US20120075884A1 - Lighting device employing a light guide plate and a plurality of light emitting diodes - Google Patents

Lighting device employing a light guide plate and a plurality of light emitting diodes Download PDF

Info

Publication number
US20120075884A1
US20120075884A1 US13/312,101 US201113312101A US2012075884A1 US 20120075884 A1 US20120075884 A1 US 20120075884A1 US 201113312101 A US201113312101 A US 201113312101A US 2012075884 A1 US2012075884 A1 US 2012075884A1
Authority
US
United States
Prior art keywords
array
leds
lens
guide plate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/312,101
Inventor
Willem Lubertus Ijzerman
Michel Cornelis Josephus Marie Vissenberg
Tim Dekker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Priority to US13/312,101 priority Critical patent/US20120075884A1/en
Publication of US20120075884A1 publication Critical patent/US20120075884A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • G02B6/0021Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources

Definitions

  • the present invention relates to lighting device comprising a light guide plate and at least one array of light emitting diodes
  • LEDs light emitting diodes
  • LEDs offer several advantages over traditional light sources, such as long lifetime, low operating voltage, instant on, etc. For these and other reasons, LEDs are becoming more and more suited for making lamps for several applications such as color variable lamps, spotlights, LCD backlighting, architectural lighting, stage lighting, etc.
  • FIGS. 1 a - 1 b A backlight based on side-emitting LEDs described in this document is schematically illustrated in FIGS. 1 a - 1 b .
  • the backlight 100 comprises a light guide 102 provided with cylindrical through holes 104 which are arranged in a linear array along an edge 106 of the light guide.
  • a side-emitting LED 108 In each through hole, there is provided a side-emitting LED 108 , whereby light from the LEDs is coupled into the light guide through the sidewall of the through holes, as illustrated by exemplary ray traces 110 .
  • the edge 106 is preferably reflective, to avoid unintended out-coupling of light via the edge.
  • a lighting device comprising a light guide plate and at least one array of light emitting diodes (LEDs), which LEDs are accommodated in holes arranged in the light guide plate, characterized by an array of lenses arranged such that light emitted by the LEDs passing the lens array is at least partly directed towards areas of the light guide plate free from holes.
  • LEDs light emitting diodes
  • the LEDs can be placed closer together and losses due to absorption or scattering at nearby LEDs in the lighting device are diminished. Overall, the luminous efficiency and power of the lighting device can be increased.
  • the lens array comprises at least one row of positive lenses, to readily direct the light in the wanted directions.
  • the lens pitch is about 1 ⁇ 2 of the LED pitch, which provides to a feasible design of the lighting device.
  • the lens array is placed between one LED array and a reflective edge of the light guide plate such that light emitted by the LEDs in the array and reflected by the reflector is directed by the lens array to pass between the LEDs in the array.
  • the LEDs are preferably aligned with every second junction between two adjacent lenses in the lens array.
  • the lens array is placed between a first LED array and a second LED array such that light emitted by the LEDs in the first array and passing the lens array is directed by the lens array to pass between the LEDs in the second array.
  • the distance between the first LED array and the lens array and the distance between the second LED array and the lens array are preferably equal.
  • the LEDs of the first array may be aligned with the optical axes of every second lens in a row of the lens array while the LEDs of the second array may be aligned with the optical axes of every other second lens in the row of the lens array.
  • the LEDs may be aligned with every second junction between two adjacent lenses in a row of the lens array.
  • the holes are cylindrical holes, and the LEDs are preferably side emitting LEDs, for useful in-coupling of light into the light guide plate.
  • FIG. 1 a is a top view of a backlight according to prior art.
  • FIG. 1 b is a cross-sectional side view of the backlight of FIG. 1 a.
  • FIG. 2 is a partial top view of a lighting device according to a first embodiment of the invention.
  • FIG. 3 is a partial top view of a lighting device according to a first variant of a second embodiment of the invention.
  • FIG. 4 is a partial top view of a lighting device according to a second variant of the second embodiment of the invention.
  • a light emitting diode (LED) based lighting device according to a first embodiment of the present invention will now be described with reference to FIG. 2 .
  • the lighting device denoted 10 comprises a light guide plate 12 .
  • the light guide plate 12 is transparent and can be made of glass or plastics (such as PMMA or PC), for example.
  • the lighting device 10 further comprises a linear array 14 of LEDs 16 arranged along a reflective edge 18 belonging to the light guide plate 12 .
  • the reflective edge 18 serves to direct any incident light back into the light guide plate 12 , to avoid unintentional out-coupling of light from the light guide plate 12 via the edge.
  • the LEDs 16 are preferably side-emitting omnidirectional LEDs.
  • the LEDs 16 are accommodated in cylindrical holes 20 having a circular lateral cross-section, which holes 20 are arranged in the light guide plate 12 . ‘Lateral’ is in relation to the plane of the light guide plate. Each hole 20 has a circumferential side facet (cylinder wall) 22 through which light from the accommodated LED 16 is to be laterally coupled into the light guide plate 12 .
  • the holes 20 could be through holes or holes having an opening towards one side of the light guide plate 12 only.
  • the lighting device 10 further comprises a lens array 24 .
  • the lens array 24 is placed between the reflective edge 18 and the LED array 14 , and it comprises one linear row of positive lenses 26 .
  • the lenses 26 may be formed separately or as integral parts of the light guide plate 12 . Any gap between the lenses 26 and the reflective edge 18 can be filled with air, for example.
  • the lens array 24 serves to direct light emitted from the LEDs 16 and reflected off the edge 18 towards areas of the light guide plate 12 free from or with no holes 20 (or LEDs 16 , consequently). Namely, the light is directed to pass between the LEDs 16 .
  • the LED pitch P 2 is the distance between the centers of two adjacent LEDs 16 , and “aligned with” means here that an imaginary line from the junction 30 , which line is perpendicular to the main linear direction of the lens array, runs through the center of a LED 16 .
  • the refractive index for PMMA is typically about 1.49 and the refractive index for PC is typically about 1.56.
  • lens radius R 1 is larger than 1 ⁇ 2 of the lens pitch P 1 (R 1 >1 ⁇ 2* P 1 ), otherwise the lens array 24 cannot be realized. Also, to avoid too curved lens surfaces, which can be difficult to make, the parameters should preferably be chosen such that R 1 >1 ⁇ 2* P 1 is by far not violated.
  • the radius of the cylindrical holes 18 is 3 mm and the LED pitch P 2 is 9 mm.
  • a light ray 32 emitted by the LED 16 a which light ray 32 otherwise would have been reflected off the edge 18 an into the adjacent hole 20 b (as in FIG. 1 a ), is focused by a corresponding lens 26 of the lens array 24 on its way towards the reflective edge 18 .
  • the light ray 32 is again focused by the corresponding lens 26 towards the space 28 ′ between the holes 20 a and 20 b and thus misses hole 20 b .
  • the direction of a light ray 34 emitted by the LED 16 a which light ray 34 otherwise would have been reflected off the edge 18 towards the space 28 ′′ between the holes 20 a and 20 c , is not altered significantly by the lens array 24 since the light ray 34 passes close to the optical axis of the lens 26 (whereas the light ray 32 passes the lens 26 off-axis and is refracted more strongly). Therefore, the light ray 34 is still directed towards the space 28 ′′ between the holes 20 a and 20 c and consequently misses the adjacent LEDs 16 .
  • the lens array 24 serves to image reflections of the LEDs 16 at spaces 28 between the real LEDs 16 b , whereby losses due to absorption or scattering at adjacent LEDs are diminished, and the luminous efficiency of the lighting device 10 is increased.
  • a lens array can also advantageously be used in a second embodiment, wherein two LED arrays are arranged parallel to each other, as illustrated in FIGS. 3-4 .
  • the function of the lens array is here to avoid that light from one array is absorbed or scattered at LEDs in the other array.
  • the lighting device denoted 10 comprises a light guide plate 12 .
  • the light guide plate 12 should be transparent and can be made of glass or plastics (such as PMMA or PC), for example.
  • the lighting device 10 further comprises two parallel linear arrays 14 of LEDs 16 .
  • the LEDs 16 are preferably side-emitting omnidirectional LEDs.
  • the LEDs 16 are accommodated in cylindrical holes 20 having a circular lateral cross-section, which holes 20 are arranged in the light guide plate 12 .
  • Each hole 20 has a circumferential side facet (cylinder wall) 22 through which light from the accommodated LED 16 is to be coupled into the light guide plate 12 .
  • the holes 20 could be through holes or holes having an opening towards one side of the light guide plate 12 only.
  • the lighting device 10 further comprises a lens array 24 arranged in the light guide plate 12 .
  • the lens array 24 is placed between the two LED arrays 14 in an in-plane arrangement.
  • the lens array 24 is formed by cutting or otherwise removing a portion 36 of the light guide plate 12 , which portion 36 has the form of a linear array of biconcave or double concave lenses.
  • Left is a linear lens array 24 with two rows of opposing positive lenses 26 .
  • the lens array 24 serves to direct light emitted from the LEDs 16 in one array and passing the lens array 24 towards areas of the light guide plate 12 free from or with no holes 20 (or LEDs 16 , consequently). Namely, the light is directed to pass between the LEDs 16 of the other array.
  • the refractive index for PMMA is typically about 1.49 and the refractive index for PC is typically about 1.56.
  • the various parameters mentioned above should be chosen such that lens radius R 1 is larger than 1 ⁇ 2 of the lens pitch P 1 (R 1 >1 ⁇ 2* P 1 ), otherwise the lens array 22 cannot be realized.
  • the parameters should preferably be chosen such that R 1 >1 ⁇ 2* P 1 is by far not violated.
  • the radius of the cylindrical holes 18 is 3 mm and the LED pitch P 2 is 9 mm.
  • the lens radius R 1 becomes 5 mm, which is larger than half the lens pitch P 1 , whereby R 1 >1 ⁇ 2* P 1 is satisfied.
  • a light beam 40 emitted by the LED 16 a ′ which light beam 40 otherwise at least partly would have struck at least one hole 20 b in the adjacent LED array 14 b , is focused by two opposing lenses 26 in the lens array 24 such that the LED 16 a ′ is imaged at space 28 b ′ between two holes 20 b in array 14 b . Consequently, the beam 40 misses the holes 20 b in the LED array 14 b .
  • a light beam 42 is focused by lens array 24 imaging the LED 16 a ′ at space 28 b ′′, and so on.
  • the lens array 24 serves to image the LEDs 16 a of one array 14 a at spaces 28 b between the LEDs 16 b of the other array 14 b , and vice versa, whereby losses due to absorption or scattering at LEDs in the nearby array are diminished, and the luminous efficiency of the lighting device 10 is increased.
  • the LEDs 16 are aligned with every second junction 30 between two adjacent lenses 26 in a row of the lens array 22 .
  • a light beam 44 emitted by the LED 16 a ′ is focused by two opposing lenses 26 in the lens array 24 such that the LED 16 a ′ is imaged at space 28 b ′ between two holes 20 b in array 14 b . Consequently, the beam 44 misses the holes 20 b in the LED array 14 b .
  • a light beam 46 is focused by lens array 24 imaging the LED 16 a ′is at space 28 b ′′, and so on.
  • the LEDs could be arranged in a curved array along a curved reflective edge, given that the radius of the curvature is considerably larger than the LED pitch.
  • the lens array could comprise only one row of positive lenses. This requires that the lenses are more curved.
  • the LED pitch-lens pitch ratio could be different, for example 1:1.
  • the first and second embodiments could be combined in a single device comprising several parallel LED arrays, one of which is placed along a reflective edge of the light guide plate.

Abstract

The present invention relates to a lighting device including a light guide plate, and at least one array of light emitting diodes (LEDs), which LEDs are accommodated in holes arranged in the light guide plate. In some embodiments, the device is characterized by an array of lenses arranged such that light emitted by the LEDs passing the lens array is at least partly directed towards areas of the light guide plate free from holes.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation under 35 U.S.C. §120 of U.S. patent application Ser. No. 12/445,328, which is a national stage application under 35 U.S.C. §371 of International Application No. PCT/IB2007/054166 filed on Oct. 12, 2007, which claims priority to European Application No. 06122321.0, filed on Oct. 16, 2006, and European Application No. 07100361.0 filed on Jan. 11, 2007, both incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to lighting device comprising a light guide plate and at least one array of light emitting diodes
  • BACKGROUND OF THE INVENTION
  • Progress in the brightness, lumen efficacy and affordability of solid state light sources such as light emitting diodes (LEDs) enables new lighting applications that are no longer restricted to niche markets. LEDs offer several advantages over traditional light sources, such as long lifetime, low operating voltage, instant on, etc. For these and other reasons, LEDs are becoming more and more suited for making lamps for several applications such as color variable lamps, spotlights, LCD backlighting, architectural lighting, stage lighting, etc.
  • For many lighting applications, the light of a single LED is not sufficient, and light of multiple LEDs needs to be combined to form a light source. One solution is to mix light of multiple LEDs in a light guide, before the light leaves the lighting device. An example of such a solution is disclosed in the document “LED Backlight designs using Luxeon high flux light source solutions” by Lumileds, Seattle 2004, http://www.lumileds.com/pdfs/Luxeon_light_source_solutions.pdf, incorporated herein by reference. A backlight based on side-emitting LEDs described in this document is schematically illustrated in FIGS. 1 a-1 b. With reference to FIGS. 1 a-1 b, the backlight 100 comprises a light guide 102 provided with cylindrical through holes 104 which are arranged in a linear array along an edge 106 of the light guide. In each through hole, there is provided a side-emitting LED 108, whereby light from the LEDs is coupled into the light guide through the sidewall of the through holes, as illustrated by exemplary ray traces 110. The edge 106 is preferably reflective, to avoid unintended out-coupling of light via the edge.
  • However, in such a solution when a dense array of LEDs 108 is placed close to the edge 106 it may occur that light from one LED 108 a is directed via reflection off the edge 106 (exemplary ray trace 112) towards another nearby hole 104 b and gets absorbed or scattered at the LED 108 b inside this hole. Thus, the lumen efficiency of such a lighting device is degraded.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to overcome or at least alleviate this problem, and to provide a lighting device with improved lumen efficiency.
  • This and other objects that will be apparent from the following description are achieved by means of a lighting device, according to the appended claim 1, comprising a light guide plate and at least one array of light emitting diodes (LEDs), which LEDs are accommodated in holes arranged in the light guide plate, characterized by an array of lenses arranged such that light emitted by the LEDs passing the lens array is at least partly directed towards areas of the light guide plate free from holes.
  • Because of the lens array, no or little light strikes the nearby holes. Therefore, the LEDs can be placed closer together and losses due to absorption or scattering at nearby LEDs in the lighting device are diminished. Overall, the luminous efficiency and power of the lighting device can be increased.
  • Preferably, the lens array comprises at least one row of positive lenses, to readily direct the light in the wanted directions. Also preferably, the lens pitch is about ½ of the LED pitch, which provides to a feasible design of the lighting device.
  • In one embodiment, the lens array is placed between one LED array and a reflective edge of the light guide plate such that light emitted by the LEDs in the array and reflected by the reflector is directed by the lens array to pass between the LEDs in the array. Thereby, losses due to absorption or scattering at adjacent LEDs/holes in the array are diminished, and the luminous efficiency of the lighting device is increased. To further boost these effects, the LEDs are preferably aligned with every second junction between two adjacent lenses in the lens array.
  • In another embodiment, the lens array is placed between a first LED array and a second LED array such that light emitted by the LEDs in the first array and passing the lens array is directed by the lens array to pass between the LEDs in the second array. Thereby, losses due to absorption or scattering at LEDs/holes in the nearby array are diminished, and the luminous efficiency of the lighting device is increased. To further boost these effects, the distance between the first LED array and the lens array and the distance between the second LED array and the lens array are preferably equal. Further, the LEDs of the first array may be aligned with the optical axes of every second lens in a row of the lens array while the LEDs of the second array may be aligned with the optical axes of every other second lens in the row of the lens array. Alternatively, the LEDs may be aligned with every second junction between two adjacent lenses in a row of the lens array.
  • Preferably, the holes are cylindrical holes, and the LEDs are preferably side emitting LEDs, for useful in-coupling of light into the light guide plate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • This and other aspects of the present invention will now be described in more detail, with reference to the appended drawings showing currently preferred embodiments of the invention.
  • FIG. 1 a is a top view of a backlight according to prior art.
  • FIG. 1 b is a cross-sectional side view of the backlight of FIG. 1 a.
  • FIG. 2 is a partial top view of a lighting device according to a first embodiment of the invention.
  • FIG. 3 is a partial top view of a lighting device according to a first variant of a second embodiment of the invention.
  • FIG. 4 is a partial top view of a lighting device according to a second variant of the second embodiment of the invention.
  • DETAILED DESCRIPTION
  • A light emitting diode (LED) based lighting device according to a first embodiment of the present invention will now be described with reference to FIG. 2.
  • The lighting device denoted 10 comprises a light guide plate 12. The light guide plate 12 is transparent and can be made of glass or plastics (such as PMMA or PC), for example.
  • The lighting device 10 further comprises a linear array 14 of LEDs 16 arranged along a reflective edge 18 belonging to the light guide plate 12. The reflective edge 18 serves to direct any incident light back into the light guide plate 12, to avoid unintentional out-coupling of light from the light guide plate 12 via the edge. The LEDs 16 are preferably side-emitting omnidirectional LEDs.
  • The LEDs 16 are accommodated in cylindrical holes 20 having a circular lateral cross-section, which holes 20 are arranged in the light guide plate 12. ‘Lateral’ is in relation to the plane of the light guide plate. Each hole 20 has a circumferential side facet (cylinder wall) 22 through which light from the accommodated LED 16 is to be laterally coupled into the light guide plate 12. The holes 20 could be through holes or holes having an opening towards one side of the light guide plate 12 only.
  • According to the invention, the lighting device 10 further comprises a lens array 24. The lens array 24 is placed between the reflective edge 18 and the LED array 14, and it comprises one linear row of positive lenses 26. The lenses 26 may be formed separately or as integral parts of the light guide plate 12. Any gap between the lenses 26 and the reflective edge 18 can be filled with air, for example. The lens array 24 serves to direct light emitted from the LEDs 16 and reflected off the edge 18 towards areas of the light guide plate 12 free from or with no holes 20 (or LEDs 16, consequently). Namely, the light is directed to pass between the LEDs 16. To this end, in a preferred embodiment, the lens pitch P1 is ½ of the LED pitch P2 (P1=½* P2), and with every second junction 30 between two adjacent lenses 26 in the linear lens array 24 there is aligned an LED 16. The LED pitch P2 is the distance between the centers of two adjacent LEDs 16, and “aligned with” means here that an imaginary line from the junction 30, which line is perpendicular to the main linear direction of the lens array, runs through the center of a LED 16. Further, the focal strength of a lens 26 should satisfy the following relation 1/f=1/D, where f is the focal length and D is the distance between the LED array 14 and the lens array 24 (the total lens strength ftot is formed by passing through lens 26 twice; 1/ftot=1/f+1/f=2/f and 1/ftot=1/D+1/D=2/D; hence 1/f=1/D). The focal length f is given by f=(n/(n−1))R1, where n is the refractive index of the material of the light guide plate 12 and R1 is the radius of each lens 26. The refractive index for PMMA is typically about 1.49 and the refractive index for PC is typically about 1.56. The various parameters mentioned above should be chosen such that lens radius R1 is larger than ½ of the lens pitch P1 (R1>½* P1), otherwise the lens array 24 cannot be realized. Also, to avoid too curved lens surfaces, which can be difficult to make, the parameters should preferably be chosen such that R1>½* P1 is by far not violated. In a feasible design, the radius of the cylindrical holes 18 is 3 mm and the LED pitch P2 is 9 mm. The lens pitch P1 is half the LED pitch P2, that is P1=4.5 mm. For example, when D=15, the lens radius R1 becomes D*(n−1)/n=5 mm, which is larger than half the lens pitch P1, whereby R1>½* P1 is satisfied.
  • Upon operation of the lighting device 10, a light ray 32 emitted by the LED 16 a, which light ray 32 otherwise would have been reflected off the edge 18 an into the adjacent hole 20 b (as in FIG. 1 a), is focused by a corresponding lens 26 of the lens array 24 on its way towards the reflective edge 18. After reflection off the edge 18, the light ray 32 is again focused by the corresponding lens 26 towards the space 28′ between the holes 20 a and 20 b and thus misses hole 20 b. On the other hand, the direction of a light ray 34 emitted by the LED 16 a, which light ray 34 otherwise would have been reflected off the edge 18 towards the space 28″ between the holes 20 a and 20 c, is not altered significantly by the lens array 24 since the light ray 34 passes close to the optical axis of the lens 26 (whereas the light ray 32 passes the lens 26 off-axis and is refracted more strongly). Therefore, the light ray 34 is still directed towards the space 28″ between the holes 20 a and 20 c and consequently misses the adjacent LEDs 16. Overall, the lens array 24 serves to image reflections of the LEDs 16 at spaces 28 between the real LEDs 16 b, whereby losses due to absorption or scattering at adjacent LEDs are diminished, and the luminous efficiency of the lighting device 10 is increased.
  • A lens array can also advantageously be used in a second embodiment, wherein two LED arrays are arranged parallel to each other, as illustrated in FIGS. 3-4. The function of the lens array is here to avoid that light from one array is absorbed or scattered at LEDs in the other array.
  • In a first variant (FIG. 3) of the second embodiment, the lighting device denoted 10 comprises a light guide plate 12. The light guide plate 12 should be transparent and can be made of glass or plastics (such as PMMA or PC), for example.
  • The lighting device 10 further comprises two parallel linear arrays 14 of LEDs 16. The LEDs 16 are preferably side-emitting omnidirectional LEDs.
  • The LEDs 16 are accommodated in cylindrical holes 20 having a circular lateral cross-section, which holes 20 are arranged in the light guide plate 12. Each hole 20 has a circumferential side facet (cylinder wall) 22 through which light from the accommodated LED 16 is to be coupled into the light guide plate 12. The holes 20 could be through holes or holes having an opening towards one side of the light guide plate 12 only.
  • According to the invention, the lighting device 10 further comprises a lens array 24 arranged in the light guide plate 12. The lens array 24 is placed between the two LED arrays 14 in an in-plane arrangement. The lens array 24 is formed by cutting or otherwise removing a portion 36 of the light guide plate 12, which portion 36 has the form of a linear array of biconcave or double concave lenses. Left is a linear lens array 24 with two rows of opposing positive lenses 26. The lens array 24 serves to direct light emitted from the LEDs 16 in one array and passing the lens array 24 towards areas of the light guide plate 12 free from or with no holes 20 (or LEDs 16, consequently). Namely, the light is directed to pass between the LEDs 16 of the other array. To this end, in a preferred embodiment, the lens pitch P1 is ½ of the LED pitch P2 (P1=½* P2), the distance Da between the LED array 14 a and the lens array 24 and the distance Db between the LED array 14 b and the lens array 24 are equal (Da=Db), and the LEDs 16 a of array 14 a are aligned with the optical axes 38 a of every second lenses 26 of a row while the LEDs 16 b of array 14 b are aligned with the optical axes 38 b of every other second lenses 26 of the row (thus, the two arrays 14 a and 14 b are displaced with half a LED pitch P2 in relation to each other). Further, the focal strength of two opposing lenses 26 should satisfy the following relation 1/f=1/Da+1/Db, where f is the focal length. The focal length f is given by f=(½)(n/(n−1))R1, where n is the refractive index of the material of the light guide plate 12 and R1 is the radius of each lens 26. The refractive index for PMMA is typically about 1.49 and the refractive index for PC is typically about 1.56. The various parameters mentioned above should be chosen such that lens radius R1 is larger than ½ of the lens pitch P1 (R1>½* P1), otherwise the lens array 22 cannot be realized. Also, to avoid too curved lens surfaces, which can be difficult to make, the parameters should preferably be chosen such that R1>½* P1 is by far not violated. In a feasible design, the radius of the cylindrical holes 18 is 3 mm and the LED pitch P2 is 9 mm. The lens pitch P1 is half the LED pitch P2, that is P1=4.5 mm. For a system with Da=Db=15, the lens radius R1 becomes 5 mm, which is larger than half the lens pitch P1, whereby R1 >½* P1 is satisfied.
  • Upon operation of the lighting device 10, a light beam 40 emitted by the LED 16 a′, which light beam 40 otherwise at least partly would have struck at least one hole 20 b in the adjacent LED array 14 b, is focused by two opposing lenses 26 in the lens array 24 such that the LED 16 a′ is imaged at space 28 b′ between two holes 20 b in array 14 b. Consequently, the beam 40 misses the holes 20 b in the LED array 14 b. Similarly, a light beam 42 is focused by lens array 24 imaging the LED 16 a′ at space 28 b″, and so on. Overall, the lens array 24 serves to image the LEDs 16 a of one array 14 a at spaces 28 b between the LEDs 16 b of the other array 14 b, and vice versa, whereby losses due to absorption or scattering at LEDs in the nearby array are diminished, and the luminous efficiency of the lighting device 10 is increased.
  • In a second variant (FIG. 4) of the second embodiment, the LEDs 16 are aligned with every second junction 30 between two adjacent lenses 26 in a row of the lens array 22. Here a light beam 44 emitted by the LED 16 a′ is focused by two opposing lenses 26 in the lens array 24 such that the LED 16 a′ is imaged at space 28 b′ between two holes 20 b in array 14 b. Consequently, the beam 44 misses the holes 20 b in the LED array 14 b. Similarly, a light beam 46 is focused by lens array 24 imaging the LED 16 a′is at space 28 b″, and so on.
  • The person skilled in the art realizes that the present invention by no means is limited to the preferred embodiments described above. On the contrary, many modifications and variations are possible within the scope of the appended claims. For example, in the first embodiment, instead of a straight reflective edge and linear LED array, the LEDs could be arranged in a curved array along a curved reflective edge, given that the radius of the curvature is considerably larger than the LED pitch. In the second embodiment, the lens array could comprise only one row of positive lenses. This requires that the lenses are more curved. In both the first and second embodiments, the LED pitch-lens pitch ratio could be different, for example 1:1. Also, the first and second embodiments could be combined in a single device comprising several parallel LED arrays, one of which is placed along a reflective edge of the light guide plate.

Claims (10)

1. A lighting device, comprising:
a light guide plate defining a plurality of holes, at least one array of light emitting diodes (LEDs) at least partially disposed in the holes; and
an array of lenses arranged such that light emitted by the LEDs passing the lens array is directed to pass between the LEDs in the array of LEDs, wherein the lens array is placed between one LED array and a reflective edge of the light guide plate such that light emitted by the LEDs in the array and reflected by the reflective edge is directed by the lens array to pass between the LEDs in the array.
2. The device according to claim 1, wherein the array of lenses comprises at least one row of positive lenses.
3. The device according to claim 1, wherein, for at least one lens in the array of lens, the lens pitch is about ½ of the LED pitch and is smaller than about ½ of the lens radius.
4. The device according to claim 1, wherein the LEDs are aligned with every second junction between two adjacent lenses in the lens array.
5. The device according to claim 1, wherein the holes are substantially cylindrical, and the LEDs are side-emitting omnidirectional LEDs.
6. A lighting device, comprising:
a light guide plate defining a plurality of holes, at least one array of light emitting diodes (LEDs) at least partially disposed in the holes; and
an array of lenses arranged such that light emitted by the LEDs passing the lens array is directed to pass between the LEDs in the array of LEDs, wherein, for at least one lens in the array of lens, the lens pitch is about ½ of the LED pitch and is smaller than about ½ of the lens radius
7. The device according to claim 6, wherein the lens array is placed between one LED array and a reflective edge of the light guide plate such that light emitted by the LEDs in the array and reflected by the reflective edge is directed by the lens array to pass between the LEDs in the array.
8. The device according to claim 7, wherein the LEDs are aligned with every second junction between two adjacent lenses in the lens array.
9. The device according to claim 6, wherein the holes are substantially cylindrical,
10. The device according to claim 6, wherein the LEDs are side-emitting omnidirectional LEDs.
US13/312,101 2006-10-16 2011-12-06 Lighting device employing a light guide plate and a plurality of light emitting diodes Abandoned US20120075884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/312,101 US20120075884A1 (en) 2006-10-16 2011-12-06 Lighting device employing a light guide plate and a plurality of light emitting diodes

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP06122321.0 2006-10-16
EP06122321 2006-10-16
EP07100361 2007-01-11
EP07100361.0 2007-01-11
PCT/IB2007/054166 WO2008047285A1 (en) 2006-10-16 2007-10-12 Lighting device
US44532809A 2009-04-13 2009-04-13
US13/312,101 US20120075884A1 (en) 2006-10-16 2011-12-06 Lighting device employing a light guide plate and a plurality of light emitting diodes

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2007/054166 Continuation WO2008047285A1 (en) 2006-10-16 2007-10-12 Lighting device
US44532809A Continuation 2006-10-16 2009-04-13

Publications (1)

Publication Number Publication Date
US20120075884A1 true US20120075884A1 (en) 2012-03-29

Family

ID=39125592

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/445,328 Expired - Fee Related US8083390B2 (en) 2006-10-16 2007-10-12 Lighting device employing a light guide plate and a plurality of light emitting diodes
US13/312,101 Abandoned US20120075884A1 (en) 2006-10-16 2011-12-06 Lighting device employing a light guide plate and a plurality of light emitting diodes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/445,328 Expired - Fee Related US8083390B2 (en) 2006-10-16 2007-10-12 Lighting device employing a light guide plate and a plurality of light emitting diodes

Country Status (5)

Country Link
US (2) US8083390B2 (en)
EP (1) EP2082166A1 (en)
JP (1) JP5215312B2 (en)
TW (1) TW200834011A (en)
WO (1) WO2008047285A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130163272A1 (en) * 2011-12-23 2013-06-27 Touchsensor Technologies, Llc User interface lighting apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102817A (en) * 2009-12-22 2011-06-22 株式会社住田光学玻璃 Light-emitting device, light source and method of manufacturing the same
JP2011238366A (en) 2010-05-06 2011-11-24 Funai Electric Co Ltd Plane light-emitting device
TWI476350B (en) 2012-03-21 2015-03-11 Young Lighting Technology Inc Light source module
US20140218968A1 (en) * 2013-02-05 2014-08-07 National Central University Planar lighting device
JP2016162714A (en) * 2015-03-05 2016-09-05 セイコーエプソン株式会社 Luminaire, display device and portable electronic equipment
JP7239042B2 (en) * 2019-03-07 2023-03-14 オムロン株式会社 Light-emitting device and vehicle lamp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184685A (en) * 2002-12-03 2004-07-02 Matsushita Electric Ind Co Ltd Display device
US20060267037A1 (en) * 2005-05-31 2006-11-30 Samsung Electro-Mechanics Co., Ltd. Light emitting diode package
US7534013B1 (en) * 2003-01-16 2009-05-19 Simon Jerome H Illuminating devices using small PT sources including LEDs
US7708444B2 (en) * 2004-02-05 2010-05-04 Mitsubishi Denki Kabushiki Kaisha Surface light source device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712481B2 (en) * 1995-06-27 2004-03-30 Solid State Opto Limited Light emitting panel assemblies
WO1997001728A1 (en) 1995-06-29 1997-01-16 Siemens Components, Inc. Localized illumination using tir technology
JP4159059B2 (en) * 1998-06-05 2008-10-01 シチズン電子株式会社 Planar light source unit
DE60033264T2 (en) * 1999-12-28 2007-11-08 Fujitsu Kasei Ltd., Yokohama Lighting apparatus for display
US6876408B2 (en) * 2000-02-14 2005-04-05 Fuji Photo Film Co., Ltd. Collimating plate, lighting apparatus and liquid crystal display apparatus
CN100487304C (en) 2000-09-25 2009-05-13 三菱丽阳株式会社 Light source device
US6987613B2 (en) 2001-03-30 2006-01-17 Lumileds Lighting U.S., Llc Forming an optical element on the surface of a light emitting device for improved light extraction
US7011420B2 (en) 2002-09-04 2006-03-14 Eastman Kodak Company Planar directed light source
US7557781B2 (en) * 2003-01-06 2009-07-07 Tpo Displays Corp. Planar display structure with LED light source
JP2004355889A (en) * 2003-05-28 2004-12-16 Mitsubishi Electric Corp Planar light source device and display device
TW200522387A (en) 2003-12-26 2005-07-01 Ind Tech Res Inst High-power LED planarization encapsulation structure
US7808706B2 (en) * 2004-02-12 2010-10-05 Tredegar Newco, Inc. Light management films for displays
US7463315B2 (en) * 2004-03-11 2008-12-09 Tpo Displays Corp. Light coupling structure on light guide plate in a backlight module
JP4413668B2 (en) * 2004-03-23 2010-02-10 日本ライツ株式会社 Light guide plate, light source device and flat light emitting device
WO2006003913A1 (en) * 2004-07-06 2006-01-12 Asagicreate Co., Ltd. Surface light source and electrically illuminated signboard
EP1640756A1 (en) 2004-09-27 2006-03-29 Barco N.V. Methods and systems for illuminating
US7182499B2 (en) * 2004-11-12 2007-02-27 Radiant Opto-Electronics Corporation Light-conductive board and a rear light module using the light-conductive board
KR100668314B1 (en) * 2004-11-22 2007-01-12 삼성전자주식회사 Back light unit
JP2006302710A (en) * 2005-04-21 2006-11-02 Toshiba Matsushita Display Technology Co Ltd Surface light source device
TWM284913U (en) * 2005-09-09 2006-01-01 Innolux Display Corp Light guide plate, backlight module and liquid crystal display device
TW200730951A (en) * 2006-02-10 2007-08-16 Wintek Corp Guide light module
US20080007964A1 (en) * 2006-07-05 2008-01-10 Tai-Yen Lin Light guiding structure
KR100818278B1 (en) * 2006-10-16 2008-04-01 삼성전자주식회사 Illuminating device for liquid crystal display
TW201106057A (en) * 2009-08-14 2011-02-16 Coretronic Corp Lighting condensing film, backlight module and liquid crystal display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184685A (en) * 2002-12-03 2004-07-02 Matsushita Electric Ind Co Ltd Display device
US7534013B1 (en) * 2003-01-16 2009-05-19 Simon Jerome H Illuminating devices using small PT sources including LEDs
US7708444B2 (en) * 2004-02-05 2010-05-04 Mitsubishi Denki Kabushiki Kaisha Surface light source device
US20060267037A1 (en) * 2005-05-31 2006-11-30 Samsung Electro-Mechanics Co., Ltd. Light emitting diode package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130163272A1 (en) * 2011-12-23 2013-06-27 Touchsensor Technologies, Llc User interface lighting apparatus

Also Published As

Publication number Publication date
WO2008047285A1 (en) 2008-04-24
JP2010507191A (en) 2010-03-04
US20110051456A1 (en) 2011-03-03
EP2082166A1 (en) 2009-07-29
US8083390B2 (en) 2011-12-27
TW200834011A (en) 2008-08-16
JP5215312B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
CN101529158B (en) Lighting device
US20120075884A1 (en) Lighting device employing a light guide plate and a plurality of light emitting diodes
KR100723857B1 (en) Light guide plate, surface light source device, and display device
JP4087864B2 (en) Flat light emitting device
RU2475672C2 (en) Compact optical system and lenses for producing uniform collimated light
US6561660B2 (en) Light guiding device of a liquid crystal display
WO2013035788A1 (en) Illumination device and illumination stand
US8118467B2 (en) Light guide plate and edge-lighting type backlight module
CN101655213A (en) Light-emitting diode light source module
JP4638815B2 (en) Light guide plate having light lens array, light irradiation device, and liquid crystal display device
US8465180B2 (en) Optical element for asymmetric light distribution
JP4653326B2 (en) Lighting equipment
US10173584B2 (en) Vehicle lamp
US8066419B2 (en) Lighting device employing a light guide plate and a plurality of light emitting diodes
TW201414957A (en) Illumination device
US20110110079A1 (en) Light guide illumination device
TWI443382B (en) Illumination device and lens thereof
JP5419852B2 (en) Lighting device
KR20050029768A (en) Surface light illumination apparatus
CN218938539U (en) Optical lens and lighting lamp
West Side-emitting high-power LEDs and their application in illumination
JP2004139901A (en) Lighting device
TWI409411B (en) Led light source module
JP2003007112A (en) Surface light source
JP2005005038A (en) Lighting device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE