US20120150919A1 - Agency management system and content management system integration - Google Patents

Agency management system and content management system integration Download PDF

Info

Publication number
US20120150919A1
US20120150919A1 US13/004,572 US201113004572A US2012150919A1 US 20120150919 A1 US20120150919 A1 US 20120150919A1 US 201113004572 A US201113004572 A US 201113004572A US 2012150919 A1 US2012150919 A1 US 2012150919A1
Authority
US
United States
Prior art keywords
content
insurance
entities
changes
management system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/004,572
Other versions
US9384198B2 (en
Inventor
Derrick Brown
Roger Blair
Steven Finch
Igor Wolbers
Gerald Taylor
Aleksey Cherkasov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertafore Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/004,572 priority Critical patent/US9384198B2/en
Assigned to VERTAFORE, INC. reassignment VERTAFORE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLAIR, ROGER, BROWN, DERRICK, CHERKASOV, ALEKSEY, TAYLOR, GERALD, FINCH, STEVEN, WOLBERS, IGOR
Assigned to CREDIT SUISSE AG, AS COLLATERAL AGENT reassignment CREDIT SUISSE AG, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: VERTAFORE, INC.
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: VERTAFORE, INC.
Priority to CA2761405A priority patent/CA2761405A1/en
Publication of US20120150919A1 publication Critical patent/US20120150919A1/en
Assigned to VERTAFORE, INC. reassignment VERTAFORE, INC. RELEASE OF FIRST LIEN SECURITY AGREEMENT Assignors: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH
Publication of US9384198B2 publication Critical patent/US9384198B2/en
Application granted granted Critical
Assigned to VERTAFORE, INC. reassignment VERTAFORE, INC. RELEASE OF SECOND LIEN SECURITY AGREEMENT Assignors: BANK OF AMERICA, N.A.
Assigned to CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT reassignment CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT FIRST LIEN SECURITY AGREEMENT Assignors: VERTAFORE, INC.
Assigned to CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT reassignment CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT SECOND LIEN SECURITY AGREEMENT Assignors: VERTAFORE, INC.
Assigned to NOMURA CORPORATE FUNDING AMERICAS, LLC reassignment NOMURA CORPORATE FUNDING AMERICAS, LLC FIRST LIEN SECURITY AGREEMENT Assignors: RISKMATCH, INC., VERTAFORE, INC.
Assigned to VERTAFORE, INC., RISKMATCH, INC. reassignment VERTAFORE, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CORTLAND CAPITAL MARKET SERVICES LLC
Assigned to VERTAFORE, INC., RISKMATCH, INC. reassignment VERTAFORE, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH
Assigned to NOMURA CORPORATE FUNDING AMERICAS, LLC reassignment NOMURA CORPORATE FUNDING AMERICAS, LLC SECOND LIEN SECURITY AGREEMENT Assignors: RISKMATCH, INC., VERTAFORE, INC.
Assigned to VERTAFORE, INC., RISKMATCH, INC. reassignment VERTAFORE, INC. SECOND LIEN RELEASE OF SECURITY INTEREST IN PATENTS Assignors: NOMURA CORPORATE FUNDING AMERICAS, LLC, AS COLLATERAL AGENT
Assigned to VERTAFORE, INC., RISKMATCH, INC. reassignment VERTAFORE, INC. FIRST LIEN RELEASE OF SECURITY INTEREST IN PATENTS Assignors: NOMURA CORPORATE FUNDING AMERICAS, LLC, AS COLLATERAL AGENT
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/11File system administration, e.g. details of archiving or snapshots
    • G06F16/122File system administration, e.g. details of archiving or snapshots using management policies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/13File access structures, e.g. distributed indices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/16File or folder operations, e.g. details of user interfaces specifically adapted to file systems

Definitions

  • This disclosure generally relates to data services, and particularly to system integration services.
  • Integration may also allow the users to quickly navigate between the agency management system and the content management system. Integration may additionally provide for the creation of content structures before there is a need to use the content structure. This may advantageously allow a user to immediately organize content and skip the content structure creation phase of their work. This may be especially valuable if the particular workflow does not start in the agency management system.
  • the agency can deploy a unified organization structure that is enforced automatically across the organization.
  • a computer-implemented method may be summarized as including receiving information defining entities of an insurance agency management system; receiving content structure of a content management system; receiving mapping data indicative of mappings between the entities of the insurance agency management system and the content structure; automatically generating a data structure based on the mappings; storing the content structure in the data structure corresponding to the mappings; and automatically synchronizing with changes of the entities of the insurance agency management system, the synchronizing based on information indicative of the changes of the entities of the insurance agency management system.
  • the synchronizing may include receiving information indicative of changes of the entities of the insurance agency management system; automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure; and automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the received changes.
  • the receiving information indicative of changes of the entities may occur automatically on a periodic or nonperiodic (aperiodic) basis without requesting the information indicative of changes of the entities.
  • Synchronizing with changes of the entities of the insurance agency management system may occur at an initial generation of the data structure corresponding to the mappings.
  • the automatically generating a data structure based on the mappings may include generating a hierarchical data structure corresponding to a hierarchical business structure defined by the mapping data.
  • the computer-implemented method may further include, after initial generation of the data structure, displaying a number of interactive graphical user interface elements operable to trigger automatically performing at least one of: opening the content structure or the data structure for viewing or editing, linking the content structure or the data structure to other content structures or entities, indexing the content structure or the data structure, or entering at least some of the mapping data.
  • the insurance agency management system may automatically provide information indicative of changes of the entities upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis and wherein the automatically synchronizing may include automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure to the provided information indicative of the changes; and automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the provided information indicative of the changes.
  • a system may be summarized as including a computer processor; and a non-transitory memory communicatively coupled to the computer processor having computer-executable instructions stored thereon that when executed by the computer processor cause the computer processor to perform: receiving information defining entities of an insurance agency management system; receiving content structure of a content management system; receiving mapping data indicative of mappings between the entities of the insurance agency management system and the content structure; automatically generating a data structure based on the mappings; storing the content structure in the data structure corresponding to the mappings; and automatically synchronizing with changes of the entities of the insurance agency management system, the synchronizing based on information indicative of the changes of the entities of the insurance agency management system.
  • the insurance agency management system may be configured to, after initial generation of the data structure, automatically provide information indicative of changes of the entities upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis and wherein the automatically synchronizing may include automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure to the provided information indicative of the changes; and automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the provided information indicative of the changes.
  • the entities may include at least one of: an insurance client entity, an insurance submissions entity, an insurance policies entity, an insurance claims entity, an insurance quotes entity, an insurance vendor entity, an insurance company employee entity, an insurance carrier entity, or an insurance transactions entity.
  • the changes of the entities may be at least one of: adding entities, changes to relationships between the entities, changes to a hierarchical structure defining the entities, or changes to attributes of the entities.
  • the computer-executable instructions when executed by the computer processor, may further configure the computer processor to automatically organize the content structure based on entity criteria including at least one of: insurance business unit, insurance coverage type, agency number, customer line of business, policy type of business, policy type, submission type.
  • At least one non-transitory computer-readable medium may be summarized as one that stores instructions that when executed by at least one computer system cause the at least one computer system to perform: receiving information defining entities of an insurance agency management system; receiving content structure of a content management system; receiving mapping data indicative of mappings between the entities of the insurance agency management system and the content structure; automatically generating a data structure based on the mappings; storing the content structure in the data structure corresponding to the mappings; and automatically synchronizing with changes of the entities of the insurance agency management system, the synchronizing based on information indicative of the changes of the entities of the insurance agency management system.
  • the computer-executable instructions when executed by the at least one computer system, may further cause the at least one computer system to display a number of interactive graphical user interface elements operable to trigger automatically performing at least one of: opening the content structure or the data structure for viewing or editing, linking the content structure or the data structure to other content structures or entities, indexing the content structure or the data structure, or entering at least some of the mapping data.
  • the computer-executable instructions when executed by the at least one computer system, may further cause the at least one computer system to, after initial generation of the data structure, cause the insurance agency management system to automatically provide information indicative of changes of the entities upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis and wherein the automatically synchronizing includes automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure to the provided information indicative of the changes; and automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the provided information indicative of the changes.
  • a system may be summarized as including at least one computer processor; and a non-transitory memory communicatively coupled to the computer processor having computer-executable instructions stored thereon that when executed by the computer processor cause the at least one computer processor to: link entities of an insurance agency management system to content hierarchical structures of a content management system; automatically provide information indicative of changes of an insurance agency business unit upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis; and automatically synchronize a content management system content hierarchical structure related to the insurance agency business unit with the changes to the insurance agency business unit.
  • the computer-executable instructions may further cause the at least one computer processor to: provide a preview of changes to the content hierarchical structure; provide a testing environment to test the content hierarchical structure changes; provide troubleshooting logs resulting from testing of the content hierarchical structure changes; and link the entities of the insurance agency management system to content hierarchical structures of the content management system by providing multiple mappings between the entities of the insurance agency management system and the content hierarchical structures.
  • the computer-executable instructions may further cause the at least one computer processor to provide an interface for a user to manually trigger a synchronization of the content management system content hierarchical structure related to the insurance agency business unit with the changes to the insurance agency business unit.
  • FIG. 1 is a system diagram of a networked environment, in which systems, devices and methods for agency management and content management integration may be a part, or in which they may be implemented, according to one illustrated embodiment.
  • FIG. 2 is a schematic diagram of an example computer system of any one of the entities or systems of FIG. 1 , suitable for implementing systems, devices and methods for agency management and content management integration, according to one illustrated embodiment.
  • FIG. 3B is a block diagram of the agency management and content management integration system, according to one illustrated embodiment.
  • FIG. 4 is an illustration of domain entity structures and content management system structures such as files and folders, according to one illustrated embodiment.
  • FIG. 5 is a screen shot of a user interface for configuration of an agency's work divisions in integration jobs, according to one illustrated embodiment.
  • FIG. 7 is a screen shot of a user interface for performing content management system actions from an agency management system, according to one illustrated embodiment.
  • FIG. 8 is block diagram illustrating front end integration of agency management and content management, according to one illustrated embodiment.
  • FIG. 9 is flow diagram illustrating a process of a save action performed in a system for agency management and content management integration, according to one illustrated embodiment.
  • FIG. 10A is a screen shot of a user interface of the initial creation piece of the system for agency management and content management integration for creation of the content management system structures based on an agency management system's entities, according to one illustrated embodiment.
  • FIG. 10B is another screen shot of a user interface of the initial creation piece of the system for agency management and content management integration for creation of the content management system structures based on an agency management system's entities, according to one illustrated embodiment.
  • FIG. 10C is a flow diagram illustrating a process of synchronization of data between a content management system and an agency management system, according to one illustrated embodiment.
  • FIG. 11 is a diagram illustrating an update (delta) synchronization system architecture comprising a backend integration piece of the agency management and content management integration system, according to one illustrated embodiment.
  • FIG. 12 is a diagram illustrating a baseline synchronization system architecture comprising a backend integration piece of the agency management and content management integration system, according to one illustrated embodiment.
  • FIG. 13 is a screen shot of a user interface for previewing and accepting content structure changes, according to one illustrated embodiment.
  • FIG. 1 is a system diagram of a networked environment, in which systems, devices and methods for agency management and content management integration may be a part, or in which they may be implemented, according to one illustrated embodiment.
  • the networked environment 100 may include a plurality of entities (e.g., insurance entities), entity 1 106 , entity 2 108 , and entity n 110 ; one or more agency management systems 104 ; one or more content management systems 102 ; and an agency management and content management integration system 112 .
  • Entity 1 106 , entity 2 108 , entity n 110 , the one or more agency management systems 104 , the one or more content management systems 102 and the agency management and content management integration system 112 may all be communicatively coupled via a network 116 .
  • one or more of the systems or devices may be located on a single system and/or at a single physical location. Additional systems and devices may also be present, but are not illustrated for clarity of presentation.
  • the network 116 may be any computer network, telecommunications network or combination of telecommunications and computer networks that enables communication between the various systems and entities connected to the network 116 shown in FIG. 1 .
  • Entity 1 106 , entity 2 108 entity n 110 , the one or more agency management systems 104 , the one or more content management systems 102 , and the agency management and content management integration system 112 may be additionally or optionally linked by one or more other communication links or networks that comprise network 116 .
  • a communications network of network 116 may include a local area network that uses wireless fidelity (Wi-Fi) high frequency radio signals to transmit and receive data over distances of a few hundred feet.
  • Wi-Fi wireless fidelity
  • the local area network may be a wireless local area network (WLAN) based on the Institute of Electric and Electronic Engineers (IEEE) 802.11 standards. However, other wired and wireless communications networks and protocols may be used to link the various entities and systems shown in FIG. 1 .
  • WLAN wireless local area network
  • IEEE Institute of Electric and Electronic Engineers
  • the network 116 may comprise connections to entity 1 106 , entity 2 , 108 , entity n 110 , the one or more agency management systems 104 , and the one or more content management systems 102 such that the agency management and content management integration system 112 may provide integration of the agency management system(s) 104 and content management system(s) 102 , and may itself represent multiple interconnected networks. For instance wired and wireless enterprise-wide computer networks, intranets, extranets, and/or the Internet may be included in or comprise a part of network 116 .
  • Embodiments may include various types of communication networks including other telecommunications networks, cellular networks, paging networks, and other mobile networks. There may be any variety of computers, switching devices, routers, bridges, firewalls, edge devices, multiplexers, phone lines, cables, telecommunications equipment and other devices within network 116 and/or in the communications paths between the systems and entities of FIG. 1 .
  • the systems and/or systems of the entities shown in FIG. 1 may contain discrete functional program modules that might make use of an application programming interface (API), or other object, software, firmware and/or hardware, to request or provide services of one or more of the other entities or systems within or connected to the network 116 .
  • API application programming interface
  • communication can be provided over a communications medium, e.g., client and server systems running on any one of the systems or systems of the entities shown in FIG. 1 .
  • client and server systems may be communicatively coupled to one another via transmission control protocol/internet protocol (TCP/IP) connection(s) for high-capacity communication.
  • TCP/IP transmission control protocol/internet protocol
  • the “client” is a member of a class or group that uses the services of another class or group to which it is not related.
  • a client is a process, i.e., roughly a set of instructions or tasks, executed by hardware that requests a service provided by another program.
  • the client process utilizes the requested service without having to “know” any working details about the other program or the service itself.
  • a client/server architecture particularly a networked system
  • a client is usually a computer or device that accesses shared network resources provided by another computer or device, e.g., a server.
  • Any system in FIG. 1 including the one or more agency management systems 104 , the one or more content management systems 102 and the agency management and content management integration system 112 , can be considered a client, a server, or both, depending on the circumstances.
  • the physical environment of the network 116 may have connected devices such as computers, the physical environment may alternatively have or be described as comprising various digital devices such as personal digital assistants (PDAs), televisions, MP3 players, etc., software objects such as interfaces, Component Object Model (COM) objects and the like.
  • PDAs personal digital assistants
  • COM Component Object Model
  • computing systems may be connected together within the network 116 by wired or wireless systems, by local networks or by widely distributed networks.
  • networks are coupled to the Internet, which provides an infrastructure for widely distributed computing and encompasses many different networks. Any such infrastructures, whether coupled to the Internet or not, may be used in conjunction with, be connected to, or comprise part of the network 116 .
  • FIG. 2 is a schematic diagram of an example computer system of any one of the entities or systems of FIG. 1 , suitable for implementing systems, devices and methods for agency management and content management integration, according to one illustrated embodiment.
  • the computer system 200 is suitable for implementing systems, devices and methods for agency management and content management integration, according to one illustrated embodiment.
  • the computer system 200 will at times be referred to in the singular herein, but this is not intended to limit the embodiments to a single device since in typical embodiments, there may be more than one computer system or devices involved.
  • the construction and operation of the various blocks shown in FIG. 2 are of conventional design. As a result, such blocks need not be described in further detail herein, as they will be understood by those skilled in the relevant art.
  • the computer system 200 may include one or more processing units 212 a, 212 b (collectively 212 ), a system memory 214 and a system bus 216 that couples various system components including the system memory 214 to the processing units 212 .
  • the processing units 212 may be any logic processing unit, such as one or more central processing units (CPUs) 212 a, digital signal processors (DSPs) 212 b, application-specific integrated circuits (ASICs), programmable gate arrays such as field programmable gate arrays (FPGAs), etc.
  • the system bus 216 can employ any known bus structures or architectures, including a memory bus with memory controller, a peripheral bus, and a local bus.
  • the system memory 214 includes read-only memory (“ROM”) 218 and random access memory (“RAM”) 220 .
  • ROM read-only memory
  • RAM random access memory
  • a basic input/output system (“BIOS”) 222 which can form part of the ROM 218 , contains basic routines that help transfer information between elements within the computer system 200 , such as during start-up.
  • the computer system 200 may include a hard disk drive 224 for reading from and writing to a hard disk 226 , an optical disk drive 228 for reading from and writing to removable optical disks 232 , and/or a magnetic disk drive 230 for reading from and writing to magnetic disks 234 .
  • the optical disk 232 can be a CD-ROM, while the magnetic disk 234 can be a magnetic floppy disk or diskette.
  • the hard disk drive 224 , optical disk drive 228 and magnetic disk drive 230 may communicate with the processing unit 212 via the system bus 216 .
  • the hard disk drive 224 , optical disk drive 228 and magnetic disk drive 230 may include interfaces or controllers (not shown) coupled between such drives and the system bus 216 , as is known by those skilled in the relevant art.
  • the drives 224 , 228 and 230 , and their associated computer-readable storage media 226 , 232 , 234 may provide nonvolatile and non-transitory storage of computer readable instructions, data structures, program modules and other data for the computer system 200 .
  • the depicted computer system 200 is illustrated employing a hard disk 224 , optical disk 228 and magnetic disk 230 , those skilled in the relevant art will appreciate that other types of computer-readable storage media that can store data accessible by a computer may be employed, such as magnetic cassettes, flash memory, digital video disks (“DVD”), Bernoulli cartridges, RAMs, ROMs, smart cards, etc.
  • computer-readable storage media may include, but is not limited to, random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory, compact disc ROM (CD-ROM), digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, solid state memory or any other medium which can be used to store the desired information and which may be accessed by processing unit 212 a.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc ROM
  • DVD digital versatile disks
  • magnetic cassettes magnetic tape
  • magnetic disk storage magnetic disk storage devices
  • solid state memory solid state memory or any other medium which can be used to store the desired information and which may be accessed by processing unit 212 a.
  • Program modules can be stored in the system memory 214 , such as an operating system 236 , one or more application programs 238 , other programs or modules 240 and program data 242 .
  • Application programs 238 may include instructions that cause the processor(s) 212 to provide agency management and content management integration such as, for example, integration between agency management system(s) 104 and content management system(s) 102 .
  • Other program modules 240 may include instructions for handling security such as password or other access protection and communications encryption.
  • the system memory 214 may also include communications programs, for example, a Web client or browser 244 for permitting the computer system 200 to access and exchange data with sources such as Web sites of the Internet, corporate intranets, extranets, or other networks and devices as described herein, as well as other server applications on server computing systems.
  • the browser 244 in the depicted embodiment is markup language based, such as Hypertext Markup Language (HTML), Extensible Markup Language (XML) or Wireless Markup Language (WML), and operates with markup languages that use syntactically delimited characters added to the data of a document to represent the structure of the document.
  • HTML Hypertext Markup Language
  • XML Extensible Markup Language
  • WML Wireless Markup Language
  • a number of Web clients or browsers are commercially available such as those from Mozilla, Google, and Microsoft of Redmond, Wash.
  • the operating system 236 can be stored on the hard disk 226 of the hard disk drive 224 , the optical disk 232 of the optical disk drive 228 and/or the magnetic disk 234 of the magnetic disk drive 230 .
  • An operator can enter commands and information into the computer system 200 through input devices such as a touch screen or keyboard 246 and/or a pointing device such as a mouse 248 , and/or via a graphical user interface.
  • Other input devices can include a microphone, joystick, game pad, tablet, scanner, etc.
  • These and other input devices are connected to one or more of the processing units 212 through an interface 250 such as a serial port interface that couples to the system bus 216 , although other interfaces such as a parallel port, a game port or a wireless interface or a universal serial bus (“USB”) can be used.
  • a monitor 252 or other display device is coupled to the system bus 216 via a video interface 254 , such as a video adapter.
  • the computer system 200 can include other output devices, such as speakers, printers, etc.
  • the computer system 200 can operate in a networked environment using logical connections to one or more remote computers and/or devices as described above with reference to FIG. 1 .
  • the computer system 200 can operate in a networked environment using logical connections to one or more mobile devices, landline telephones and other service providers or information servers.
  • Communications may be via a wired and/or wireless network architecture, for instance wired and wireless enterprise-wide computer networks, intranets, extranets, telecommunications networks, cellular networks, paging networks, and other mobile networks.
  • the embodiments described herein integrate the two specialized systems such that the end user, which could be an insurance manager, executive, sales representative, customer service representative, account manager, or even mail indexer gains productivity and data robustness, reducing the cost to the business.
  • FIG. 3A is a block diagram of the agency management and content management integration 300 , according to one illustrated embodiment. Shown is an agency management system 104 , an integration layer 304 , and a content management system 102 .
  • the agency management system 104 is an insurance agency management system that is specialized to handle the domain of insurance business processes and the content management system 102 is a content management system that is specialized to handle content related to insurance and workflow.
  • the agency management system contains insurance data and information (like the insured's name, address, coverage amount, and claim history) while the content management system contains insurance documents (binders, policy documents, media (video, claim photos, recorded conversations with the claimant), correspondence (email, scanned letters), and any manner of notes.
  • the programs and services that comprise the agency management and content management integration system 112 form an integration layer 304 that communicates between the agency management system 104 and the content management system 102 .
  • This integration layer 304 operates in two modes: user interaction mode (front end integration) and automatic mode (back end integration).
  • the agency management and content management integration system 112 allows automatic generation of content structure in the content management system for various agency management system domain entities, for example, insurance entities such as clients, submissions, policies, claims, quotes, vendors, employees (staff members), companies (carriers), and transactional elements (activities, tasks, notes, etc.).
  • the agency management and content management integration system 112 provides linking between the agency management system entity to the appropriate content management system structure or structures through a well-defined mapping process (as explained in more detail with reference to FIG. 4 below). Fast navigation is provided between the agency management system 104 and content management system 102 to reduce the amount of manual data entry by the user, thus reducing human error.
  • the agency management and content management integration system 112 also executes automatic data entry into the content management system 102 to assist content management system workflow processes. Specifically, agency management and content management integration system 112 provides automatic data synchronization into the content management system 102 so that data stays current in the content management system 102 even when the agency management system 104 is changing.
  • Hierarchical content structures are automatically generated by the agency management and content management integration system 112 so that an agency can automatically deploy an organizational structure to their end users. This organizational structure is deployed by organizing content based on domain entity criteria (such as business unit, coverage type, entity type, etc.) and by supporting multiple agencies, including multiple agency management system environments.
  • multiple content management system structure divisions for the same entities are dynamically provided.
  • one entity may exist in multiple structures in the content management system 102 based on certain domain criteria like business unit or coverage type and a flexible mapping of entities to content structures is used to support the various organizational strategies of different insurance companies.
  • the agency management and content management integration system 112 includes testing mechanisms and performs logging to aid implementers in troubleshooting connection problems to the agency management system 104 and the content management system 102 .
  • a testing platform is also provided for verifying that the mappings are configured per insurance company specifications as well as a hierarchical view of mapping results. This provides an implementer of the content management integration system 112 an easy way to verify the view of the content structures that will be created before actually creating the structures in the content management system 102 .
  • Front end processes 306 include software elements that the end user directly interacts with to perform work. Primarily, this includes providing a user interface 310 or user interface elements within the agency management system 104 .
  • the user interface 310 has icons, buttons or other selectable user interface elements that a user clicks on, presses or otherwise selects within the agency management system 104 while viewing a particular domain entity. These selections perform actions such as opening 312 , linking 314 , and indexing 316 data structures and content in the content management system 102 .
  • Back end processes and utilities 308 include software elements that may be automated and may run as services.
  • the structure creation element 320 creates structures in the content management system 102 and the data synchronization element 322 synchronizes data in the content management system 102 to match entities in the agency management system 104 .
  • the various synchronization processes of the data synchronization element 322 take the entities in the agency management system 104 as input and generates corresponding structures in the content management system 102 using the structure creation element 320 based on mappings defined by the user.
  • the baseline synchronization process 324 is responsible for initial structure creation and en masse structure updates in the content management system 102 .
  • the baseline synchronization process 324 is manually started and runs and finishes completely.
  • the delta synchronization process 326 performs continuous content structure creation and updating.
  • the delta synchronization process 326 runs at all times as a service and uses one of two strategies to receive changes in the agency management system. For example, the delta synchronization process either polls the agency management system for changes or receives notifications from the agency management system that a change has occurred and then updates the content management system accordingly.
  • FIG. 4 is an illustration of domain entity structures 416 and content management system structures such as file container 418 .
  • File container 418 includes example files 402 404 and corresponding folders 406 408 , according to one illustrated embodiment.
  • the agency management and content management integration system 112 integrates domain entities, such as example domain entity 410 in the account management system of the agency management system 104 , into the content management system structures such as files 402 404 and folders 406 408 via an integration job 414 .
  • Every entity is uniquely identified by an entity identifier 412 that can be represented by a string that is unique to that agency and to that type of entity (e.g., Agency 1 and Agency 2 could both have clients with ids of 1, but Agency 1 would not have two clients with ids of 1, also Agency 1 could have a client with an identifier of 1 and a policy with an identifier of 1).
  • An entity 410 may also have various entity information 410 associated with that particular entity. In an insurance agency example, clients have a client identifier, insurance policies have a policy identifier, and insurance claims have a claim identifier.
  • the entity 410 is represented by either a file 402 or 404 or a folder 406 408 .
  • Entities that are represented by a file 402 or 404 are called top level entities (such as clients and vendors of an insurance agency). Some entities are hierarchically related to other entities. In an insurance agency example, clients own policies and policies have claims submitted against them.
  • the sub-entities are represented by folders 406 or 408 in the file 402 or 404 (e.g., policy or claim folders in client files) or folders in another folder (e.g., claim folders in policy folders).
  • parent folders can be configured for these sub folders based on other criteria (e.g., a claims folder to hold all claim folders or a policy term folder that holds all policies of a specific year).
  • Top level entities may or may not have multiple content structures (e.g., files 402 or 404 and folders 406 and 408 ) that match them. This duplication results from the way entities are mapped into the content management system 102 .
  • Insurance industry business rules often divide up the work that is done on a client based on specific usage criteria of the work being done. For example, a client that belongs to a certain division of a company may in some cases only be worked on by that division. A client with a policy of a certain type may in some cases only be worked on by a specific group in that company.
  • All files 402 404 within a file container 418 are unique, but uniqueness is not required between file containers.
  • these file containers are specified by three content structure concepts: location, drawer, and file type.
  • a file is considered unique based on its file number within a container 418 .
  • Work for one client may be split across the organization, which may be referred to herein as a work division, in which case it is beneficial to the organization to have a separate file container 418 for each work division.
  • some content management system content structures may require additional originations of content within that entity's structure.
  • a policy may have endorsement content or application content.
  • FIG. 5 is an example screen shot of a user interface 500 for configuration of an agency's work divisions in integration jobs
  • FIG. 6 is a corresponding block diagram illustrating the configuration 600 of an agency's work divisions in integration jobs.
  • the agency management and content management integration system 112 allows the configuration of an agency's work divisions in integration jobs.
  • An integration job 414 (shown in FIG. 4 ) is a set of entity filters and content management structure mappings for any entities that pass all of those filters. For each unique domain entity, each integration job uniquely identifies a file in a content structure file container 418 (also shown in FIG. 4 ). This is accomplished by a series of filters that are exercised against each entity for each integration job 414 .
  • Shown on the user interface 500 is example integration job information 502 for the commercial lines policy work division 504 , associated entity filters 506 for the integration job 414 , and an associated content structure 508 for the integration job 414 . Also shown are user interface controls 510 for executing the applicable integration job 414 .
  • a filter 602 examines information on the domain entity 410 (for example, for clients, it may look at the line of business for the client), and accepts or rejects the entity based on that criteria. If an entity passes the all criteria setup by the filters (indicated by the dashed “Yes” arrow), then direct data mappings are applied to the entity using the entity identifier 412 to determine the final content management structure.
  • custom data mapping component 606 may be applied to the entity 410 using other entity information 410 to further determine the final content management structure.
  • the unique entity identifier 412 is directly mapped to an associated file number 610 .
  • the unique entity identifier 412 is directly mapped to one specified key attribute 612 on the file or folder.
  • additional entity information 410 may be mapped to an additional attribute 614 resulting from the output of the custom data mapping component 606 .
  • the filters 602 are configured to ensure that there is only one integration job per work division so that files are not duplicated within a work division.
  • Some entities are hierarchically related to other entities. For example, clients own policies and policies have claims submitted against them.
  • these sub-entities are represented by folders in the file. Files can contain folders and folders can contain further folders. In one embodiment, the system only has one folder representing a sub-entity across the entire content management system. This is enforced through proper creation of integration jobs.
  • the back end processes automatically perform these jobs whenever a change is detected in the agency management system 104 and the front end processes 306 allow a user to access the entity file or folder from the agency management system object after the integration job 414 has been executed.
  • FIG. 8 is block diagram illustrating integration of agency management and content management.
  • FIG. 8 shows the relationship of components involved in the process of front end integration as performed by the agency management and content management integration system 112 (also referred to as WorkSmart herein).
  • the entry points for front end integration are a series of launch programs collectively denoted as a LaunchXX.exe program 802 .
  • the launch programs may be LaunchMD.exe for the WorkSmart File Open button 702 , LaunchPG.exe for WorkSmart File Save button 704 , and LaunchAC.exe for accounting integrations represented by another WorkSmart button (not shown). These programs may be installed on the user's environment.
  • the command line contains information that identifies and describes the current domain entity 410 , in this case an AMS360® client.
  • a client (called a customer in the AMS360® system and an account in BenefitPoint® system) is identified by some unique string in each system called the client.
  • the client identifier is a globally unique identifier (GUID).
  • the different LaunchXX.exe programs 802 each represent an action (Open, Save, Accounting Management).
  • the command line is reformatted by the LaunchXX.exe program 802 based on the contents of the LaunchXX.ini file 804 and based on the intended action.
  • the Linker.exe programs 806 (e.g., AMS360Linker.exe, SagittaLinker.exe, and BPLinker.exe) have agency management system specific knowledge and are configured to match the integration jobs defined for the integrated environment.
  • the configurations are placed in a configuration file, denoted as Link.config file 810 , that is shared between all users in the environment by placing it on a network share.
  • Link.config file 810 a configuration file
  • link.config file 808 needs to be altered to point to this shared Link.config file 810 . This allows all users' configurations to be updated by changing just one file.
  • the Linker.exe program 806 maps the entity identification 412 and information 410 to the content management system 102 and calls the content management systems exposed interoperability interface, denoted as IRLinker.exe 812 , to perform the desired command on the resulting content structure or structures that will be reflected on the content management and workflow system user front end 814 .
  • the specific actions enabled by the agency management and content management integration system 112 are Open, Save, and Account Management. Performing an Open action on a top level entity will cause the content management system 102 to navigate to structures matching the entity 410 based on the key attributes 612 placed on the structure by the back end integration process 308 . It will also attempt to create the appropriate file in the content management system 102 if it does not exist, filling in the key attributes 612 at that time. Performing an Open action on a sub entity will cause the content management system 102 to navigate to the structures matching the entity 410 . If no matching structures are found, nothing will be created.
  • FIG. 9 is flow diagram illustrating a process 900 of a save action performed in the agency management and content management integration system 112 .
  • the process 900 starts at the Save action 902 , such as when the user clicks the WorkSmart File Save button 704 shown in FIG. 700 initiating the Save action 902 .
  • the process will result in either tagging content structures at 912 or indexing the selected content structures at 910 to an existing file.
  • the processor determines whether the workflow task is locked for that entity.
  • the processor determines whether the current file to be saved is marked as temporary.
  • the processor indexes the selected content structures to an appropriate existing file.
  • the processor tags the selected content structures.
  • the tagging action marks the content management structure with the key attributes 612 of the domain entity 410 . This tagging works on both top level entities and sub entities. This allows the Open action to use the key attributes to find the content management structure.
  • the indexing action only works on top level entities and moves the selected content into the correct top level content structure matching the entity based on key attributes. The original top level structure is marked as temporary, and a workflow task should be locked on some structure in the original top level structure or the Save action will perform the tag option instead of the indexing action as illustrated process 900 .
  • FIGS. 10A and 10B are screen shots of example user interfaces 1000 1002 of the initial creation piece of the system for agency management and content management integration for creation of the content management system structures based on an agency management system's entities, according to one illustrated embodiment.
  • the agency management and content management integration system 112 provides a set of utilities to help pre-create data structures so that users do not have to manually enter data into the content management system 102 .
  • Shown on user interfaces 1000 and 1002 is a connections tab 1004 under which agency management system connections 1006 are displayed. Based on these agency management system connections 1006 , content management system structures will be created in response to a user interacting with the user selectable controls 1008 shown on user interface 1000 or by subscribing to a synchronization service 1010 shown in interface 1002 .
  • the agency management and content management integration system 112 provides a way to create the vast amount of structure for all of an agency's data.
  • the baseline synchronization process 324 executed by one or more processors performs this function.
  • the baseline synchronization process 324 provides on a large scale the ability to take information from an existing agency management system and apply it to the content management system 102 .
  • the user will start to change their agency management system data.
  • changes in the agency management system 104 are constantly or nearly constantly reflected in content management system 102 .
  • the delta synchronization process 326 performs this function.
  • FIG. 10C is a flow diagram illustrating a general process of synchronization of data between a content management system and an agency management system, applicable to the baseline synchronization and delta synchronization.
  • the agency management and content management integration system 112 determines which entity needs to be created or updated.
  • the agency management and content management integration system 112 retrieves the entity information (e.g., from the agency management system 104 ).
  • the agency management and content management integration system 112 determines which integration jobs match the retrieved entity (e.g., integration job 414 ).
  • the agency management and content management integration system 112 transforms or maps the entity into a content management structure (e.g., a content management system structure such as file container 418 and the related substructures).
  • a content management structure e.g., a content management system structure such as file container 418 and the related substructures.
  • the agency management and content management integration system 112 creates or updates the content management structure accordingly to synchronize data between the content management system 102 and agency management system 104 .
  • FIG. 11 and FIG. 12 are diagrams illustrating an update (delta) synchronization system architecture 1100 and a baseline synchronization system architecture 1200 comprising a backend integration module of the agency management and content management integration system 112 , according to one illustrated embodiment.
  • domain objects 1108 are passed to the domain transformation and mapping layer 1110 .
  • the domain transformation and mapping layer 1110 converts domain objects into content management system domain objects 1112 , which are structures like locations, drawers, files, and folders based on integration jobs.
  • content management system domain objects 1112 are passed to the file services layer 1114 of the content management system 102 .
  • This file services layer 1114 takes the representations of the content management system domain objects 1112 and actually applies changes therein to the content management system 102 .
  • This layered system allows for changes in either the agency management system 104 or content management system 102 to not affect large portions of the system.
  • the data extractor 1106 contains the entities that might need to be created or updated. If a sub entity is included, its parent entity is included also, so that the integration jobs can correctly process it.
  • the data extractor 1106 can be made to connect to any agency system and in various ways.
  • the agency integration processor 1120 of the domain transformation and mapping layer 1110 takes the domain objects 1108 and turns them into content management system domain objects 1112 based on the user defined integration jobs. There is often data relationally related to the data received in the domain object 1108 that needs to be mapped to the content management system 102 .
  • a customer service representative has a first and last name.
  • the entity may represent the customer service representative as a code (for example, “CSR52” or “!! ⁇ circle around ( ) ⁇ ”). In the content management system 102 , one may want to see “John Smith”.
  • the content management system file services layer 1114 takes those content management domain objects 1112 and creates or updates the actual content structures by connecting into the content management system 102 and making changes. This separation allows the file services layer 1114 to be replaced with a user interface (UI) element 1300 as shown in FIG. 13 that can accept and preview the changes as in the preview area 1302 in the UI element 1300 . This is used for running sample baseline synchronizations and testing individual customers.
  • UI user interface

Abstract

An agency management and content management integration system links agency management system domain entities (such as clients, policies, claims, vendors) to content management system content hierarchical structures (such as client files, policy folders, claims folders, vendor files). End users can quickly navigate to the appropriate content management system structure or structures when working with an entity in the agency management system via button integration. The agency management and content management integration system automatically creates and updates the content management system when changes are made to the agency management system. This may include providing multiple mappings between the entities of the insurance agency management system and content hierarchical structures, a preview of changes to the content hierarchical structures, a testing environment to test the content hierarchical structure changes, and troubleshooting logs resulting from testing of the content hierarchical structure. Also provided are systems to create appropriate initial content management system hierarchical structures when the agency management system already exists, and to update existing structures en masse if desired.

Description

    BACKGROUND
  • 1. Technical Field
  • This disclosure generally relates to data services, and particularly to system integration services.
  • 2. Description of the Related Art
  • Insurance agency management systems are specialized to handle the domain of insurance business processes. Content management systems are specialized to handle content and workflow. Each of these systems is useful to an insurance agency and many agencies choose to operate both types of systems. There are many insurance business activities that would benefit from interaction with both the agency management system and the content management system (for example, printing out an insurance application for an insurance carrier and saving a copy for the agency's records). Often this involves entering information in both systems and learning to navigate in the two systems. As standalone applications, this creates a burden of work for the user who has to make sure to precisely enter information into both systems and in the correct location in both of the systems. Because of the flexibility of content management systems and complexity of agency management systems, this can be a very tedious and time consuming task that is prone to human error, resulting in a cost to the business.
  • BRIEF SUMMARY
  • The agency management and content management integration system is a system which provides easy navigation, linking, and indexing with automatic content structure creation.
  • When an agency has both an agency management system and a content management system, it is advantageous to integrate these programs so that the user has to copy less data by hand (which is time consuming and prone to error and omission). Integration may also allow the users to quickly navigate between the agency management system and the content management system. Integration may additionally provide for the creation of content structures before there is a need to use the content structure. This may advantageously allow a user to immediately organize content and skip the content structure creation phase of their work. This may be especially valuable if the particular workflow does not start in the agency management system. By automatically creating content structures in a hierarchical fashion, the agency can deploy a unified organization structure that is enforced automatically across the organization. By providing an external integration, the content management system and agency management systems can be developed independently, retaining the benefits of specialization, while the integration pulls the two parts together.
  • A computer-implemented method may be summarized as including receiving information defining entities of an insurance agency management system; receiving content structure of a content management system; receiving mapping data indicative of mappings between the entities of the insurance agency management system and the content structure; automatically generating a data structure based on the mappings; storing the content structure in the data structure corresponding to the mappings; and automatically synchronizing with changes of the entities of the insurance agency management system, the synchronizing based on information indicative of the changes of the entities of the insurance agency management system.
  • The synchronizing may include receiving information indicative of changes of the entities of the insurance agency management system; automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure; and automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the received changes.
  • The receiving information indicative of changes of the entities may occur automatically on a periodic or nonperiodic (aperiodic) basis without requesting the information indicative of changes of the entities. Synchronizing with changes of the entities of the insurance agency management system may occur at an initial generation of the data structure corresponding to the mappings. The automatically generating a data structure based on the mappings may include generating a hierarchical data structure corresponding to a hierarchical business structure defined by the mapping data.
  • The computer-implemented method may further include, after initial generation of the data structure, displaying a number of interactive graphical user interface elements operable to trigger automatically performing at least one of: opening the content structure or the data structure for viewing or editing, linking the content structure or the data structure to other content structures or entities, indexing the content structure or the data structure, or entering at least some of the mapping data.
  • The insurance agency management system, after initial generation of the data structure, may automatically provide information indicative of changes of the entities upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis and wherein the automatically synchronizing may include automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure to the provided information indicative of the changes; and automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the provided information indicative of the changes.
  • The entities may include at least one of: an insurance client entity, an insurance submissions entity, an insurance policies entity, an insurance claims entity, an insurance quotes entity, an insurance vendor entity, an insurance company employee entity, an insurance carrier entity, or an insurance transactions entity. The changes of the entities may be at least one of: adding entities, changes to relationships between the entities, changes to a hierarchical structure defining the entities, or changes to attributes of the entities.
  • The computer-implemented method may further include automatically organizing the content structure based on entity criteria including at least one of: insurance business unit, insurance coverage type, agency number, customer line of business, policy type of business, policy type, submission type.
  • A system may be summarized as including a computer processor; and a non-transitory memory communicatively coupled to the computer processor having computer-executable instructions stored thereon that when executed by the computer processor cause the computer processor to perform: receiving information defining entities of an insurance agency management system; receiving content structure of a content management system; receiving mapping data indicative of mappings between the entities of the insurance agency management system and the content structure; automatically generating a data structure based on the mappings; storing the content structure in the data structure corresponding to the mappings; and automatically synchronizing with changes of the entities of the insurance agency management system, the synchronizing based on information indicative of the changes of the entities of the insurance agency management system.
  • The synchronizing may include receiving information indicative of changes of the entities of the insurance agency management system; automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure; and automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the received changes. The receiving information indicative of changes of the entities may occur automatically on a periodic or aperiodic basis without requesting the information indicative of changes of the entities. Synchronizing with changes of the entities of the insurance agency management system may occur at an initial generation of the data structure corresponding to the mappings. The automatically generating a data structure based on the mappings may include generating a hierarchical data structure corresponding to a hierarchical business structure defined by the mapping data.
  • The computer-executable instructions, when executed by the computer processor, after initial generation of the data structure, may further configure the computer processor to display a number of interactive graphical user interface elements operable to trigger automatically performing at least one of: opening the content structure or the data structure for viewing or editing, linking the content structure or the data structure to other content structures or entities, indexing the content structure or the data structure, or entering at least some of the mapping data.
  • The insurance agency management system may be configured to, after initial generation of the data structure, automatically provide information indicative of changes of the entities upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis and wherein the automatically synchronizing may include automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure to the provided information indicative of the changes; and automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the provided information indicative of the changes.
  • The entities may include at least one of: an insurance client entity, an insurance submissions entity, an insurance policies entity, an insurance claims entity, an insurance quotes entity, an insurance vendor entity, an insurance company employee entity, an insurance carrier entity, or an insurance transactions entity. The changes of the entities may be at least one of: adding entities, changes to relationships between the entities, changes to a hierarchical structure defining the entities, or changes to attributes of the entities.
  • The computer-executable instructions, when executed by the computer processor, may further configure the computer processor to automatically organize the content structure based on entity criteria including at least one of: insurance business unit, insurance coverage type, agency number, customer line of business, policy type of business, policy type, submission type.
  • At least one non-transitory computer-readable medium may be summarized as one that stores instructions that when executed by at least one computer system cause the at least one computer system to perform: receiving information defining entities of an insurance agency management system; receiving content structure of a content management system; receiving mapping data indicative of mappings between the entities of the insurance agency management system and the content structure; automatically generating a data structure based on the mappings; storing the content structure in the data structure corresponding to the mappings; and automatically synchronizing with changes of the entities of the insurance agency management system, the synchronizing based on information indicative of the changes of the entities of the insurance agency management system.
  • The synchronizing may include receiving information indicative of changes of the entities of the insurance agency management system; automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure; and automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the received changes.
  • The receiving information indicative of changes of the entities may occur automatically on a periodic basis without requesting the information indicative of changes of the entities. Synchronizing with changes of the entities of the insurance agency management system may occur at an initial generation of the data structure corresponding to the mappings. The automatically generating a data structure based on the mappings may include generating a hierarchical data structure corresponding to a hierarchical business structure defined by the mapping data. The computer-executable instructions, when executed by the at least one computer system, may further cause the at least one computer system to display a number of interactive graphical user interface elements operable to trigger automatically performing at least one of: opening the content structure or the data structure for viewing or editing, linking the content structure or the data structure to other content structures or entities, indexing the content structure or the data structure, or entering at least some of the mapping data.
  • The computer-executable instructions, when executed by the at least one computer system, may further cause the at least one computer system to, after initial generation of the data structure, cause the insurance agency management system to automatically provide information indicative of changes of the entities upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis and wherein the automatically synchronizing includes automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure to the provided information indicative of the changes; and automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the provided information indicative of the changes.
  • The entities may include at least one of: an insurance client entity, an insurance submissions entity, an insurance policies entity, an insurance claims entity, an insurance quotes entity, an insurance vendor entity, an insurance company employee entity, an insurance carrier entity, or an insurance transactions entity. The changes of the entities may be at least one of: adding entities, changes to relationships between the entities, changes to a hierarchical structure defining the entities, or changes to attributes of the entities. The computer-executable instructions, when executed by the at least one computer system, may further cause the at least one computer system to automatically organize the content structure based on entity criteria including at least one of: insurance business unit, insurance coverage type, agency number, customer line of business, policy type of business, policy type, submission type.
  • A system may be summarized as including at least one computer processor; and a non-transitory memory communicatively coupled to the computer processor having computer-executable instructions stored thereon that when executed by the computer processor cause the at least one computer processor to: link entities of an insurance agency management system to content hierarchical structures of a content management system; automatically provide information indicative of changes of an insurance agency business unit upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis; and automatically synchronize a content management system content hierarchical structure related to the insurance agency business unit with the changes to the insurance agency business unit.
  • The computer-executable instructions may further cause the at least one computer processor to: automatically compare at least one current attribute of a data structure for the insurance agency business unit of the insurance agency management system to an attribute of content related to the insurance agency business unit stored in the content management system content hierarchical structures. The information indicative of changes may be automatically provided by the insurance agency management system. The computer-executable instructions may further cause the at least one computer processor to: automatically provide information indicative of changes to content of an insurance policy; and automatically update content management system content hierarchical structures based on the information indicative of changes to content of the insurance policy. The information indicative of changes to content of the insurance policy may be automatically provided by the content management system. The computer-executable instructions may further cause the at least one computer processor to link the entities of the insurance agency management system to the content hierarchical structures of the content management system as an initial process before any of the information indicative of changes is provided.
  • The computer-executable instructions may further cause the at least one computer processor to: provide a preview of changes to the content hierarchical structure; provide a testing environment to test the content hierarchical structure changes; provide troubleshooting logs resulting from testing of the content hierarchical structure changes; and link the entities of the insurance agency management system to content hierarchical structures of the content management system by providing multiple mappings between the entities of the insurance agency management system and the content hierarchical structures.
  • The computer-executable instructions may further cause the at least one computer processor to provide an interface for a user to manually trigger a synchronization of the content management system content hierarchical structure related to the insurance agency business unit with the changes to the insurance agency business unit.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
  • FIG. 1 is a system diagram of a networked environment, in which systems, devices and methods for agency management and content management integration may be a part, or in which they may be implemented, according to one illustrated embodiment.
  • FIG. 2 is a schematic diagram of an example computer system of any one of the entities or systems of FIG. 1, suitable for implementing systems, devices and methods for agency management and content management integration, according to one illustrated embodiment.
  • FIG. 3A is a block diagram of the agency management and content management integration, according to one illustrated embodiment.
  • FIG. 3B is a block diagram of the agency management and content management integration system, according to one illustrated embodiment.
  • FIG. 4 is an illustration of domain entity structures and content management system structures such as files and folders, according to one illustrated embodiment.
  • FIG. 5 is a screen shot of a user interface for configuration of an agency's work divisions in integration jobs, according to one illustrated embodiment.
  • FIG. 6 is block diagram illustrating configuration of an agency's work divisions in integration jobs, according to one illustrated embodiment.
  • FIG. 7 is a screen shot of a user interface for performing content management system actions from an agency management system, according to one illustrated embodiment.
  • FIG. 8 is block diagram illustrating front end integration of agency management and content management, according to one illustrated embodiment.
  • FIG. 9 is flow diagram illustrating a process of a save action performed in a system for agency management and content management integration, according to one illustrated embodiment.
  • FIG. 10A is a screen shot of a user interface of the initial creation piece of the system for agency management and content management integration for creation of the content management system structures based on an agency management system's entities, according to one illustrated embodiment.
  • FIG. 10B is another screen shot of a user interface of the initial creation piece of the system for agency management and content management integration for creation of the content management system structures based on an agency management system's entities, according to one illustrated embodiment.
  • FIG. 10C is a flow diagram illustrating a process of synchronization of data between a content management system and an agency management system, according to one illustrated embodiment.
  • FIG. 11 is a diagram illustrating an update (delta) synchronization system architecture comprising a backend integration piece of the agency management and content management integration system, according to one illustrated embodiment.
  • FIG. 12 is a diagram illustrating a baseline synchronization system architecture comprising a backend integration piece of the agency management and content management integration system, according to one illustrated embodiment.
  • FIG. 13 is a screen shot of a user interface for previewing and accepting content structure changes, according to one illustrated embodiment.
  • DETAILED DESCRIPTION
  • In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with computing systems including client and server computing systems, as well as networks, including various types of telecommunications networks, have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
  • Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as “comprises” and “comprising,” are to be construed in an open, inclusive sense, that is, as “including, but not limited to.”
  • Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
  • The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.
  • FIG. 1 is a system diagram of a networked environment, in which systems, devices and methods for agency management and content management integration may be a part, or in which they may be implemented, according to one illustrated embodiment.
  • The networked environment 100 may include a plurality of entities (e.g., insurance entities), entity 1 106, entity 2 108, and entity n 110; one or more agency management systems 104; one or more content management systems 102; and an agency management and content management integration system 112. Entity 1 106, entity 2 108, entity n 110, the one or more agency management systems 104, the one or more content management systems 102 and the agency management and content management integration system 112 may all be communicatively coupled via a network 116. Alternatively, one or more of the systems or devices may be located on a single system and/or at a single physical location. Additional systems and devices may also be present, but are not illustrated for clarity of presentation.
  • The network 116 may be any computer network, telecommunications network or combination of telecommunications and computer networks that enables communication between the various systems and entities connected to the network 116 shown in FIG. 1. Entity 1 106, entity 2 108 entity n 110, the one or more agency management systems 104, the one or more content management systems 102, and the agency management and content management integration system 112 may be additionally or optionally linked by one or more other communication links or networks that comprise network 116. For example, a communications network of network 116 may include a local area network that uses wireless fidelity (Wi-Fi) high frequency radio signals to transmit and receive data over distances of a few hundred feet. The local area network may be a wireless local area network (WLAN) based on the Institute of Electric and Electronic Engineers (IEEE) 802.11 standards. However, other wired and wireless communications networks and protocols may be used to link the various entities and systems shown in FIG. 1.
  • The network 116 may comprise connections to entity 1 106, entity 2, 108, entity n 110, the one or more agency management systems 104, and the one or more content management systems 102 such that the agency management and content management integration system 112 may provide integration of the agency management system(s) 104 and content management system(s) 102, and may itself represent multiple interconnected networks. For instance wired and wireless enterprise-wide computer networks, intranets, extranets, and/or the Internet may be included in or comprise a part of network 116. Embodiments may include various types of communication networks including other telecommunications networks, cellular networks, paging networks, and other mobile networks. There may be any variety of computers, switching devices, routers, bridges, firewalls, edge devices, multiplexers, phone lines, cables, telecommunications equipment and other devices within network 116 and/or in the communications paths between the systems and entities of FIG. 1.
  • In accordance with an aspect of the disclosure, the systems and/or systems of the entities shown in FIG. 1 may contain discrete functional program modules that might make use of an application programming interface (API), or other object, software, firmware and/or hardware, to request or provide services of one or more of the other entities or systems within or connected to the network 116. For example, communication can be provided over a communications medium, e.g., client and server systems running on any one of the systems or systems of the entities shown in FIG. 1. These client and server systems may be communicatively coupled to one another via transmission control protocol/internet protocol (TCP/IP) connection(s) for high-capacity communication. The “client” is a member of a class or group that uses the services of another class or group to which it is not related. In computing, a client is a process, i.e., roughly a set of instructions or tasks, executed by hardware that requests a service provided by another program. Generally, the client process utilizes the requested service without having to “know” any working details about the other program or the service itself. In a client/server architecture, particularly a networked system, a client is usually a computer or device that accesses shared network resources provided by another computer or device, e.g., a server. Any system in FIG. 1, including the one or more agency management systems 104, the one or more content management systems 102 and the agency management and content management integration system 112, can be considered a client, a server, or both, depending on the circumstances.
  • Although the physical environment of the network 116 may have connected devices such as computers, the physical environment may alternatively have or be described as comprising various digital devices such as personal digital assistants (PDAs), televisions, MP3 players, etc., software objects such as interfaces, Component Object Model (COM) objects and the like.
  • There are a variety of systems, components, and network configurations that may also support distributed computing environments within the network 116. For example, computing systems may be connected together within the network 116 by wired or wireless systems, by local networks or by widely distributed networks. Currently, many networks are coupled to the Internet, which provides an infrastructure for widely distributed computing and encompasses many different networks. Any such infrastructures, whether coupled to the Internet or not, may be used in conjunction with, be connected to, or comprise part of the network 116.
  • FIG. 2 is a schematic diagram of an example computer system of any one of the entities or systems of FIG. 1, suitable for implementing systems, devices and methods for agency management and content management integration, according to one illustrated embodiment.
  • The computer system 200 is suitable for implementing systems, devices and methods for agency management and content management integration, according to one illustrated embodiment. The computer system 200 will at times be referred to in the singular herein, but this is not intended to limit the embodiments to a single device since in typical embodiments, there may be more than one computer system or devices involved. Unless described otherwise, the construction and operation of the various blocks shown in FIG. 2 are of conventional design. As a result, such blocks need not be described in further detail herein, as they will be understood by those skilled in the relevant art.
  • The computer system 200 may include one or more processing units 212 a, 212 b (collectively 212), a system memory 214 and a system bus 216 that couples various system components including the system memory 214 to the processing units 212. The processing units 212 may be any logic processing unit, such as one or more central processing units (CPUs) 212 a, digital signal processors (DSPs) 212 b, application-specific integrated circuits (ASICs), programmable gate arrays such as field programmable gate arrays (FPGAs), etc. The system bus 216 can employ any known bus structures or architectures, including a memory bus with memory controller, a peripheral bus, and a local bus. The system memory 214 includes read-only memory (“ROM”) 218 and random access memory (“RAM”) 220. A basic input/output system (“BIOS”) 222, which can form part of the ROM 218, contains basic routines that help transfer information between elements within the computer system 200, such as during start-up.
  • The computer system 200 may include a hard disk drive 224 for reading from and writing to a hard disk 226, an optical disk drive 228 for reading from and writing to removable optical disks 232, and/or a magnetic disk drive 230 for reading from and writing to magnetic disks 234. The optical disk 232 can be a CD-ROM, while the magnetic disk 234 can be a magnetic floppy disk or diskette. The hard disk drive 224, optical disk drive 228 and magnetic disk drive 230 may communicate with the processing unit 212 via the system bus 216. The hard disk drive 224, optical disk drive 228 and magnetic disk drive 230 may include interfaces or controllers (not shown) coupled between such drives and the system bus 216, as is known by those skilled in the relevant art. The drives 224, 228 and 230, and their associated computer- readable storage media 226, 232, 234, may provide nonvolatile and non-transitory storage of computer readable instructions, data structures, program modules and other data for the computer system 200. Although the depicted computer system 200 is illustrated employing a hard disk 224, optical disk 228 and magnetic disk 230, those skilled in the relevant art will appreciate that other types of computer-readable storage media that can store data accessible by a computer may be employed, such as magnetic cassettes, flash memory, digital video disks (“DVD”), Bernoulli cartridges, RAMs, ROMs, smart cards, etc. For example, computer-readable storage media may include, but is not limited to, random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory, compact disc ROM (CD-ROM), digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, solid state memory or any other medium which can be used to store the desired information and which may be accessed by processing unit 212 a.
  • Program modules can be stored in the system memory 214, such as an operating system 236, one or more application programs 238, other programs or modules 240 and program data 242. Application programs 238 may include instructions that cause the processor(s) 212 to provide agency management and content management integration such as, for example, integration between agency management system(s) 104 and content management system(s) 102. Other program modules 240 may include instructions for handling security such as password or other access protection and communications encryption. The system memory 214 may also include communications programs, for example, a Web client or browser 244 for permitting the computer system 200 to access and exchange data with sources such as Web sites of the Internet, corporate intranets, extranets, or other networks and devices as described herein, as well as other server applications on server computing systems. The browser 244 in the depicted embodiment is markup language based, such as Hypertext Markup Language (HTML), Extensible Markup Language (XML) or Wireless Markup Language (WML), and operates with markup languages that use syntactically delimited characters added to the data of a document to represent the structure of the document. A number of Web clients or browsers are commercially available such as those from Mozilla, Google, and Microsoft of Redmond, Wash.
  • While shown in FIG. 2 as being stored in the system memory 214, the operating system 236, application programs 238, other programs/modules 240, program data 242 and browser 244 can be stored on the hard disk 226 of the hard disk drive 224, the optical disk 232 of the optical disk drive 228 and/or the magnetic disk 234 of the magnetic disk drive 230.
  • An operator can enter commands and information into the computer system 200 through input devices such as a touch screen or keyboard 246 and/or a pointing device such as a mouse 248, and/or via a graphical user interface. Other input devices can include a microphone, joystick, game pad, tablet, scanner, etc. These and other input devices are connected to one or more of the processing units 212 through an interface 250 such as a serial port interface that couples to the system bus 216, although other interfaces such as a parallel port, a game port or a wireless interface or a universal serial bus (“USB”) can be used. A monitor 252 or other display device is coupled to the system bus 216 via a video interface 254, such as a video adapter. The computer system 200 can include other output devices, such as speakers, printers, etc.
  • The computer system 200 can operate in a networked environment using logical connections to one or more remote computers and/or devices as described above with reference to FIG. 1. For example, the computer system 200 can operate in a networked environment using logical connections to one or more mobile devices, landline telephones and other service providers or information servers. Communications may be via a wired and/or wireless network architecture, for instance wired and wireless enterprise-wide computer networks, intranets, extranets, telecommunications networks, cellular networks, paging networks, and other mobile networks.
  • Although not required, the embodiments will be described in the general context of computer-executable instructions, such as program application modules, objects, or macros stored on computer- or processor-readable storage media and executed by a computer or processor. Those skilled in the relevant art will appreciate that the illustrated embodiments as well as other embodiments can be practiced with other system configurations and/or other computing system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, personal computers (“PCs”), network PCs, mini computers, mainframe computers, and the like. The embodiments can be practiced in distributed computing environments where tasks or modules are performed by remote processing devices, which are linked through a communications network such as network 116. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
  • Previously, attempts have been made to include “light weight” (i.e., lacking full functionality) content management systems into agency management systems to mitigate costs, but these systems cannot compete with a full content management and workflow system. It is more valuable to have the two specialized systems than to have one system and a light weight version of the other. Advantageously, the embodiments described herein integrate the two specialized systems such that the end user, which could be an insurance manager, executive, sales representative, customer service representative, account manager, or even mail indexer gains productivity and data robustness, reducing the cost to the business.
  • Additionally, some previous attempts have been made to include a completely user driven integration. However, sometimes a user's workflow does not originate in the agency management system, but because the content management system would require the integration to be pushed from the agency management system, the user would have to enter the agency management system, start the integration, and then move back to the content management system. Advantageously, the embodiments described herein immediately reflect changes in the agency management system in the content management system.
  • FIG. 3A is a block diagram of the agency management and content management integration 300, according to one illustrated embodiment. Shown is an agency management system 104, an integration layer 304, and a content management system 102. In one example embodiment, the agency management system 104 is an insurance agency management system that is specialized to handle the domain of insurance business processes and the content management system 102 is a content management system that is specialized to handle content related to insurance and workflow. For example, the agency management system contains insurance data and information (like the insured's name, address, coverage amount, and claim history) while the content management system contains insurance documents (binders, policy documents, media (video, claim photos, recorded conversations with the claimant), correspondence (email, scanned letters), and any manner of notes. Each of these systems is useful to an insurance agency and many insurance agencies choose to have both types of systems. The programs and services that comprise the agency management and content management integration system 112 form an integration layer 304 that communicates between the agency management system 104 and the content management system 102. This integration layer 304 operates in two modes: user interaction mode (front end integration) and automatic mode (back end integration).
  • Using the integration layer 304, the agency management and content management integration system 112 allows automatic generation of content structure in the content management system for various agency management system domain entities, for example, insurance entities such as clients, submissions, policies, claims, quotes, vendors, employees (staff members), companies (carriers), and transactional elements (activities, tasks, notes, etc.). The agency management and content management integration system 112 provides linking between the agency management system entity to the appropriate content management system structure or structures through a well-defined mapping process (as explained in more detail with reference to FIG. 4 below). Fast navigation is provided between the agency management system 104 and content management system 102 to reduce the amount of manual data entry by the user, thus reducing human error.
  • The agency management and content management integration system 112 also executes automatic data entry into the content management system 102 to assist content management system workflow processes. Specifically, agency management and content management integration system 112 provides automatic data synchronization into the content management system 102 so that data stays current in the content management system 102 even when the agency management system 104 is changing. Hierarchical content structures are automatically generated by the agency management and content management integration system 112 so that an agency can automatically deploy an organizational structure to their end users. This organizational structure is deployed by organizing content based on domain entity criteria (such as business unit, coverage type, entity type, etc.) and by supporting multiple agencies, including multiple agency management system environments.
  • Also, multiple content management system structure divisions for the same entities are dynamically provided. For example, one entity may exist in multiple structures in the content management system 102 based on certain domain criteria like business unit or coverage type and a flexible mapping of entities to content structures is used to support the various organizational strategies of different insurance companies.
  • The agency management and content management integration system 112 includes testing mechanisms and performs logging to aid implementers in troubleshooting connection problems to the agency management system 104 and the content management system 102. A testing platform is also provided for verifying that the mappings are configured per insurance company specifications as well as a hierarchical view of mapping results. This provides an implementer of the content management integration system 112 an easy way to verify the view of the content structures that will be created before actually creating the structures in the content management system 102.
  • FIG. 3B is a block diagram of the agency management and content management integration system 112, according to one illustrated embodiment. The agency management and content management integration system includes two major divisions, front end processes 306 and back end processes 308.
  • Front end processes 306 include software elements that the end user directly interacts with to perform work. Primarily, this includes providing a user interface 310 or user interface elements within the agency management system 104. The user interface 310 has icons, buttons or other selectable user interface elements that a user clicks on, presses or otherwise selects within the agency management system 104 while viewing a particular domain entity. These selections perform actions such as opening 312, linking 314, and indexing 316 data structures and content in the content management system 102.
  • Back end processes and utilities 308 include software elements that may be automated and may run as services. The structure creation element 320 creates structures in the content management system 102 and the data synchronization element 322 synchronizes data in the content management system 102 to match entities in the agency management system 104. The various synchronization processes of the data synchronization element 322 take the entities in the agency management system 104 as input and generates corresponding structures in the content management system 102 using the structure creation element 320 based on mappings defined by the user.
  • There are two synchronization processes, the baseline synchronization process 324 and the delta synchronization process 326. The baseline synchronization process 324 is responsible for initial structure creation and en masse structure updates in the content management system 102. In one embodiment the baseline synchronization process 324 is manually started and runs and finishes completely. The delta synchronization process 326 performs continuous content structure creation and updating. In one embodiment, the delta synchronization process 326 runs at all times as a service and uses one of two strategies to receive changes in the agency management system. For example, the delta synchronization process either polls the agency management system for changes or receives notifications from the agency management system that a change has occurred and then updates the content management system accordingly. There are various configuration points and configuration utilities that allow an implementer of the agency management and content management integration system 112 to configure and manage configurations and the operation of the various utilities. Also, some of these utilities configure the front end processes 306.
  • FIG. 4 is an illustration of domain entity structures 416 and content management system structures such as file container 418. File container 418 includes example files 402 404 and corresponding folders 406 408, according to one illustrated embodiment. The agency management and content management integration system 112 integrates domain entities, such as example domain entity 410 in the account management system of the agency management system 104, into the content management system structures such as files 402 404 and folders 406 408 via an integration job 414. Every entity is uniquely identified by an entity identifier 412 that can be represented by a string that is unique to that agency and to that type of entity (e.g., Agency 1 and Agency 2 could both have clients with ids of 1, but Agency 1 would not have two clients with ids of 1, also Agency 1 could have a client with an identifier of 1 and a policy with an identifier of 1). An entity 410 may also have various entity information 410 associated with that particular entity. In an insurance agency example, clients have a client identifier, insurance policies have a policy identifier, and insurance claims have a claim identifier.
  • In the content management system, the entity 410 is represented by either a file 402 or 404 or a folder 406 408. Entities that are represented by a file 402 or 404 are called top level entities (such as clients and vendors of an insurance agency). Some entities are hierarchically related to other entities. In an insurance agency example, clients own policies and policies have claims submitted against them. In the content management system, the sub-entities are represented by folders 406 or 408 in the file 402 or 404 (e.g., policy or claim folders in client files) or folders in another folder (e.g., claim folders in policy folders). Also, parent folders can be configured for these sub folders based on other criteria (e.g., a claims folder to hold all claim folders or a policy term folder that holds all policies of a specific year).
  • Top level entities (e.g., domain entity 410) may or may not have multiple content structures (e.g., files 402 or 404 and folders 406 and 408) that match them. This duplication results from the way entities are mapped into the content management system 102. Insurance industry business rules often divide up the work that is done on a client based on specific usage criteria of the work being done. For example, a client that belongs to a certain division of a company may in some cases only be worked on by that division. A client with a policy of a certain type may in some cases only be worked on by a specific group in that company. Because of the content management system's ability to provide security features based on content structure to match the agency's work structure, it is often advantageous place a client in different file containers. All files 402 404 within a file container 418 are unique, but uniqueness is not required between file containers. For example, in the ImageRight® content management system, these file containers are specified by three content structure concepts: location, drawer, and file type. A file is considered unique based on its file number within a container 418. Work for one client may be split across the organization, which may be referred to herein as a work division, in which case it is beneficial to the organization to have a separate file container 418 for each work division.
  • Also, some content management system content structures may require additional originations of content within that entity's structure. For example, a policy may have endorsement content or application content. By allowing the precreation of these sub structures, the agency management and content management integration system 112 allows the organization to enforce a consistent organizational scheme throughout the system, removing the burden from the end user.
  • FIG. 5 is an example screen shot of a user interface 500 for configuration of an agency's work divisions in integration jobs and FIG. 6 is a corresponding block diagram illustrating the configuration 600 of an agency's work divisions in integration jobs. The agency management and content management integration system 112 allows the configuration of an agency's work divisions in integration jobs. An integration job 414 (shown in FIG. 4) is a set of entity filters and content management structure mappings for any entities that pass all of those filters. For each unique domain entity, each integration job uniquely identifies a file in a content structure file container 418 (also shown in FIG. 4). This is accomplished by a series of filters that are exercised against each entity for each integration job 414.
  • Shown on the user interface 500 is example integration job information 502 for the commercial lines policy work division 504, associated entity filters 506 for the integration job 414, and an associated content structure 508 for the integration job 414. Also shown are user interface controls 510 for executing the applicable integration job 414.
  • Referring now to FIG. 6, a filter 602 examines information on the domain entity 410 (for example, for clients, it may look at the line of business for the client), and accepts or rejects the entity based on that criteria. If an entity passes the all criteria setup by the filters (indicated by the dashed “Yes” arrow), then direct data mappings are applied to the entity using the entity identifier 412 to determine the final content management structure.
  • If an entity passes the all criteria setup by the filters (indicated by the dashed “Yes” arrow), then custom data mapping component 606 may be applied to the entity 410 using other entity information 410 to further determine the final content management structure. For files, the unique entity identifier 412 is directly mapped to an associated file number 610. For all entity files and entity folders, the unique entity identifier 412 is directly mapped to one specified key attribute 612 on the file or folder. Also, additional entity information 410 may be mapped to an additional attribute 614 resulting from the output of the custom data mapping component 606. In one embodiment, the filters 602 are configured to ensure that there is only one integration job per work division so that files are not duplicated within a work division.
  • Some entities are hierarchically related to other entities. For example, clients own policies and policies have claims submitted against them. In the content management system, these sub-entities are represented by folders in the file. Files can contain folders and folders can contain further folders. In one embodiment, the system only has one folder representing a sub-entity across the entire content management system. This is enforced through proper creation of integration jobs.
  • In one embodiment, the back end processes automatically perform these jobs whenever a change is detected in the agency management system 104 and the front end processes 306 allow a user to access the entity file or folder from the agency management system object after the integration job 414 has been executed.
  • In one embodiment, there are integrations between AMS360®, Sagitta®, and the BenefitPoint (BP)® agency management systems and the content management system supported is ImageRight® (IR).
  • The agency management and content management integration system enables a user to perform content management system actions from the agency management system 104. Shown in FIG. 7, is a screen shot 700 of an example user interface for performing content management system actions from an agency management system 104. In particular, shown is a screenshot of a user interface of the AMS360® agency management system, as modified and customized according to the embodiments described herein. For example, Integration points have been built into this program in the form of buttons labeled “WorkSmart File Open” 702 and “WorkSmart File Save” 704. Pressing the buttons 702 704 within the agency management system interface 700 initiates integration of the agency management and content management as described below.
  • FIG. 8 is block diagram illustrating integration of agency management and content management. In particular, FIG. 8 shows the relationship of components involved in the process of front end integration as performed by the agency management and content management integration system 112 (also referred to as WorkSmart herein). In one embodiment, the entry points for front end integration are a series of launch programs collectively denoted as a LaunchXX.exe program 802. For example, the launch programs may be LaunchMD.exe for the WorkSmart File Open button 702, LaunchPG.exe for WorkSmart File Save button 704, and LaunchAC.exe for accounting integrations represented by another WorkSmart button (not shown). These programs may be installed on the user's environment.
  • Selecting the applicable button within the agency management system user front end 801 calls the LaunchXX.exe program 802 with a specific command line. The command line contains information that identifies and describes the current domain entity 410, in this case an AMS360® client. A client (called a customer in the AMS360® system and an account in BenefitPoint® system) is identified by some unique string in each system called the client. For AMS360®, the client identifier is a globally unique identifier (GUID). Also, the different LaunchXX.exe programs 802 each represent an action (Open, Save, Accounting Management). The command line is reformatted by the LaunchXX.exe program 802 based on the contents of the LaunchXX.ini file 804 and based on the intended action. This reformatting results in a command line for one of the various linker programs denoted collectively as Linker.exe 806 (e.g., AMS360Link.exe for the AMS360® system, SagittaLink.exe for the Sagitta® system and BPLink.exe for the BenefitPoint® system). After this reformatting, the command line is then executed.
  • The Linker.exe programs 806 (e.g., AMS360Linker.exe, SagittaLinker.exe, and BPLinker.exe) have agency management system specific knowledge and are configured to match the integration jobs defined for the integrated environment. The configurations are placed in a configuration file, denoted as Link.config file 810, that is shared between all users in the environment by placing it on a network share. On the users' system, only the linker.exe.config file 808 needs to be altered to point to this shared Link.config file 810. This allows all users' configurations to be updated by changing just one file. The Linker.exe program 806 maps the entity identification 412 and information 410 to the content management system 102 and calls the content management systems exposed interoperability interface, denoted as IRLinker.exe 812, to perform the desired command on the resulting content structure or structures that will be reflected on the content management and workflow system user front end 814.
  • The specific actions enabled by the agency management and content management integration system 112 are Open, Save, and Account Management. Performing an Open action on a top level entity will cause the content management system 102 to navigate to structures matching the entity 410 based on the key attributes 612 placed on the structure by the back end integration process 308. It will also attempt to create the appropriate file in the content management system 102 if it does not exist, filling in the key attributes 612 at that time. Performing an Open action on a sub entity will cause the content management system 102 to navigate to the structures matching the entity 410. If no matching structures are found, nothing will be created.
  • Performing the Save action on an entity 410 will have a content management system context-specific result. FIG. 9 is flow diagram illustrating a process 900 of a save action performed in the agency management and content management integration system 112.
  • The process 900 starts at the Save action 902, such as when the user clicks the WorkSmart File Save button 704 shown in FIG. 700 initiating the Save action 902. The process will result in either tagging content structures at 912 or indexing the selected content structures at 910 to an existing file.
  • At 904 a processor determines whether the entity to which the Save action pertains 902 is a top level entity.
  • At 906, if it was determined that the entity to which the Save action pertains 902 is a top level entity, then the processor determines whether the workflow task is locked for that entity.
  • At 908, if it was determined that the workflow task is locked for that entity, then the processor determines whether the current file to be saved is marked as temporary.
  • At 910, if it was determined that the current file to be saved is marked as temporary, then the processor indexes the selected content structures to an appropriate existing file.
  • At 912 if it was determined that the entity to which the Save action pertains is not a top level entity, or that the workflow task not locked for that entity or that the current file to be saved is not marked as temporary, then the processor tags the selected content structures. The tagging action marks the content management structure with the key attributes 612 of the domain entity 410. This tagging works on both top level entities and sub entities. This allows the Open action to use the key attributes to find the content management structure. On the other hand, the indexing action only works on top level entities and moves the selected content into the correct top level content structure matching the entity based on key attributes. The original top level structure is marked as temporary, and a workflow task should be locked on some structure in the original top level structure or the Save action will perform the tag option instead of the indexing action as illustrated process 900.
  • The Agency management and content management integration system 112 pre-creates content management system structures based on the agency management systems' entities in an automated fashion. FIGS. 10A and 10B are screen shots of example user interfaces 1000 1002 of the initial creation piece of the system for agency management and content management integration for creation of the content management system structures based on an agency management system's entities, according to one illustrated embodiment.
  • The agency management and content management integration system 112 provides a set of utilities to help pre-create data structures so that users do not have to manually enter data into the content management system 102. Shown on user interfaces 1000 and 1002 is a connections tab 1004 under which agency management system connections 1006 are displayed. Based on these agency management system connections 1006, content management system structures will be created in response to a user interacting with the user selectable controls 1008 shown on user interface 1000 or by subscribing to a synchronization service 1010 shown in interface 1002.
  • Often, an agency has insurance data before implementing the agency management and content management integration system 112. The agency management and content management integration system 112 provides a way to create the vast amount of structure for all of an agency's data. The baseline synchronization process 324 executed by one or more processors performs this function. The baseline synchronization process 324 provides on a large scale the ability to take information from an existing agency management system and apply it to the content management system 102.
  • Also, once the user has run the baseline synchronization process 324, the user will start to change their agency management system data. In order to keep the content management system 102 synchronized with the agency management system 104, changes in the agency management system 104 are constantly or nearly constantly reflected in content management system 102. The delta synchronization process 326 performs this function.
  • FIG. 10C is a flow diagram illustrating a general process of synchronization of data between a content management system and an agency management system, applicable to the baseline synchronization and delta synchronization.
  • At 1012, the agency management and content management integration system 112 determines which entity needs to be created or updated.
  • At 1014, the agency management and content management integration system 112 retrieves the entity information (e.g., from the agency management system 104).
  • At 1016, the agency management and content management integration system 112 determines which integration jobs match the retrieved entity (e.g., integration job 414).
  • At 1018, the agency management and content management integration system 112 transforms or maps the entity into a content management structure (e.g., a content management system structure such as file container 418 and the related substructures).
  • At 1020, the agency management and content management integration system 112 creates or updates the content management structure accordingly to synchronize data between the content management system 102 and agency management system 104.
  • FIG. 11 and FIG. 12 are diagrams illustrating an update (delta) synchronization system architecture 1100 and a baseline synchronization system architecture 1200 comprising a backend integration module of the agency management and content management integration system 112, according to one illustrated embodiment.
  • First will be described components common to both the update (delta) synchronization system architecture 1100 and a baseline synchronization system architecture 1200 of the backend integration module. There are three layers to the backend integration module. The first layer is the domain layer 1104, where the backend integration module retrieves source data from some source such as the agency management system 104. However, the source may vary depending on the integration piece. After forming a connection to this source, a data extractor 1106 creates a generic data representation for the entity and is referred to as domain objects 1108.
  • These domain objects 1108 are passed to the domain transformation and mapping layer 1110. The domain transformation and mapping layer 1110 converts domain objects into content management system domain objects 1112, which are structures like locations, drawers, files, and folders based on integration jobs. Finally, these content management system domain objects 1112 are passed to the file services layer 1114 of the content management system 102. This file services layer 1114 takes the representations of the content management system domain objects 1112 and actually applies changes therein to the content management system 102. This layered system allows for changes in either the agency management system 104 or content management system 102 to not affect large portions of the system.
  • The data extractor 1106 contains the entities that might need to be created or updated. If a sub entity is included, its parent entity is included also, so that the integration jobs can correctly process it. The data extractor 1106 can be made to connect to any agency system and in various ways.
  • For the baseline synchronization architecture 1200, the agency management and content management integration system 112 uses extracted files from the Agency Management System Extractor 1206 containing the information for all or a subset of entities in the agency management system 104. From these files, the latency of web service calls and database queries is avoided. Because of the large amount of data that may need to be initialized or updated, these latencies can render the baseline synchronization process unusable as millions of entities each add a few seconds of latency. For example, in the AMS360® management system, the baseline synchronization process uses comma separated value (CSV) files 1202 1204 containing entity data per line. For the Sagitta® agency management system, the baseline synchronization process uses XML files containing a hierarchy of data. However any file format may be used for integration of other types of systems that is capable of presenting data in an organized fashion.
  • For the delta synchronization architecture 1100, the connection is a web service exposed by the agency management system denoted by the notification services block 1116 in the agency management system 104. In order to know when a change has happened, the agency management and content management integration system 112 either polls the agency management system 104 on a periodic or nonperiodic (i.e., aperiodic) basis or is notified by the agency management system 104 through the notification services 1116 whenever a change occurs. This is controlled by the notification manager 1118 and the push/pull delta event manager 1120 in the domain layer 1104. For example, in the AMS360® agency management system, a delta event manager exposes a notification port that is a web service from the notification services 1116 that the agency management system 104 can call to report changes. For the Sagitta® agency management system, the Web service is polled at intervals to determine the changes. From this information, the entities are determined and domain objects 1108 are created for the entities. The agency management and content management integration system 112 may include one or both of the capabilities to poll the agency management system 104 or be notified by the agency management system 104 through the notification services 1116 to determine the changes. The domain objects 1108 contain an identifier and all additional data that the user may want mapped to the content management system 102.
  • The agency integration processor 1120 of the domain transformation and mapping layer 1110 takes the domain objects 1108 and turns them into content management system domain objects 1112 based on the user defined integration jobs. There is often data relationally related to the data received in the domain object 1108 that needs to be mapped to the content management system 102. For example, a customer service representative has a first and last name. The entity may represent the customer service representative as a code (for example, “CSR52” or “!!{circle around ( )}”). In the content management system 102, one may want to see “John Smith”. To do this, the agency management and content management integration system 112 connects to the agency management system 104, gathers the related data, and when an entity is encountered that has a mapping to this secondary data, the agency management and content management integration system 112 looks up the value as configured by the job and substitutes it.
  • The content management system file services layer 1114 takes those content management domain objects 1112 and creates or updates the actual content structures by connecting into the content management system 102 and making changes. This separation allows the file services layer 1114 to be replaced with a user interface (UI) element 1300 as shown in FIG. 13 that can accept and preview the changes as in the preview area 1302 in the UI element 1300. This is used for running sample baseline synchronizations and testing individual customers.
  • The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs). However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more controllers (e.g., microcontrollers) as one or more programs running on one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of ordinary skill in the art in light of this disclosure.
  • In addition, those skilled in the art will appreciate that the mechanisms taught herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment applies equally regardless of the particular type of signal bearing media used to actually carry out the distribution. Examples of signal bearing media include, but are not limited to, the following: recordable type media such as floppy disks, hard disk drives, CD ROMs, digital tape, and computer memory.
  • The various embodiments described above can be combined to provide further embodiments. To the extent that they are not inconsistent with the specific teachings and definitions herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification are incorporated herein by reference, in their entirety, including U.S. Provisional Patent Application No. 61/422,090, filed Dec. 10, 2010. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.
  • These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims (38)

1. A computer-implemented method, comprising:
receiving information defining entities of an insurance agency management system;
receiving content structure of a content management system;
receiving mapping data indicative of mappings between the entities of the insurance agency management system and the content structure;
automatically generating a data structure based on the mappings;
storing the content structure in the data structure corresponding to the mappings; and
automatically synchronizing with changes of the entities of the insurance agency management system, the synchronizing based on information indicative of the changes of the entities of the insurance agency management system.
2. The method of claim 1 wherein the synchronizing comprises:
receiving information indicative of changes of the entities of the insurance agency management system;
automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure; and
automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the received changes.
3. The method of claim 2 wherein the receiving information indicative of changes of the entities occurs automatically on a periodic or nonperiodic (aperiodic) basis without requesting the information indicative of changes of the entities.
4. The method of claim 2 wherein synchronizing with changes of the entities of the insurance agency management system occurs at an initial generation of the data structure corresponding to the mappings.
5. The method of claim 1 wherein the automatically generating a data structure based on the mappings comprises generating a hierarchical data structure corresponding to a hierarchical business structure defined by the mapping data.
6. The method of claim 5, further comprising:
after initial generation of the data structure, displaying a number of interactive graphical user interface elements operable to trigger automatically performing at least one of: opening the content structure or the data structure for viewing or editing, linking the content structure or the data structure to other content structures or entities, indexing the content structure or the data structure, or entering at least some of the mapping data.
7. The method of claim 1 wherein the insurance agency management system, after initial generation of the data structure, automatically provides information indicative of changes of the entities upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis and wherein the automatically synchronizing comprises:
automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure to the provided information indicative of the changes; and
automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the provided information indicative of the changes.
8. The method of claim 7 wherein the entities include at least one of: an insurance client entity, an insurance submissions entity, an insurance policies entity, an insurance claims entity, an insurance quotes entity, an insurance vendor entity, an insurance company employee entity, an insurance carrier entity, or an insurance transactions entity.
9. The method of claim 1 wherein the changes of the entities is at least one of: adding entities, changes to relationships between the entities, changes to a hierarchical structure defining the entities, or changes to attributes of the entities.
10. The method of claim 1, further comprising:
automatically organizing the content structure based on entity criteria including at least one of: insurance business unit, insurance coverage type, agency number, customer line of business, policy type of business, policy type, submission type.
11. A system, comprising:
a computer processor; and
a non-transitory memory communicatively coupled to the computer processor having computer-executable instructions stored thereon that when executed by the computer processor cause the computer processor to perform:
receiving information defining entities of an insurance agency management system;
receiving content structure of a content management system;
receiving mapping data indicative of mappings between the entities of the insurance agency management system and the content structure;
automatically generating a data structure based on the mappings;
storing the content structure in the data structure corresponding to the mappings; and
automatically synchronizing with changes of the entities of the insurance agency management system, the synchronizing based on information indicative of the changes of the entities of the insurance agency management system.
12. The system of claim 11 wherein the synchronizing comprises:
receiving information indicative of changes of the entities of the insurance agency management system;
automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure; and
automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the received changes.
13. The system of claim 12 wherein the receiving information indicative of changes of the entities occurs automatically on a periodic or aperiodic basis without requesting the information indicative of changes of the entities.
14. The system of claim 12 wherein synchronizing with changes of the entities of the insurance agency management system occurs at an initial generation of the data structure corresponding to the mappings.
15. The system of claim 11 wherein the automatically generating a data structure based on the mappings comprises generating a hierarchical data structure corresponding to a hierarchical business structure defined by the mapping data.
16. The system of claim 15 wherein the computer-executable instructions, when executed by the computer processor, after initial generation of the data structure, further configure the computer processor to display a number of interactive graphical user interface elements operable to trigger automatically performing at least one of: opening the content structure or the data structure for viewing or editing, linking the content structure or the data structure to other content structures or entities, indexing the content structure or the data structure, or entering at least some of the mapping data.
17. The system of claim 11 wherein the insurance agency management system is configured to, after initial generation of the data structure, automatically provide information indicative of changes of the entities upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis and wherein the automatically synchronizing comprises:
automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure to the provided information indicative of the changes; and
automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the provided information indicative of the changes.
18. The system of claim 17 wherein the entities include at least one of: an insurance client entity, an insurance submissions entity, an insurance policies entity, an insurance claims entity, an insurance quotes entity, an insurance vendor entity, an insurance company employee entity, an insurance carrier entity, or an insurance transactions entity.
19. The system of claim 11 wherein the changes of the entities is at least one of: adding entities, changes to relationships between the entities, changes to a hierarchical structure defining the entities, or changes to attributes of the entities.
20. The system of claim 11 wherein the computer-executable instructions, when executed by the computer processor, further configure the computer processor to automatically organize the content structure based on entity criteria including at least one of: insurance business unit, insurance coverage type, agency number, customer line of business, policy type of business, policy type, submission type.
21. At least one non-transitory computer-readable medium that stores instructions that when executed by at least one computer system cause the at least one computer system to perform:
receiving information defining entities of an insurance agency management system;
receiving content structure of a content management system;
receiving mapping data indicative of mappings between the entities of the insurance agency management system and the content structure;
automatically generating a data structure based on the mappings;
storing the content structure in the data structure corresponding to the mappings; and
automatically synchronizing with changes of the entities of the insurance agency management system, the synchronizing based on information indicative of the changes of the entities of the insurance agency management system.
22. The non-transitory computer-readable medium of claim 21 wherein the synchronizing comprises:
receiving information indicative of changes of the entities of the insurance agency management system;
automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure; and
automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the received changes.
23. The non-transitory computer-readable medium of claim 22 wherein the receiving information indicative of changes of the entities occurs automatically on a periodic basis without requesting the information indicative of changes of the entities.
24. The non-transitory computer-readable medium of claim 22 wherein synchronizing with changes of the entities of the insurance agency management system occurs at an initial generation of the data structure corresponding to the mappings.
25. The non-transitory computer-readable medium of claim 21 wherein the automatically generating a data structure based on the mappings comprises generating a hierarchical data structure corresponding to a hierarchical business structure defined by the mapping data.
26. The non-transitory computer-readable medium of claim 25 wherein the computer-executable instructions, when executed by the at least one computer system, further cause the at least one computer system to display a number of interactive graphical user interface elements operable to trigger automatically performing at least one of: opening the content structure or the data structure for viewing or editing, linking the content structure or the data structure to other content structures or entities, indexing the content structure or the data structure, or entering at least some of the mapping data.
27. The non-transitory computer-readable medium of claim 21 wherein the computer-executable instructions, when executed by the at least one computer system, further cause the at least one computer system to, after initial generation of the data structure, cause the insurance agency management system to automatically provide information indicative of changes of the entities upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis and wherein the automatically synchronizing comprises:
automatically comparing at least one of a number of current attributes of the data structure and at least one of a number of current attributes of the content structure stored in the data structure to the provided information indicative of the changes; and
automatically updating, based on the comparing, at least one of the current attributes of the data structure and the current attributes of the content structure stored in the data structure to correspond to the provided information indicative of the changes.
28. The non-transitory computer-readable medium of claim 27 wherein the entities include at least one of: an insurance client entity, an insurance submissions entity, an insurance policies entity, an insurance claims entity, an insurance quotes entity, an insurance vendor entity, an insurance company employee entity, an insurance carrier entity, or an insurance transactions entity.
29. The non-transitory computer-readable medium of claim 21 wherein the changes of the entities is at least one of: adding entities, changes to relationships between the entities, changes to a hierarchical structure defining the entities, or changes to attributes of the entities.
30. The non-transitory computer-readable medium of claim 21 wherein the computer-executable instructions, when executed by the at least one computer system, further cause the at least one computer system to automatically organize the content structure based on entity criteria including at least one of: insurance business unit, insurance coverage type, agency number, customer line of business, policy type of business, policy type, submission type.
31. A system, comprising:
at least one computer processor; and
a non-transitory memory communicatively coupled to the computer processor having computer-executable instructions stored thereon that when executed by the computer processor cause the at least one computer processor to:
link entities of an insurance agency management system to content hierarchical structures of a content management system;
automatically provide information indicative of changes of an insurance agency business unit upon the changes occurring or on a periodic or nonperiodic (aperiodic) basis; and
automatically synchronize a content management system content hierarchical structure related to the insurance agency business unit with the changes to the insurance agency business unit.
32. The system of claim 31 wherein the computer-executable instructions further cause the at least one computer processor to:
automatically compare at least one current attribute of a data structure for the insurance agency business unit of the insurance agency management system to an attribute of content related to the insurance agency business unit stored in the content management system content hierarchical structures.
33. The system of claim 31 wherein the information indicative of changes is automatically provided by the insurance agency management system.
34. The system of claim 31 wherein the computer-executable instructions further cause the at least one computer processor to:
automatically provide information indicative of changes to content of an insurance policy; and
automatically update content management system content hierarchical structures based on the information indicative of changes to content of the insurance policy.
35. The system of claim 34 wherein the information indicative of changes to content of the insurance policy is automatically provided by the content management system.
36. The system of claim 31 wherein the computer-executable instructions further cause the at least one computer processor to link the entities of the insurance agency management system to the content hierarchical structures of the content management system as an initial process before any of the information indicative of changes is provided.
37. The system of claim 31 wherein the computer-executable instructions further cause the at least one computer processor to:
provide a preview of changes to the content hierarchical structure;
provide a testing environment to test the content hierarchical structure changes;
provide troubleshooting logs resulting from testing of the content hierarchical structure changes; and
link the entities of the insurance agency management system to content hierarchical structures of the content management system by providing multiple mappings between the entities of the insurance agency management system and the content hierarchical structures.
38. The system of claim 31 wherein the computer-executable instructions further cause the at least one computer processor to provide an interface for a user to manually trigger a synchronization of the content management system content hierarchical structure related to the insurance agency business unit with the changes to the insurance agency business unit.
US13/004,572 2010-12-10 2011-01-11 Agency management system and content management system integration Active 2031-06-05 US9384198B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/004,572 US9384198B2 (en) 2010-12-10 2011-01-11 Agency management system and content management system integration
CA2761405A CA2761405A1 (en) 2010-12-10 2011-12-09 Agency management system and content management system integration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42209010P 2010-12-10 2010-12-10
US13/004,572 US9384198B2 (en) 2010-12-10 2011-01-11 Agency management system and content management system integration

Publications (2)

Publication Number Publication Date
US20120150919A1 true US20120150919A1 (en) 2012-06-14
US9384198B2 US9384198B2 (en) 2016-07-05

Family

ID=46200455

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/004,572 Active 2031-06-05 US9384198B2 (en) 2010-12-10 2011-01-11 Agency management system and content management system integration

Country Status (2)

Country Link
US (1) US9384198B2 (en)
CA (1) CA2761405A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070244935A1 (en) * 2006-04-14 2007-10-18 Cherkasov Aleksey G Method, system, and computer-readable medium to provide version management of documents in a file management system
US20110153560A1 (en) * 2009-12-18 2011-06-23 Victor Bryant Apparatus, method and article to manage electronic or digital documents in networked environment
US20110161375A1 (en) * 2009-12-24 2011-06-30 Doug Tedder Systems, methods and articles for template based generation of markup documents to access back office systems
US20130238627A1 (en) * 2012-03-06 2013-09-12 Microsoft Corporation Integrating searches
US8731973B2 (en) 2011-04-19 2014-05-20 Vertafore, Inc. Overlaying images in automated insurance policy form generation
US20140181935A1 (en) * 2012-12-21 2014-06-26 Dropbox, Inc. System and method for importing and merging content items from different sources
US9367435B2 (en) 2013-12-12 2016-06-14 Vertafore, Inc. Integration testing method and system for web services
US9507814B2 (en) 2013-12-10 2016-11-29 Vertafore, Inc. Bit level comparator systems and methods
CN106383812A (en) * 2016-08-30 2017-02-08 泰康保险集团股份有限公司 New contract policy test method and apparatus
US9600400B1 (en) 2015-10-29 2017-03-21 Vertafore, Inc. Performance testing of web application components using image differentiation
US9747556B2 (en) 2014-08-20 2017-08-29 Vertafore, Inc. Automated customized web portal template generation systems and methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9384198B2 (en) 2010-12-10 2016-07-05 Vertafore, Inc. Agency management system and content management system integration
US9886699B2 (en) 2014-04-08 2018-02-06 International Business Machines Corporation Performance based approval in CMS workflow process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133606A1 (en) * 2003-01-02 2004-07-08 Z-Force Communications, Inc. Directory aggregation for files distributed over a plurality of servers in a switched file system
US20040193455A1 (en) * 2003-03-28 2004-09-30 The Ohio Casualty Insurance Company Dynamic preloading of insurance product data in insurance policy management system
US20080243897A1 (en) * 2007-03-28 2008-10-02 John Edward Petri Autonomic updating of templates in a content management system
US20090287746A1 (en) * 2008-05-15 2009-11-19 International Business Machines Corporation Apparatus, system, and method for dynamic database driven document synchronization
US7711703B2 (en) * 2006-05-05 2010-05-04 Lockheed Martin Corporation System and method for immutably storing electronic assets in a large-scale computer system
US7725456B2 (en) * 2007-04-27 2010-05-25 Microsoft Corporation Item management with data sharing and synchronization
US20110119574A1 (en) * 2009-11-13 2011-05-19 Hartford Fire Insurance Company System and method for translating insurance-related data
US8285685B2 (en) * 2005-11-28 2012-10-09 Commvault Systems, Inc. Metabase for facilitating data classification

Family Cites Families (255)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970992A (en) 1974-06-25 1976-07-20 Ibm Corporation Transaction terminal with unlimited range of functions
US4429360A (en) 1978-10-23 1984-01-31 International Business Machines Corporation Process and apparatus for interrupting and restarting sequential list-processing operations
US4347568A (en) 1978-12-07 1982-08-31 Diamond Shamrock Corporation Occupational health/environmental surveillance
GB2060225B (en) 1979-09-29 1983-05-25 Plessey Co Ltd Multi-programming data processing system process suspension
US4383298A (en) 1980-04-10 1983-05-10 Ciba-Geigy Corporation Plant maintenance control system
US4359631A (en) 1980-07-11 1982-11-16 Lawrence B. Lockwood Self-service terminal
US4346442A (en) 1980-07-29 1982-08-24 Merrill Lynch, Pierce, Fenner & Smith Incorporated Securities brokerage-cash management system
US4410940A (en) 1980-12-05 1983-10-18 International Business Machines Corporation Transfer of control method and means among hierarchical cooperating sequential processes
US4503499A (en) 1982-09-14 1985-03-05 Eaton Corporation Controlled work flow system
US4491725A (en) 1982-09-29 1985-01-01 Pritchard Lawrence E Medical insurance verification and processing system
US4646229A (en) 1982-11-15 1987-02-24 At&T Bell Laboratories Time-ordered data base
US4646231A (en) 1983-07-21 1987-02-24 Burroughs Corporation Method of synchronizing the sequence by which a variety of randomly called unrelated activities are executed in a digital processor
JPS6041138A (en) 1983-08-15 1985-03-04 Nec Corp Interruption control device
US4553206A (en) 1983-10-03 1985-11-12 Wang Laboratories, Inc. Image storage and retrieval
US4959769A (en) 1983-10-03 1990-09-25 Wang Laboratories, Inc. Structures and methods for representing and processing documents
US4633430A (en) 1983-10-03 1986-12-30 Wang Laboratories, Inc. Control structure for a document processing system
US4598367A (en) 1983-11-09 1986-07-01 Financial Design Systems, Inc. Financial quotation system using synthesized speech
US4591974A (en) 1984-01-31 1986-05-27 Technology Venture Management, Inc. Information recording and retrieval system
US4642768A (en) 1984-03-08 1987-02-10 Roberts Peter A Methods and apparatus for funding future liability of uncertain cost
US4648037A (en) 1984-03-15 1987-03-03 Metropolitan Life Insurance Company Method and apparatus for benefit and financial communication
US4567359A (en) 1984-05-24 1986-01-28 Lockwood Lawrence B Automatic information, goods and services dispensing system
US4658351A (en) 1984-10-09 1987-04-14 Wang Laboratories, Inc. Task control means for a multi-tasking data processing system
US4646250A (en) 1984-10-18 1987-02-24 International Business Machines Corp. Data entry screen
US4730252A (en) 1985-09-24 1988-03-08 International Business Machines Corp. Document composition from parts inventory
US4794515A (en) 1986-01-17 1988-12-27 International Business Machines Corporation Protection of data in a multiprogramming data processing system
JPS62282328A (en) 1986-02-21 1987-12-08 Hitachi Ltd Multiple picture control system
US4831526A (en) 1986-04-22 1989-05-16 The Chubb Corporation Computerized insurance premium quote request and policy issuance system
US4819156A (en) 1986-06-13 1989-04-04 International Business Machines Corporation Database index journaling for enhanced recovery
GB2191918B (en) 1986-06-16 1990-09-05 Ibm Data display system
US5241677A (en) 1986-12-19 1993-08-31 Nippon Telepgraph and Telehone Corporation Multiprocessor system and a method of load balancing thereof
US4918588A (en) 1986-12-31 1990-04-17 Wang Laboratories, Inc. Office automation system with integrated image management
US5072412A (en) 1987-03-25 1991-12-10 Xerox Corporation User interface with multiple workspaces for sharing display system objects
US4809170A (en) 1987-04-22 1989-02-28 Apollo Computer, Inc. Computer device for aiding in the development of software system
US4928243A (en) 1987-10-06 1990-05-22 Preco Industries, Inc. Method and system for printing graphics and text from vector-based computer aided source information
US4928252A (en) 1988-02-24 1990-05-22 Digital Equipment Corporation Printing apparatus and method for printing a plurality of pages onto a single sheet
US4912628A (en) 1988-03-15 1990-03-27 International Business Machines Corp. Suspending and resuming processing of tasks running in a virtual machine data processing system
US4949251A (en) 1988-07-18 1990-08-14 Digital Equipment Corporation Exactly-once semantics in a TP queuing system
US4985831A (en) 1988-10-31 1991-01-15 Evans & Sutherland Computer Corp. Multiprocessor task scheduling system
US5159669A (en) 1988-12-15 1992-10-27 Xerox Corporation Automatically creating a second workspace operation record including history data and a unit ID based on a first workspace operation
US4951194A (en) 1989-01-23 1990-08-21 Tektronix, Inc. Method for reducing memory allocations and data copying operations during program calling sequences
GB8915875D0 (en) 1989-07-11 1989-08-31 Intelligence Quotient United K A method of operating a data processing system
US5261099A (en) 1989-08-24 1993-11-09 International Business Machines Corp. Synchronous communications scheduler allowing transient computing overloads using a request buffer
US5170480A (en) 1989-09-25 1992-12-08 International Business Machines Corporation Concurrently applying redo records to backup database in a log sequence using single queue server per queue at a time
US5263134A (en) 1989-10-25 1993-11-16 Apple Computer, Inc. Method and apparatus for controlling computer displays by using a two dimensional scroll palette
US5201033A (en) 1990-01-17 1993-04-06 International Business Machines Corporation Method for controlling cursor movements on certain computer workstations
US5317733A (en) 1990-01-26 1994-05-31 Cisgem Technologies, Inc. Office automation system for data base management and forms generation
JPH03282941A (en) 1990-03-30 1991-12-13 Nec Corp Program entry control system
US5220665A (en) 1990-04-30 1993-06-15 International Business Machines Corporation Method and system for supporting concurrent use during sequential batch applications utilizing persistent cursors
US5363214A (en) 1990-05-30 1994-11-08 Xerox Corporation Facsimile transmission system
US5583922A (en) 1990-09-27 1996-12-10 Radish Communication Systems, Inc. Telecommunication system for automatic switching between voice and visual data communications using forms
US5175853A (en) 1990-10-09 1992-12-29 Intel Corporation Transparent system interrupt
US5161226A (en) 1991-05-10 1992-11-03 Jmi Software Consultants Inc. Microprocessor inverse processor state usage
JPH04373026A (en) 1991-06-24 1992-12-25 Fuji Electric Co Ltd Program interrupting method
US5257375A (en) 1991-08-23 1993-10-26 International Business Machines Corp. Method and apparatus for dispatching tasks requiring short-duration processor affinity
JPH05197573A (en) 1991-08-26 1993-08-06 Hewlett Packard Co <Hp> Task controlling system with task oriented paradigm
US5282052A (en) 1992-03-20 1994-01-25 Xerox Corporation Techniques for automatic form creation by combining partial operations
US5265159A (en) 1992-06-23 1993-11-23 Hughes Aircraft Company Secure file erasure
CA2095753A1 (en) 1992-08-21 1994-02-22 John Franklin Carroll Method and system for data sort manipulation in a data processing system
US6366920B1 (en) 1993-05-06 2002-04-02 International Business Machines Corporation Automatic invocation of objects during the entering of data in a data processing system user interface
JP3597558B2 (en) 1994-03-18 2004-12-08 株式会社日立製作所 Information processing equipment
US5537315A (en) 1994-03-23 1996-07-16 Mitcham; Martin K. Method and apparatus for issuing insurance from kiosk
US5634052A (en) 1994-10-24 1997-05-27 International Business Machines Corporation System for reducing storage requirements and transmission loads in a backup subsystem in client-server environment by transmitting only delta files from client to server
US5553282A (en) 1994-12-09 1996-09-03 Taligent, Inc. Software project history database and method of operation
US6044475A (en) 1995-06-16 2000-03-28 Lucent Technologies, Inc. Checkpoint and restoration systems for execution control
US6437803B1 (en) 1998-05-29 2002-08-20 Citrix Systems, Inc. System and method for combining local and remote windows into a single desktop environment
US5864340A (en) 1996-08-22 1999-01-26 International Business Machines Corporation Mobile client computer programmed to predict input
US6592629B1 (en) 1996-11-21 2003-07-15 Ricoh Company, Ltd. Remote document image storage and retrieval system for a multifunctional peripheral
US6065026A (en) 1997-01-09 2000-05-16 Document.Com, Inc. Multi-user electronic document authoring system with prompted updating of shared language
US5968125A (en) 1997-01-21 1999-10-19 Net. Roi Process for optimizing the effectiveness of a hypertext element
US5880724A (en) 1997-03-07 1999-03-09 International Business Machines Corporation Mobile client computer programmed for importation of data into title display
US6128653A (en) 1997-03-17 2000-10-03 Microsoft Corporation Method and apparatus for communication media commands and media data using the HTTP protocol
US6407752B1 (en) 1997-04-29 2002-06-18 International Business Machines Corporation Method and system for a user interface for remote FTP hosts
US6049877A (en) 1997-07-16 2000-04-11 International Business Machines Corporation Systems, methods and computer program products for authorizing common gateway interface application requests
US6393407B1 (en) 1997-09-11 2002-05-21 Enliven, Inc. Tracking user micro-interactions with web page advertising
JPH1196062A (en) 1997-09-19 1999-04-09 Hitachi Ltd Directory access method
US6546405B2 (en) 1997-10-23 2003-04-08 Microsoft Corporation Annotating temporally-dimensioned multimedia content
JP3613504B2 (en) 1997-11-05 2005-01-26 株式会社日立製作所 Version management / configuration management method and apparatus, and computer-readable recording medium recording a version management / configuration management program
JPH11143754A (en) 1997-11-05 1999-05-28 Hitachi Ltd Version information and constitution information display method and device therefor, and computer readable recording medium for recording version information and constitution information display program
JPH11143567A (en) 1997-11-06 1999-05-28 Fujitsu Ltd Information protection method for network system and information processor used for the protection method
US6362836B1 (en) 1998-04-06 2002-03-26 The Santa Cruz Operation, Inc. Universal application server for providing applications on a variety of client devices in a client/server network
JP3427933B2 (en) 1997-11-28 2003-07-22 インターナショナル・ビジネス・マシーンズ・コーポレーション Processing long-term transactions in client-server systems
US6247020B1 (en) 1997-12-17 2001-06-12 Borland Software Corporation Development system with application browser user interface
CA2223597A1 (en) 1998-01-06 1999-07-06 Ses Canada Research Inc. Automated survey kiosk
US6199079B1 (en) 1998-03-09 2001-03-06 Junglee Corporation Method and system for automatically filling forms in an integrated network based transaction environment
JPH11296452A (en) 1998-04-08 1999-10-29 Hitachi Ltd Software resource distribution system
US6795966B1 (en) 1998-05-15 2004-09-21 Vmware, Inc. Mechanism for restoring, porting, replicating and checkpointing computer systems using state extraction
US6263348B1 (en) 1998-07-01 2001-07-17 Serena Software International, Inc. Method and apparatus for identifying the existence of differences between two files
US6405238B1 (en) 1998-07-31 2002-06-11 Hewlett-Packard Co. Quick navigation upon demand to main areas of web site
US6240416B1 (en) 1998-09-11 2001-05-29 Ambeo, Inc. Distributed metadata system and method
US6271846B1 (en) 1998-09-30 2001-08-07 International Business Machines Corporation Method for reanchoring branches within a directory tree
US6594635B1 (en) 1998-10-24 2003-07-15 Marketcore.Com, Inc. Data processing system for providing an efficient market for insurance and reinsurance
US6385642B1 (en) 1998-11-03 2002-05-07 Youdecide.Com, Inc. Internet web server cache storage and session management system
US6910179B1 (en) 1998-11-10 2005-06-21 Clarita Corporation Method and apparatus for automatic form filling
AU1838200A (en) 1998-11-30 2000-06-19 Siebel Systems, Inc. Client server system with thin client architecture
US6918082B1 (en) 1998-12-17 2005-07-12 Jeffrey M. Gross Electronic document proofing system
US6490601B1 (en) 1999-01-15 2002-12-03 Infospace, Inc. Server for enabling the automatic insertion of data into electronic forms on a user computer
US6658167B1 (en) 1999-01-31 2003-12-02 Hewlett-Packard Development Company, L.P. On the fly server for modifying data characteristics for client-server network applications
US6510430B1 (en) 1999-02-24 2003-01-21 Acumins, Inc. Diagnosis and interpretation methods and apparatus for a personal nutrition program
US6693869B1 (en) 1999-03-31 2004-02-17 Microsoft Corporation Locating information on an optical media disc to maximize the rate of transfer
US6538667B1 (en) 1999-07-23 2003-03-25 Citrix Systems, Inc. System and method for providing immediate visual response to user input at a client system connected to a computer system by a high-latency connection
US6463343B1 (en) 1999-08-10 2002-10-08 International Business Machines Corporation System and method for controlling remote devices from a client computer using digital images
US6430575B1 (en) 1999-09-10 2002-08-06 Xerox Corporation Collaborative document management system with customizable filing structures that are mutually intelligible
US8793374B2 (en) 1999-12-02 2014-07-29 Western Digital Technologies, Inc. Managed peer-to-peer applications, systems and methods for distributed data access and storage
US6658659B2 (en) 1999-12-16 2003-12-02 Cisco Technology, Inc. Compatible version module loading
US20010027420A1 (en) 1999-12-21 2001-10-04 Miroslav Boublik Method and apparatus for capturing transaction data
US6553419B1 (en) 2000-02-02 2003-04-22 International Business Machines Corporation System and method for computer system performance data pause and resume consuming minimum display area
US20010032092A1 (en) 2000-02-07 2001-10-18 James Calver Small business web-based portal method and system
US6915435B1 (en) 2000-02-09 2005-07-05 Sun Microsystems, Inc. Method and system for managing information retention
JP3862913B2 (en) 2000-02-15 2006-12-27 シャープ株式会社 Computer-readable storage medium storing file processing apparatus and program for operating computer as file processing apparatus
AU2001245275A1 (en) 2000-02-25 2001-09-03 Empriva, Inc. System and method for specification and exchange management
US6601047B2 (en) 2000-03-08 2003-07-29 Inbit Inc. Image-based digital evidence system and associated method
US7010503B1 (en) 2000-03-10 2006-03-07 Ams Services, Inc. Traffic reduction in networked data collection
WO2001075694A2 (en) 2000-03-31 2001-10-11 Mdsi Mobile Data Solutions Inc. Methods and systems for scheduling complex work orders for a workforce of mobile service technicians
US7757168B1 (en) 2000-04-07 2010-07-13 Xerox Corporation Meta-document and method of managing
JPWO2001077844A1 (en) 2000-04-10 2004-04-30 富士通株式会社 Information processing system and method, and server
US6854115B1 (en) 2000-06-02 2005-02-08 Sun Microsystems, Inc. Process persistence in a virtual machine
US7000230B1 (en) 2000-06-21 2006-02-14 Microsoft Corporation Network-based software extensions
US6842770B1 (en) 2000-08-18 2005-01-11 Apple Computer, Inc. Method and system for seamlessly accessing remotely stored files
US7020779B1 (en) 2000-08-22 2006-03-28 Sun Microsystems, Inc. Secure, distributed e-mail system
US7694218B2 (en) 2000-09-13 2010-04-06 Canon Kabushiki Kaisha Information processing apparatus, method therefor, and computer-readable memory
US7478064B1 (en) 2000-09-22 2009-01-13 Nacht Richard H System and process for applying for and obtaining universal multiple mortgage underwriting approvals
US20020111835A1 (en) 2000-11-06 2002-08-15 Hele John C. R. Underwriting insurance
US6978376B2 (en) 2000-12-15 2005-12-20 Authentica, Inc. Information security architecture for encrypting documents for remote access while maintaining access control
US6928487B2 (en) 2000-12-23 2005-08-09 International Business Machines Corporation Computer system, method, and business method for automating business-to-business communications
US6766471B2 (en) 2000-12-28 2004-07-20 International Business Machines Corporation User-level checkpoint and restart for groups of processes
US7299202B2 (en) 2001-02-07 2007-11-20 Exalt Solutions, Inc. Intelligent multimedia e-catalog
US7299502B2 (en) 2001-02-14 2007-11-20 Hewlett-Packard Development Company, L.P. System and method for providing customized secure access to shared documents
JP2002278754A (en) 2001-03-15 2002-09-27 Toshiba Corp Management system of software component library, its method and management program of software component library
JP2002278984A (en) 2001-03-22 2002-09-27 Fujitsu Ltd Document managing device
US6993529B1 (en) 2001-06-01 2006-01-31 Revenue Science, Inc. Importing data using metadata
US20020194033A1 (en) 2001-06-18 2002-12-19 Huff David S. Automatic insurance data extraction and quote generating system and methods therefor
US20020198743A1 (en) 2001-06-20 2002-12-26 Ariathurai Arjuna A. Network architecture and management system for conducting insurance activities on a network
WO2003005150A2 (en) 2001-07-02 2003-01-16 Exchangelab, Inc. Order match insurance
US7322025B2 (en) 2001-07-17 2008-01-22 Tata Consultancy Services Limited Method and apparatus for versioning and configuration management of object models
US6993661B1 (en) 2001-08-09 2006-01-31 Garfinkel Simson L System and method that provides for the efficient and effective sanitizing of disk storage units and the like
US7028223B1 (en) 2001-08-13 2006-04-11 Parasoft Corporation System and method for testing of web services
US20050080804A1 (en) 2001-10-30 2005-04-14 Bradshaw Robert David System and method for maintaining componentized content
WO2003040889A2 (en) 2001-11-07 2003-05-15 Real Consulting Llc System and method for electronically creating, filling and approving applications for insurance coverage
JP4186456B2 (en) 2001-11-28 2008-11-26 沖電気工業株式会社 Distributed file sharing system and control method thereof
GB2383238B (en) 2001-12-14 2004-11-10 Hewlett Packard Co Digital document storage
US20040243969A1 (en) 2001-12-14 2004-12-02 Kamery Brian Clinton On line presentation software
US7698230B1 (en) 2002-02-15 2010-04-13 ContractPal, Inc. Transaction architecture utilizing transaction policy statements
US20030191938A1 (en) 2002-04-09 2003-10-09 Solarsoft Ltd. Computer security system and method
US8166388B2 (en) 2002-05-14 2012-04-24 Microsoft Corporation Overlaying electronic ink
JP2004046796A (en) 2002-07-15 2004-02-12 Seiko Epson Corp Directory management program, object display program, directory management method and directory management device
US6928476B2 (en) 2002-08-23 2005-08-09 Mirra, Inc. Peer to peer remote data storage and collaboration
US20040039757A1 (en) 2002-08-26 2004-02-26 Mcclure William B. System, method, and apparatus for managing form-based business records
JP2004110445A (en) 2002-09-19 2004-04-08 Hitachi Ltd Document management method, program, and system
US20050033988A1 (en) 2002-10-18 2005-02-10 Neoscale Systems, Inc. Method and system for transparent encryption and authentication of file data protocols over internet protocol
CA2510108A1 (en) 2002-12-16 2004-07-15 Questerra Llc Method, system and program for network design, analysis, and optimization
KR100490734B1 (en) 2002-12-21 2005-05-24 한국전자통신연구원 Annotation-based automatic document generation apparatus and method
US7689443B2 (en) 2002-12-31 2010-03-30 Employers Reinsurance Corporation Methods and structure for insurance industry workflow processing
JP4991283B2 (en) 2003-02-21 2012-08-01 カリンゴ・インコーポレーテッド Additional hash functions in content-based addressing
US20060259524A1 (en) 2003-03-17 2006-11-16 Horton D T Systems and methods for document project management, conversion, and filing
US20040186750A1 (en) 2003-03-18 2004-09-23 Gordon Surbey Method and system for automating insurance processes
US7421438B2 (en) 2004-04-29 2008-09-02 Microsoft Corporation Metadata editing control
US7703002B2 (en) 2003-03-31 2010-04-20 Ricoh Company, Ltd. Method and apparatus for composing multimedia documents
NO319854B1 (en) 2003-04-04 2005-09-26 Telenor Asa Procedure and system for handling web sessions
GB0307906D0 (en) 2003-04-05 2003-05-14 Hewlett Packard Development Co A method of purchasing insurance or validating an anonymous transaction
US7424671B2 (en) 2003-05-16 2008-09-09 Justsystems Canada Inc. Methods and systems for enabling collaborative authoring of hierarchical documents
US7278135B2 (en) 2003-06-11 2007-10-02 Microsoft Corporation Method and system for generating an efficient test suite from a domain description with given constraints
JP4255324B2 (en) 2003-07-18 2009-04-15 パイオニア株式会社 Information recording / reproducing apparatus and information recording / erasing method
US7391910B2 (en) 2003-07-31 2008-06-24 Seiko Epson Corporation LAPE: layered presentation system utilizing compressed-domain image processing
US20050071203A1 (en) 2003-09-30 2005-03-31 Kevin Maus Insurance marketplace
US20060184452A1 (en) 2003-10-14 2006-08-17 Maccord Mason Pllc, Electronic document management system
US7930757B2 (en) 2003-10-31 2011-04-19 Adobe Systems Incorporated Offline access in a document control system
CN1882959A (en) 2003-11-14 2006-12-20 皇家飞利浦电子股份有限公司 Product data exchange
JP2008502953A (en) 2003-11-17 2008-01-31 ヴァージニア テック インテレクチュアル プロパティーズ,インコーポレイテッド Transparent checkpointing and process migration in distributed systems
EP1544763A1 (en) 2003-12-19 2005-06-22 Sap Ag Process management monitoring
US7296193B2 (en) 2004-01-07 2007-11-13 International Business Machines Corporation Technique for processing an error using write-to-operator-with-reply in a ported application
JP4239090B2 (en) 2004-01-08 2009-03-18 富士フイルム株式会社 File management program
US7266537B2 (en) 2004-01-14 2007-09-04 Intelligent Results Predictive selection of content transformation in predictive modeling systems
US20050233287A1 (en) 2004-04-14 2005-10-20 Vladimir Bulatov Accessible computer system
US7593532B2 (en) 2004-04-22 2009-09-22 Netapp, Inc. Management of the retention and/or discarding of stored data
US20060047540A1 (en) 2004-09-01 2006-03-02 Hutten Bruce V System and method for underwriting
US7574048B2 (en) 2004-09-03 2009-08-11 Microsoft Corporation Freeform digital ink annotation recognition
US7996759B2 (en) 2004-09-14 2011-08-09 Oracle Internatonal Corporation Data insertion from a database into a fixed electronic template form that supports overflow data
US8171404B2 (en) 2004-10-08 2012-05-01 Sharp Laboratories Of America, Inc. Methods and systems for disassembly and reassembly of examination documents
US7457878B1 (en) 2004-11-04 2008-11-25 Sun Microsystems, Inc. Low-latency ultra-thin-client infrastructure
US7440967B2 (en) 2004-11-10 2008-10-21 Xerox Corporation System and method for transforming legacy documents into XML documents
JP4717453B2 (en) 2005-01-31 2011-07-06 キヤノン株式会社 File management apparatus and control method thereof
US20060195494A1 (en) 2005-02-09 2006-08-31 Process Path, Inc. Compiler, system and method for defining, assigning, executing and monitoring processes and tasks in process management applications
US20060195491A1 (en) 2005-02-11 2006-08-31 Lexmark International, Inc. System and method of importing documents into a document management system
US7650320B2 (en) 2005-02-24 2010-01-19 Nahava Inc. Method and system for efficient indexed storage for unstructured content
US20070067772A1 (en) 2005-06-09 2007-03-22 Bustamante Jorge M Tools and methods for task management
US7814078B1 (en) 2005-06-20 2010-10-12 Hewlett-Packard Development Company, L.P. Identification of files with similar content
EP1739552A1 (en) 2005-06-21 2007-01-03 Hewlett-Packard Development Company, L.P. Software installation method and computer system
US20090119133A1 (en) 2005-07-07 2009-05-07 Yeransian Luke W Method and system for policy underwriting and risk management over a network
US20070016829A1 (en) 2005-07-14 2007-01-18 Microsoft Corporation Test case generator
US8620713B2 (en) 2005-07-15 2013-12-31 Sap Ag Mechanism to control delegation and revocation of tasks in workflow system
US7757239B2 (en) 2005-08-29 2010-07-13 Sap Ag Systems and methods for suspending and resuming of a stateful web application
EP1927061A4 (en) 2005-09-23 2010-03-17 Live Cargo Inc Systems and methods for remote storage of electronic data
US8112394B2 (en) 2005-10-14 2012-02-07 Oracle International Corporation Long-lived data transactions
US20070233880A1 (en) 2005-10-20 2007-10-04 The Trustees Of Columbia University In The City Of New York Methods, media and systems for enabling a consistent web browsing session on different digital processing devices
CN1980232A (en) 2005-12-02 2007-06-13 国际商业机器公司 Telnet session maitenance method, telnet proxy and computer network system
US20070186214A1 (en) 2005-12-23 2007-08-09 Promptt Technologies Ltd. Method of managing a task
US7756143B2 (en) 2006-01-06 2010-07-13 Bank Of America Corporation Pushing documents to wireless data devices
US7421551B2 (en) 2006-02-03 2008-09-02 Emc Corporation Fast verification of computer backup data
US7702781B2 (en) 2006-03-03 2010-04-20 Teoco Corporation System and method of storing data files at a remote storage facility
CA2646167A1 (en) 2006-04-14 2007-10-25 Advanced Solutions, Inc. Method, system, and computer-readable medium to uniformly render document annotations across multiple computer platforms
US20070282927A1 (en) 2006-05-31 2007-12-06 Igor Polouetkov Method and apparatus to handle changes in file ownership and editing authority in a document management system
JP4873408B2 (en) 2006-06-15 2012-02-08 大日本スクリーン製造株式会社 Software system test case selection device and test case selection program
US7925659B2 (en) 2006-10-09 2011-04-12 Sap Ag Business process change analysis and test case adaptation based on change detection
US20080091846A1 (en) 2006-10-16 2008-04-17 Chi Hung Dang Creation and transaction processes of intelligent documents
EP2130189A1 (en) 2006-10-27 2009-12-09 Cecure Gaming Limited Online gaming system
US8074204B2 (en) 2006-11-21 2011-12-06 Microsoft Corporation Test automation for business applications
US8713513B2 (en) 2006-12-13 2014-04-29 Infosys Limited Evaluating programmer efficiency in maintaining software systems
US7949711B2 (en) 2007-01-24 2011-05-24 Chang Ypaul L Method, system, and program for integrating disjoined but related network components into collaborative communities
US20110283177A1 (en) 2007-04-05 2011-11-17 Troy Gates On-line document approval management system
US20090328171A1 (en) 2007-05-25 2009-12-31 Si Corporation Method and system for secure remote storage of electronic media
US7873945B2 (en) 2007-06-29 2011-01-18 Microsoft Corporation Automatically generating test cases for binary code
US20090055242A1 (en) 2007-08-24 2009-02-26 Gaurav Rewari Content identification and classification apparatus, systems, and methods
US8375126B2 (en) 2007-10-17 2013-02-12 Attachmate Corporation Methods, apparatus and techniques for suspending, resuming, and sharing sessions using object serialization
US20090199160A1 (en) 2008-01-31 2009-08-06 Yahoo! Inc. Centralized system for analyzing software performance metrics
US8266592B2 (en) 2008-04-21 2012-09-11 Microsoft Corporation Ranking and optimizing automated test scripts
US8661428B2 (en) 2008-04-25 2014-02-25 Vmware, Inc. Updating a file using differences and file format therefor
US7886046B1 (en) 2008-05-16 2011-02-08 Google Inc. Methods and apparatus for predicting impact of proposed changes and implementations in distributed networks
KR101254609B1 (en) 2008-05-19 2013-04-15 존슨 컨트롤스 테크놀러지 컴퍼니 Method of automatically formulating test cases for verifying at least one part of a piece of software
CA2736414C (en) 2008-09-09 2017-03-28 Applied Systems, Inc. Methods and apparatus for delivering documents
US8688744B2 (en) 2008-09-09 2014-04-01 Applied Systems, Inc. Method, system, and apparatus for scanning and importing documents
US8290971B2 (en) 2008-09-09 2012-10-16 Applied Systems, Inc. Method and apparatus for remotely displaying a list by determining a quantity of data to send based on the list size and the display control size
US8667419B2 (en) 2008-09-09 2014-03-04 Applied Systems, Inc. Method and apparatus for displaying a menu for accessing hierarchical content data including caching multiple menu states
US9491316B2 (en) 2008-09-09 2016-11-08 Applied Systems, Inc. Methods and apparatus for delivering documents
US8732588B2 (en) 2008-09-09 2014-05-20 Applied Systems, Inc. Method and apparatus for remotely displaying screen files and efficiently handling remote operator input
US8234219B2 (en) 2008-09-09 2012-07-31 Applied Systems, Inc. Method, system and apparatus for secure data editing
US20100161616A1 (en) 2008-12-16 2010-06-24 Carol Mitchell Systems and methods for coupling structured content with unstructured content
US8627290B2 (en) 2009-02-03 2014-01-07 International Business Machines Corporation Test case pattern matching
EP2409232A4 (en) 2009-03-16 2014-07-30 Guidance Software Inc System and method for entropy-based near-match analysis
US8423088B2 (en) 2009-07-22 2013-04-16 Microsoft Corporation Aggregated, interactive communication timeline
US8423962B2 (en) 2009-10-08 2013-04-16 International Business Machines Corporation Automated test execution plan generation
US20110145037A1 (en) 2009-12-16 2011-06-16 Vertafore, Inc. Document management method and apparatus to process a workflow task by parallel or serially processing subtasks thereof
US9063932B2 (en) 2009-12-18 2015-06-23 Vertafore, Inc. Apparatus, method and article to manage electronic or digital documents in a networked environment
US8700682B2 (en) 2009-12-24 2014-04-15 Vertafore, Inc. Systems, methods and articles for template based generation of markup documents to access back office systems
US20110173153A1 (en) 2010-01-08 2011-07-14 Vertafore, Inc. Method and apparatus to import unstructured content into a content management system
US8355934B2 (en) 2010-01-25 2013-01-15 Hartford Fire Insurance Company Systems and methods for prospecting business insurance customers
US8977739B2 (en) 2010-05-03 2015-03-10 Salesforce.Com, Inc. Configurable frame work for testing and analysis of client-side web browser page performance
US9251131B2 (en) 2010-05-04 2016-02-02 Docusign, Inc. Systems and methods for distributed electronic signature documents including version control
US9384198B2 (en) 2010-12-10 2016-07-05 Vertafore, Inc. Agency management system and content management system integration
US8650043B1 (en) 2010-12-30 2014-02-11 Stoneriver, Inc. Semantic model for insurance software components
US8667267B1 (en) 2011-01-31 2014-03-04 Gazzang, Inc. System and method for communicating with a key management system
US9535823B2 (en) 2011-02-28 2017-01-03 Typemock Ltd. Method and apparatus for detecting software bugs
CA2733857A1 (en) 2011-03-11 2012-09-11 Vertafore, Inc. Automated insurance policy form generation and completion
US20120232934A1 (en) 2011-03-11 2012-09-13 Vertafore, Inc. Automated insurance policy form generation and completion
US8731973B2 (en) 2011-04-19 2014-05-20 Vertafore, Inc. Overlaying images in automated insurance policy form generation
CA2737734A1 (en) 2011-04-19 2012-10-19 Vertafore, Inc. Overlaying images in automated insurance policy form generation
US9195965B2 (en) 2011-05-06 2015-11-24 David H. Sitrick Systems and methods providing collaborating among a plurality of users each at a respective computing appliance, and providing storage in respective data layers of respective user data, provided responsive to a respective user input, and utilizing event processing of event content stored in the data layers
US8825626B1 (en) 2011-08-23 2014-09-02 Emc Corporation Method and system for detecting unwanted content of files
US8543543B2 (en) 2011-09-13 2013-09-24 Microsoft Corporation Hash-based file comparison
CN104054301B (en) 2011-11-11 2018-05-08 卡尔加里科学公司 Remotely access the session transmission and hang-up in application framework
EP2783284B1 (en) 2011-11-22 2019-03-13 Solano Labs, Inc. System of distributed software quality improvement
WO2013158066A1 (en) 2012-04-16 2013-10-24 Hewlett-Packard Development Company, L.P. File upload based on hash value comparison
US9135147B2 (en) 2012-04-26 2015-09-15 International Business Machines Corporation Automated testing of applications with scripting code
US8954931B2 (en) 2012-08-03 2015-02-10 Sap Se System test scope and plan optimization
US20130080760A1 (en) 2012-08-10 2013-03-28 Concurix Corporation Execution Environment with Feedback Loop
US20150100552A1 (en) 2013-10-07 2015-04-09 QQ Solutions Inc. Managing non-committed computerized workflows

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133606A1 (en) * 2003-01-02 2004-07-08 Z-Force Communications, Inc. Directory aggregation for files distributed over a plurality of servers in a switched file system
US20040193455A1 (en) * 2003-03-28 2004-09-30 The Ohio Casualty Insurance Company Dynamic preloading of insurance product data in insurance policy management system
US8285685B2 (en) * 2005-11-28 2012-10-09 Commvault Systems, Inc. Metabase for facilitating data classification
US7711703B2 (en) * 2006-05-05 2010-05-04 Lockheed Martin Corporation System and method for immutably storing electronic assets in a large-scale computer system
US20080243897A1 (en) * 2007-03-28 2008-10-02 John Edward Petri Autonomic updating of templates in a content management system
US7725456B2 (en) * 2007-04-27 2010-05-25 Microsoft Corporation Item management with data sharing and synchronization
US20090287746A1 (en) * 2008-05-15 2009-11-19 International Business Machines Corporation Apparatus, system, and method for dynamic database driven document synchronization
US20110119574A1 (en) * 2009-11-13 2011-05-19 Hartford Fire Insurance Company System and method for translating insurance-related data

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070244935A1 (en) * 2006-04-14 2007-10-18 Cherkasov Aleksey G Method, system, and computer-readable medium to provide version management of documents in a file management system
US9063932B2 (en) 2009-12-18 2015-06-23 Vertafore, Inc. Apparatus, method and article to manage electronic or digital documents in a networked environment
US20110153560A1 (en) * 2009-12-18 2011-06-23 Victor Bryant Apparatus, method and article to manage electronic or digital documents in networked environment
US20110161375A1 (en) * 2009-12-24 2011-06-30 Doug Tedder Systems, methods and articles for template based generation of markup documents to access back office systems
US8700682B2 (en) 2009-12-24 2014-04-15 Vertafore, Inc. Systems, methods and articles for template based generation of markup documents to access back office systems
US8731973B2 (en) 2011-04-19 2014-05-20 Vertafore, Inc. Overlaying images in automated insurance policy form generation
US20130238627A1 (en) * 2012-03-06 2013-09-12 Microsoft Corporation Integrating searches
US20140181935A1 (en) * 2012-12-21 2014-06-26 Dropbox, Inc. System and method for importing and merging content items from different sources
US9325709B2 (en) * 2012-12-21 2016-04-26 Dropbox, Inc. System and method for importing and merging content items from different sources
US9507814B2 (en) 2013-12-10 2016-11-29 Vertafore, Inc. Bit level comparator systems and methods
US9367435B2 (en) 2013-12-12 2016-06-14 Vertafore, Inc. Integration testing method and system for web services
US9747556B2 (en) 2014-08-20 2017-08-29 Vertafore, Inc. Automated customized web portal template generation systems and methods
US11157830B2 (en) 2014-08-20 2021-10-26 Vertafore, Inc. Automated customized web portal template generation systems and methods
US9600400B1 (en) 2015-10-29 2017-03-21 Vertafore, Inc. Performance testing of web application components using image differentiation
CN106383812A (en) * 2016-08-30 2017-02-08 泰康保险集团股份有限公司 New contract policy test method and apparatus

Also Published As

Publication number Publication date
US9384198B2 (en) 2016-07-05
CA2761405A1 (en) 2012-06-10

Similar Documents

Publication Publication Date Title
US9384198B2 (en) Agency management system and content management system integration
US20190317944A1 (en) Methods and apparatus for integrated management of structured data from various sources and having various formats
US11782892B2 (en) Method and system for migrating content between enterprise content management systems
US9535965B2 (en) System and method for specifying metadata extension input for extending data warehouse
US8812439B2 (en) Folder structure and authorization mirroring from enterprise resource planning systems to document management systems
US8060483B2 (en) Method for indexing file structures in an enterprise data system
US7350191B1 (en) Computer implemented system and method for the generation of data access applications
US9031920B2 (en) Objects in a storage environment for connected applications
US20110209042A1 (en) Information Technology Standard Inventory Utility
US20140317563A1 (en) Generate field mapping
JP2009540461A (en) Declarative Management Framework (DECLARATIVEMAAGEENTENTRAMEWORK)
US9026652B1 (en) Web service asset management and web service information storage
US8983900B2 (en) Generic semantic layer for in-memory database reporting
US9355188B2 (en) Smart content optimizations based upon enterprise portal content meta-model
US20150081744A1 (en) Metadata model repository
CN104050225A (en) View variants in database schema mapping
US20190147088A1 (en) Reporting and data governance management
CN110941629A (en) Metadata processing method, device, equipment and computer readable storage medium
US8694559B2 (en) Using database content for multiple business data systems connected to one database
US20190147082A1 (en) Reporting and data governance management
US10552455B2 (en) Analytics enablement for engineering records
US11526895B2 (en) Method and system for implementing a CRM quote and order capture context service
US10922275B2 (en) Universe automatic generation of business layer fragments
US20230035835A1 (en) System and method of a modular framework for configuration and reuse of web components
US11204908B2 (en) Augmentation playback

Legal Events

Date Code Title Description
AS Assignment

Owner name: VERTAFORE, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BROWN, DERRICK;FINCH, STEVEN;WOLBERS, IGOR;AND OTHERS;SIGNING DATES FROM 20110126 TO 20110325;REEL/FRAME:026034/0026

AS Assignment

Owner name: CREDIT SUISSE AG, AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:VERTAFORE, INC.;REEL/FRAME:026214/0017

Effective date: 20110415

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH

Free format text: SECURITY AGREEMENT;ASSIGNOR:VERTAFORE, INC.;REEL/FRAME:026216/0769

Effective date: 20110415

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: VERTAFORE, INC., WASHINGTON

Free format text: RELEASE OF SECOND LIEN SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:039254/0075

Effective date: 20160630

Owner name: VERTAFORE, INC., WASHINGTON

Free format text: RELEASE OF FIRST LIEN SECURITY AGREEMENT;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:039254/0171

Effective date: 20160630

AS Assignment

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT

Free format text: FIRST LIEN SECURITY AGREEMENT;ASSIGNOR:VERTAFORE, INC.;REEL/FRAME:039265/0244

Effective date: 20160630

AS Assignment

Owner name: CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERA

Free format text: SECOND LIEN SECURITY AGREEMENT;ASSIGNOR:VERTAFORE, INC.;REEL/FRAME:039276/0196

Effective date: 20160630

AS Assignment

Owner name: RISKMATCH, INC., COLORADO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC;REEL/FRAME:046257/0032

Effective date: 20180702

Owner name: RISKMATCH, INC., COLORADO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:046256/0976

Effective date: 20180702

Owner name: VERTAFORE, INC., COLORADO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:046256/0976

Effective date: 20180702

Owner name: VERTAFORE, INC., COLORADO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC;REEL/FRAME:046257/0032

Effective date: 20180702

Owner name: NOMURA CORPORATE FUNDING AMERICAS, LLC, NEW YORK

Free format text: FIRST LIEN SECURITY AGREEMENT;ASSIGNORS:VERTAFORE, INC.;RISKMATCH, INC.;REEL/FRAME:046473/0238

Effective date: 20180702

AS Assignment

Owner name: NOMURA CORPORATE FUNDING AMERICAS, LLC, NEW YORK

Free format text: SECOND LIEN SECURITY AGREEMENT;ASSIGNORS:VERTAFORE, INC.;RISKMATCH, INC.;REEL/FRAME:047248/0081

Effective date: 20180702

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: RISKMATCH, INC., COLORADO

Free format text: SECOND LIEN RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:NOMURA CORPORATE FUNDING AMERICAS, LLC, AS COLLATERAL AGENT;REEL/FRAME:053705/0313

Effective date: 20200903

Owner name: VERTAFORE, INC., COLORADO

Free format text: FIRST LIEN RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:NOMURA CORPORATE FUNDING AMERICAS, LLC, AS COLLATERAL AGENT;REEL/FRAME:053705/0268

Effective date: 20200903

Owner name: RISKMATCH, INC., COLORADO

Free format text: FIRST LIEN RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:NOMURA CORPORATE FUNDING AMERICAS, LLC, AS COLLATERAL AGENT;REEL/FRAME:053705/0268

Effective date: 20200903

Owner name: VERTAFORE, INC., COLORADO

Free format text: SECOND LIEN RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:NOMURA CORPORATE FUNDING AMERICAS, LLC, AS COLLATERAL AGENT;REEL/FRAME:053705/0313

Effective date: 20200903

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8