US20120301602A1 - Method for the production and control of plates for electronics and related apparatus - Google Patents

Method for the production and control of plates for electronics and related apparatus Download PDF

Info

Publication number
US20120301602A1
US20120301602A1 US13/484,010 US201213484010A US2012301602A1 US 20120301602 A1 US20120301602 A1 US 20120301602A1 US 201213484010 A US201213484010 A US 201213484010A US 2012301602 A1 US2012301602 A1 US 2012301602A1
Authority
US
United States
Prior art keywords
plate
station
deposition
metal
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/484,010
Inventor
Andrea BACCINI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Italia SRL
Original Assignee
Applied Materials Italia SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Italia SRL filed Critical Applied Materials Italia SRL
Priority to US13/484,010 priority Critical patent/US20120301602A1/en
Publication of US20120301602A1 publication Critical patent/US20120301602A1/en
Assigned to APPLIED MATERIALS ITALIA S.R.L. reassignment APPLIED MATERIALS ITALIA S.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BACCINI, ANDREA
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37575Pre-process, measure workpiece before machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/40Minimising material used in manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention concerns a method for the production and control of plates or wafers for electronics and a relative apparatus.
  • the present method is applied, preferably, but not exclusively, for the deposition of metal or other material, for example by means of silk-screen printing, on plates, for example green tape, or on silicon wafers, or similar material, or for other operations and for the control, in a substantially automatic manner, of plates and wafers thus made.
  • Known methods normally comprise a first step in which a plate is positioned in a printing station.
  • the method comprises a second step in which the plate is subjected to the deposition of metal or other material by a printing unit.
  • the method also comprises a third step in which the plate is moved from the printing station to a control and exit station where it is subjected to a conformity test, both to control that there are no cracks or micro-fractures and also that the metal or other material has been correctly deposited, according to the desired disposition.
  • the method comprises a fourth step in which the plate is moved to an exit station towards subsequent treatments or, if it has been identified as defective, is removed for example manually and collected in a suitable container or moved by means of suitable movement means towards a material recycling device.
  • One disadvantage of the known method is that the plate is subjected to the deposition of the metal even if it is defective, for example due to micro-fractures, and therefore destined to be discarded. This causes both a waste of material and of energy during the deposition of the metal, as well as a diminished productivity due to the time needed for the deposition on a defective plate.
  • a further disadvantage of the known method is that the removal of defective plates entails the use of specific movement means or the presence of personnel able to make the collection.
  • One purpose of the present invention is to perfect a method for the production and control for plates or wafers for electronics that allows to reduce energy and materials.
  • a further purpose of the present invention is to perfect a method that allows to increase the productivity of the deposition of metal or other materials on the plates or on the wafers.
  • a further purpose of the present invention is to perfect a method that allows to remove the defective plates substantially automatically.
  • the Applicant has devised, tested and embodied the present invention to overcome the shortcomings of the state of the art and to obtain these and other purposes and advantages.
  • a method for the production and control of plates for electronics comprises a first step in which a plate is positioned by means of positioning means in a loading station.
  • the method comprises a second step in which said plate is moved to a deposition station associated with a unit for depositing metal or other materials, which is activated in order to deposit the metal, or other material, on the plate, so as to generate conductive and non-conductive tracks according to a desired and predetermined topological disposition.
  • the method comprises a third step in which the plate is moved from the deposition station to an exit station and a detection means is activated in order to detect the presence of defects in the plate. This with the purpose of verifying the physical integrity of the plate's support, detecting possible cracks generated accidentally during the deposition of material or following the movement towards the exit station.
  • the method comprises a fourth step in which the plate is discharged from the exit station.
  • the plate, positioned in the loading station is controlled by means of the detecting means so as to verify that there are no defects in said plate. In this way it is possible to detect in advance any possible fractures or cracks in the structure of the plate, which may be generated during the movement.
  • the unit for depositing metal or other material is activated when the detection means has not detected defects on the plate. In this way it is possible to inhibit the deposition of metal on a defective plate, allowing to make savings both in the material to be deposited and also in the working time associated with the deposition of material on the plate.
  • the plate in the fourth step is discharged by means of the positioning means, in a first direction of discharge if the plate is not defective. If, however, at least one defect has been detected on the plate, the plate is discharged by means of the positioning means, in a second direction of discharge. In this way it is possible to eliminate defective plates, moving them for example towards a collection device, in the same way that plates with no defects are moved towards subsequent treatments.
  • the fourth step comprises a sub-step, subsequent to the discharge of the plate from the exit station, in which said positioning means is cleaned in order to remove impurities.
  • said cleaning is performed by means of suction means.
  • the present invention also concerns an apparatus for the production and control of plates for electronics comprising a loading station for plates, an exit station for plates and at least an interposed station for the deposition of metal or other material, associated with a corresponding unit for the deposition of metal or other material.
  • the deposition unit is suitable to deposit tracks of metal or other material on plates according to a predetermined and desired topological disposition.
  • the apparatus also comprises a transport member able to transport plates from the loading station to the exit station, passing through the deposition station.
  • the apparatus also comprises positioning means able to position a plate in the loading station and to discharge the plate from the exit station.
  • the apparatus also comprises detection means able to detect defects in the plates disposed in the exit station and on which metal or other material has been deposited for the generation of said tracks.
  • the apparatus comprises a control unit connected to the detection means and suitable to activate both the metal deposition unit, the transport member and also the positioning means.
  • the detection means is suitable to detect defects in plates positioned in the loading station. In this way it is possible to detect possible defects such as cracks and/or fractures in the structure of the plate and generated during the movement of the plates by the positioning means.
  • the control unit activates the metal deposition unit if no defects have been detected in the plates or wafers by the detection means.
  • the detection means comprises a TV camera.
  • the detection means comprises a pair of TV cameras.
  • a first TV camera of the pair of TV cameras is associated with the loading station and a second TV camera of the pair of TV cameras is associated with the exit station.
  • control unit activates the transport member and the positioning means in order to move the plate without defects from the exit station in a first direction. In this way it is possible to direct plates without defects towards a subsequent treatment line.
  • control unit activates the transport member and the positioning means in order to move a defective plate from the exit station in a second direction, able to discharge the plate.
  • the apparatus comprises means for removing impurities suitable for cleaning the positioning means, and activated by said control unit.
  • the means for removing impurities comprises an air suction device.
  • FIG. 1 is a schematic view of the method according to the present invention in a first step
  • FIG. 2 is a schematic view of the method in the first step
  • FIG. 3 is a schematic view of the method in a second step
  • FIG. 4 is a schematic view of the method in a third step
  • FIG. 5 is a schematic view of the method in a fourth step
  • FIG. 6 is a schematic view of a detail of the method in the second step
  • FIG. 7 is a schematic view of a detail of the method in the third step.
  • FIG. 8 is a schematic view of a detail of the method in the fourth step.
  • FIG. 9 is a schematic view of a detail of the method in the fourth step.
  • FIG. 10 is a schematic view of an apparatus according to the present invention.
  • a method for the production and control of plates according to the present invention can be applied for depositing metal or other material on a plate, hereafter also called wafer 12 , for generating tracks according to a desired topology.
  • the method comprises a first step ( FIGS. 1 and 2 ) in which the wafer 12 , coming for example from an entry conveyor belt 14 , is unloaded from the belt 14 into a loading station 16 .
  • the wafer 12 is disposed by means of positioning means, for example by a sliding belt 34 associated with the loading station 16 , in a predetermined position on the loading station 16 .
  • the wafer 12 also undergoes an inspection ( FIG. 2 ), by means of a first TV camera 30 , associated with a control unit 36 so as to detect possible defects in the wafer 12 .
  • defects can comprise cracks and/or fractures or other damage that accidentally occur in the fragile crystalline structure of the wafer, following the movements of the wafer on the entry belt 14 or in the transfer from the belt 14 to the loading station 16 .
  • the presence of defects in the wafer is signaled to the control unit 36 .
  • the method comprises a second step in which the wafer 12 is transferred from the loading station 16 to a metal deposition station 18 ( FIGS. 3 and 6 ) associated with a deposition unit 20 , for example by silk-screen printing, able to be activated by means of the control unit 36 .
  • the activation of the deposition unit 20 to deposit the metal on the wafer 12 happens ( FIG. 3 ) only if in said first step no defect has been signaled in the wafer 12 currently positioned in the deposition station 18 .
  • the metal deposition unit 20 is not activated ( FIG. 6 ).
  • the method comprises a third step in which the wafer 12 is moved from the deposition station 18 to an exit station 24 ( FIGS. 4 and 7 ). If the deposition unit 20 has not been activated in the second step, that is, if at least one defect has been detected in the first step in the wafer 12 disposed in the exit station 24 , the second TV camera 130 is not activated ( FIG. 7 ). If, instead, the deposition unit 20 has been activated in the second step, a second TV camera 130 is activated ( FIG. 4 ) in order to detect any defects in the wafer 12 .
  • the method comprises a fourth step in which the wafer 12 is discharged from the exit station 24 by means of the positioning means 34 . If no defect has been detected in the wafer 12 in the first or third step, the wafer disposed in the exit station 24 ( FIGS. 4 and 5 ) is transferred by means of the positioning means 34 for example towards an adjacent exit conveyor belt 40 towards subsequent treatments. If in the wafer 12 at least one defect has been detected, in the first or third step, the wafer 12 disposed in the exit station 24 ( FIG. 7 ) is moved to a discharge station and transferred, in a substantially automatic manner by means of the positioning means 34 , towards an adjacent collection container 34 for detective wafers 12 .
  • the present invention also concerns an apparatus 10 that can be applied to deposit metal on a silicon wafer.
  • the apparatus 10 ( FIG. 10 ) comprises a loading station 16 for wafers 12 , an exit station 24 and an interposed deposition station 18 associated with a metal deposition unit 20 , suitable to deposit metal tracks on a wafer 12 according to a predetermined and desired topological disposition.
  • the apparatus 10 comprises a rotating turret 28 suitable for transporting wafers 12 from the loading station 16 to the exit station 24 passing through the deposition station 18 .
  • the apparatus 10 also comprises positioning belts 34 , of the known type, able to position a wafer 12 in the loading station 16 and to discharge wafers 12 from the exit station 24 towards an exit conveyor belt 40 .
  • the positioning belts 34 are associated with the rotating turret 28 .
  • the apparatus 10 also comprises a TV camera 130 associated with the exit station 24 and suitable to detect defects in the wafer 12 disposed in the exit station 16 .
  • defects comprise cracks and/or fractures in the silicon structure of the wafer 12 or defects produced during the deposition of the metal tracks or during the movement of the wafer 12 from the deposition station 18 to the exit station 24 .
  • the apparatus 10 also comprises a control unit 36 connected to the TV camera 130 and suitable to activate both the deposition unit 20 and the rotating turret 28 as well as the positioning belts 34 .
  • the apparatus also comprises a TV camera 30 associated with the loading station 16 and connected to the control unit 36 so as to detect defects in the wafer 12 disposed in the loading station 16 .
  • the apparatus 10 described heretofore functions as follows.
  • a wafer 12 for example coming from an entry conveyor belt 14 , is unloaded into the loading station 16 where it is positioned, by means of the positioning belts 34 , in a predetermined position.
  • the wafer 12 is subjected to inspection by the TV camera 30 in order to identify possible defects therein. Possible defects are signaled to the control unit 36 .
  • the wafer 12 is transferred by means of the rotating turret 12 from the loading station 16 to the metal deposition station 18 . If no defect has been detected in the wafer 12 , the deposition unit 20 is activated by the control unit 36 . If, instead, the TV camera 30 has signaled the presence of defects in the wafer 12 , the metal deposition unit 20 is not activated.
  • the wafer 12 is moved by the rotating turret 28 from the deposition station 18 to an exit station 24 ( FIGS. 4 and 7 ).
  • the wafer 12 disposed in the exit station 24 is transferred by the positioning belt 34 towards an adjacent exit conveyor belt 40 .
  • the wafer 12 disposed in the exit station 24 is moved by means of the rotating turret 28 to the discharge station 26 and transferred, in an automatic manner by means of the positioning means 34 , towards an adjacent container for the collection of defective wafers 12 .

Abstract

A method for the production and control of plates for electronics comprising a first step in which a plate is positioned, by positioning means, in a loading station; a second step in which the plate is disposed in a deposition station associated with a unit for depositing metal or other material; a third step in which the plate is disposed in an exit station and a detection means is activated to detect the presence of defects in the plate; and a fourth step in which the plate is discharged from the exit station. In the first step, the detection means is activated to identify defects in the plate disposed in the loading station. In the second step, the deposition unit is activated in order to deposit the metal on the plate when in the first step the detection means has not detected any defect in the plate.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 12/256,767, filed Oct. 23, 2008, which claims the benefit of Italian Patent Application No. UD2007A000195, filed Oct. 24, 2007, which are herein incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention concerns a method for the production and control of plates or wafers for electronics and a relative apparatus.
  • In particular the present method is applied, preferably, but not exclusively, for the deposition of metal or other material, for example by means of silk-screen printing, on plates, for example green tape, or on silicon wafers, or similar material, or for other operations and for the control, in a substantially automatic manner, of plates and wafers thus made.
  • BACKGROUND OF THE INVENTION
  • Production and control methods, substantially automatic, in production lines of plates for electronics are known. Known methods normally comprise a first step in which a plate is positioned in a printing station. The method comprises a second step in which the plate is subjected to the deposition of metal or other material by a printing unit.
  • The method also comprises a third step in which the plate is moved from the printing station to a control and exit station where it is subjected to a conformity test, both to control that there are no cracks or micro-fractures and also that the metal or other material has been correctly deposited, according to the desired disposition.
  • The method comprises a fourth step in which the plate is moved to an exit station towards subsequent treatments or, if it has been identified as defective, is removed for example manually and collected in a suitable container or moved by means of suitable movement means towards a material recycling device.
  • One disadvantage of the known method is that the plate is subjected to the deposition of the metal even if it is defective, for example due to micro-fractures, and therefore destined to be discarded. This causes both a waste of material and of energy during the deposition of the metal, as well as a diminished productivity due to the time needed for the deposition on a defective plate.
  • A further disadvantage of the known method is that the removal of defective plates entails the use of specific movement means or the presence of personnel able to make the collection.
  • One purpose of the present invention is to perfect a method for the production and control for plates or wafers for electronics that allows to reduce energy and materials.
  • A further purpose of the present invention is to perfect a method that allows to increase the productivity of the deposition of metal or other materials on the plates or on the wafers.
  • A further purpose of the present invention is to perfect a method that allows to remove the defective plates substantially automatically.
  • The Applicant has devised, tested and embodied the present invention to overcome the shortcomings of the state of the art and to obtain these and other purposes and advantages.
  • SUMMARY OF THE INVENTION
  • The present invention is set forth and characterized in the independent claims, while the dependent claims describe other characteristics of the invention or variants to the main inventive idea.
  • In accordance with the above purposes, a method for the production and control of plates for electronics comprises a first step in which a plate is positioned by means of positioning means in a loading station.
  • The method comprises a second step in which said plate is moved to a deposition station associated with a unit for depositing metal or other materials, which is activated in order to deposit the metal, or other material, on the plate, so as to generate conductive and non-conductive tracks according to a desired and predetermined topological disposition.
  • The method comprises a third step in which the plate is moved from the deposition station to an exit station and a detection means is activated in order to detect the presence of defects in the plate. This with the purpose of verifying the physical integrity of the plate's support, detecting possible cracks generated accidentally during the deposition of material or following the movement towards the exit station.
  • The method comprises a fourth step in which the plate is discharged from the exit station.
  • According to a characteristic feature of the present invention, in the first step the plate, positioned in the loading station, is controlled by means of the detecting means so as to verify that there are no defects in said plate. In this way it is possible to detect in advance any possible fractures or cracks in the structure of the plate, which may be generated during the movement. In the second step the unit for depositing metal or other material is activated when the detection means has not detected defects on the plate. In this way it is possible to inhibit the deposition of metal on a defective plate, allowing to make savings both in the material to be deposited and also in the working time associated with the deposition of material on the plate.
  • According to a characteristic feature, in the fourth step the plate is discharged by means of the positioning means, in a first direction of discharge if the plate is not defective. If, however, at least one defect has been detected on the plate, the plate is discharged by means of the positioning means, in a second direction of discharge. In this way it is possible to eliminate defective plates, moving them for example towards a collection device, in the same way that plates with no defects are moved towards subsequent treatments.
  • According to a further characteristic feature the fourth step comprises a sub-step, subsequent to the discharge of the plate from the exit station, in which said positioning means is cleaned in order to remove impurities.
  • According to a variant said cleaning is performed by means of suction means.
  • The present invention also concerns an apparatus for the production and control of plates for electronics comprising a loading station for plates, an exit station for plates and at least an interposed station for the deposition of metal or other material, associated with a corresponding unit for the deposition of metal or other material. The deposition unit is suitable to deposit tracks of metal or other material on plates according to a predetermined and desired topological disposition.
  • The apparatus also comprises a transport member able to transport plates from the loading station to the exit station, passing through the deposition station.
  • The apparatus also comprises positioning means able to position a plate in the loading station and to discharge the plate from the exit station.
  • The apparatus also comprises detection means able to detect defects in the plates disposed in the exit station and on which metal or other material has been deposited for the generation of said tracks.
  • The apparatus comprises a control unit connected to the detection means and suitable to activate both the metal deposition unit, the transport member and also the positioning means.
  • According to a characteristic feature of the present invention the detection means is suitable to detect defects in plates positioned in the loading station. In this way it is possible to detect possible defects such as cracks and/or fractures in the structure of the plate and generated during the movement of the plates by the positioning means. The control unit activates the metal deposition unit if no defects have been detected in the plates or wafers by the detection means.
  • According to a variant the detection means comprises a TV camera.
  • According to a further variant the detection means comprises a pair of TV cameras. A first TV camera of the pair of TV cameras is associated with the loading station and a second TV camera of the pair of TV cameras is associated with the exit station.
  • According to a further characteristic feature of the present invention the control unit activates the transport member and the positioning means in order to move the plate without defects from the exit station in a first direction. In this way it is possible to direct plates without defects towards a subsequent treatment line.
  • According to a further characteristic feature of the present invention the control unit activates the transport member and the positioning means in order to move a defective plate from the exit station in a second direction, able to discharge the plate.
  • According to a variant the apparatus comprises means for removing impurities suitable for cleaning the positioning means, and activated by said control unit.
  • According to a variant the means for removing impurities comprises an air suction device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other characteristics of the present invention will become apparent from the following description of a preferential form of embodiment, given as a non-restrictive example with reference to the attached drawings wherein:
  • FIG. 1 is a schematic view of the method according to the present invention in a first step;
  • FIG. 2 is a schematic view of the method in the first step;
  • FIG. 3 is a schematic view of the method in a second step;
  • FIG. 4 is a schematic view of the method in a third step;
  • FIG. 5 is a schematic view of the method in a fourth step;
  • FIG. 6 is a schematic view of a detail of the method in the second step;
  • FIG. 7 is a schematic view of a detail of the method in the third step;
  • FIG. 8 is a schematic view of a detail of the method in the fourth step;
  • FIG. 9 is a schematic view of a detail of the method in the fourth step;
  • FIG. 10 is a schematic view of an apparatus according to the present invention.
  • DETAILED DESCRIPTION OF A PREFERENTIAL FORM OF EMBODIMENT
  • With reference to the attached drawings, a method for the production and control of plates according to the present invention can be applied for depositing metal or other material on a plate, hereafter also called wafer 12, for generating tracks according to a desired topology.
  • The method comprises a first step (FIGS. 1 and 2) in which the wafer 12, coming for example from an entry conveyor belt 14, is unloaded from the belt 14 into a loading station 16. The wafer 12 is disposed by means of positioning means, for example by a sliding belt 34 associated with the loading station 16, in a predetermined position on the loading station 16.
  • In the first step the wafer 12 also undergoes an inspection (FIG. 2), by means of a first TV camera 30, associated with a control unit 36 so as to detect possible defects in the wafer 12. Such defects can comprise cracks and/or fractures or other damage that accidentally occur in the fragile crystalline structure of the wafer, following the movements of the wafer on the entry belt 14 or in the transfer from the belt 14 to the loading station 16. In the first step the presence of defects in the wafer is signaled to the control unit 36.
  • The method comprises a second step in which the wafer 12 is transferred from the loading station 16 to a metal deposition station 18 (FIGS. 3 and 6) associated with a deposition unit 20, for example by silk-screen printing, able to be activated by means of the control unit 36. In the second step the activation of the deposition unit 20 to deposit the metal on the wafer 12 happens (FIG. 3) only if in said first step no defect has been signaled in the wafer 12 currently positioned in the deposition station 18. On the contrary, if in the first step the TV camera has signaled the presence of defects in the wafer 12 disposed in the deposition station 18, the metal deposition unit 20 is not activated (FIG. 6).
  • In this way the deposition of metal on a defective wafer 12 is inhibited, therefore avoiding wasting metal material and allowing to considerably reduce the time the defective wafer 12 remains in the deposition station.
  • The method comprises a third step in which the wafer 12 is moved from the deposition station 18 to an exit station 24 (FIGS. 4 and 7). If the deposition unit 20 has not been activated in the second step, that is, if at least one defect has been detected in the first step in the wafer 12 disposed in the exit station 24, the second TV camera 130 is not activated (FIG. 7). If, instead, the deposition unit 20 has been activated in the second step, a second TV camera 130 is activated (FIG. 4) in order to detect any defects in the wafer 12.
  • The method comprises a fourth step in which the wafer 12 is discharged from the exit station 24 by means of the positioning means 34. If no defect has been detected in the wafer 12 in the first or third step, the wafer disposed in the exit station 24 (FIGS. 4 and 5) is transferred by means of the positioning means 34 for example towards an adjacent exit conveyor belt 40 towards subsequent treatments. If in the wafer 12 at least one defect has been detected, in the first or third step, the wafer 12 disposed in the exit station 24 (FIG. 7) is moved to a discharge station and transferred, in a substantially automatic manner by means of the positioning means 34, towards an adjacent collection container 34 for detective wafers 12.
  • The present invention also concerns an apparatus 10 that can be applied to deposit metal on a silicon wafer.
  • The apparatus 10 (FIG. 10) comprises a loading station 16 for wafers 12, an exit station 24 and an interposed deposition station 18 associated with a metal deposition unit 20, suitable to deposit metal tracks on a wafer 12 according to a predetermined and desired topological disposition.
  • The apparatus 10 comprises a rotating turret 28 suitable for transporting wafers 12 from the loading station 16 to the exit station 24 passing through the deposition station 18.
  • The apparatus 10 also comprises positioning belts 34, of the known type, able to position a wafer 12 in the loading station 16 and to discharge wafers 12 from the exit station 24 towards an exit conveyor belt 40. The positioning belts 34 are associated with the rotating turret 28.
  • The apparatus 10 also comprises a TV camera 130 associated with the exit station 24 and suitable to detect defects in the wafer 12 disposed in the exit station 16. Such defects comprise cracks and/or fractures in the silicon structure of the wafer 12 or defects produced during the deposition of the metal tracks or during the movement of the wafer 12 from the deposition station 18 to the exit station 24.
  • The apparatus 10 also comprises a control unit 36 connected to the TV camera 130 and suitable to activate both the deposition unit 20 and the rotating turret 28 as well as the positioning belts 34.
  • According to a characteristic feature the apparatus also comprises a TV camera 30 associated with the loading station 16 and connected to the control unit 36 so as to detect defects in the wafer 12 disposed in the loading station 16.
  • The apparatus 10 described heretofore functions as follows.
  • A wafer 12, for example coming from an entry conveyor belt 14, is unloaded into the loading station 16 where it is positioned, by means of the positioning belts 34, in a predetermined position.
  • The wafer 12 is subjected to inspection by the TV camera 30 in order to identify possible defects therein. Possible defects are signaled to the control unit 36.
  • The wafer 12 is transferred by means of the rotating turret 12 from the loading station 16 to the metal deposition station 18. If no defect has been detected in the wafer 12, the deposition unit 20 is activated by the control unit 36. If, instead, the TV camera 30 has signaled the presence of defects in the wafer 12, the metal deposition unit 20 is not activated.
  • In this way the deposition of metal on a defective wafer 12 is inhibited, therefore avoiding wasting metal material and allowing to considerably reduce the time a defective wafer 12 remains in the deposition station.
  • The wafer 12 is moved by the rotating turret 28 from the deposition station 18 to an exit station 24 (FIGS. 4 and 7).
  • If no defect has been detected, the wafer 12 disposed in the exit station 24 is transferred by the positioning belt 34 towards an adjacent exit conveyor belt 40.
  • If at least one defect has been detected, the wafer 12 disposed in the exit station 24 is moved by means of the rotating turret 28 to the discharge station 26 and transferred, in an automatic manner by means of the positioning means 34, towards an adjacent container for the collection of defective wafers 12.
  • It is clear that modifications and/or additions of parts may be made to the method and apparatus 10 as described heretofore, without departing from the field and scope of the present invention. For example, it comes within the field and scope of the present invention to provide a single TV camera 30 for detecting defects, mobile between a first position associated with the loading station 16 and a second position associated with the exit station 24. The TV camera 30 moves by means of sliding means of a known type and is commanded by the control unit 36, in a manner coordinated with the step of the method and/or the position of the wafers 12 to be controlled.
  • It is also clear that, although the present invention has been described with reference to some specific examples, a person of skill in the art shall certainly be able to achieve many other equivalent forms of method for the production and control of silicon wafers and relative apparatus, having the characteristics as set forth in the claims and hence all coming within the field of protection defined thereby.

Claims (6)

1. A method for the production and control of plates for electronics comprising:
a first step in which a plate is positioned, by means of positioning means, in a loading station;
a second step in which the plate is disposed in a deposition station associated with a unit for depositing metal, or other material, in which the metal or other material is deposited on the plate, in order to generate on the plates tracks made of metal or other material, according to a pre-determined and desired topological disposition;
a third step in which the plate is disposed in an exit station and a detection means is activated so as to detect the presence of defects in the plate; and
a fourth step in which the plate is discharged from the exit station, wherein in said first step said detection means is activated to identify defects in said plate disposed in the loading station and wherein in said second step the deposition unit is activated in order to deposit the metal or other material on said plate when in said first step the detection means has not detected any defect in said plate.
2. A method as in claim 1, wherein in said fourth step the plate without defects is discharged by means of positioning means in a first direction of discharge.
3. A method as in claim 1, wherein in said fourth step the plate with defects is discharged by means of said positioning means in a second direction of discharge.
4. A method as in claim 1, wherein said fourth step comprises a sub-step, subsequent to the discharge of the plate from the exit station, in which said positioning means is cleaned in order to remove impurities.
5. A method as in claim 4, wherein said positioning means is cleaned by means of air suction.
6. A method as in claim 1, wherein said detection means comprises at least a TV camera.
US13/484,010 2007-10-24 2012-05-30 Method for the production and control of plates for electronics and related apparatus Abandoned US20120301602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/484,010 US20120301602A1 (en) 2007-10-24 2012-05-30 Method for the production and control of plates for electronics and related apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ITUD2007A000195 2007-10-24
IT000195A ITUD20070195A1 (en) 2007-10-24 2007-10-24 PROCESS OF PRODUCTION AND CONTROL OF PLATES FOR ELECTRONICS AND ITS APPARATUS
US12/256,767 US8256375B2 (en) 2007-10-24 2008-10-23 Method for the production and control of plates for electronics and related apparatus
US13/484,010 US20120301602A1 (en) 2007-10-24 2012-05-30 Method for the production and control of plates for electronics and related apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/256,767 Division US8256375B2 (en) 2007-10-24 2008-10-23 Method for the production and control of plates for electronics and related apparatus

Publications (1)

Publication Number Publication Date
US20120301602A1 true US20120301602A1 (en) 2012-11-29

Family

ID=39560907

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/256,767 Expired - Fee Related US8256375B2 (en) 2007-10-24 2008-10-23 Method for the production and control of plates for electronics and related apparatus
US13/484,010 Abandoned US20120301602A1 (en) 2007-10-24 2012-05-30 Method for the production and control of plates for electronics and related apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/256,767 Expired - Fee Related US8256375B2 (en) 2007-10-24 2008-10-23 Method for the production and control of plates for electronics and related apparatus

Country Status (7)

Country Link
US (2) US8256375B2 (en)
JP (1) JP2011501457A (en)
KR (1) KR20100084178A (en)
CN (1) CN101855603A (en)
IT (1) ITUD20070195A1 (en)
TW (1) TW200933715A (en)
WO (1) WO2009053784A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1392992B1 (en) * 2009-02-23 2012-04-02 Applied Materials Inc PROCEDURE AND EQUIPMENT FOR THE SERIGRAPHIC PRINTING OF A MULTIPLE LAYER DIAGRAM
IT1399285B1 (en) * 2009-07-03 2013-04-11 Applied Materials Inc SUBSTRATE PROCESSING SYSTEM
IT1394811B1 (en) * 2009-07-08 2012-07-13 Applied Materials Inc APPARATUS AND PROCEDURE FOR THE MANIPULATION OF DAMAGED SUBSTRATES IN SUBSTRATE PROCESSING SYSTEMS
IT1395784B1 (en) 2009-09-16 2012-10-19 Applied Materials Inc CLEANING DEVICE FOR A SCREEN PRINTING EQUIPMENT ON A PRINT SUPPORT.
ITUD20110079A1 (en) * 2011-06-06 2012-12-07 Applied Materials Italia Srl SUPPORT AND TRANSPORT UNIT FOR A PRINTING SUBSTRATE FOR A PRINT TRACK DEPOSITION PLANT, AND ITS DEPOSITION PROCEDURE
CN105835522B (en) * 2016-05-26 2018-08-24 东莞市展迅机械科技有限公司 A kind of rotary quick print machine
US11836397B2 (en) * 2018-04-09 2023-12-05 Videojet Technologies Inc. System and method for tracking production line productivity with an industrial printer
CN114523758B (en) * 2022-02-14 2023-01-03 苏州市中辰昊科技有限公司 Solar cell printing and screen printing plate wiping mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981074A (en) * 1988-06-01 1991-01-01 Hitachi Techno Engineering Co., Ltd. Method and apparatus for screen printing
US5740729A (en) * 1993-05-21 1998-04-21 Matsushita Electric Industrial Co., Ltd. Printing apparatus and method for inspecting printed materials
US20040173148A1 (en) * 2003-03-06 2004-09-09 Samsung Electronics Co., Ltd. Discharging unit for discharging a photosensitive material, coater having the discharging unit, and apparatus for coating a photosensitive material having the coater
US20070165940A1 (en) * 2006-01-13 2007-07-19 Akio Ishikawa Semiconductor surface inspection apparatus, surface inspection method, and semiconductor manufacturing apparatus
US7931933B2 (en) * 2000-07-11 2011-04-26 Mydata Automation Ab Method and apparatus for providing a substrate with viscous medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1252949B (en) * 1991-09-30 1995-07-06 Gisulfo Baccini PROCEDURE FOR THE PROCESSING OF GREEN-TAPE TYPE CIRCUITS AND DEVICE ADOPTING THIS PROCEDURE
US6114015A (en) * 1998-10-13 2000-09-05 Matsushita Electronic Materials, Inc. Thin-laminate panels for capacitive printed-circuit boards and methods for making the same
US6507933B1 (en) * 1999-07-12 2003-01-14 Advanced Micro Devices, Inc. Automatic defect source classification
DE102006015686C5 (en) 2006-03-27 2013-05-29 Thieme Gmbh & Co. Kg Method for transporting printed matter and printing table for flatbed printing machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981074A (en) * 1988-06-01 1991-01-01 Hitachi Techno Engineering Co., Ltd. Method and apparatus for screen printing
US5740729A (en) * 1993-05-21 1998-04-21 Matsushita Electric Industrial Co., Ltd. Printing apparatus and method for inspecting printed materials
US7931933B2 (en) * 2000-07-11 2011-04-26 Mydata Automation Ab Method and apparatus for providing a substrate with viscous medium
US20040173148A1 (en) * 2003-03-06 2004-09-09 Samsung Electronics Co., Ltd. Discharging unit for discharging a photosensitive material, coater having the discharging unit, and apparatus for coating a photosensitive material having the coater
US20070165940A1 (en) * 2006-01-13 2007-07-19 Akio Ishikawa Semiconductor surface inspection apparatus, surface inspection method, and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
TW200933715A (en) 2009-08-01
US20090269483A1 (en) 2009-10-29
KR20100084178A (en) 2010-07-23
CN101855603A (en) 2010-10-06
ITUD20070195A1 (en) 2009-04-25
JP2011501457A (en) 2011-01-06
US8256375B2 (en) 2012-09-04
WO2009053784A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
US20120301602A1 (en) Method for the production and control of plates for electronics and related apparatus
TWI494982B (en) Protective tape separation method
CN108133903A (en) Engagement device, mating system, joint method and computer storage media
CN103921394A (en) Automatic production and detection equipment of insert injection molding product
CN111239159A (en) Packaging substrate visual detection system and method
TW201036032A (en) Method and device for filling carrier tapes with electronic components
JP5580806B2 (en) Peeling apparatus, peeling system, peeling method, program, and computer storage medium
KR101772849B1 (en) Tray defect inspection device and method for inspection
CN109013383A (en) A kind of full-automatic detector and detection craft leakage mending method
CN113600505A (en) Sensor element detects sorting facilities
KR100927478B1 (en) Micro switch for power seat control of vehicle and method thereof
TWI550701B (en) Device and method for sawing electronic components
JP2000321545A (en) Liquid crystal panel inspection apparatus
JP2013140947A (en) Separation apparatus, separation system, separation method, program, and computer storage medium
JP2013004845A (en) Separation system, separation method, program and computer storage medium
CN211697574U (en) Visual detection system for packaging substrate
JP2011119429A (en) Component mounting system
JP7197742B2 (en) Maintenance device
WO2019182435A1 (en) Apparatus and method for filling carrier tapes with electronic components
KR200416589Y1 (en) Automatic Inspecting Apparatus for O-Ring
WO2012105837A1 (en) Wafer inspection system
KR20110053573A (en) Wafer handling apparatus
JP5777549B2 (en) Peeling apparatus, peeling system, peeling method, program, and computer storage medium
JP2006273480A (en) Quality inspection system
KR102488045B1 (en) Carry device, detection device, conveying device and dust removal device for dust removal procedures

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED MATERIALS ITALIA S.R.L., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BACCINI, ANDREA;REEL/FRAME:029739/0917

Effective date: 20130123

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION