuration example of a second guide roller, a third guide roller, and a plurality of rotary bodies disposed on a pulley as viewed from the direction of a line indicated by arrows Y12-Y12 in FIG. 10;
  • FIG. 13 is a view that illustrates a configuration example of a plurality of second guide rollers, a plurality of third guide rollers, and a plurality of rotary bodies disposed on a pulley as viewed from the direction of a line indicated by arrows Y13-Y13 in FIG. 10, that is a modification example of the arrangement positions of guide rollers;
  • FIG. 14 is a view that illustrates a pulley having a configuration that includes a plurality of shaft bodies, that is a modification example of a pulley; and
  • FIG. 15 is a view that illustrates the pulley as viewed from the direction of a line indicated by arrows Y15-Y15 in FIG. 14.
  • FIG. 16 to FIG. 24 relate to a third embodiment of the present invention, in which:
  • FIG. 16 is a view that illustrates an operation portion that includes a pulling member operation apparatus in which a motor having a motor shaft that is disposed so as to be orthogonal to a longitudinal axis of the operation portion, and a pulley having a pulley shaft that is disposed so as to be orthogonal to the longitudinal axis are contained in an operation portion body;
  • FIG. 17 is a view that illustrates the pulling member operation apparatus that is provided inside the operation portion body;
  • FIG. 18 is a perspective view that illustrates the configuration of the pulling member operation apparatus;
  • FIG. 19 is a top view of the pulling member operation apparatus illustrated in FIG. 18;
  • FIG. 20 is a side view of the pulling member operation apparatus illustrated in FIG. 18;
  • FIG. 21 is a top view of a pulling member operation apparatus in which the arrangement positions of the guide rollers are different;
  • FIG. 22 is a side view of the pulling member operation apparatus illustrated in FIG. 21;
  • FIG. 23 is a top view of a pulling member operation apparatus in which coil pipes are used as travel path changing members; and
  • FIG. 24 is a side view of the pulling member operation apparatus shown in FIG. 23.
  • FIG. 25 is a view that illustrates a configuration example of a pulling member operation apparatus that is disposed inside a connector that is provided in a proximal end portion of a universal cord in which a pulley and a motor are outside an operation portion.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Hereunder, embodiments of the present invention are described with reference to the drawings.
  • A first embodiment will now be described referring to FIG. 1 to FIG. 5.
  • As shown in FIG. 1, an endoscope 1 of the present embodiment includes an elongated insertion portion 2, an operation portion 3 that is connected in series to a proximal end of the insertion portion 2, and a universal cord 4 that extends from a side portion of the operation portion 3.
  • The insertion portion 2 includes a distal end portion 2 a, a bending portion 2 b, and a flexible tube portion 2 c that are connected in series in that order from the distal end side. An image pickup apparatus (unshown) that includes an image pickup device is contained inside the distal end portion 2 a. The bending portion 2 b is configured to be capable of bending in, for example, the vertical and lateral directions. The flexible tube portion 2 c is long and has flexibility.
  • As shown in FIG. 1 and FIG. 2, the operation portion 3 includes a grasping portion 3 a and an operation portion body 3 b. The grasping portion 3 a is connected in series to the insertion portion 2, and the operation portion body 3 b is connected in series to the grasping portion 3 a. The longitudinal axis of the grasping portion 3 a and the insertion axis of the insertion portion 2 are in a coaxial or a parallel positional relationship with each other. An operation element 5 configured to cause the bending portion 2 b to perform a bending operation is provided at a position corresponding to a portion at which the largest amount of vacant space exists on the distal end side of the operation portion body 3 b. The longitudinal axis of the operation portion body 3 b (also referred to as “longitudinal axis of the operation portion 3”) and the longitudinal axis of the grasping portion 3 a are in a coaxial or a parallel positional relationship with each other.
  • The operation element 5 is provided in a manner that intersects with the longitudinal axis of the operation portion 3 from an operation element protrusion port (unshown) that is an opening provided in one face of the operation portion body 3 b.
  • The bending portion 2 b is configured so as to bend in accordance with a tilt operation that includes a tilt direction and a tilt angle of the operation element 5, as shown by the arrows Yu, Yd, Yl, and Yr in FIG. 1. More specifically, in accordance with a tilting operation of the operation element 5, a bending operation wire (hereunder, abbreviated to “bending wire”) that is described later is pulled/slackened and the bending portion 2 b bends in the upward direction, the right direction, the downward direction, the left direction, a direction between the upward direction and the right direction, or the like.
  • In the present embodiment, the bending portion 2 b is configured to bend in the four directions of upward, downward, left and right. However, the bending portion 2 b may be configured to bend only in the upward and downward directions. The aforementioned reference characters “u,” “d,” “l” and “r” denote the upward, downward, left and right directions that are the bending directions of the bending portion 2 b. In the following description, for example, reference symbol “8 u” denotes a wire for upward bending, and reference symbol “9 d” denotes a rotary body for the downward direction. Further, in the drawings, to distinguish the small letter “l” from the number “1”, small letter “l” is shown in cursive style.
  • In this connection, as shown in FIG. 1, a switch 6 a, an air/water supply button 6 b, and a suction button 6 c are provided at predetermined positions on the exterior of the operation portion body 3 b, in addition to the operation element 5. The switch 6 a is operated, for example, to input an instruction to perform various kinds of image pickup operations of the image pickup apparatus provided inside the distal end portion 2 a. Further, a channel insertion port 6 d that communicates with a treatment instrument channel (unshown) is provided on the exterior of the grasping portion 3 a.
  • In the present embodiment, the operation element 5 is provided at a position at which the operation element 5 is operated by a thumb of the hand which grasps the operation portion 3 in a case where the operator grasps the grasping portion 3 a of the operation portion 3 with the left hand in the same manner as for a conventional endoscope, the air/water supply button 6 b and the suction button 6 c are provided at positions at which the air/water supply button 6 b and the suction button 6 c are operated by fingers other than the thumb of the hand with which the operator grasps the operation portion 3, and the switch 6 a is provided at a position at which the switch 6 a can be operated by the thumb or another finger of the hand with which the operator grasps the operation portion 3.
  • Reference numeral 7 in FIG. 1 and FIG. 2 denotes a cover member. The cover member 7 blocks the operation element protrusion port in a watertight state, and adheres to a shaft portion 5 a to retain the operation element 5 in a manner that enables a tilt operation thereof.
  • A signal cable, an electric wire, a light guide fiber bundle, an air supply tube, a water supply tube, a suction tube and the like are inserted through the inside of the universal cord 4. The signal cable is connected to the image pickup apparatus. The electric wire supplies electric power to a motor that is described later (see reference numeral 12 in FIG. 2). The light guide fiber bundle transmits illuminating light of a light source apparatus.
  • As shown in FIG. 2, a pulling member operation apparatus 10 is provided inside the operation portion 3. As shown in FIG. 2 to FIG. 5, the pulling member operation apparatus 10 is mainly constituted by four bending wires 8, an elongated pulley 11 on which four rotary bodies 9 are arranged, a motor 12 that is driving means, a substantially cruciform shaped hanging frame 13, the operation element 5, and a guide roller set 21 that includes a plurality of guide rollers that is described later. The bending wires 8 are pulling members. An intermediate portion of each wire 8 is wound around each rotary body 9, respectively. The motor 12 has a driving force that causes a predetermined rotary body 9 arranged on the pulley 11 to rotate with a predetermined torque at the time of a bending operation. The hanging frame 13 has wire attachment portions to which the proximal end portions of the respective wires 8 are respectively connected. The shaft portion 5 a of the operation element 5 is integrally connected to the hanging frame 13. The plurality of guide rollers of the guide roller set 21 are wire travel path changing members that change a travel path of the four wires 8 inside the operation portion 3.
  • In FIG. 4, reference numeral 51 denotes a signal cable, reference numeral 52 denotes a light guide cable, reference numeral 53 denotes a coil pipe stopper, and reference numeral 59 denotes a partition plate. The present embodiment is configured so that the center of gravity of the operation portion 3 is positioned inside the grasping portion 3 a.
  • The four bending wires 8 include a pair of a wire for upward bending (hereunder, referred to as “upward bending wire”) 8 u and a wire for downward bending (hereunder, referred to as “downward bending wire”) 8 d that are used for bending operations in the upward and downward directions, and a pair of a wire for left bending (hereunder, referred to as “left bending wire”) 8 l and a wire for right bending (hereunder, referred to as “right bending wire”) 8 r that are used for bending operations in the left and right directions.
  • In the present embodiment, the longitudinal axis of the pulley 11 and the longitudinal axis of the motor 12 intersect. More specifically, a drive shaft of the motor 12 is disposed at a predetermined position inside the grasping portion 3 a so as to be in a parallel positional relationship with respect to the longitudinal axis of the grasping portion 3 a. A motor shaft 12 b of the motor 12 and a pulley shaft 11 b that is a rotary shaft of the pulley 11 are set so as to be disposed in a perpendicular positional relationship with each other. The pulley 11 and the motor 12 are disposed in respectively different spaces inside the operation portion 3 that is partitioned by the partition plate 59, in a manner that interposes the partition plate 59 therebetween.
  • The configuration is such that a driving force of the motor 12 is transmitted to the pulley 11 by a driving force transmitting mechanism portion 30. The driving force transmitting mechanism portion 30 includes a first bevel gear 31 and a second bevel gear 32.
  • The first bevel gear 31 is integrally fixed to the shaft portion 12 a of the motor 12. The second bevel gear 32 is integrally fixed to the shaft portion 11 a of the pulley 11. According to this configuration, the pulley 11 is rotated around its axis when the driving force of the motor 12 is transmitted to the shaft portion 11 a through the bevel gears 31 and 32.
  • The rotary body 9 is elastically deformable. As shown in FIG. 3, the rotary body 9 includes, for example, an annular portion 9 a and a rotation amount adjustment portion 9 b. A gap 9 c is formed in the annular portion 9 a of the rotary body 9. An unshown wire guide portion is formed in the annular portion 9 a and the rotation amount adjustment portion 9 b. The wire guide portion is configured in a predetermined shape so as to smoothly guide the relevant wire 8 from a winding start position 9 s to a winding end position 9 e. Four rotary bodies 9 u, 9 d, 9 l, and 9 r are disposed in a predetermined loosely fitting state on the outer circumferential face of the pulley 11, and each of the rotary bodies 9 u, 9 d, 9 l, and 9 r rotates independently.
  • The hanging frame 13 shown in FIG. 5 is disposed so as to be in a predetermined positional relationship within a vacant space on the distal end side of the operation portion body 3 b shown in FIG. 2.
  • As shown in FIG. 5, the hanging frame 13 includes four frames 13 u, 13 d, 13 l, and 13 r, and is formed in a substantially cruciform shape. A frame for an upward direction (hereunder, referred to as “upward frame”) 13 u and a frame for a downward direction (hereunder, referred to as “downward frame”) 13 d that correspond to the pair of bending wires 8 u and 8 d are collinearly disposed in a manner that interposes the shaft portion 5 a therebetween. An upward wire attachment portion 13 u 2 is provided at an end portion of the upward frame 13 u, and a downward wire attachment portion 13 d 2 is provided at an end portion of the downward frame 13 d.
  • In addition, a frame for a left direction (hereunder, referred to as “left frame”) 13 l and a frame for a right direction (hereunder, referred to as “right frame”) 13 r that correspond to the pair of bending wires 8 l and 8 r are collinearly disposed in a perpendicular manner with respect to an upward/downward frame center line (hereunder, referred to as “frame center line”) 13 a in a manner that interposes the shaft portion 5 a therebetween. A left wire attachment portion 13 l 2 is provided at an end portion of the left frame 13 l, and a right wire attachment portion 13 r 2 is provided at an end portion of the right frame 13 r.
  • The upward frame 13 u includes, at an end portion thereof, an upward frame distal end curved portion 13 ub that is curved in one direction relative to the frame center line 13 a. The downward frame 13 d includes, at an end portion thereof, a downward frame distal end curved portion 13 db that is curved in one direction relative to the frame center line 13 a.
  • The upward wire attachment portion 13 u 2 is provided in the upward frame distal end curved portion 13 ub, and the downward wire attachment portion 13 d 2 is provided in the downward frame distal end curved portion 13 db. As a result, an interval w1 in a direction that is orthogonal to the longitudinal axis of the operation portion 3 between the upward wire attachment portion 13 u 2 and the downward wire attachment portion 13 d 2 is set to a predetermined size.
  • In this connection, the upward frame 13 u and the upward wire attachment portion 13 u 2 and the like are components that are set by taking into consideration the tilt directions of the operation element 5 and the bending directions of the bending portion 2 b. According to the present embodiment, a configuration is adopted such that when the operation element 5 is tilted in the arrow Yu direction in FIG. 1, the upward wire attachment portion 13 u 2 sways and is tilted in the arrow Yu direction in FIG. 5 and the bending portion 2 b bends in the upward direction. Similarly, when the operation element 5 is tilted in the arrow Yd direction in FIG. 1, the downward wire attachment portion 13 d 2 sways and is tilted in the arrow Yd direction in FIG. 5 and the bending portion 2 b bends in the downward direction. Further, when the operation element 5 is tilted in the arrow Yl direction in FIG. 1, the left wire attachment portion 13 l 2 sways and is tilted in the arrow Yl direction in FIG. 5 and the bending portion 2 b bends in the left direction. Similarly, when the operation element 5 is tilted in the arrow Yr direction in FIG. 1, the right wire attachment portion 13 r 2 sways and is tilted in the arrow Yr direction in FIG. 5 and the bending portion 2 b bends in the right direction.
  • In the present embodiment, the hanging frame 13 is disposed at a predetermined position inside the operation portion 3 so that the frame center line 13 a and the longitudinal axis of the grasping portion 3 a are parallel.
  • As shown in FIG. 2 and FIG. 5, the guide roller set 21 includes a roller shaft 21 p and four guide rollers 21 u, 21 d, 21 l, and 21 r. The roller shaft 21 p is a support body that is, for example, a cylindrical shape. The four guide rollers 21 u, 21 d, 21 l, and 21 r are pivotably disposed on the roller shaft 21 p.
  • The four guide rollers 21 u, 21 d, 21 l, and 21 r correspond to the four bending wires 8 u, 8 d, 8 l, and 8 r, respectively. The four guide rollers 21 u, 21 d, 21 l, and 21 r are provided at positions that are separated by a predetermined distance from the pulley 11 and the hanging frame 13. The four guide rollers 21 u, 21 d, 21 l and 21 r are attachment path setting members that guide the four bending wires 8 u, 8 d, 8 l, and 8 r to the wire attachment portions 13 u 2, 13 d 2, 13 l 2, and 13 r 2 of the hanging frame 13.
  • The roller shaft 21 p is disposed at a predetermined position directly below the shaft portion 5 a, in an intersecting positional relationship with respect to the longitudinal axis of the grasping portion 3 a. The center of the roller shaft 21 p is positioned on the central axis of the shaft portion 5 a in an upright state.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r are configured so as to arrive at the upward wire attachment portion 13 u 2, the downward wire attachment portion 13 d 2, the left wire attachment portion 13 l 2 and the right wire attachment portion 13 r 2 of the hanging frame 13, respectively, after the respective travel paths of the bending wires 8 u, 8 d, 8 l and 8 r have been changed by the guide rollers 21 u, 21 d, 21 l and 21 r.
  • The guide rollers 21 will now be described referring to FIG. 5.
  • In this connection, in FIG. 5, in order to describe the positional relation between the respective bending wires 8 u, 8 d, 8 l and 8 r and the respective wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2, the position of the hanging frame 13 is displaced in the right direction in the drawing with respect to the roller shaft 21 p.
  • As shown in FIG. 5, the four guide rollers 21 u, 21 d, 21 l and 21 r are disposed in the order of guide rollers 21 r, 21 d, 21 u and 21 l as shown by the arrow Y5 a in FIG. 5 with respect to the roller shaft 21 p.
  • There is a difference in the diametrical dimensions or width dimensions between the guide rollers 21 r and 21 l disposed at the two ends of the roller shaft 21 p and the guide rollers 21 u and 21 d disposed on the inner side of the guide rollers 21 r and 21 l in a manner that interposes the center of the roller shaft 21 p therebetween. At least the width dimensions of the guide rollers 21 l and 21 r are set so as to be wider than the width dimensions of the guide rollers 21 u and 21 d.
  • When the maximum external diameter of the guide rollers 21 l, 21 r, 21 u and 21 d is taken as w3 and an interval in the longitudinal axis direction of the operation portion 3 between the upward wire attachment portion 13 u 2 and the downward wire attachment portion 13 d 2 is taken as w2, the relation w2>w3 is set with respect to the interval w2 and the maximum external diameter w3.
  • Further, an interval between the center of the guide roller 21 u and the center of the guide roller 21 d is set to an interval w1 that is an interval between the upward wire attachment portion 13 u 2 and the downward wire attachment portion 13 d 2.
  • In addition, a relation w4>w5 is set with respect to an interval w4 between the left wire attachment portion 13 l 2 and the right wire attachment portion 13 r 2, and an interval w5 between an outer end of the left guide roller 21 l disposed on the roller shaft 21 p and an outer end of the right guide roller 21 r disposed on the roller shaft 21 p.
  • The four rotary bodies 9 disposed on the pulley 11 are disposed in the order of rotary bodies 9 r, 9 d, 9 u and 9 l as shown by the arrow Y4 a in FIG. 4.
  • The travel paths inside the operation portion 3 of the respective bending wires 8 u, 8 d, 8 l and 8 r will now be described referring to FIG. 2, FIG. 4 and FIG. 5.
  • As shown in FIG. 5, the respective proximal end portions of the four bending wires 8 u, 8 d, 8 l and 8 r are fixed to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2 that are at predetermined positions of the hanging frame 13.
  • On the other hand, the respective distal end portions of the bending wires 8 u, 8 d, 8 l and 8 r are fixed at positions corresponding to up, down, left and right of unshown distal end bending pieces that are included in the bending portion 2 b. The distal end bending pieces are bending pieces that constitute the most distal end of a bending portion set that is configured so as to bend in the vertical and lateral directions, in which a plurality of unshown bending pieces included in the bending portion 2 b are connected in series.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r are inserted so as to freely advance and retract inside guides 24 that are formed, for example, with coil pipes made of metal that have through-holes that correspond to the wires 8 u, 8 d, 8 l and 8 r inside the insertion portion 2, respectively.
  • As shown in FIG. 2, FIG. 4 and FIG. 5, the respective bending wires 8 u, 8 d, 8 l and 8 r that are fixed to the distal end bending pieces extend inside the operation portion 3 through the guides 24.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r are wound around the rotary bodies 9 u, 9 d, 9 l and 9 r disposed on the pulley 11, respectively. More specifically, each of the bending wires 8 u, 8 d, 8 l and 8 r are wound around the rotary bodies 9 u, 9 d, 9 l and 9 r so as to be in a predetermined slackened state from the respective winding start positions 9 s of the corresponding rotary body 9 u, 9 d, 9 l or 9 r. Thereafter, the respective bending wires 8 u, 8 d, 8 l and 8 r are led towards the respective guide rollers 21 u, 21 d, 21 l and 21 r from the respective winding end positions 9 e of the rotary bodies 9 u, 9 d, 9 l and 9 r.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r that are led from the respective rotary bodies 9 u, 9 d, 9 l and 9 r are guided to the respective guide rollers 21 u, 21 d, 21 l and 21 r, and the wire travel paths are changed thereby so that the bending wires 8 u, 8 d, 8 l and 8 r are guided to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2 provided in the hanging frame 13. The respective proximal end portions of the bending wires 8 u, 8 d, 8 l and 8 r are fixed to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2.
  • As described above, the width dimensions of the guide rollers 21 l and 21 r are set so as to be wider than the width dimensions of the guide rollers 21 u and 21 d, and the interval w4 is set so as to be greater than the interval w5. As a result, the bending wires 8 l and 8 r pass smoothly through the guide rollers 21 l and 21 r and are guided to the wire attachment portions 13 l 2 and 13 r 2.
  • In this connection, the shaft portion 5 a of the operation element 5 and a frame convex portion 13 f that is a central shaft of the hanging frame 13 are coaxially mounted and fixed through a pivotably arranged universal joint 14 to an unshown frame. When the shaft portion 5 a of the operation element 5 is in an upright state as shown in FIG. 2, the respective bending wires 8 u, 8 d, 8 l and 8 r that extend from the guide rollers 21 u, 21 d, 21 l and 21 r towards the hanging frame 13 are all in a predetermined slackened state.
  • Reference symbol 5 b denotes a finger contact portion that is a spherical shape. The finger contact portion 5 b is integrally fixed to a distal end of the shaft portion 5 a.
  • A configuration may also be adopted in which a partition member is provided between adjacent bending wires 8, to thereby prevent the bending wires 8 from tangling together.
  • Thus, in the configuration in which the pulley 11 and the motor 12 are disposed inside the operation portion 3 having a longitudinal axis that is parallel to the longitudinal axis of the insertion portion 2 included in the endoscope 1, the motor shaft 12 b of the motor 12 is disposed parallel to the longitudinal axis of the grasping portion 3 a, and the pulley shaft 11 b of the pulley 11 is made orthogonal to the motor shaft 12 b of the motor 12.
  • In addition, the guide roller set 21 having the roller shaft 21 p that intersects at right angles with the longitudinal axis of the operation portion 3, in other words, that is parallel to the pulley shaft 11 b, is disposed at a predetermined position as a wire travel path changing member.
  • Further, the respective bending wires 8 u, 8 d, 8 l and 8 r that are led inside the operation portion 3 and travel towards the proximal end side of the operation portion 3 are wound around the respective rotary bodies 9 u, 9 d, 9 l and 9 r disposed on the pulley 11 from the respective winding start positions 9 s. The respective bending wires 8 u, 8 d, 8 l and 8 r are wound around the respective rotary bodies 9 u, 9 d, 9 l and 9 r in a slackened state and led out from the respective winding end positions. The bending wires 8 u, 8 d, 8 l and 8 r that are led out are guided towards the guide rollers 21 u, 21 d, 21 l and 21 r. Thereafter, the travel path of the bending wires 8 u, 8 d, 8 l and 8 r is changed by the guide rollers 21 u, 21 d, 21 l and 21 r, respectively, and the bending wires 8 u, 8 d, 8 l and 8 r are led to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2 of the hanging frame 13 and fixed thereto.
  • According to the endoscope 1 configured in the above manner, in a state in which the motor 12 is driven and the pulley 11 is rotated, when the shaft portion 5 a of the operation element 5 is in an upright state each of the bending wires 8 u, 8 d, 8 l and 8 r that are wound around the rotary bodies 9 u, 9 d, 9 l and 9 r disposed on the pulley 11, respectively, enters a predetermined slackened state. As a result, all of the rotary bodies 9 u, 9 d, 9 l and 9 r enter a sliding state with respect to the pulley 11, and the bending portion 2 b is maintained in a straight state.
  • On the other hand, in a state in which the operator has grasped the grasping portion 3 a, to cause the bending portion 2 b to perform a bending operation in, for example, the upward direction, the operator places the ball of the thumb on the finger contact portion 5 b of the operation element 5 and tilts the shaft portion 5 a in the direction of the arrow Yu in FIG. 1. Thereupon, accompanying the operation to tilt the operation element 5, the hanging frame 13 inclines, and the upward bending wire 8 u fixed to the upward wire attachment portion 13 u 2 gradually changes from a slackened state to a tensed state. In contrast, the other bending wires 8 d, 8 l and 8 r change to a state in which the bending wires 8 d, 8 l and 8 r are more slackened.
  • Accordingly, among the respective bending wires 8 u, 8 d, 8 l and 8 r that were wound in a slackened state around the respective rotary bodies 9 u, 9 d, 9 l and 9 r of the pulley 11, only the upward bending wire 8 u is pulled. Thereupon, the gap 9 c in a rotary body for upward bending (hereunder, referred to as “upward rotary body”) 9 u is narrowed in resistance to an elastic force and is thus contracted, and the state changes to one in which the upward rotary body 9 u and the pulley 11 are in a closely contacting state. Consequently, frictional resistance arises between the upward rotary body 9 u and the pulley 11, and the upward rotary body 9 u is rotated while sliding with respect to the pulley 11 in the same direction as the pulley 11. As a result, the upward bending wire 8 u that is disposed further on the insertion portion 2 side than the upward rotary body 9 u is pulled and moved accompanying rotation of the upward rotary body 9 u, and the bending portion 2 b starts a bending movement in the upward direction.
  • In this case, if the operator continues the operation to tilt the shaft portion 5 a in the same direction so as to cause the upward rotary body 9 u to closely contact the pulley 11, the upward rotary body 9 u that is in the closely contacting state is brought into even closer contact with the pulley 11 and the frictional force increases. As a result, the wire for upward bending 8 u that is disposed at a position that is further on the insertion portion 2 side than the upward rotary body 9 u is pulled and moved to a further degree accompanying rotation of the rotary body 9 u, and thus the bending portion 2 b bends further in the upward direction.
  • In contrast, if the operator continues to maintain the tilt position of the operation element 5, the tightness between the upward rotary body 9 u and the pulley 11 is maintained. Thus, movement stops in a state in which a tensile force has arisen at the upward bending wire 8 u disposed at a position that is further on the distal end side than the upward rotary body 9 u.
  • At this time, each of the bending wires 8 d, 8 l and 8 r is in a slackened state. Accordingly, by continuing to retain the operation element 5 in this tilt operation state, the tensed state of the upward bending wire 8 u and the slackened states of the bending wires 8 d, 8 l and 8 r are retained, respectively, and the bending portion 2 b is maintained in a bent state that corresponds to the tilt operation.
  • Subsequently, the operator performs a tilt operation with respect to the operation element 5 to bend the bending portion 2 b further in the same direction, to bend the bending portion 2 b in another direction, or to return the bending portion 2 b to the original state thereof. Thereupon, the bending wires 8 u, 8 d, 8 l and 8 r are pulled or slackened in accordance with the tilt operation, a change arises in the loosely fitting state or the closely contacting state of the pulley 11 and the rotary bodies 9 that correspond to the bending wires 8, and the bending portion 2 b changes to a state that corresponds to the tilt operation of the operation element 5.
  • According to this configuration, the end portions of the respective bending wires 8 u, 8 d, 8 l and 8 r are fixed to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2 of the hanging frame 13 that is fixed to the shaft portion 5 a of the operation element 5, by using the guide roller set 21 to change the wire travel paths of the respective bending wires 8 u, 8 d, 8 l and 8 r that are led inside the operation portion 3. As a result, the respective bending wires 8 u, 8 d, 8 l and 8 r can be smoothly pulled or slackened by a tilt operation of the operation element 5.
  • Further, in a state in which the operator has grasped the operation portion 3, that is, during endoscopy, the operator can easily operate not just the operation element 5, but also the air/water supply button 6 b, the suction button 6 c and the switch 6 a.
  • An application example of the present invention will now be described referring to FIG. 6 to FIG. 9.
  • FIG. 6 is a view that illustrates the configuration of a pulling member operation apparatus including pulleys that are provided in a perpendicular positional relationship with respect to a motor shaft. FIG. 7 is a view that illustrates a relation between a plurality of guide rollers, two pulleys, and rotary bodies as viewed from an arrow Y7 direction in FIG. 6. FIG. 8 is a view that illustrates a different relation between a plurality of guide rollers, two pulleys, and rotary bodies. FIG. 9 is a view that illustrates guide rollers and rotary bodies as viewed from an arrow Y9 direction in FIG. 8.
  • As shown in FIG. 6 and FIG. 7, a pulling member operation apparatus 10A of the present embodiment includes two pulleys 11A1 and 11A2, a driving force transmitting mechanism portion 30A, the four bending wires 8, the four rotary bodies 9, the motor 12, the hanging frame 13 (not shown in FIG. 6 and FIG. 7) and the operation element 5 (not shown in FIG. 6 and FIG. 7) that are described above, and a plurality of guide roller sets 21, 22 and 23. The first pulley 11A1 and the second pulley 11A2 are disposed at predetermined positions in a parallel positional relationship with each other. The travel paths of the respective bending wires 8 u, 8 d, 8 l and 8 r are changed by the plurality of guide roller sets 21, 22 and 23. The plurality of guide roller sets 21, 22 and 23 each include wire travel path changing members.
  • In this connection, a first guide roller set 21 is an attachment path setting member that includes the above described guide rollers 21 u, 21 d, 21 l and 21 r as first wire travel path changing members, and is not shown in FIG. 6 and FIG. 7. A second guide roller set 22 includes second guide rollers 22 u, 22 d, 22 l and 22 r, described later, as second wire travel path changing members. A third guide roller set 23 includes third guide rollers 23 u, 23 d, 23 l and 23 r, described later, as third wire travel path changing members.
  • In the present embodiment, the guide rollers 21 u, 21 d, 21 l and 21 r are the first guide rollers 21 u, 21 d, 21 l and 21 r.
  • Reference numerals 54 and 55 denote pulley shafts, and reference numerals 56 a, 56 b, 57 a and 57 b denote roller shafts.
  • In the present embodiment also, a configuration is adopted so that the center of gravity of the operation portion 3 is positioned inside the grasping portion 3 a.
  • In the present embodiment, the first pulley 11A1 is pivotably attached to a first pulley shaft 54 that is provided orthogonal to the longitudinal axis of the grasping portion 3 a that is fixed to the partition plate 59. The second pulley 11A2 is pivotably attached to a second pulley shaft 55 that is provided orthogonal to the longitudinal axis of the grasping portion 3 a that is fixed to the partition plate 59. Accordingly, in the present embodiment, the motor shaft 12 b of the motor 12 and the pulley shafts 54 and 55 are set in a perpendicular positional relationship with each other. Further, the configuration is such that the driving force of the motor 12 is transmitted to the pulleys 11A1 and 11A2 by the driving force transmitting mechanism portion 30A.
  • The driving force transmitting mechanism portion 30A is a gear train, and in addition to the first bevel gear 31 and the second bevel gear 32, includes a first spur gear 33, a second spur gear 34, and a third spur gear 35. The first bevel gear 31 is fixed to the shaft portion 12 a of the motor 12. The second bevel gear 32 and the first spur gear 33 are fixed to predetermined positions of a gear shaft 36 that is pivotably supported by the partition plate 59. The second bevel gear 32 is fixed to an end portion of the gear shaft 36, and intermeshes with the first bevel gear 31. The first spur gear 33 is fixed to a predetermined position on the other end portion side of the gear shaft 36. The second spur gear 34 is fixed to the second pulley 11B, and intermeshes with the first spur gear 33. The third spur gear 35 is fixed to the first pulley 11A, and intermeshes with the second spur gear 34.
  • According to this configuration, similarly to the above described configuration, the single motor 12 and the two pulleys 11A1 and 11A2 can be disposed in different spaces inside the operation portion 3, in manner that interposes the partition plate 59 therebetween.
  • Further, when the motor 12 enters a driving state, rotation of the shaft portion 12 a of the motor 12 is transmitted to the first bevel gear 31, the second bevel gear 32, the gear shaft 36, the first spur gear 33, the second spur gear 34 and the third spur gear 35, and thus the first pulley 11A1 and the second pulley 11A2 rotate in different directions. More specifically, the first pulley 11A1 shown in FIG. 7 rotates clockwise, and the second pulley 11A2 shown in FIG. 7 rotates counterclockwise.
  • As shown in FIG. 6, for example, a rotary body for the left direction (hereunder, referred to as “left rotary body”) 9 l and a rotary body for the right direction (hereunder, referred to as “right rotary body”) 9 r are disposed at predetermined positions with a predetermined interval therebetween on the first pulley 11A1. Further, for example, the upward rotary body 9 u and a rotary body for the downward direction (hereunder, referred to as “downward rotary body”) 9 d are disposed at predetermined positions on the second pulley 11A2 with an interval therebetween that is the same as the interval between the left rotary body 9 l and the right rotary body 9 r.
  • As shown in FIG. 7, the winding start position 9 s of the left rotary body 9 l and the winding start position 9 s of the right rotary body 9 r that are disposed on the first pulley 11A1 are set on the upper side in the drawing. In contrast, the winding start position 9 s of the upward rotary body 9 u and the winding start position 9 s of the downward rotary body 9 d that are disposed on the second pulley 11A2 are set on the lower side in the drawing. Consequently, the winding direction of the bending wires 8 u and 8 d and the winding direction of the bending wires 8 l and 8 r are opposite directions to each other.
  • As shown in FIG. 6 and FIG. 7, the second guide roller set 22 includes a second guide roller set for the upward/downward directions (hereunder, referred to as “second upward/downward guide roller set”) 22A, and a second guide roller set for the left/right directions (hereunder, referred to as “second left/right guide roller set”) 22B. The second upward/downward guide roller set 22A includes a second roller shaft for the upward/downward directions (hereunder, referred to as “second upward/downward roller shaft) 56 a as one first support body, and the second guide rollers 22 u and 22 d. The second guide rollers 22 u and 22 d are pivotably disposed on the second upward/downward roller shaft 56 a, respectively.
  • The second left/right guide roller set 22B includes a second roller shaft for the left/right directions 56 b as the other first support body, and the second guide rollers 22 l and 22 r. The second guide rollers 22 l and 22 r are pivotably disposed on the second roller shaft for the left/right directions 56 b, respectively.
  • The second guide rollers 22 u and 22 d of the second upward/downward guide roller set 22A are disposed so as to correspond to the winding start positions 9 s that are set on the lower side in the drawings of the upward rotary body 9 u and the downward rotary body 9 d that are disposed on the second pulley 11A2. Further, the second guide rollers 22 l and 22 r of the second left/right guide roller set 22B are disposed so as to correspond to the winding start positions 9 s that are set on the upper side in the drawings of the left rotary body 9 l and the right rotary body 9 r that are disposed on the first pulley 11A1.
  • In the present embodiment, the respective second guide rollers 22 u, 22 d, 22 l and 22 r are pulley lead-in members that guide the respective bending wires 8 u, 8 d, 8 l and 8 r to the pulleys 11A1 and 11A2.
  • The third guide roller set 23 includes a third guide roller set for the upward/downward directions (hereunder, referred to as “third upward/downward guide roller set”) 23A and a third guide roller set for the left/right directions (hereunder, referred to as “third left/right guide roller set”) 23B. The third upward/downward guide roller set 23A includes a third roller shaft for the upward/downward directions 57 a as one second support body, and the third guide rollers 23 u and 23 d. The third guide rollers 23 u and 23 d are pivotably disposed on the third roller shaft for the upward/downward directions 57 a.
  • The third left/right guide roller set 23B includes a third roller shaft for the left/right directions 57 b as the other second support body, and the third guide rollers 23 l and 23 r. The third guide rollers 23 l and 23 r are pivotably disposed on the third roller shaft for the left/right directions 57 b.
  • The third guide rollers 23 u and 23 d of the third upward/downward guide roller set 23A are disposed so as to correspond to the winding end positions 9 e that are set on the lower side in the drawings of the upward rotary body 9 u and the downward rotary body 9 d that are disposed on the second pulley 11A2. Further, the third guide rollers 23 l and 23 r of the third left/right guide roller set 23B are disposed so as to correspond to the winding end positions 9 e that are set on the upper side in the drawings of the left rotary body 9 l and the right rotary body 9 r that are disposed on the first pulley 11A1.
  • In the present embodiment, the respective third guide rollers 23 u, 23 d, 23 l and 23 r are pulley lead-out members that guide the respective bending wires 8 u, 8 d, 8 l and 8 r from the pulleys 11A1 and 11A2 towards a desired direction.
  • The second guide rollers 22 u and 22 d that correspond to the bending wires 8 u and 8 d and the third guide rollers 23 l and 23 r that correspond to the bending wires 8 l and 8 r are disposed at predetermined positions in a positional relationship such that the second guide rollers 22 u and 22 d and the third guide rollers 23 l and 23 r are facing in a manner that interposes therebetween a hypothetical line (see the chain double-dashed line in FIG. 7) that links together the centers of the pulley shafts 54 and 55 that are disposed in parallel.
  • Further, a distance w6 between the winding start positions 9 s of the rotary bodies 9 u and 9 d and the winding start positions 9 s of the rotary bodies 9 l and 9 r is configured so that the winding start positions 9 s of the rotary bodies 9 u and 9 d and the winding start positions 9 s of the rotary bodies 9 l and 9 r are separated by a maximum distance amount of the rotary bodies 9.
  • As shown in FIG. 6, the second guide roller 22 r, the right rotary body 9 r, and the third guide roller 23 r are disposed in a straight line, and the second guide roller 21 d, the downward rotary body 9 d, and the third guide roller 23 d are disposed in a straight line. Likewise, the second guide roller 22 l, the left rotary body 9 l, and the third guide roller 23 l are disposed in a straight line, and the second guide roller 22 u, the upward rotary body 9 u, and the third guide roller 23 u are disposed in a straight line.
  • Thus, entanglement between the respective bending wires 8 u, 8 d, 8 l and 8 r is prevented.
  • According to the above described configuration, the bending wires 8 u and 8 d are extended to the lower side in FIG. 7 that is one side inside the operation portion 3 through the guides 24, and guided to the second guide rollers 22 u and 22 d. In contrast, the bending wires 8 l and 8 r are extended to the upper side in FIG. 7 that is the other side inside the operation portion 3 through the guides 24, and guided to the second guide rollers 22 l and 22 r.
  • Thereafter, the respective bending wires 8 u, 8 d, 8 l and 8 r are extended in straight lines to the rotary bodies 9 u, 9 d, 9 l and 9 r from the second guide rollers 22 u, 22 d, 22 l and 22 r, and are extended in straight lines to the third guide rollers 23 u, 23 d, 23 l and 23 r from the rotary bodies 9 u, 9 d, 9 l and 9 r.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r that are extended from the third guide rollers 23 u, 23 d, 23 l and 23 r are guided to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2 of the hanging frame 13 through the aforementioned first guide rollers 21 u, 21 d, 21 l and 21 r and fixed thereto.
  • According to this configuration, the respective bending wires 8 u, 8 d, 8 l and 8 r are smoothly pulled/slackened by a tilt operation of the operation element 5.
  • When the shaft portion 5 a of the operation element 5 is in an upright state in a state in which the motor 12 is driven and the first pulley 11A1 and the second pulley 11A2 are rotated, the bending wires 8 l and 8 r that are respectively wound around the rotary bodies 9 l and 9 r disposed on the first pulley 11A1 enter a predetermined slackened state, and as a result the rotary bodies 9 l and 9 r enter a sliding state with respect to the first pulley 11A1.
  • In addition, by the bending wires 8 u and 8 d that are respectively wound around the rotary bodies 9 u and 9 d disposed on the second pulley 11A2 also entering a predetermined slackened state, the rotary bodies 9 u and 9 d enter a sliding state with respect to the second pulley 11A2.
  • As a result, the bending portion 2 b is maintained in a straight state.
  • On the other hand, to cause the bending portion 2 b to perform a bending operation, for example, in the upward direction, the operator tilts the operation element 5 in the arrow Yu direction in FIG. 1. Thereupon, accompanying the operation to tilt the operation element 5, the hanging frame 13 inclines, and the upward bending wire 8 u fixed to the upward wire attachment portion 13 u 2 gradually changes from a slackened state to a tensed state. In contrast, the other bending wires 8 d, 8 l and 8 r change to a state in which the bending wires are more slackened.
  • At this time, only the upward bending wire 8 u that has been wound in a slackened state around the upward rotary body 9 u of the second pulley 11A2 is pulled. Thereupon, the state between the upward rotary body 9 u and the second pulley 11A2 changes to a closely contacting state. Further, frictional resistance arises between the upward rotary body 9 u and the second pulley 11A2, and the upward rotary body 9 u is rotated while sliding with respect to the second pulley 11A2 in the same direction as the second pulley 11A2. As a result, the upward bending wire 8 u that is disposed further on the insertion portion 2 side than the upward rotary body 9 u is pulled and moved accompanying rotation of the upward rotary body 9 u, and the bending portion 2 b starts a bending movement in the upward direction.
  • In this connection, when the operator continues the operation to tilt the operation element 5 so as to cause the upward rotary body 9 u to closely contact the pulley 11, the bending portion 2 b bends further in the upward direction as described above. Further, if the operator continues to maintain the tilt position of the operation element 5, the tensed state of the upward bending wire 8 u and the slackened state of the bending wires 8 d, 8 l and 8 r that are described above are maintained, and the bent state of the bending portion 2 b is maintained. Subsequently, if the operator performs a tilt operation with respect to the operation element 5 to bend the bending portion 2 b further in the same direction, to bend the bending portion 2 b in another direction, or to return the bending portion 2 b to the original state thereof, the bending portion 2 b changes to a state that corresponds to the tilt operation of the operation element 5.
  • Thus, the configuration of the pulling member operation apparatus 10A includes the two pulleys 11A1 and 11A2 that are disposed in a perpendicular positional relationship with respect to the motor shaft 12 b, and is provided with the driving force transmitting mechanism portion 30A that transmits a driving force of the motor 12 to the two pulleys 11A1 and 11A2.
  • According to this configuration, while preventing the diameter of the operation portion from becoming thick by making the length of the pulleys 11A1 and 11A2 shorter than the length of the pulley 11, similarly to the first embodiment, the bending portion 2 b can be bent by a tilt operation of the operation element 5 which is erected vertically on the operation portion 3 that has a longitudinal axis parallel to the longitudinal axis of the insertion portion 2, and which intersects with the aforementioned longitudinal axis.
  • Further, the bending wire 8 u that is led inside the operation portion 3 is guided to the first guide roller 21 u by the second guide roller 22 u, the rotary body 9 u, and the third guide roller 23 u that are disposed in a straight line, and is thereafter led to the wire attachment portion 13 u 2 of the hanging frame 13. The bending wire 8 d is guided to the first guide roller 21 d by the second guide roller 22 d, the rotary body 9 d, and the third guide roller 23 d that are disposed in a straight line, and is thereafter led to the wire attachment portion 13 d 2 of the hanging frame 13. The bending wire 8 l is guided to the first guide roller 21 l by the second guide roller 22 l, the rotary body 9 l, and the third guide roller 23 l that are disposed in a straight line, and is thereafter led to the wire attachment portion 13 l 2 of the hanging frame 13. Similarly, the bending wire 8 r is guided to the first guide roller 21 r by the second guide roller 22 r, the rotary body 9 r, and the third guide roller 23 r that are disposed in a straight line, and is thereafter led to the wire attachment portion 13 r 2 of the hanging frame 13. Consequently, the bending wire travel paths can be simplified and a load applied to the respective bending wires 8 u, 8 d, 8 l and 8 r can be reduced.
  • Further, the rotary bodies 9 l, 9 r, 9 u and 9 d are disposed on the pulleys 11A1 and 11A2 so that the winding start positions 9 s of the upward rotary body 9 u and the downward rotary body 9 d disposed on the second pulley 11A2 and the winding start positions 9 s of the left rotary body 9 l and the right rotary body 9 r disposed on the first pulley 11A1 are separated by the maximum amount. Consequently, it is possible to reliably prevent the wires 8 from tangling together along the wire travel path.
  • In this connection, in the above described embodiment, a configuration is adopted in which the winding start positions 9 s of the left rotary body 9 l and the right rotary body 9 r disposed on the first pulley 11A1 are set on the upper side in the drawings, and the winding start positions 9 s of the upward rotary body 9 u and the downward rotary body 9 d disposed on the second pulley 11A2 are set on the lower side in the drawings.
  • However, as shown in a pulling member operation apparatus 10A1 illustrated in FIG. 8, a configuration may also be adopted in which the winding start positions 9 s of the upward rotary body 9 u and the downward rotary body 9 d disposed on the second pulley 11A2 and the winding start positions 9 s of the left rotary body 9 l and the right rotary body 9 r disposed on the first pulley 11A1 are disposed in the same direction.
  • In this case, a configuration is adopted in which a fourth gear (not shown) is added between the second spur gear 34 and the third spur gear 35 included in the driving force transmitting mechanism portion 30A, so that the first pulley 11A1 and the second pulley 11A2 are rotated in the same direction.
  • Further, according to the present embodiment, as shown in FIG. 9, an interval between the upward rotary body 9 u and the downward rotary body 9 d that are disposed on the second pulley 11A2 is set to a wider width than an interval between the left rotary body 9 l and the right rotary body 9 r that are disposed on the first pulley 11A1. The second guide rollers 22 u, 22 d, 22 l and 22 r and the third guide rollers 23 u, 23 d, 23 l and 23 r are disposed in a predetermined positional relationship with respect to the rotary bodies 9 u, 9 d, 9 l and 9 r.
  • In this connection, when the thickness of the respective rotary bodies 9 is taken as t, a relation w7<2 t is set between an interval w7 between the left rotary body 9 l and the right rotary body 9 r and the thickness t. Thus, entanglement between the wires 8 along the wire travel path is prevented.
  • Note that, although not illustrated in the drawings, for example, a configuration may also be adopted in which the diametrical dimensions of the upward rotary body 9 u and the downward rotary body 9 d are larger than the diametrical dimensions of the left rotary body 9 l and the right rotary body 9 r.
  • According to this configuration, entanglement between the wires 8 along the wire travel path can be prevented and the amount of pulling force can be increased when pulling the upward bending wire 8 u and the downward bending wire 8 d. Consequently, a bending operation in the vertical direction for which the bending angle is large in comparison to a bending operation in the lateral direction can be performed more smoothly.
  • A second embodiment of the present invention will now be described referring to FIG. 10 to FIG. 15.
  • FIG. 10 is a view that illustrates another configuration of a pulling member operation apparatus that contains a motor and a pulley in an operation portion that includes a grasping portion and an operation portion body. FIG. 11 is a view that illustrates the pulling member operation apparatus as viewed from the arrow Y11 direction in FIG. 10. FIG. 12 is a view that illustrates a configuration example of a second guide roller, a third guide roller, and a plurality of rotary bodies disposed on a pulley as viewed from the direction of a line indicated by arrows Y12-Y12 in FIG. 10. FIG. 13 is a view that illustrates a configuration example of a plurality of second guide rollers, a plurality of third guide rollers, and a plurality of rotary bodies disposed on a pulley as viewed from the direction of a line indicated by arrows Y13-Y13 in FIG. 10, that is a modification example of the arrangement positions of guide rollers. FIG. 14 is a view that illustrates a pulley having a configuration that includes a plurality of shaft bodies, that is a modification example of a pulley. FIG. 15 is a view that illustrates the pulley as viewed from the direction of a line indicated by arrows Y15-Y15 in FIG. 14.
  • As shown in FIG. 10, a pulling member operation apparatus 10B that is provided inside an operation portion 3 is mainly constituted by four bending wires 8, an elongated pulley 11 on which four rotary bodies 9 are arranged, a motor 12, a hanging frame 13, an operation element 5, and a plurality of guide roller sets 21, 22 and 23 that include a plurality of guide rollers that are wire travel path changing members.
  • In the present embodiment also, a configuration is adopted so that the center of gravity of the operation portion 3 is positioned inside the grasping portion 3 a.
  • In the present embodiment, the pulley 11 and the motor 12 are disposed at predetermined positions inside the grasping portion 3 a so that the longitudinal axis of the pulley 11 and the drive shaft of the motor 12 are in a parallel positional relationship with respect to the longitudinal axis of the grasping portion 3 a, respectively. According to this configuration, the pulley 11 is integrally fixed to a shaft portion 12 a of the motor 12, and is configured to be directly rotated around its axis by the driving force of the motor 12.
  • In this connection, a configuration may also be adopted in which the longitudinal axis of the pulley 11 and the drive shaft of the motor 12 are coaxial with respect to the longitudinal axis of the grasping portion 3 a.
  • As shown in FIG. 10 and FIG. 11, the first guide roller set 21 is an attachment path setting member that includes the first guide rollers 21 u, 21 d, 21 l and 21 r that are the aforementioned first wire travel path changing member. The second guide roller set 22 is a pulley lead-in member that includes the second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1 that are second wire travel path changing members. The third guide roller set 23 is a pulley lead-out member that includes the third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1 that are third wire travel path changing members.
  • In the present embodiment, the second guide roller set 22 includes, for example, a cylindrical second roller shaft 22 p that is a support body, and second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1 that change wire travel paths. The second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1 are pivotably disposed on the second roller shaft 22 p.
  • The third guide roller set 23 includes a third roller shaft 23 p, and third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1 that change wire travel paths. The third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1 are pivotably disposed on the third roller shaft 23 p.
  • The second roller shaft 22 p and the third roller shaft 23 p are disposed at predetermined positions in a parallel positional relationship with respect to the longitudinal axis of the grasping portion 3 a.
  • In this connection, the first roller shaft 21 p, the second roller shaft 22 p, and the third roller shaft 23 p may be different members or may be the same member.
  • In the present embodiment, with respect to the respective bending wires 8 u, 8 d, 8 l and 8 r that pass through the inside of the insertion portion 2 and are led into the operation portion 3, first, the travel paths thereof are changed by the second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1 of the second guide roller set 22, and thereafter the respective bending wires 8 u, 8 d, 8 l and 8 r pass through the winding start positions 9 s of the rotary bodies 9 u, 9 d, 9 l and 9 r and are wound around the rotary bodies 9 u, 9 d, 9 l and 9 r, respectively.
  • Next, after being wound around the rotary bodies 9 u, 9 d, 9 l and 9 r, the travel paths of the respective bending wires 8 u, 8 d, 8 l and 8 r that are led out from the winding end positions 9 e are changed by the third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1 of the third guide roller set 23 so that the respective bending wires 8 u, 8 d, 8 l and 8 r travel in the direction of the first guide rollers 21 u, 21 d, 21 l and 21 r of the first guide roller set 21.
  • Further, the travel paths of the respective bending wires 8 u, 8 d, 8 l and 8 r are changed by the first guide rollers 21 u, 21 d, 21 l and 21 r as described above so that the bending wires 8 u, 8 d, 8 l and 8 r arrive at the upward wire attachment portion 13 u 2, the downward wire attachment portion 13 d 2, the left wire attachment portion 13 l 2, and the right wire attachment portion 13 r 2 of the hanging frame 13.
  • In this connection, in FIG. 11 also, in order to describe the positional relation between the respective bending wires 8 u, 8 d, 8 l and 8 r and the respective wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2, the position of the hanging frame 13 is displaced in the right direction in the drawing with respect to the roller shaft 21 p.
  • In the present embodiment, the first guide rollers 21 u, 21 d, 21 l and 21 r are configured in the same manner as in the above described embodiment and are disposed on the first roller shaft 21 p.
  • In contrast, with regard to the second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1, the diametrical dimensions thereof are set so that the diametrical dimensions of the second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1 increase in the order of second guide roller 22 r 1, second guide roller 22 d 1, second guide roller 22 u 1 and second guide roller 22 l 1. Further, the second roller shaft 22 p is disposed so that the diametrical dimension thereof increases from the insertion portion 2 side toward the operation element 5 side.
  • The diametrical dimensions of the third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1 are also different to each other. In the third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1, in the opposite manner to the second guide rollers 22 r 1, 22 d 1, 22 u 1 and 22 l 1, the diametrical dimensions are set so that the diametrical dimensions decrease in the order of third guide roller 23 r 1, third guide roller 23 d 1, third guide roller 23 u 1 and third guide roller 23 l 1. Further, the third roller shaft 23 p is disposed so that the diametrical dimension thereof decreases from the insertion portion 2 side toward the operation element 5 side.
  • The rotary bodies 9 r, 9 d, 9 u and 9 l are disposed on the pulley 11 from the insertion portion 2 side towards the operation element 5 side. As shown in FIG. 10 and FIG. 11, the second guide rollers 22 r 1, 22 d 1, 22 u 1 and 22 l 1 of the second guide roller set 22 and the guide rollers 23 r 1, 23 d 1, 23 u 1 and 23 l 1 of the third guide roller set 23 are disposed at predetermined positions in a positional relationship in which the second guide rollers 22 r 1, 22 d 1, 22 u 1 and 22 l 1 and the guide rollers 23 r 1, 23 d 1, 23 u 1 and 23 l 1 face each other in a manner such that the rotary bodies 9 r, 9 d, 9 u and 9 l of the pulley 11 are interposed therebetween.
  • The travel paths inside the operation portion 3 of the respective bending wires 8 u, 8 d, 8 l and 8 r will now be described referring to FIG. 10, FIG. 11 and FIG. 12.
  • As shown in FIG. 11, the respective proximal end portions of the four bending wires 8 u, 8 d, 8 l and 8 r are fixed to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2.
  • In contrast, as described above, the distal end portions of the respective bending wires 8 u, 8 d, 8 l and 8 r are fixed at positions corresponding to upward, downward, left and right of the distal end bending pieces.
  • As shown in FIG. 10, the bending wires 8 u, 8 d, 8 l and 8 r that are fixed to the distal end bending pieces are extended inside the operation portion 3 through the guides 24. As shown in FIG. 10, FIG. 11 and FIG. 12, the respective bending wires 8 u, 8 d, 8 l and 8 r are guided to the second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1, and the wire travel paths are changed.
  • As described above, the diametrical dimensions of the second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1 are different to each other, and the second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1 are disposed on the second roller shaft 22 p so that the diametrical dimensions increase from the insertion portion 2 side towards the operation element 5 side. Consequently, the respective bending wires 8 u, 8 d, 8 l and 8 r enter onto the second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1 and thereafter exit therefrom without the wires interfering with each other. As a result, the travel paths are changed without the bending wires 8 u, 8 d, 8 l and 8 r tangling together.
  • The bending wires 8 u, 8 d, 8 l and 8 r whose travel paths have been changed at the second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1 are wound around the rotary bodies 9 u, 9 d, 9 l and 9 r that are disposed in a loosely fitting state on the pulley 11. More specifically, the respective bending wires 8 u, 8 d, 8 l and 8 r are wound around the rotary bodies 9 u, 9 d, 9 l and 9 r, respectively, so as to be in a predetermined slackened state from the respective winding start positions 9 s. Further, the respective bending wires 8 u, 8 d, 8 l and 8 r are led out towards the third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1 from the winding end positions 9 e of the rotary bodies 9 u, 9 d, 9 l and 9 r.
  • As described above, the second guide rollers 22 r 1, 22 d 1, 22 u 1 and 22 l 1 and the third guide rollers 23 r 1, 23 d 1, 23 u 1 and 23 l 1 are disposed in a facing positional relationship in a manner that interposes the rotary bodies 9 r, 9 d, 9 u and 9 l therebetween. Accordingly, the bending wires 8 u, 8 d, 8 l and 8 r are led out from the rotary bodies 9 u, 9 d, 9 l and 9 r without the wires tangling together.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r that are led out from the rotary bodies 9 u, 9 d, 9 l and 9 r are led into the third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1, and thereafter the wire travel paths thereof are changed in the direction of the first guide rollers 21 u 1, 21 d 1, 21 l 1, and 21 r 1.
  • As described above, the diametrical dimensions of the third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1 are different, and the third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1 are disposed on the third roller shaft 23 p so that the diametrical dimensions decrease from the insertion portion 2 side to the operation element 5 side. Consequently, the respective bending wires 8 u, 8 d, 8 l and 8 r enter onto the third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1 and thereafter exit therefrom without the wires interfering with each other. As a result, the travel paths are changed without the bending wires 8 u, 8 d, 8 l and 8 r tangling together.
  • The first wires 8 u, 8 d, 8 l and 8 r whose travel paths have been changed at the first guide rollers 21 u, 21 d, 21 l and 21 r are guided to and fixed to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2 included in the hanging frame 13 as described above.
  • The remaining configuration is the same as in the above described embodiment, and the same members are denoted by the same reference symbols, and a description of such members is omitted.
  • Thus, in the configuration in which the pulley 11 and the motor 12 are disposed inside the operation portion 3 that has a longitudinal axis that is parallel to the longitudinal axis of the insertion portion 2 included in the endoscope 1, the longitudinal axis of the pulley 11 and the drive shaft of the motor 12 are disposed parallel to the longitudinal axis of the grasping portion 3 a.
  • In addition, the guide roller sets 22 and 23 having the roller shafts 22 p and 23 p that are parallel to the longitudinal axis of the operation portion 3, and the first guide roller set 21 having the first roller shaft 21 p that intersects at right angles with the longitudinal axis of the operation portion 3 are disposed at predetermined positions as wire travel path changing members.
  • Further, the travel paths of the respective bending wires 8 u, 8 d, 8 l and 8 r that are led into the operation portion 3 and travel towards the proximal end side of the operation portion 3 are changed in the direction of the winding start positions 9 s of the rotary bodies 9 u, 9 d, 9 l and 9 r that are disposed on the pulley 11 by the second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1.
  • Furthermore, the travel paths of the respective bending wires 8 u, 8 d, 8 l and 8 r that are led out from the winding end positions of the rotary bodies 9 u, 9 d, 9 l and 9 r are changed in the direction of the first guide rollers 21 u, 21 d, 21 l and 21 r by the third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1.
  • Finally, the travel paths of the respective bending wires 8 u, 8 d, 8 l and 8 r are changed by the first guide rollers 21 u, 21 d, 21 l and 21 r, and the respective bending wires 8 u, 8 d, 8 l and 8 r are led to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2 of the hanging frame 13 are fixed thereto.
  • According to the endoscope 1 configured in the above described manner, in a state in which the motor 12 is driven and the pulley 11 is rotated, when the shaft portion 5 a of the operation element 5 is in an upright state, similarly to the above described embodiment, each of the bending wires 8 u, 8 d, 8 l and 8 r that are wound around the rotary bodies 9 u, 9 d, 9 l and 9 r disposed on the pulley 11, respectively, enters a predetermined slackened state, and the bending portion 2 b is maintained in a straight state.
  • On the other hand, in a state in which the operator has grasped the grasping portion 3 a, to cause the bending portion 2 b to perform a bending operation in, for example, the upward direction, the operator places the ball of the thumb on the finger contact portion 5 b of the operation element 5 and tilts the shaft portion 5 a in the direction of the arrow Yu in FIG. 1. Thereupon, similarly to the above described embodiment, accompanying the operation to tilt the operation element 5, the hanging frame 13 inclines, and the upward bending wire 8 u that is fixed to the upward wire attachment portion 13 u 2 gradually changes from a slackened state to a tensed state. As a result, among the respective bending wires 8 u, 8 d, 8 l and 8 r that have been wound in a slackened state around the rotary bodies 9 u, 9 d, 9 l and 9 r of the pulley 11, only the upward bending wire 8 u is pulled. Thereupon, the gap 9 c of the upward rotary body 9 u is narrowed in resistance to the elastic force and is contracted, and the state changes to one in which the upward rotary body 9 u and the pulley 11 are in a closely contacting state. As a result, frictional resistance arises between the upward rotary body 9 u and the pulley 11, and the upward rotary body 9 u is rotated while sliding with respect to the pulley 11 in the same direction as the pulley 11. Consequently, the upward bending wire 8 u that is disposed further on the insertion portion 2 side than the upward rotary body 9 u is pulled and moved accompanying rotation of the upward rotary body 9 u, and the bending portion 2 b starts a bending movement in the upward direction.
  • Thereafter, if the operator continues the operation to tilt the shaft portion 5 a in the same direction so as to cause the upward rotary body 9 u to closely contact the pulley 11, the upward rotary body 9 u that is in the closely contacting state is brought into even closer contact with the pulley 11 and the frictional force increases further. As a result, the wire for upward bending 8 u that is disposed at a position that is further on the insertion portion 2 side than the upward rotary body 9 u is pulled and moved to a further degree accompanying rotation of the rotary body 9 u, and thus the bending portion 2 b bends further in the upward direction.
  • In contrast, if the operator continues to maintain the tilt position of the operation element 5, the tightness between the upward rotary body 9 u and the pulley 11 is maintained. Thus, movement stops in a state in which a tensile force has arisen at the upward bending wire 8 u disposed at a position that is further on the distal end side than the upward rotary body 9 u.
  • At this time, each of the bending wires 8 d, 8 l and 8 r is in a slackened state. Accordingly, by continuing to maintain the operation element 5 in this tilted state, the tensed state of the upward bending wire 8 u and the slackened state of the bending wires 8 d, 8 l and 8 r are maintained, respectively, and the bending portion 2 b is maintained in the bent state.
  • According to this configuration, by disposing the motor 12 and the pulley 11 on the same axis, the same actions and effects as described above are obtained while directly driving the pulley 11 by the driving force of the motor 12.
  • In this connection, in the above described embodiment a configuration is adopted in which the second guide roller set 22 that includes the second guide rollers 22 u 1, 22 d 1, 22 l 1 and 22 r 1 and the third guide roller set 23 that includes the third guide rollers 23 u 1, 23 d 1, 23 l 1 and 23 r 1 are disposed in a facing positional relationship in a manner that interposes the rotary bodies 9 u, 9 d, 9 l and 9 r disposed on the pulley 11 therebetween. However, a configuration may also be adopted in which, as shown in FIG. 13, the second guide rollers 22 r, 22 d, 22 u and 22 l and the third guide rollers 23 r, 23 d, 23 u and 23 l are not configured as a guide roller set, but are individually disposed at predetermined positions.
  • As shown in FIG. 13, the diametrical dimensions of the second guide rollers 22 r 2, 22 d 2, 22 u 2 and 2212 of the present embodiment and the third guide rollers 23 r 2, 23 d 2, 22 u 2 and 23 l 2 are the same. In addition, each of the second guide rollers 22 r 2, 22 d 2, 22 u 2 and 2212 and each of the third guide rollers 23 r 2, 23 d 2, 23 u 2 and 23 l 2 are pivotably provided in an individual manner on a roller shaft 25. Further, each of the second guide rollers 22 r 2, 22 d 2, 22 u 2 and 2212 and each of the third guide rollers 23 r 2, 23 d 2, 23 u 2 and 23 l 2 are individually disposed at a predetermined position by deviating the positions thereof in the circumferential direction with respect to the outer circumference of the pulley 11 on which the rotary bodies 9 r, 9 d, 9 u and 9 l are disposed. The remaining configuration of the pulling member operation apparatus 10B1 is the same as in the above described embodiment.
  • According to the above described configuration, the respective bending wires 8 u, 8 d, 8 l and 8 r that are extended into the operation portion 3 through the guides 24 are guided to the corresponding second guide rollers 22 u 2, 22 d 2, 2212 and 22 r 2 and the wire travel paths are changed. The second guide rollers 22 u 2, 22 d 2, 2212 and 22 r 2 are pivotably disposed at predetermined positions with respect to the rotary bodies 9 u, 9 d, 9 l and 9 r. Consequently, the respective bending wires 8 u, 8 d, 8 l and 8 r enter onto the second guide rollers 22 u 2, 22 d 2, 2212 and 22 r 2 and thereafter exit therefrom without the wires interfering with each other. As a result, the travel paths are changed without the bending wires 8 u, 8 d, 8 l and 8 r tangling together.
  • Further, the respective bending wires 8 u, 8 d, 8 l and 8 r that are led out from the rotary bodies 9 u, 9 d, 9 l and 9 r are led into the third guide rollers 23 u 2, 23 d 2, 23 l 2 and 23 r 2, and thereafter the wire travel paths are changed in the direction of the first guide rollers 21 u, 21 d, 21 l, and 21 r.
  • The third guide rollers 23 u 2, 23 d 2, 23 l 2 and 23 r 2 are pivotably disposed at predetermined positions with respect to the rotary bodies 9 u, 9 d, 9 l and 9 r. Consequently, the respective bending wires 8 u, 8 d, 8 l and 8 r enter onto the third guide rollers 23 u 2, 23 d 2, 23 l 2 and 23 r 2 and thereafter exit therefrom without the wires interfering with each other. As a result, the travel paths are changed without the bending wires 8 u, 8 d, 8 l and 8 r tangling together.
  • Thus, the same actions and effects as in the above described embodiment can be obtained.
  • Further, in the above described second embodiment, a configuration is adopted in which the four rotary bodies 9 u, 9 d, 9 l and 9 r are disposed on the elongated pulley 11. However, the configuration of the pulley 11 and the rotary bodies 9 u, 9 d, 9 l and 9 r are not limited thereto, and a configuration of a pulley 111 as shown in FIG. 14 and FIG. 15 may be adopted.
  • The pulley 111 in a pulling member operation apparatus 10B2 of the present embodiment that is shown in FIG. 14 and FIG. 15 includes a first shaft body 112 that is fixed to the shaft portion 12 a of the motor 12 on which the rotary body 9 is disposed in a predetermined loosely fitting state, two second shaft bodies 113 and 114 on which the rotary bodies 9 are disposed in a predetermined loosely fitting state, respectively, and a third shaft body 115 on which the rotary body 9 is disposed in a predetermined loosely fitting state.
  • The first shaft body 112 includes a fixing section (unshown) on which the shaft portion 12 a of the motor 12 is arranged on one surface side, and has a geared protrusion 116 on the other surface side. The second shaft bodies 113 and 114 each have a geared protrusion 117 on one surface side and have a geared protrusion 118 on the other surface side. The third shaft body 115 has a geared protrusion 119 on one surface side.
  • The geared protrusion 117 of the second shaft body 113 intermeshes with the geared protrusion 116 of the first shaft body 112. The geared protrusion 117 of the second shaft body 114 intermeshes with the geared protrusion 118 of the second shaft body 113. Further, the geared protrusion 119 of the third shaft body 115 intermeshes with the geared protrusion 118 of the second shaft body 114.
  • According to this configuration, when the motor 12 enters a driving state, the first shaft body 112 included in the pulley 111 is rotated by the driving force of the motor 12. Further, the second shaft body 113, the second shaft body 114 and the third shaft body 115 included in the pulley 111 are respectively rotated as the result of the rotation of the first pulley 11 being transmitted thereto via the geared protrusions 116, 117, 118 and 119.
  • As a result, according to the present embodiment, the first shaft body 112 and the second shaft body 114, for example, rotate counterclockwise, and the second shaft body 113 and the third shaft body 115, for example, rotate clockwise.
  • In this connection, according to the present embodiment, the rotary body 9 disposed on the first shaft body 112 acts as the left rotary body 9 l, the rotary body 9 disposed on the second shaft body 113 acts as the downward rotary body 9 d, the rotary body 9 disposed on the second shaft body 114 acts as the upward rotary body 9 u, and the rotary body 9 disposed on the third shaft body 115 acts as the right rotary body 9 r.
  • Further, reference symbol 11 p 1 denotes a first pulley shaft that pivotably supports the second shaft body 114. The shaft center of the first pulley shaft 11 p 1 and the shaft center of the motor shaft 12 b coincide. Reference symbol 11 p 2 denotes a second pulley shaft that pivotably supports the second shaft body 113 and the third shaft body 115.
  • As shown in FIG. 15, the axis of the left rotary body 9 l and the axis of the upward rotary body 9 u deviate with respect to the axis of the downward rotary body 9 d and the axis of the right rotary body 9 r. Further, the left rotary body 9 l and the upward rotary body 9 u are disposed in an opposite direction to the downward rotary body 9 d and the right rotary body 9 r.
  • As a result, the second guide rollers 22 r 2 and 22 d 2 and the second guide rollers 22 u 2 and 2212 are disposed at predetermined positions with respect to the rotary bodies 9 u, 9 d, 9 l and 9 r in a facing positional relationship in a manner that interposes a dividing line 11 d therebetween. The dividing line 11 d is orthogonal to the center of a line segment that joins the shaft center of the motor shaft 12 a and the shaft center of the second pulley shaft 11 p 2.
  • Further, the third guide rollers 23 r 2 and 23 d 2 and the third guide rollers 23 u 2 and 23 l 2 are also disposed at predetermined positions with respect to the rotary bodies 9 u, 9 d, 9 l and 9 r in a facing positional relationship in a manner that interposes the dividing line 11 d therebetween. The remaining configuration is the same as in the above described embodiment. According to the above configuration, the respective bending wires 8 u, 8 d, 8 l and 8 r that extend inside the operation portion 3 through the guides 24 are guided to the second guide rollers 22 u 2, 22 d 2, 2212 and 22 r 2 that are provided in pairs on either side of the dividing line 11 d, and the wire travel paths are changed. Further, the respective bending wires 8 u, 8 d, 8 l and 8 r that are led out from the rotary bodies 9 u, 9 d, 9 l and 9 r are also guided on the third guide rollers 23 u 2, 23 d 2, 23 l 2 and 23 r 2 that are provided in pairs on either side of the dividing line 11 d, and thereafter the wire travel paths are changed in the direction of the first guide rollers 21 u, 21 d, 21 l and 21 r.
  • Thus, the travel paths of the bending wires 8 are changed by the second guide rollers 22 u 2 and 2212 and the second guide rollers 22 d 2 and 22 r 2, as well as the third guide rollers 23 u 2 and 23 l 2 and the third guide rollers 23 d 2 and 23 r 2 that are provided in pairs on either side of the dividing line 11 d. Consequently, interference between the bending wires 8 u, 8 d, 8 l and 8 r can be reliably prevented, and the travel paths can be changed without the bending wires 8 u, 8 d, 8 l and 8 r tangling together.
  • Thus, the same actions and effects as the above described embodiment can be obtained.
  • FIG. 16 to FIG. 24 relate to a third embodiment of the present invention. FIG. 16 is a view that illustrates an operation portion that includes a pulling member operation apparatus in which a motor having a motor shaft that is disposed so as to be orthogonal to a longitudinal axis of the operation portion, and a pulley having a pulley shaft that is disposed so as to be orthogonal to the longitudinal axis are contained in an operation portion body. FIG. 17 is a view that illustrates the pulling member operation apparatus that is provided inside the operation portion body. FIG. 18 is a perspective view that illustrates the configuration of the pulling member operation apparatus. FIG. 19 is a top view of the pulling member operation apparatus illustrated in FIG. 18. FIG. 20 is a side view of the pulling member operation apparatus illustrated in FIG. 18. FIG. 21 is a top view of a pulling member operation apparatus in which the arrangement positions of the guide rollers are different. FIG. 22 is a side view of the pulling member operation apparatus illustrated in FIG. 21. FIG. 22 is a top view of a pulling member operation apparatus in which coil pipes are used as travel path changing members. FIG. 24 is a side view of the pulling member operation apparatus shown in FIG. 23.
  • As shown in FIG. 16 and FIG. 17, an endoscope 1A of the present embodiment includes an insertion portion 2, an operation portion 3A, and a universal cord 4. An operation element 5 that is included in a pulling member operation apparatus 10C is erected vertically on the operation portion 3A. The insertion portion 2 includes a distal end portion 2 a, a bending portion 2 b, and a flexible tube portion 2 c that are connected in series in that order from the distal end side. The operation portion 3A includes a grasping portion 3 a that is connected in series to the insertion portion 2, and an operation portion body 3 b 1 that is connected in series to the grasping portion 3 a. The operation element 5 that is used to perform an operation to cause the bending portion 2 b to carry out a bending operation is provided inside the operation portion body 3 b 1.
  • In the endoscope 1A of the present embodiment also, the longitudinal axis of the insertion portion 2 and the longitudinal axis of the grasping portion 3 a included in the operation portion 3A are set so as to be in a parallel positional relationship with each other. For example, as shown in FIG. 17, the longitudinal axis of the insertion portion 2 and the longitudinal axis of the grasping portion 3 a are coaxial. Further, in the present embodiment, an axial line of the shaft portion 5 a included in the operation element 5 and the longitudinal axis of the operation portion 3 are set in a mutually intersecting positional relationship.
  • In this connection, in addition to the operation element 5, for example, a switch (unshown) that is operated to input an instruction to perform various kinds of image pickup operations of an image pickup apparatus (unshown) that is provided inside the distal end portion 2 a, an air/water supply button 6 b 1 and a suction button 6 c 1 are provided at predetermined positions on the exterior of the operation portion body 3 b 1. Further, a channel insertion port 6 d is provided on the exterior of the grasping portion 3 a.
  • The operation element 5 is provided at a position at which the operation element 5 is operated by a thumb of the hand of the operator which grasps the grasping portion 3 a of the operation portion 3A in a case where the operator grasps the grasping portion 3 a with the left hand in the same manner as for a conventional endoscope, and the air/water supply button 6 b 1 and the suction button 6 c 1 are provided at positions at which the air/water supply button 6 b 1 and the suction button 6 c 1 are operated by fingers other than the thumb of the hand with which the operator grasps the grasping portion 3 a. Reference symbol 3 b 2 in FIG. 16 denotes an operation portion body casing that can be detached from a body portion 3 b 3 that is shown in FIG. 16 and FIG. 17.
  • The remaining configuration is the same as in the endoscope 1 of the above described embodiment, and in the following description the same members are denoted by the same reference symbols, and a description of such members is omitted.
  • The configuration and action of the pulling member operation apparatus 10C will now be described referring to FIG. 17 to FIG. 20.
  • The pulling member operation apparatus 10C is mainly constituted by the above described four bending wires 8 u, 8 d, 8 l and 8 r, four rotary bodies 9 u, 9 d, 9 l and 9 r, pulley 11, motor 12, hanging frame 13, and operation element 5, as well as a plurality of guide roller sets 41, 42, 43, and 44 that change the travel paths of the four wires 8 u, 8 d, 8 l and 8 r inside the operation portion 3.
  • In the present embodiment, the pulley 11 and the motor 12 are disposed at predetermined positions inside the operation portion body 3 b 1 so that the longitudinal axis of the pulley 11 and the drive shaft of the motor 12 are in a perpendicular positional relationship with respect to the longitudinal axis of the operation portion 3 (grasping portion 3 a), respectively. Further, the pulley 11 and the motor 12 are separate elements, and as shown in FIG. 17, for example, the pulley 11 and the motor 12 are arranged side-by-side in the axis direction of the operation element 5.
  • A motor-side gear (unshown) is provided on a shaft (unshown) of the motor 12, and a pulley-side gear (see reference numeral 49 in FIG. 19) is provided at a predetermined position on the pulley 11. The pulley-side gear 49 is arranged so as to intermesh with the motor-side gear. The pulley 11 configured in this manner rotates around its axis when rotation of the motor 12 is transmitted to the pulley 11 through the motor-side gear and the pulley-side gear 49. That is, the motor-side gear and the pulley-side gear are driving force transmitting means.
  • In this connection, the motor 12 is not shown in FIG. 18 to FIG. 20, the pulley 11 is not shown in FIG. 18, and the upward frame 13 u and the downward frame 13 d of the hanging frame 13 are represented by a dashed line in FIG. 19. Further, the pulley 11 on which the four rotary bodies 9 u, 9 d, 9 l and 9 r are disposed is displaced further to the right direction in the drawings relative to the fourth guide roller set 44 to show the travel paths of the bending wires 8 u, 8 d, 8 l and 8 r.
  • The guide roller sets 41, 42, 43 and 44 that are wire travel path changing members of the present embodiment will now be described.
  • Reference symbols 41A and 41B shown in FIG. 18 and FIG. 19 denote the first guide roller set 41. Reference symbol 41A denotes a first guide roller set for the upward/downward directions (hereunder, abbreviated to “upward/downward guide roller set”) 41A. The upward/downward guide roller set 41A includes a first roller shaft for the upward/downward directions 41 p as a first support body, and two first guide rollers 41 u and 41 d. The two first guide rollers 41 u and 41 d are wire travel path changing members, and are pivotably disposed on the first roller shaft for the upward/downward directions 41 p.
  • Reference symbol 41B denotes a first guide roller set for the left/right directions (hereunder, abbreviated to “left/right guide roller set”) 41B. The left/right guide roller set 41B includes a first roller shaft for the left/right directions 41 p as a first support body, and two first guide rollers 41 l and 41 r. The two first guide rollers 41 l and 41 r are wire travel path changing members, and are pivotably disposed on the first roller shaft for the left/right directions 41 p.
  • The second guide roller set 42 includes a second roller shaft 42 p, and second guide rollers 42 u, 42 d, 42 l and 42 r and guide rollers 21 u, 21 d, 21 l and 21 r. In the present embodiment, the two kinds of guide rollers, namely the second guide rollers 42 u, 42 d, 42 l and 42 r and the guide rollers 21 u, 21 d, 21 l and 21 r are pivotably disposed in a collective manner on the second roller shaft 42 p. The second guide rollers 42 u, 42 d, 42 l and 42 r are wire travel path changing members, and are wire delivery members. The guide rollers 21 u, 21 d, 21 l and 21 r are attachment path setting member that are described above.
  • The third guide roller set 43 includes a third roller shaft 43 p and third guide rollers 43 u, 43 d, 43 l and 43 r. The third guide rollers 43 u, 43 d, 43 l and 43 r are pivotably disposed on the third roller shaft 43 p and change the wire travel paths. In the present embodiment, the third guide rollers 43 u, 43 d, 43 l and 43 r are pulley lead-in members.
  • The fourth guide roller set 44 includes a fourth roller shaft 44 p and fourth guide rollers 44 u, 44 d, 44 l and 44 r. The fourth guide rollers 44 u, 44 d, 44 l and 44 r are pivotably disposed on the fourth roller shaft 43 p and change the wire travel paths. In the present embodiment, the fourth guide rollers 44 u, 44 d, 44 l and 44 r are pulley lead-out members.
  • In the present embodiment, all of the roller shafts 41 p, 42 p, 43 p and 44 p are disposed at predetermined positions in an intersecting positional relationship with respect to the longitudinal axis of the operation portion 3. The second roller shaft 42 p is disposed directly below the shaft portion 5 a, and the center of the second roller shaft 42 p is positioned on the central axis of the shaft portion 5 a in an upright state.
  • The upward/downward guide roller set 41A and the left/right guide roller set 41B are disposed, for example, in a stacked arrangement in the axis direction of the operation element 5 inside the grasping portion 3 a. Further, the upward/downward guide roller set 41A and the left/right guide roller set 41B are disposed at positions that are further to the distal end side than the operation element 5, in other words, at positions that are further to the distal end side than the second guide roller set 42.
  • The third guide roller set 43 and the fourth guide roller set 44 are disposed at positions that are further to the proximal end side than the operation element 5, in other words, at positions that are further to the proximal end side than the second guide roller set 42. The pulley 11 is disposed at a position that is furthest on the proximal end side. Specifically, the third guide roller set 43, the fourth guide roller set 44 and the pulley 11 are disposed in that order on the proximal end side from the operation element 5 side.
  • First guide rollers 41 d and 41 u are disposed in that order in the arrow Y19 direction on the first roller shaft for the upward/downward directions 41 p of the upward/downward guide roller set 41A. Further, first guide rollers 41 r and 41 l are disposed in that order in the arrow Y19 direction on the first roller shaft for the left/right directions 41 p of the left/right guide roller set 41B.
  • The third guide rollers 43 r, 43 d, 43 u and 44 l are disposed in that order in the arrow Y19 direction on the third roller shaft 43 p. The fourth guide rollers 44 r, 44 d, 44 u and 44 l are disposed in that order in the arrow Y19 direction on the fourth roller shaft 44 p. The rotary bodies 9 r, 9 d, 9 u and 9 l are disposed in that order in the arrow Y19 direction on the pulley 11.
  • The second guide rollers 42 u, 42 d, 42 l and 42 r and the guide rollers 21 u, 21 d, 21 l and 21 r are disposed in the following order in the arrow Y19 direction on the second roller shaft 42 p of the second guide roller set 42.
  • Specifically, the order is guide roller for right 21 r, second guide roller for right 42 r, second guide roller for downward 42 d, guide roller for downward 21 d, guide roller for upward 21 u, second guide roller for upward 42 u, second guide roller for left 42 l, and guide roller for left 21 l.
  • In the present embodiment, the respective width dimensions and diameters of the guide roller for right 21 r and the guide roller for left 21 l that are disposed at the two ends are set to predetermined width dimensions and predetermined diameters that are wider than and larger than, respectively, the respective width dimensions and diameters of the other guide rollers 42 u, 42 d, 42 l, 42 r, 21 u, and 21 d that are disposed between the guide roller for right 21 r and the guide roller for left 21 l.
  • When the maximum external diameter of the guide roller for right 21 r and the guide roller for left 21 l is taken as w8, a relation between the maximum external diameter w8 and an interval w10 between the guide roller for right 21 r and the guide roller for left 21 l is set so that w10>w8.
  • Further, an interval between the guide roller for upward 21 u and the guide roller for downward 21 d is set to the interval w1 between the upward wire attachment portion 13 u 2 and the downward wire attachment portion 13 d 2 that is described above.
  • In addition, a relation between the interval w4 between the left wire attachment portion 13 l 2 and the right wire attachment portion 13 r 2 and the interval w10 between the outer end of the guide roller for right 21 r and the outer end of the guide roller for left 21 l that are disposed on the second roller shaft 42 p is set so that w4>w10.
  • The wire travel paths within the operation portion 3 of the bending wires 8 u, 8 d, 8 l and 8 r will now be described referring to FIG. 18 to FIG. 20.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r that are fixed to distal end bending pieces are extended inside the grasping portion 3 a through guides (unshown). The bending wires 8 u, 8 d, 8 l and 8 r are guided to the first guide rollers 41 u and 41 d, of the upward/downward guide roller set 41A and the first guide rollers 41 l and 41 r of the left/right guide roller set 41B that are disposed in the grasping portion 3 a, and the wire travel paths thereof are changed.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r whose travel paths have been changed at the first guide rollers 41 u, 41 d, 41 l and 41 r are guided to the second guide rollers 42 u, 42 d, 42 l and 42 r of the second guide roller set 42, and the wire travel paths thereof are changed.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r whose travel paths have been changed at the second guide rollers 42 u, 42 d, 42 l and 42 r are guided to the third guide rollers 43 u, 43 d, 43 l and 43 r of the third guide roller set 43, and the wire travel paths thereof are changed.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r whose travel paths have been changed at the third guide rollers 43 u, 43 d, 43 l and 43 r are guided to the winding start positions 9 s of the respective rotary bodies 9 u, 9 d, 9 l and 9 r that are disposed in a slackened state on the pulley 11.
  • The bending wires 8 u, 8 d, 8 l, and 8 r that have been guided to the winding start positions 9 s of the respective rotary bodies 9 u, 9 d, 9 l and 9 r are wound around the respective rotary bodies 9 u, 9 d, 9 l and 9 r in a predetermined slackened state, and are extended from the respective winding end positions 9 e.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r that have been extended from the winding end positions 9 e of the respective rotary bodies 9 u, 9 d, 9 l and 9 r are guided to the fourth guide rollers 44 u, 44 d, 44 l and 44 r of the fourth guide roller set 44, and the wire travel paths thereof are changed.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r whose travel paths have been changed at the fourth guide rollers 44 u, 44 d, 44 l and 44 r are guided to the guide rollers 21 u, 21 d, 21 l and 21 r of the second guide roller set 42, and the wire travel paths are changed to guide the respective bending wires 8 u, 8 d, 8 l and 8 r to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2, and the respective bending wires 8 u, 8 d, 8 l and 8 r are fixed thereto.
  • In this connection, according to the present embodiment, the third guide rollers 43 u, 43 d, 43 l and 43 r are disposed facing the rotary bodies 9 u, 9 d, 9 l and 9 r in a manner that takes into consideration the winding start positions 9 s of the rotary bodies 9 u, 9 d, 9 l and 9 r. As a result, the respective bending wires 8 u, 8 d, 8 l and 8 r are smoothly wound around the respective rotary bodies 9 u, 9 d, 9 l and 9 r.
  • In contrast, the fourth guide rollers 44 u, 44 d, 44 l and 44 r are disposed in a manner that takes into consideration the winding end positions 9 e of the rotary bodies 9 u, 9 d, 9 l and 9 r and the positions of the guide rollers 21 u, 21 d, 21 l and 21 r. As a result, the travel paths of the bending wires 8 u, 8 d, 8 l and 8 r that are extended from the winding end positions 9 e can be smoothly changed at the third guide rollers 43 u, 43 d, 43 l and 43 r towards the guide rollers 21 u, 21 d, 21 l and 21 r of the second guide roller set 42.
  • Further, when the shaft portion 5 a of the operation element 5 is in an upright state, the bending wires 8 u, 8 d, 8 l and 8 r that extend from the guide rollers 21 u, 21 d, 21 l and 21 r towards the hanging frame 13 are all in a predetermined slackened state. In this connection, a configuration may also be adopted in which partition members 48 that are shown in FIG. 12 are provided between adjacent bending wires 8 to prevent the bending wires 8 from tangling together.
  • Thus, in the configuration in which the pulley 11 and the motor 12 are disposed at positions that are furthest on the proximal end side of the operation portion 3 that includes the grasping portion 3 a that has a longitudinal axis that is parallel to the longitudinal axis of the insertion portion 2 included in the endoscope 1A, the longitudinal axis of the pulley 11 and the drive shaft of the motor 12 are disposed in a perpendicular positional relationship with respect to the longitudinal axis of the operation portion 3. In addition, the guide roller sets 41, 42, 43 and 44 are disposed at predetermined positions as wire travel path changing members.
  • Further, the travel paths of the respective bending wires 8 u, 8 d, 8 l and 8 r that are led into the operation portion 3 and travel towards the proximal end side of the operation portion 3 are changed by the first guide rollers 41 u, 41 d, 41 l and 41 r, the second guide rollers 42 u 2, 42 d 2, 42 l 2 and 42 r 2, and the third guide rollers 43 u, 43 d, 43 l and 43 r so that the travel paths change in the direction of the winding start positions 9 s of the rotary bodies 9 u, 9 d, 9 l and 9 r that are disposed on the pulley 11.
  • Next, the travel paths of the respective bending wires 8 u, 8 d, 8 l and 8 r that are led out from the respective winding end positions after being wound around the rotary bodies 9 u, 9 d, 9 l and 9 r are changed by the fourth guide rollers 44 u, 44 d, 44 l and 44 r and the guide rollers 21 u, 21 d, 21 l and 21 r and led and fixed to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2 of the hanging frame 13 that is fixed to the shaft portion 5 a of the operation element 5.
  • According to the endoscope 1A configured in the above manner, in a state in which the motor 12 is driven and the pulley 11 is rotated, when the shaft portion 5 a of the operation element 5 is in an upright state each of the bending wires 8 u, 8 d, 8 l and 8 r that are wound around the rotary bodies 9 u, 9 d, 9 l and 9 r disposed on the pulley 11, respectively, enters a predetermined slackened state. As a result, similarly to the case described above, the bending portion 2 b is maintained in a straight state.
  • On the other hand, in a state in which the operator has grasped the grasping portion 3 a, to cause the bending portion 2 b to perform a bending operation in, for example, the upward direction, the operator tilts the operation element 5 in the direction of the arrow Yu in FIG. 16. Thereupon, accompanying the operation to tilt the operation element 5, the hanging frame 13 inclines, and the upward bending wire 8 u that is fixed to the upward wire attachment portion 13 u 2 as described above gradually changes from a slackened state to a tensed state and the bending portion 2 b bends in the upward direction.
  • In contrast, if the operator continues to maintain the tilt position of the operation element 5, as described above, the tensed state of the upward bending wire 8 u and the slackened state of the bending wires 8 d, 8 l and 8 r are maintained and thus the bent state of the bending portion 2 b is maintained. Subsequently, if the operator performs a tilt operation with respect to the operation element 5 to bend the bending portion 2 b further in the same direction, to bend the bending portion 2 b in another direction, or to return the bending portion 2 b to the original state thereof, the bending wires 8 u, 8 d, 8 l and 8 r are pulled or slackened in accordance with the tilt operation, and the bending portion 2 b changes to a state that corresponds to the tilt operation of the operation element 5.
  • According to this configuration, by using the first guide rollers 41 u, 41 d, 41 l and 41 r, the second guide rollers 42 u, 42 d, 42 l and 42 r, the third guide rollers 43 u, 43 d, 43 l and 43 r, the fourth guide rollers 44 u, 44 d, 44 l and 44 r, and the guide rollers 21 u, 21 d, 21 l and 21 r to change the wire travel paths of the bending wires 8 u, 8 d, 8 l and 8 r that are led into the operation portion 3, the end portions of the bending wires 8 u, 8 d, 8 l and 8 r can be fixed to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2 of the hanging frame 13 that is fixed to the shaft portion 5 a of the operation element 5 having an axis line that intersects with the longitudinal axis of the operation portion 3, and the bending wires 8 u, 8 d, 8 l and 8 r can be smoothly pulled/slackened by a tilt operation of the operation element 5.
  • Further, according to the endoscope 1A, in a state in which the operator has grasped the operation portion 3A, that is, during endoscopy, the operator can easily operate not just the operation element 5, but also the air/water supply button 6 b, the suction button 6 c and the switch 6 a.
  • In this connection, in the above described embodiment, the second guide rollers 42 u, 42 d, 42 l and 42 r and the guide rollers 21 u, 21 d, 21 l and 21 r are disposed on the second roller shaft 42 p of the second guide roller set 42.
  • However, as shown in FIG. 21 and FIG. 22, a configuration may also be adopted in which, instead of the second guide roller set 42 on which two kinds of guide rollers are disposed, a second guide roller set 42A on which only the second guide rollers 42 u, 42 d, 42 l and 42 r are disposed and a guide roller set 21 on which only the guide rollers 21 u, 21 d, 21 l and 21 r are disposed are arranged as separate elements at predetermined positions.
  • Further, instead of adopting a configuration that changes the wire travel paths by providing a plurality of guide rollers, a configuration may be adopted that changes the wire travel paths by disposing a plurality of coils pipes in the manner shown in FIG. 23 and FIG. 24.
  • In the embodiment shown in FIG. 21 and FIG. 22, the second guide roller set 42 is divided into the second guide roller set 42A in which the second guide rollers 42 u, 42 d, 42 l and 42 r are disposed at predetermined positions on the second roller shaft 42 p 1, and the guide roller set 21 in which the guide rollers 21 u, 21 d, 21 l and 21 r are disposed at predetermined position on the roller shaft 21 p.
  • Further, as shown in FIG. 22, the second guide roller set 42A is disposed directly below the guide roller set 21. In this arrangement state, as shown by the arrow Y21 in FIG. 21, the guide rollers 21 u, 21 d, 21 l and 21 r and the second guide rollers 42 u, 42 d, 42 l and 42 r are disposed in the order of guide roller for right 21 r, second guide roller for right 42 r, second guide roller for downward 42 d, guide roller for downward 21 d, guide roller for upward 21 u, second guide roller for upward 42 u, second guide roller for left 42 l, and guide roller for left 21 l.
  • According to this configuration, instead of providing the third guide roller set 43 and the fourth guide roller set 44, the fourth guide roller set 44 is disposed at a predetermined position with respect to the rotary bodies 9 u, 9 d, 9 l and 9 r of the pulley 11 as a single dual-purpose guide roller set that is used as both the third guide roller set 43 and the fourth guide roller set 44. That is, the third guide rollers 43 u, 43 d, 43 l and 43 r of the third guide roller set 43 are removed, and the fourth guide rollers 44 u, 44 d, 44 l and 44 r are used both as pulley lead-in members and pulley lead-out members.
  • Therefore, the fourth guide rollers 44 of the fourth guide roller set 44 are disposed in a manner that takes into consideration the winding start positions 9 s of the rotary bodies 9 u, 9 d, 9 l and 9 r, and are also disposed in a manner that takes into consideration the winding end positions 9 e of the winding end positions 9 e of the rotary bodies 9 u, 9 d, 9 l and 9 r and the position of the guide roller set 21. As a result, the respective bending wires 8 u, 8 d, 8 l and 8 r are smoothly wound around the rotary bodies 9 u, 9 d, 9 l and 9 r, and the travel paths of the respective bending wires 8 u, 8 d, 8 l and 8 r that are extended from the winding end positions 9 e of the respective rotary bodies 9 u, 9 d, 9 l and 9 r can be smoothly changed in the direction of the guide rollers 21 u, 21 d, 21 l and 21 r of the guide roller set 21.
  • The wire travel paths inside the operation portion 3 of the bending wires 8 u, 8 d, 8 l and 8 r will now be described referring to FIG. 21 and FIG. 22.
  • In the present embodiment also, the bending wires 8 u, 8 d, 8 l and 8 r are extended within the grasping portion 3 a through guides (unshown). Further, the bending wires 8 u, 8 d, 8 l and 8 r are guided to the first guide rollers 41 u and 41 d of the upward/downward guide roller set 41A and the first guide rollers 41 l and 41 r of the left/right guide roller set 41B that are disposed in the grasping portion 3 a, and the wire travel paths are changed.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r whose travel paths have been changed at the first guide rollers 41 u, 41 d, 41 l and 41 r are guided to the second guide rollers 42 u, 42 d, 42 l and 42 r of the second guide roller set 42A, and the wire travel paths are changed.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r whose travel paths have been changed at the second guide rollers 42 u, 42 d, 42 l and 42 r are guided to the fourth guide rollers 44 u, 44 d, 44 l and 44 r of the fourth guide roller set 44, and the wire travel paths are changed.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r whose travel paths have been changed at the fourth guide rollers 44 u, 44 d, 44 l and 44 r are guided to the winding start positions 9 s of the rotary bodies 9 u, 9 d, 9 l and 9 r that are disposed in a slackened state on the pulley 11.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r that have been guided to the winding start positions 9 s of the rotary bodies 9 u, 9 d, 9 l and 9 r are wound around the respective rotary bodies 9 u, 9 d, 9 l and 9 r so as to enter a predetermined slackened state, and are extended from the respective winding end positions 9 e.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r that have been extended from the winding end positions 9 e of the respective rotary bodies 9 u, 9 d, 9 l and 9 r are again guided to the fourth guide rollers 44 u, 44 d, 44 l and 44 r of the fourth guide roller set 44, and the wire travel paths are changed.
  • The respective bending wires 8 u, 8 d, 8 l and 8 r whose travel paths have been changed at the fourth guide rollers 44 u, 44 d, 44 l and 44 r are guided to the guide rollers 21 u, 21 d, 21 l and 21 r of the guide roller set 21, at which the wire travel paths are changed, and are then guided and fixed to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2.
  • In the present embodiment, by eliminating the third guide roller set 43 and causing the fourth guide roller set 44 to have the above described travel path changing function of the third guide roller set 43 in addition to the travel path changing function of the fourth guide roller set 44, the number of components can be decreased and the size of the operation portion body can be reduced. The other actions and effects are the same as in the above described third embodiment.
  • In the embodiment shown in FIG. 23 and FIG. 24, instead of providing a plurality of guide roller sets to change the travel paths of the bending wires 8, the travel paths of the bending wires 8 are changed by providing the first guide roller set 41, a plurality of coil pipes 45 a, 45 b, 45 c, 45 d, and 45 e, and a plurality of coil pipe brackets 46 a and 46 b.
  • In this case, the coil pipes 45 a, 45 b, 45 c, 45 d and 45 e are travel path changing members and, for example, are made of metal. Each of the coil pipes 45 a, 45 b, 45 c, 45 d and 45 e has a through-hole through which the bending wire 8 can be inserted so as to freely advance and retract.
  • The first coil pipe bracket 46 a is a rectangular parallelepiped shape, and is disposed directly below the operation element 5. A plurality of pipe connection ports (unshown) are provided in a first face 46 a 1, a second face 46 a 2, and a third face 46 a 3 of the first coil pipe bracket 46 a. Predetermined pipe connection ports communicate with each other through communicating holes 45 ah 1 and 45 ah 2.
  • The second coil pipe bracket 46 b is a rectangular parallelepiped shape, and is disposed in the vicinity of the pulley 11. Eight pipe connection ports (unshown) are provided on a first face 46 b 1 and a second face 46 b 2 of the second coil pipe bracket 46 b, respectively. Predetermined pipe connection ports communicate with each other through communicating holes 46 bh 1 and 46 bh 2.
  • The first coil pipes 45 a guide the bending wires 8 to a first communicating hole 46 ah 1 of the first coil pipe bracket 46 a. The first coil pipes 45 a are disposed between the first guide roller set 41 and the first coil pipe bracket 46 a. The distal end portions of the first coil pipes 45 a are provided in the vicinity of the first guide rollers 41 u and 41 d of the upward/downward guide roller set 41A and the vicinity of the first guide rollers 41 l and 41 r of the left/right guide roller set 41B. The proximal end portions of the first coil pipes 45 a are fixed to pipe connection ports provided in the first face 46 a 1 of the first coil pipe bracket 46 a.
  • The second coil pipes 45 b guide the bending wires 8 from the first communicating hole 46 ah 1 of the first coil pipe bracket 46 a to a first communicating hole 46 bh 1 of the second coil pipe bracket 46 b. The distal end portions of the second coil pipes 45 b are fixed to pipe connection ports provided in the second face 46 a 2 of the first coil pipe bracket 46 a. The proximal end portions of the second coil pipes 45 b are fixed to pipe connection ports provided in the first face 46 b 1 of the second coil pipe brackets 46 b.
  • The third coil pipes 45 c guide the bending wires 8 to winding start positions 9 s of the rotary bodies 9 disposed on the pulley 11. The distal end portions of the third coil pipe 45 c are fixed to pipe connection ports provided in the second face 46 b 2 of the second coil pipe bracket 46 b. Openings of the proximal end portions of the third coil pipes 45 c are disposed at predetermined positions facing the winding start positions 9 s of the rotary bodies 9 u, 9 d, 9 l and 9 r. The third coil pipes 45 c are pulley lead-in members.
  • The fourth coil pipes 45 d guide the bending wires 8 that are extended from the winding end positions 9 e of the rotary bodies 9 to a second communicating hole 46 bh 2 of the second coil pipe bracket 46 b. The distal end portions of the fourth coil pipes 45 d are fixed to pipe connection ports provided in the second face 46 b 2 of the second coil pipe bracket 46 b. Openings of the proximal end portions of the fourth coil pipes 45 d are disposed at predetermined positions facing the winding end positions 9 e of the rotary bodies 9 u, 9 d, 9 l and 9 r. The fourth coil pipes 45 d are pulley lead-out members.
  • The fifth coil pipes 45 e guide the bending wires 8 from the second communicating hole 46 bh 2 of the second coil pipe bracket 46 b to the second communicating hole 46 ah 2 of the first coil pipe bracket 46 a. The distal end portions of the fifth coil pipes 45 e are fixed to pipe connection ports provided in the second face 46 a 2 of the first coil pipe bracket 46 a. The proximal end portions of the fifth coil pipes 45 e are fixed to pipe connection ports provided in the first face 46 b 1 of the second coil pipe bracket 46 b.
  • The sixth coil pipes 45 f guide the bending wires 8 that are extended from the second communicating hole 46 ah 2 of the first coil pipe bracket 46 a to the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2 of the hanging frame 13. The proximal end portions of the sixth coil pipes 45 f are fixed to pipe connection ports provided in the third face 46 a 3 of the first coil pipe bracket 46 a. Openings of the distal end portions of the sixth coil pipes 45 f are disposed at predetermined positions facing the wire attachment portions 13 u 2, 13 d 2, 13 l 2 and 13 r 2. The sixth coil pipes 45 f are attachment path setting members.
  • The wire travel paths of the bending wires 8 inside the operation portion 3 will now be described referring to FIG. 23 and FIG. 24.
  • According to the present embodiment also, the respective bending wires 8 u, 8 d, 8 l and 8 r are extended inside the grasping portion 3 a through guides (unshown). The bending wires 8 u, 8 d, 8 l and 8 r are guided to the first guide rollers 41 u and 41 d of the upward/downward guide roller set 41A and the first guide rollers 41 l and 41 r of the left/right guide roller set 41B that are disposed in the grasping portion 3 a, at which the wire travel paths are changed.
  • For example, after the travel path of the upward bending wire 8 u has been changed at the first guide roller 41 u, the upward bending wire 8 u is led into a through-hole of a first coil pipe for the upward direction 45 au. Thereafter, the upward bending wire 8 u passes through the first communicating hole 46 ah 1 of the first coil pipe bracket 46 a, a through-hole of a second coil pipe for the upward direction 45 bu, the first communicating hole 46 bh 1 of the second coil pipe bracket 46 b, and a through-hole of a third coil pipe for the upward direction 45 cu, and is guided to the winding start position 9 s of the upward rotary body 9 u that is disposed in a slackened state on the pulley 11.
  • Thereafter, the upward bending wire 8 u that has been guided to the winding start position 9 s of the upward rotary body 9 u is wound around the upward rotary body 9 u so as to be in a predetermined slackened state, and is extended from the winding end position 9 e.
  • The upward bending wire 8 u that is extended from the winding end position 9 e of the upward rotary body 9 u is led into a through-hole of a fourth coil pipe for the upward direction 45 du. Thereafter, the upward bending wire 8 u passes through the second communicating hole 46 bh 2 of the second coil pipe bracket 46 b, a through-hole of a fifth coil pipe for the upward direction 45 eu, the second communicating hole 46 ah 2 of the first coil pipe bracket 46 a, and a through-hole of a sixth coil pipe for the upward direction 45 fu, and arrives at the vicinity of the wire attachment portion 13 u 2 to be fixed thereto.
  • With respect to the other bending wires 8 d, 8 l and 8 r also, similarly to the upward bending wire 8 u, after the travel paths have been changed at the respective first guide rollers 41 d, 41 l and 41 r, the bending wires 8 d, 8 l and 8 r are led into through-holes of the respective first coil pipes 45 a, and pass through through-holes of the third coil pipes 45 cu and are wound around the respective rotary bodies 9 u, 9 d, 9 l and 9 r. Thereafter, the bending wires 8 d, 8 l and 8 r are led into through-holes of the respective fourth coil pipes 45 d, and pass through through-holes of the sixth coil pipes 45 fu and arrive at the vicinity of the wire attachment portions 13 d 2, 13 l 2 and 13 r 2 and are fixed to the respective wire attachment portions 13 d 2, 13 l 2 and 13 r 2.
  • According to this configuration, after the travel paths of the bending wires 8 u, 8 d, 8 l and 8 r are changed at the first guide rollers 41 d, 41 l and 41 r of the first guide roller set 41, the bending wires 8 u, 8 d, 8 l and 8 r are led into through-holes of the first coil pipes 45 a that correspond to the respective bending wires 8, and are wound around the respective rotary bodies 9 u, 9 d, 9 l and 9 r. Next, the bending wires 8 u, 8 d, 8 l and 8 r are led into through-holes of the respective fourth coil pipes 45 d, and thereafter fixed to the wire attachment portions 13 d 2, 13 l 2 and 13 r 2, respectively.
  • As a result, entanglement between the bending wires 8 whose wire travel paths are changed inside the operation portion 3 can be reliably prevented.
  • In this connection, a configuration may also be adopted in which the first guide rollers 41 u, 41 d, 41 l and 41 r are not provided and the first coil pipes 45 a are extended to the distal end side of the insertion portion 2. The other actions and effects are the same as the above described third embodiment.
  • In the above described embodiment, the pulley 11 and the motor 12 are disposed inside the operation portion 3. However, the arrangement positions of the pulley 11 and the motor 12 are not limited to the inside of the operation portion 3, and as shown in FIG. 25, a configuration may also be adopted in which the pulley 11 and the motor (unshown) are arranged inside a connector 4 c that is provided at a proximal end portion of the universal cord 4.
  • According to this configuration, the bending wire 8 is extended into the grasping portion 3 a through a guide (unshown), the wire travel path thereof is changed by a plurality of guide roller sets 61, 62, 63 and the like that are disposed in the grasping portion 3 a to thereby guide the bending wire 8 into the universal cord 4. Thereafter, the bending wire 8 passes through a first coil pipe 64 disposed inside the universal cord 4, and the travel path is then changed by a guide roller set 65 so that the bending wire 8 is guided to the winding start position 9 s of the rotary body 9 disposed in a slackened state on the pulley 11.
  • Further, the bending wire 8 that has been guided to the winding start position 9 s of the rotary body 9 is wound around the rotary body 9 so as to be in a predetermined slackened state, and is extended from the winding end position 9 e.
  • The travel path of the bending wire 8 that has been extended from the winding end position 9 e of the rotary body 9 is changed by the guide roller set 66 so that the bending wire 8 is guided into the operation portion 3 through a second coil pipe 67 disposed inside the universal cord 4. Thereafter, the wire travel path of the bending wire 8 is changed by a plurality of guide roller sets 68, 69 and the like, and the bending wire 8 arrives at the vicinity of the wire attachment portion 13 u 2 and is fixed thereto.
  • According to this configuration, the weight of the operation portion 3 can be reduced by disposing the pulley 11 and the motor 12 that were disposed inside the operation portion 3 in the above configuration, inside the connector 4 c. The other actions and effects are the same as in the above described third embodiment.
  • It should be understood that the present invention is not limited to only the above described embodiments, and various changes and modifications thereof can be made without departing from the spirit or scope of the invention.

Claims (25)

1. A bending apparatus, comprising:
a bending portion;
a grasping portion that is included in an operation portion and has a longitudinal axis, and that is grasped when effecting a bending operation of the bending portion;
an operation element that is erected vertically from the operation portion, and that has a shaft portion in which a tilt direction and a tilt angle are changeable;
a pulling member having one end connected to the bending portion;
a pulley that is disposed at a position that is deviated in the longitudinal axis direction relative to the operation element, and on which a rotary body around which an intermediate portion of the pulling member is wound is arranged in a loosely fitting state;
a motor that is disposed at a position that is deviated in the longitudinal axis direction relative to the operation element, and that generates a driving force that rotates the pulley to pull the pulling member that is wound around the rotary body arranged on the pulley in a winding direction;
a hanging frame that extends in a diameter direction of the shaft portion of the operation element, and that comprises an attachment portion to which the other end of the pulling member that is wound around the rotary body is attached; and
an attachment path setting member that is provided inside the operation portion and that leads the pulling member that is wound around the rotary body in the longitudinal axis direction, and changes a path of the pulling member that is led to a direction of a longitudinal axis of the shaft portion to guide the pulling member to the attachment portion.
2. The bending apparatus according to claim 1, wherein the attachment path setting member is disposed on the longitudinal axis of the shaft portion, and is provided at a position that is separated by a predetermined distance from the hanging frame that sways in accordance with a tilt operation of the shaft portion.
3. The bending apparatus according to claim 1, wherein the pulley and the attachment path setting member are provided so as to be separated by a predetermined distance in the longitudinal axis direction of the grasping portion.
4. The bending apparatus according to claim 3, wherein the pulley is disposed inside the grasping portion such that a rotary shaft of the pulley is in a perpendicular positional relationship with respect to the longitudinal axis of the grasping portion.
5. The bending apparatus according to claim 4, wherein;
the motor is arranged such that a drive shaft of the motor is disposed perpendicular or parallel to the rotary shaft of the pulley inside the grasping portion;
the bending apparatus further comprising a driving force transmitting mechanism that transmits the driving force of the motor to the rotary shaft of the pulley.
6. The bending apparatus according to claim 1, wherein;
the pulley includes a first pulley and a second pulley that are disposed parallel to each other, and a rotary shaft of each of the pulleys is disposed inside the grasping portion in a perpendicular positional relationship with respect to the longitudinal axis of the grasping portion; and
the motor is disposed inside the grasping portion such that a drive shaft of the motor is in a coaxial, parallel, or perpendicular positional relationship with respect to the longitudinal axis of the grasping portion;
the bending apparatus further comprising:
a driving force transmitting mechanism portion that has a gear train comprising a plurality of gears and that transmits the driving force of the motor to the pulleys; and
at least one of pulley lead-in members that divide travel paths of a plurality of pulling members that are guided into the operation portion into two and guide the pulling members to a rotary body that is arranged on the first pulley and a rotary body that is arranged on the second pulley, and pulley lead-out members that guide travel paths of the pulling members that are extended from the rotary body that is arranged on the first pulley and the travel paths of the pulling members that are extended from the rotary body that is arranged on the second pulley to the attachment path changing members.
7. The bending apparatus according to claim 6, wherein the first pulley and the second pulley are rotated in opposite directions to each other by the driving force transmitting mechanism portion, and a winding direction of a pulling member that is wound around the rotary body that is arranged on the first pulley and a winding direction of a pulling member that is wound around the rotary body that is arranged on the second pulley are different to each other.
8. The bending apparatus according to claim 6, wherein the first pulley and the second pulley are rotated in identical directions by the driving force transmitting mechanism portion, and a winding direction of a pulling member that is wound around the rotary body that is arranged on the first pulley and a winding direction of a pulling member that is wound around the rotary body that is arranged on the second pulley are identical directions.
9. The bending apparatus according to claim 7, wherein;
the pulley lead-in member, the pulley lead-out member, and the attachment path setting member are provided in plurality in correspondence with a plurality of pulling members, respectively; and
the plurality of pulley lead-in members and the plurality of pulley lead-out members are assembled such that the plurality of pulley lead-in members and the plurality of pulley lead-out members are divided into two first support bodies and two second support bodies, respectively, in correspondence with a pulling member that is wound around the rotary body arranged on the first pulley and the pulling member that is wound around the rotary body arranged on the second pulley, and the plurality of attachment path setting members are disposed at predetermined positions inside the operation portion in a state in which the plurality of attachment path setting members are pivotably assembled on a single support body.
10. The bending apparatus according to claim 8, wherein;
the pulley lead-in member, the pulley lead-out member, and the attachment path setting member are provided in plurality in correspondence with a plurality of pulling members, respectively; and
the plurality of pulley lead-in members and the plurality of pulley lead-out members are assembled such that the plurality of pulley lead-in members and the plurality of pulley lead-out members are divided into two first support bodies and two second support bodies, respectively, in correspondence with a pulling member that is wound around the rotary body arranged on the first pulley and the pulling member that is wound around the rotary body arranged on the second pulley, and the plurality of attachment path setting members are disposed at predetermined positions inside the operation portion in a state in which the plurality of attachment path setting members are pivotably assembled on a single support body.
11. The bending apparatus according to claim 9, wherein a pulley lead-in member disposed on one of the first support bodies and a pulley lead-out member disposed on one of the second support bodies, and a pulley lead-in member disposed on the other of the first support bodies and a pulley lead-out member disposed on the other of the second support bodies are disposed at facing positions such that a hypothetical line that joins a center of the first pulley and a center of the second pulley is interposed therebetween, and the support body on which the plurality of attachment path setting members are disposed is disposed in an intersecting positional relationship with respect to a longitudinal axis of the operation portion and at a position such that a center of the support body intersects with a longitudinal axis of the operation element.
12. The bending apparatus according to claim 10, wherein a pulley lead-in member disposed on one of the first support bodies and a pulley lead-in member disposed on one of the second support bodies are disposed such that a hypothetical line that joins a center of the first pulley and a center of the second pulley is interposed therebetween, a pulley lead-in member disposed on the other of the first support bodies and a pulley lead-out member disposed on the other of the second support bodies are disposed such that a hypothetical line that joins the center of the first pulley and the center of the second pulley is interposed therebetween, and the support body on which the plurality of attachment path setting members are disposed is disposed in an intersecting positional relationship with respect to a longitudinal axis of the operation portion and at a position such that a center of the support body intersects with a longitudinal axis of the operation element.
13. The bending apparatus according to claim 12, wherein;
in a configuration in which two rotary bodies around which the pulling members are wound are disposed on the first pulley and the second pulley, respectively,
an interval between the two rotary bodies disposed on the second pulley is wider than an interval between the two rotary bodies disposed on the first pulley, and an interval between the two rotary bodies disposed on the second pulley is set to be narrower than twice a width dimension of the rotary body.
14. The bending apparatus according to claim 12, wherein by changing a diametrical dimension of the first pulley and a diametrical dimension of the second pulley, or by changing a diametrical dimension of a rotary body disposed on the first pulley and a diametrical dimension of a rotary body disposed on the second pulley, a diametrical dimension of pulling members that are wound around the respective pulleys is changed.
15. The bending apparatus according to claim 1, wherein a rotary shaft of the pulley and a rotary shaft of the motor are disposed inside the grasping portion in a coaxial or parallel positional relationship with respect to the longitudinal axis of the grasping portion.
16. The bending apparatus according to claim 15, wherein;
as wire travel path changing members that change a travel path of a pulling member that is guided into the operation portion along the longitudinal axis of the grasping portion,
a pulley lead-in member that guides the pulling member substantially perpendicularly with respect to the rotary shaft of the pulley, and a pulley lead-out member that, after the pulling member is wound around a rotary body arranged on the pulley, changes a travel path of the pulling member that is led out from the rotary body in a substantially perpendicular manner with respect to the rotary shaft of the pulley to guide the pulling member to the attachment path setting member are provided.
17. The bending apparatus according to claim 16, wherein;
the pulley lead-in member and the pulley lead-out member are provided in plurality in correspondence with a plurality of pulling members, respectively; and
the plurality of pulley lead-in members and the plurality of pulley lead-out members are disposed at predetermined positions inside the operation portion in a state in which the plurality of pulley lead-in members and the plurality of pulley lead-out members are pivotably assembled on a support body.
18. The bending apparatus according to claim 17, wherein the plurality of pulley lead-in members and the plurality of pulley lead-out members that are respectively disposed on the support body are disposed at facing positions such that the pulley is interposed therebetween, a plurality of attachment path setting members are disposed on the support body and rotate using the support body as a rotary shaft, and the rotary shaft of the support body is disposed at a position that intersects with a longitudinal axis of the operation element.
19. The bending apparatus according to claim 18, wherein;
with respect to the plurality of pulley lead-in members or the plurality of pulley lead-out members, or both the plurality of pulley lead-in members and the plurality of pulley lead-out members, a plurality of guide rollers having different diameters that rotate around a center of a same rotary shaft are configured so as to be arranged in order from a short diameter to a large diameter along the rotary shaft; and
a travel direction of the plurality of pulling members is changed by winding the plurality of pulling members around the guide rollers that are arranged along the rotary shaft.
20. The bending apparatus according to claim 16, wherein;
the pulley lead-in member and the pulley lead-out member are provided in plurality in correspondence with a plurality of pulling members; and
the plurality of pulley lead-in members and the plurality of pulley lead-out members are individually disposed such that respective positions thereof are deviated from each other in a circumferential direction with respect to an outer circumferential face of the pulley, and a plurality of the attachment path setting members are disposed in a pivotably assembled state on a support body.
21. The bending apparatus according to claim 20, wherein;
the support body on which the plurality of attachment path setting members are disposed is disposed in an intersecting positional relationship with respect to a longitudinal axis of the operation portion and at a position such that a center of the support body intersects with a longitudinal axis of the operation element; and
among the plurality of attachment path setting members disposed on the support body, a diametrical dimension or a width dimension of a predetermined attachment path setting member that is disposed at an end side of the support body is set to be greater than a diametrical dimension or a width dimension of an attachment path setting member that is disposed on an inner side thereof.
22. The bending apparatus according to claim 1, wherein;
the pulley is disposed inside the operation portion body at a position that is further on a proximal end side than the operation element in a positional relationship such that a longitudinal axis of the pulley intersects with the longitudinal axis of the grasping portion;
the motor is arranged such that a drive shaft of the motor is disposed parallel or perpendicular to the longitudinal axis of the pulley; and
the attachment path setting member is disposed in a vicinity of the pulley;
the bending apparatus further comprising:
driving force transmitting means that is provided in the motor and the pulley, and that transmits rotation of the motor to the pulley;
a first travel path changing member that leads a travel path of a pulling member that is guided into the operation portion to a vicinity of an axial extension line of the operation element that is an opposite direction to the operation element such that the longitudinal axis of the grasping portion is interposed therebetween; and
a pulley lead-in member that is disposed in a vicinity of the pulley, and that guides the pulling member that is led out from the first travel path changing member to the pulley.
23. The bending apparatus according to claim 1, wherein;
a hanging frame that includes a plurality of frames in which an attachment portion to which a proximal end portion of a pulling member is fixedly attached is provided at an end portion is configured in a cruciform shape comprising four frames;
the bending apparatus further comprising, at respective end portions of two frames that are disposed along a longitudinal axis of the operation portion, distal end curved portions that are curved in different directions so as to interpose a center line therebetween.
24. The bending apparatus according to claim 1, wherein a center of gravity position of the operation portion is inside the grasping portion.
25. The bending apparatus according to claim 1, wherein the travel path changing member is a coil pipe through which the pulling member can be inserted so as to freely advance and retract.
US13/596,294 2011-02-28 2012-08-28 Bending apparatus Abandoned US20130047757A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/631,459 US9936860B2 (en) 2011-02-28 2015-02-25 Bending apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011042551 2011-02-28
JP2011-042551 2011-02-28
PCT/JP2012/053243 WO2012117835A1 (en) 2011-02-28 2012-02-13 Endoscope and medical apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053243 Continuation WO2012117835A1 (en) 2011-02-28 2012-02-13 Endoscope and medical apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/631,459 Continuation US9936860B2 (en) 2011-02-28 2015-02-25 Bending apparatus

Publications (1)

Publication Number Publication Date
US20130047757A1 true US20130047757A1 (en) 2013-02-28

Family

ID=46757774

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/596,294 Abandoned US20130047757A1 (en) 2011-02-28 2012-08-28 Bending apparatus
US14/631,459 Active 2032-07-15 US9936860B2 (en) 2011-02-28 2015-02-25 Bending apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/631,459 Active 2032-07-15 US9936860B2 (en) 2011-02-28 2015-02-25 Bending apparatus

Country Status (5)

Country Link
US (2) US20130047757A1 (en)
EP (1) EP2649922A4 (en)
JP (1) JP5341261B2 (en)
CN (1) CN103327874B (en)
WO (1) WO2012117835A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140260724A1 (en) * 2013-03-13 2014-09-18 Boston Scientific Scimed, Inc. Steerable medical device having a control member holding mechanism
US20160073856A1 (en) * 2014-09-17 2016-03-17 Hoya Corporation Bending control mechanism for endoscope
EP3078318A4 (en) * 2014-05-16 2017-09-13 Olympus Corporation Endoscope
US20170280973A1 (en) * 2015-06-08 2017-10-05 Olympus Corporation Bending operation device and endoscope
EP3305164A4 (en) * 2015-05-27 2019-02-20 Olympus Corporation Medical manipulator
CN109870797A (en) * 2019-04-19 2019-06-11 上海熠达光电科技有限公司 Cohesion device and endoscope electric booster system
US11337589B2 (en) 2016-03-24 2022-05-24 Olympus Corporation Bending operation device and endoscope
US11357391B2 (en) * 2017-06-30 2022-06-14 Olympus Corporation Endoscope and operation portion
US11464481B2 (en) * 2016-09-30 2022-10-11 Philips Image Guided Therapy Corporation Control handle for steerable medical devices

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2689715A4 (en) * 2012-01-30 2015-07-08 Olympus Medical Systems Corp Insertion device
EP3047786A4 (en) * 2013-11-07 2017-07-05 Olympus Corporation Endoscope
EP3050488A4 (en) * 2014-03-18 2017-06-28 Olympus Corporation Endoscope
WO2016047171A1 (en) * 2014-09-26 2016-03-31 オリンパス株式会社 Endoscope
JPWO2017145431A1 (en) * 2016-02-23 2018-03-01 オリンパス株式会社 Endoscope
CN106510603B (en) * 2016-11-08 2019-01-25 北京大学 A kind of rotary motion endoscope apparatus
CN110267577B (en) * 2017-02-22 2021-11-16 奥林巴斯株式会社 Endoscope operation section and endoscope having the same
US20230000312A1 (en) * 2021-06-30 2023-01-05 Boston Scientific Scimed, Inc. Articulation control device and methods of use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913568A (en) * 1973-01-22 1975-10-21 American Optical Corp Nasopharyngoscope
US4688555A (en) * 1986-04-25 1987-08-25 Circon Corporation Endoscope with cable compensating mechanism
US5347989A (en) * 1992-09-11 1994-09-20 Welch Allyn, Inc. Control mechanism for steerable elongated probe having a sealed joystick
US20030092965A1 (en) * 2001-09-05 2003-05-15 Yutaka Konomura Electric bending endoscope
US20080207998A1 (en) * 2007-02-28 2008-08-28 Olympus Corporation Endoscope apparatus
US20100318100A1 (en) * 2008-11-14 2010-12-16 Yasuhiro Okamoto Medical system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878639A (en) * 1981-11-04 1983-05-12 オリンパス光学工業株式会社 Endoscope
JPH08224241A (en) 1995-02-22 1996-09-03 Olympus Optical Co Ltd Medical manipulator
US6236876B1 (en) * 1996-08-30 2001-05-22 The Whitaker Corporation Navigable probe and motor control apparatus
JP2003010099A (en) * 2001-06-29 2003-01-14 Olympus Optical Co Ltd Endoscope
JP3917894B2 (en) 2002-05-17 2007-05-23 オリンパス株式会社 Traction member operation device
JP4047563B2 (en) * 2001-09-05 2008-02-13 オリンパス株式会社 Endoscope
JP4560585B2 (en) 2002-06-24 2010-10-13 オリンパス株式会社 Endoscope
JP4323210B2 (en) * 2003-04-28 2009-09-02 オリンパス株式会社 Endoscope
JP4434640B2 (en) * 2003-06-27 2010-03-17 オリンパス株式会社 Endoscope
JP4477332B2 (en) * 2003-09-26 2010-06-09 オリンパス株式会社 Portable endoscope device
US8808166B2 (en) * 2006-06-06 2014-08-19 Olympus Corporation Endoscope
JP5021381B2 (en) * 2007-06-27 2012-09-05 オリンパス株式会社 Endoscope
EP2189103A4 (en) * 2007-09-11 2013-01-23 Olympus Corp Endoscope device
JP2009101076A (en) * 2007-10-25 2009-05-14 Olympus Corp Tractive member operating device and endoscope apparatus
JP5295555B2 (en) * 2007-12-10 2013-09-18 オリンパスメディカルシステムズ株式会社 Endoscope system
JP2010017245A (en) * 2008-07-08 2010-01-28 Olympus Corp Traction member operation unit
JP5422301B2 (en) 2009-08-24 2014-02-19 電気化学工業株式会社 Aerated cement composition
JP5330625B1 (en) * 2011-09-26 2013-10-30 オリンパスメディカルシステムズ株式会社 Endoscope
JP6113081B2 (en) * 2012-01-16 2017-04-12 オリンパス株式会社 Endoscope
EP2689715A4 (en) * 2012-01-30 2015-07-08 Olympus Medical Systems Corp Insertion device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913568A (en) * 1973-01-22 1975-10-21 American Optical Corp Nasopharyngoscope
US4688555A (en) * 1986-04-25 1987-08-25 Circon Corporation Endoscope with cable compensating mechanism
US5347989A (en) * 1992-09-11 1994-09-20 Welch Allyn, Inc. Control mechanism for steerable elongated probe having a sealed joystick
US20030092965A1 (en) * 2001-09-05 2003-05-15 Yutaka Konomura Electric bending endoscope
US6793622B2 (en) * 2001-09-05 2004-09-21 Olympus Optical Co., Ltd. Electric bending endoscope
US20080207998A1 (en) * 2007-02-28 2008-08-28 Olympus Corporation Endoscope apparatus
US20100318100A1 (en) * 2008-11-14 2010-12-16 Yasuhiro Okamoto Medical system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPO Translation of Description and Claims of JP 2005013613 A, Hirata, Jan. 20, 2005. *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619714B2 (en) * 2013-03-13 2020-04-14 Boston Scientific Scimed, Inc. Steerable medical device having a control member holding mechanism
US20140260724A1 (en) * 2013-03-13 2014-09-18 Boston Scientific Scimed, Inc. Steerable medical device having a control member holding mechanism
US11236806B2 (en) 2013-03-13 2022-02-01 Boston Scientific Scimed, Inc. Steerable medical device having a control member holding mechanism
EP3078318A4 (en) * 2014-05-16 2017-09-13 Olympus Corporation Endoscope
US20160073856A1 (en) * 2014-09-17 2016-03-17 Hoya Corporation Bending control mechanism for endoscope
US11504199B2 (en) 2015-05-27 2022-11-22 Olympus Corporation Medical manipulator
EP3305164A4 (en) * 2015-05-27 2019-02-20 Olympus Corporation Medical manipulator
US10792116B2 (en) 2015-05-27 2020-10-06 Olympus Corporation Medical manipulator
US20170280973A1 (en) * 2015-06-08 2017-10-05 Olympus Corporation Bending operation device and endoscope
US10524642B2 (en) * 2015-06-08 2020-01-07 Olympus Corporation Bending operation device and endoscope
EP3219247A4 (en) * 2015-06-08 2018-07-25 Olympus Corporation Bending operation device and endoscope
US11337589B2 (en) 2016-03-24 2022-05-24 Olympus Corporation Bending operation device and endoscope
US11464481B2 (en) * 2016-09-30 2022-10-11 Philips Image Guided Therapy Corporation Control handle for steerable medical devices
US11357391B2 (en) * 2017-06-30 2022-06-14 Olympus Corporation Endoscope and operation portion
CN109870797A (en) * 2019-04-19 2019-06-11 上海熠达光电科技有限公司 Cohesion device and endoscope electric booster system

Also Published As

Publication number Publication date
JP5341261B2 (en) 2013-11-13
US20150164306A1 (en) 2015-06-18
US9936860B2 (en) 2018-04-10
WO2012117835A1 (en) 2012-09-07
CN103327874B (en) 2016-03-09
EP2649922A4 (en) 2018-01-17
JPWO2012117835A1 (en) 2014-07-07
EP2649922A1 (en) 2013-10-16
CN103327874A (en) 2013-09-25

Similar Documents

Publication Publication Date Title
US9936860B2 (en) Bending apparatus
EP3434169B1 (en) Mechanical system for distal tip of a medical insertion tube controlling, expecially an endoscope insertion tube, and an endoscope handle
EP2537452B1 (en) Endoscope with second bending part
US20130047755A1 (en) Bending operation apparatus
JP6113081B2 (en) Endoscope
JP3673157B2 (en) Electric angle type electronic endoscope device
JP3854205B2 (en) Endoscope device
US9677599B2 (en) Insertion body, insertion apparatus, rotation unit and rotative force transmission unit
EP2702923A1 (en) Endoscope
US20140012087A1 (en) Endoscope
US9848759B2 (en) Coil structure used in endoscope and endoscope and treatment instrument including coil structure
JP4323210B2 (en) Endoscope
JP2009160204A (en) Curve operation device of endoscope and endoscope using the same
US20100063357A1 (en) Endoscope insertion aid, endoscope apparatus and endoscope apparatus insertion method
US20190104924A1 (en) Insertion apparatus
US20220233057A1 (en) Bending operation mechanism for endoscope, and endoscope
WO2015156026A1 (en) Treatment tool and surgical system
JP4777005B2 (en) Endoscope
US20160353975A1 (en) Bending operation mechanism for endoscope
JP3605699B2 (en) Endoscope with objective lens moving mechanism
JP6091252B2 (en) Endoscope
WO2017090534A1 (en) Control mechanism for endoscope, and endoscope
WO2020031378A1 (en) Endoscope
JP2005319194A (en) Endoscope
JPH03236824A (en) Drive for motor of endoscope

Legal Events

Date Code Title Description
AS Assignment

Owner name: OLYMPUS MEDICAL SYSTEMS CORP., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKAMOTO, YASUHIRO;MORIYAMA, HIROKI;REEL/FRAME:029277/0964

Effective date: 20121024

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION