Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20110187262 A1
Publication typeApplication
Application numberUS 13/087,615
Publication date4 Aug 2011
Filing date15 Apr 2011
Priority date3 Aug 2006
Also published asCN102062359A, EP2055147A2, EP2055147A4, US8067884, US9045688, US9595644, US20080029720, US20100067216, US20100067217, US20120182715, US20120187441, US20120187822, US20120187823, US20160141461, WO2008019041A2, WO2008019041A3
Publication number087615, 13087615, US 2011/0187262 A1, US 2011/187262 A1, US 20110187262 A1, US 20110187262A1, US 2011187262 A1, US 2011187262A1, US-A1-20110187262, US-A1-2011187262, US2011/0187262A1, US2011/187262A1, US20110187262 A1, US20110187262A1, US2011187262 A1, US2011187262A1
InventorsYi-Qun Li
Original AssigneeIntematix Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Led lighting arrangement including light emitting phosphor
US 20110187262 A1
Abstract
A lighting arrangement comprises: a light transmissive substantially spherical shell; at least one LED located within the shell and operable to generate light of a first wavelength range and at least one phosphor operable to absorb at least a portion of the light emitted by the LED(s) and to emit light of a different wavelength range, wherein light generated by the arrangement comprises the combined light emitted by the LED(s) and the phosphor(s). The phosphor(s) can be provided as a layer on at least a part of the inner and/or outer surfaces of the shell or incorporated within the shell.
Images(5)
Previous page
Next page
Claims(19)
1. A lighting arrangement comprising: a light transmissive substantially spherical shell; at least one LED located within the shell and operable to generate light of a first wavelength range and at least one phosphor operable to absorb at least a portion of the light emitted by the LED and to emit light of a different wavelength range, wherein light generated by the arrangement comprises the combined light emitted by the LED and the phosphor and wherein the at least one phosphor is selected from the group consisting of: being provided as a layer on at least a part of an inner surface of the shell; being provided as a layer on at least a part of an outer surface of the shell; being incorporated within the shell and combinations thereof.
2. The lighting arrangement of claim 1, and further comprising a second phosphor selected from the group consisting of: being provided as respective layer on at least a part of an inner surface of the shell; being provided as a respective layer on at least a part of an outer surface of the shell; being provided as a mixture with the first phosphor as a layer on at least a part of an inner surface of the shell; being provided as a mixture with the first phosphor as a layer on at least a part of an outer surface of the shell; being incorporated as a mixture with the first phosphor within at least a part of the shell and combinations thereof.
3. The lighting arrangement according to claim 1, in which the phosphor layer is of thickness in a range 20 to 500 μm.
4. The lighting arrangement according to claim 1, in which the shell is selected from the group consisting of: a plastics material, a polycarbonate, a glass and a silica glass.
5. The lighting arrangement according to claim 1, in which the at least one phosphor has a general formula A2SiO4:Eu2+D where A is a divalent metal selected from the group consisting of Sr, Ca, Ba, Mg, Zn and Cd and D is a dopant selected from the group consisting of F, Cl, Br, I, P, S and N.
6. The lighting arrangement according to claim 1, in which the at least one phosphor has a formula (YA)3(AlB)5(OC)12:Ce3+ where A is a trivalent metal selected from the group consisting of Gd, Tb, La, Sm or divalent metal ions such as Sr, Ca, Ba, Mg, Zn and Cd; B is selected from the group consisting of Si, B, P, and Ga; and C is a dopant selected from the group consisting of F, Cl, Br, I, P, S and N.
7. The lighting arrangement according to claim 1, in which the at least one phosphor comprises an orange-red silicate-based phosphor having a formula (SrM1)3Si(OD)5:Eu where M1 is selected from the group consisting of Ba, Ca, Mg, Zn; and D is selected from the group consisting of F, Cl, S, and N.
8. The lighting arrangement according to claim 1, in which the phosphor comprises a red silicon nitride based phosphor having a formula (SrM1)Si5N8 where M1 is selected from the group consisting Sr, Ca, Mg, and Zn.
9. The lighting arrangement according to claim 1, in which the phosphor comprises a red sulfate based phosphor having a formula (SrM1)S where M1 is selected from the group consisting of Ca, Ba, and Mg.
10. The lighting arrangement according to claim 1, in which the phosphor comprises a green sulfate based phosphor having a formula (SrM1)(GaM2)2S4:Eu where M1 is selected from the group consisting of Ca, Ba, and Mg, and M2 is selected from the group consisting of Al and In.
11. The lighting arrangement according to claim 1, in which the at least one phosphor comprises a powder which is incorporated within one of a light transmissive epoxy resin, a silicone material and a polymer material.
12. The lighting arrangement according to claim 11, and further comprising incorporating a light diffusing material with the phosphor.
13. The lighting arrangement according to claim 12, in which the light diffusing material is selected from the group consisting of: titanium oxide, silica and alumina
14. The lighting arrangement according to claim 1, in which the at least one LED comprises gallium nitride based LED.
15. The lighting arrangement according to claim 1, in which the LED is operable to emit light having a wavelength in a range of 300 nm to 500 nm.
16. The lighting arrangement according to claim 1, in which the phosphor is configured to emit light having a wavelength ranging from 450 nm to 700 nm.
17. The lighting arrangement according to claim 1, in which the arrangement is configured to generate white light.
18. A lighting arrangement comprising: a light transmissive substantially spherical shell; at least one LED located within the shell and operable to generate excitation light having a wavelength ranging from 300 nm to 500 nm and at least one phosphor operable to absorb at least a portion of the LED light and to emit light having a wavelength ranging from 450 to 700 nm, wherein light generated by the arrangement comprises the combined light emitted by the LED and the phosphor and is configured to appear white in color and wherein the at least one phosphor is selected from the group consisting of: being provided as a layer on at least a part of the inner curved surface of the shell; being provided as a layer on at least a part of the outer curved surface of the shell; being incorporated within the shell and combinations thereof.
19. An optical component for a lighting arrangement comprising at least one LED operable to generate excitation light of a first wavelength range; at least one phosphor operable to absorb at least a portion of the light generated by the LED and to emit light of a second wavelength range, wherein light generated by the arrangement comprises the combined light of the first and second wavelength ranges; the optical component comprising a light transmissive substantially spherical shell configured such that the LED is locatable within the shell and wherein the phosphor is selected from the group consisting of: being provided as a layer on at least a part of the inner curved surface of the shell; being provided as a layer on at least a part of the outer curved surface of the shell; being incorporated within the shell and combinations thereof.
Description
    CROSS REFERENCE TO PRIOR APPLICATIONS
  • [0001]
    This application is a division of U.S. patent application Ser. No. 11/640,533, filed Dec. 15, 2006 entitled “LED Lighting Arrangement Including Light Emitting Phosphor,” which claims the benefit of priority to U.S. Provisional Application No. 60/835,601 filed Aug. 3, 2006 entitled “Phosphor-Containing Optical Components for LED Illumination Systems,” which applications are incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    This invention relates to solid-state lighting applications which comprise light emitting diodes (LEDs) which include a light emitting phosphor, photoluminescent material, to generate light of a desired color, that is in a different part of the wavelength spectrum from the LEDs. In particular, although not exclusively, the invention concerns LED-based lighting arrangements which generate light in the visible part of the spectrum and in particular, although not exclusively white light. Moreover the invention provides an optical component for such a lighting arrangement and methods of fabricating a lighting arrangement and an optical component. Furthermore the invention provides a phosphor material for coating an optical component or as a part of optical designs in lighting arrangements.
  • [0004]
    2. State of the Art
  • [0005]
    In the context of this patent application light is defined as electromagnetic radiation in a wavelength range 300 nm (Ultraviolet) to 1000 nm (Infrared). Primarily, although not exclusively the invention concerns lighting arrangements which emit light in the visible part of the spectrum that is 380 to 750 nm.
  • [0006]
    White light emitting diodes (LEDs) are known in the art and are a relatively recent innovation. It was not until LEDs emitting in the blue/ultraviolet of the electromagnetic spectrum were developed that it became practical to develop white light sources based on LEDs. As is known white light generating LEDs (“white LEDs”) include a phosphor, that is a photoluminescent material, which absorbs a portion of the radiation emitted by the LED and re-emits radiation of a different color (wavelength). For example the LED emits blue light in the visible part of the spectrum and the phosphor re-emits yellow light. Alternatively the phosphor can emit a combination of green and red light, green and yellow or yellow and red light. The portion of the visible blue light emitted by the LED which is not absorbed by the phosphor mixes with the yellow light emitted to provide light which appears to the eye as being white. A known yellow phosphor is a YAG-based phosphor having a main emission wavelength peak that varies in wavelength range from 530 to 590 nm depending on the composition of the phosphors. Further examples of phosphors are described in our co-pending patent application US 2006/0028122 in which the photoluminescent materials have a formula A2SiO4:Eu2+D where A is a divalent metal selected from the group consisting of Sr, Ca, Ba, Mg, Zn and Cd and D is a dopant selected from the group consisting of F, Cl, Br, I, P, S and N. Such phosphors emit light of intensities that are greater than either known YAG compounds or silicate-based phosphors.
  • [0007]
    It is predicted that white LEDs could potentially replace incandescent light sources due to their long operating lifetimes, typically many 100,000 of hours, and their high efficiency. Already high brightness LEDs are used in vehicle brake lights and indicators as well as traffic lights and flash lights.
  • [0008]
    To increase the intensity of light emitted from an LED it is known to include a lens made of a plastics material or glass to focus the light emission and to thereby increase intensity. Referring to FIG. 1 a high brightness white LED 2 is shown. The LED 2 comprises an LED chip 4 which is mounted within a plastic or metal reflection cup 6 and the LED chip is then encapsulated within an encapsulating material, typically an epoxy resin 8. The encapsulation material includes the phosphor material for providing color conversion. Typically the inner surface of the cup 6 is silvered to reflect stray light towards a lens 10 which is mounted on the surface of the encapsulating epoxy resin 8.
  • [0009]
    The inventor has appreciated that such an arrangement has limitations and the present invention arose in an endeavor to mitigate, at least in part, these limitations. For example for high intensity LEDs having a high intensity output larger than 1 W, the high temperature at the output of the LED combined with its close proximity the phosphor material can give rise to a light characteristic which is temperature dependent and in some cases thermal degradation of the phosphor material can occur. Moreover the uniformity of color of light emitted by such LEDs can be difficult to maintain with the phosphor distributed within the epoxy resin since light passing through different path lengths will encounter and be absorbed by differing amounts of phosphor. Furthermore the fabrication of such LEDs is time consuming due to the encapsulation and subsequent placement of the lens.
  • SUMMARY OF THE INVENTION
  • [0010]
    According to a first aspect of the invention there is provided a lighting arrangement comprising: a radiation source configured to emit radiation having a first wavelength range; a phosphor configured to absorb at least a portion of said first wavelength range radiation and emit radiation having a second wavelength range; and an optical component through which at least said first wavelength range radiation passes, characterized in that the phosphor is provided on a surface of the optical component. The invention provides the advantage of reducing the manufacturing steps and hence cost and also provides a more uniform color of output light.
  • [0011]
    Advantageously the phosphor is provided as a substantially uniform thickness layer on said surface of the optical component. Such an arrangement ensures a more uniform color of emitted light.
  • [0012]
    The optical component can have a number of forms and typically comprises a lens for focusing the radiation to increase the intensity of the emitted light. Alternatively the optical component can be for directing the radiation thus acting as a waveguide or as a window through which the radiation passes. The phosphor can be provided on inner or outer surfaces of the optical component and this will determine whether said second wavelength range radiation also passes through the optical component. For example in one implementation the optical component has a substantially planar surface and the phosphor is provided on said substantially planar surface. An advantage of applying the phosphor to the planar surface is that it is easier to produce a uniform thickness layer. Alternatively the optical component can have a convex or concave surface and the phosphor is provided on said convex or concave surfaces.
  • [0013]
    In one implementation the optical component has a substantially hemispherical surface and the phosphor is provided on said hemispherical surface. Preferably, the optical component comprises a substantially hemispherical shell and the phosphor is provided on the inner hemispherical surface. Alternatively the phosphor can be provided on at least a part of the outer hemispherical surface. In a further alternative embodiment the optical component comprises a substantially spherical shell and the phosphor is provided on at least a part of the inner or outer spherical surfaces. Such a form finds particular application as a light source for replacing incandescent light sources. In yet a further embodiment the optical component comprises a hollow cylinder and the phosphor is provided on at least a part of the inner or outer surfaces.
  • [0014]
    Advantageously, the optical component is made of a plastics material such as a polycarbonate and silicone or a glass such as a silica-based glass. The optical component comprises a material which is at least substantially transparent to said first wavelength range radiation and where the phosphor is provided on an inner surface of the component the material is further substantially transparent to the second wavelength range radiation.
  • [0015]
    In a preferred implementation the phosphor comprises a powder which is incorporated within an epoxy resin, a silicone material or a polymer material to form a mixture and the phosphor mixture is then applied to the optical component to form a layer of phosphor on the optical component surface. To improve the uniformity of light emitted from the lighting arrangement the phosphor mixture advantageously further incorporates a light diffusing material such as titanium oxide, silica, alumina, etc. Such a light diffusing material has as low an absorption of light as possible.
  • [0016]
    The phosphor advantageously comprises a phosphor which emits luminescent light when illuminated by radiation in wavelength range from 300 nm to 550 nm. One example of the phosphor advantageously comprises a YAG-based phosphor which comprises a photoluminescent material having a formula (YA)3(AlB)5(OC)12:Ce3+ where A is a trivalent metal selected from the group comprising Gd, Tb, La, Sm or divalent metal ions such as Sr, Ca, Ba, Mg, Zn and Cd, B comprising Si, B, P, and Ga and C is a dopant selected from the group comprising F, Cl, Br, I, P, S and N. In another implementation the phosphor comprises a photoluminescent material having a formula A2SiO4:Eu2+D where A is a divalent metal selected from the group comprising Sr, Ca, Ba, Mg, Zn and Cd and D is a dopant selected from the group comprising F, Cl, Br, I, P, S and N.
  • [0017]
    In yet a further embodiment an orange-red silicate-based phosphor having a formula (SrM1)3Si(OD)5:Eu where M1 is selected from the group comprising Ba, Ca, Mg, Zn. and where D is selected from the group comprising F, Cl, S, and N. Such a phosphor is advantageously used for emitting light in a wavelength range from green to yellow (580 to 630 nm).
  • [0018]
    Alternatively the phosphor comprises a red silicon nitride based phosphor having a formula (SrM1)Si5N8 where M1 is selected from the group comprising Sr, Ca, Mg, and Zn.
  • [0019]
    In another embodiment the phosphor comprises a red sulfate based phosphor having a formula of (SrM1)S where M1 is selected from the group comprising Ca, Ba, and Mg.
  • [0020]
    In yet another embodiment the phosphor can comprise a green sulfate based phosphor having a formula of (SrM1)(GaM2)2S4:Eu where M1 is selected from the group comprising Ca, Ba, and Mg, and M2 is selected from the group comprising Al and In.
  • [0021]
    Preferably, the radiation source comprises a light emitting diode, advantageously a Gallium Nitride based LED.
  • [0022]
    The present invention finds particular application for white light sources and the radiation source is operable to emit radiation having a wavelength range of 300 to 500 nm. Preferably, the phosphor composition is configured to emit radiation having a wavelength ranging from 450 to 700 nm.
  • [0023]
    According to a second aspect of the invention there is provided an optical component for a lighting arrangement of a type comprising a radiation source configured to emit radiation having a first wavelength range; a phosphor configured to absorb at least a portion of said first wavelength range radiation and emit radiation having a second wavelength range; and said optical component configured such that at least said first wavelength range radiation passes through the optical component, and characterized in that said phosphor is provided on a surface of said optical component.
  • [0024]
    Such an optical component provides the advantages of reducing the manufacturing steps and hence cost and emits a more uniform color light. Moreover such an optical component can be used to provide direct color conversion in an LED arrangement.
  • [0025]
    To ensure the uniformity of color of light generated by the optical component, the phosphor is advantageously provided as a substantially uniform thickness layer on said surface of the optical component.
  • [0026]
    For ease of fabrication the optical component preferably has a substantially planar surface and the phosphor is provided on said substantially planar surface. Alternatively, the optical component has a convex or concave surface and the phosphor is provided on said convex or concave surfaces by for example spraying or printing related coating methods.
  • [0027]
    In one implementation the optical component has a substantially hemispherical surface and the phosphor is provided on said hemispherical surface. The optical component can comprise a substantially hemispherical shell and the phosphor is provided on the inner hemispherical surface. Such an arrangement provides environmental protection of the phosphor. Alternatively, the phosphor is provided on the outer hemispherical surface. In a further embodiment the optical component comprises a substantially spherical shell and the phosphor is provided on at least a part of the inner or outer spherical surfaces. In yet a further implementation the optical component comprises a hollow cylinder and the phosphor is provided on at least a part of the inner or outer surfaces.
  • [0028]
    Preferably, the phosphor comprises a powder which is incorporated within an epoxy resin, a silicone material or a polymer material to form a mixture and then the phosphor mixture is applied to the optical component to form a layer of phosphor on the optical component surface. To ensure a uniform light intensity output the phosphor mixture advantageously further comprises a light diffusing material.
  • [0029]
    Preferably, the optical component is fabricated from a plastics material or a glass.
  • [0030]
    The phosphor advantageously comprises a photoluminescent material having a formula A2SiO4:Eu2+D where A is a divalent metal selected from the group comprising Sr, Ca, Ba, Mg, Zn and Cd and D is a dopant selected from the group comprising F, Cl, Br, I, P, S and N.
  • [0031]
    According to third aspect of the invention there is provided a method of fabricating a lighting arrangement comprising: providing a radiation source configured to emit radiation having a first wavelength range and an optical component through which said radiation passes; and providing on a surface of the optical component a phosphor configured to absorb at least a portion of said first wavelength range radiation and emit radiation having a second wavelength range.
  • [0032]
    Advantageously the method further comprises providing the phosphor as a substantially uniform thickness layer on said surface of the optical component.
  • [0033]
    The optical component can have a substantially planar surface, convex or concave surfaces and the method comprises providing the phosphor on said substantially planar surface, convex or concave surfaces.
  • [0034]
    In one implementation the optical component has a substantially hemispherical surface and the method comprises providing the phosphor on said hemispherical surface. Preferably, the optical component comprises a substantially hemispherical shell and the method comprises providing the phosphor on the inner or outer hemispherical surfaces. Alternatively, the optical component can comprise a substantially spherical shell and the method comprises providing the phosphor on at least a part of the inner or outer spherical surfaces. In a further alternative arrangement the optical component comprises a hollow cylinder and the method comprises providing the phosphor on at least a part of the inner or outer surfaces.
  • [0035]
    The optical component is preferably fabricated from a plastics material or glass.
  • [0036]
    According to a further aspect of the invention there is provided a method of fabricating an optical component for a lighting arrangement of a type comprising a radiation source configured to emit radiation having a first wavelength range; a phosphor configured to absorb at least a portion of said first wavelength range radiation and emit radiation having a second wavelength range; and said optical component being configured such that at least said first wavelength range radiation passes through the optical component the method comprising providing said phosphor on a surface of the optical component.
  • [0037]
    To ensure uniform color conversion the method advantageously comprises providing the phosphor as a substantially uniform thickness layer.
  • [0038]
    When the optical component has a substantially planar surface the method preferably comprises providing the phosphor on said substantially planar surface.
  • [0039]
    Alternatively where the optical component has a convex or concave surface the method can comprise providing the phosphor on said convex or concave surfaces.
  • [0040]
    In yet a further alternative arrangement the optical component has a substantially hemispherical surface and the method comprises providing the phosphor on said hemispherical surface. Where the optical component comprises a substantially hemispherical shell the method comprises providing the phosphor on the inner or outer hemispherical surfaces. Moreover where the optical component comprises a substantially spherical shell the method comprises providing the phosphor on at least a part of the inner or outer spherical surfaces. Alternatively the optical component can comprise a hollow cylinder and the method comprises providing the phosphor on at least a part of the inner or outer surfaces.
  • [0041]
    In a preferred method the phosphor comprises a powder and the method comprises incorporating the phosphor within an epoxy resin or silicone material or polymer material to form a mixture and then applying the phosphor mixture to the optical component to form a layer of phosphor on the optical component surface. The mixture can be applied by painting the mixture onto the surface of the optical component, spraying or other known deposition techniques. When the phosphor is to be applied to a planar surface the optical component is then advantageously spun or tape casting to distribute the mixture uniformly over the surface to thereby ensure a uniform thickness of phosphor forms.
  • [0042]
    Advantageously the method further comprises incorporating a light diffusing material, for example titanium oxide, silica, alumina in the phosphor mixture. Alternatively the light diffusing material can be provided as a separate layer.
  • [0043]
    Advantageously, the phosphor comprises a photoluminescent material having a formula A2SiO4:Eu2+D where A is a divalent metal selected from the group comprising Sr, Ca, Ba, Mg, Zn and Cd and D is a dopant selected from the group comprising F, Cl, Br, I, P, S and N.
  • [0044]
    The method further comprises fabricating the optical component from a plastics material or glass.
  • [0045]
    For ease of fabrication, and in accordance with a particularly preferred method of the invention a plurality of optical components in the form of an array, said array of optical components having a common planar surface, and said phosphor is deposited on the planar surface. Advantageously, the phosphor is provided as a substantially uniform thickness layer on said planar surface of the array of optical components.
  • [0046]
    In accordance with a further aspect of the invention there is provided a phosphor material for coating an optical component of an LED comprising a phosphor powder incorporated within an epoxy resin, a silicone material or a polymer material. Advantageously the phosphor material further incorporates a light diffusing material.
  • [0047]
    In accordance with yet a further aspect of the invention there is provided an optical component for a lighting arrangement of a type comprising a radiation source configured to emit radiation having a first wavelength range; a phosphor configured to absorb at least a portion of said first wavelength range radiation and emit radiation having a second wavelength range; and said optical component being configured such that at least said first wavelength range radiation passes through the optical component, and characterized in that said phosphor is incorporated in said optical component.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0048]
    FIG. 1 is a schematic representation of a known white LED as already described;
  • [0049]
    FIGS. 2 to 7 are schematic representations of LED lighting arrangements in accordance with the invention; and
  • [0050]
    FIG. 8 is a schematic representation of a method of fabricating an optical component for an LED lighting arrangement in accordance with the invention.
  • DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • [0051]
    In order that the present invention is better understood, embodiments of the invention will now be described by way of example only with reference to the accompanying drawings.
  • [0052]
    Referring to FIG. 2 there is shown a LED lighting arrangement 20 in accordance with the invention. The LED lighting arrangement 20 is for generating light of a selected color for example white light. The lighting arrangement comprises a LED chip 22, preferably a gallium nitride chip, which is operable to produce light, radiation, preferably of wavelength in a range 300 to 500 nm. The LED chip 22 is mounted inside a stainless steel enclosure or reflection cup 24 which has metallic silver deposited on its inner surface to reflect light towards the output of the lighting arrangement. A convex lens 26 is provided to focus light output from the arrangement. In the example illustrated the lens 26 is substantially hemispherical in form. The lens 26 can be made of a plastics material such as a polycarbonate or glass such as silica based glass or any material substantially transparent to the wavelengths of light generated by the LED chip 22.
  • [0053]
    In the embodiment in FIG. 2 the lens 26 has a planar, substantially flat, surface 28 onto which there is provided a layer of phosphor 30 before the lens is mounted to the enclosure 22. The phosphor 30 preferably comprises a photoluminescent material having a formula A2SiO4:Eu2+D where A is a divalent metal selected from the group comprising Sr (Strontium), Ca (Calcium), Ba (Barium), Mg (Magnesium), Zn (Zinc) and Cd (Cadmium) and D is a dopant selected from the group comprising F (Fluorine), Cl (Chlorine), Br (Bromine), I (Iodine), P (Phosphorous), S (Sulfur) and N (Nitrogen) as disclosed in our co-pending patent application US 2006/0028122 the content of which is hereby incorporated by way of reference thereto. The phosphor which is in the form of a powder is mixed with an adhesive material such as epoxy or a silicone resin, or a transparent polymer material and the mixture is then applied to the surface of the lens to provide the phosphor layer 30. The mixture can be applied by painting, dropping or spraying or other deposition techniques which will be readily apparent to those skilled in the art. Moreover the phosphor mixture preferably further includes a light diffusing material such as titanium oxide, silica or alumina to ensure a more uniform light output.
  • [0054]
    The color of light emitted from the lighting arrangement can be controlled by appropriate selection of the phosphor composition as well as the thickness of the phosphor layer which will determine the proportion of output light originating from the phosphor. To ensure a uniform output color the phosphor layer is preferably of uniform thickness and has a typical thickness in a range 20 to 500 μm.
  • [0055]
    An advantage of the lighting arrangement of the invention is that no phosphor need be incorporated within the encapsulation materials in the LED package. Moreover the color of the light output by the arrangement can be readily changed by providing a different lens having an appropriate phosphor layer. This enables large scale production of a common laser package. Moreover such a lens provides direct color conversion in an LED lighting arrangement.
  • [0056]
    Referring to FIG. 3 there is shown an LED lighting arrangement in accordance with a further embodiment in which the phosphor 30 is provided as a layer on the outer convex surface 32 of the lens 26. In this embodiment the lens 26 is dome shaped in form.
  • [0057]
    FIG. 4 shows an LED lighting arrangement in accordance with a further embodiment in which the lens 26 comprises a substantially hemispherical shell and the phosphor 30 is provided on the inner surface 34 of the lens 26. An advantage of providing the phosphor on the inner surface is that the lens 26 then provides environmental protection for the LED and phosphor. Alternatively the phosphor can be applied as a layer of the outer surface of the lens 26 (not shown).
  • [0058]
    FIG. 5 illustrates an LED arrangement in which the lens 26, optical component, comprises a substantially spherical shell and the phosphor 30 is deposited as a layer on at least a part of the inner 36 or outer spherical 38 surfaces and the LED chip 22 is mounted within the spherical shell. To ensure uniform emission of radiation a plurality of LED chips are advantageously incorporated in which the chip are oriented such that they each emit light in differing directions. Such a form is preferred as a light source for replacing existing incandescent light sources (light bulbs).
  • [0059]
    Referring to FIG. 6 there is shown a further arrangement in which the optical component 26 comprises a hollow cylindrical form and the phosphor is applied to the inner 40 or outer 42 curved surfaces. In such an arrangement the laser chip preferably comprises a linear array of laser chips that are arranged along the axis of the cylinder. Alternatively the lens 26 can comprise a solid cylinder (not shown).
  • [0060]
    FIG. 7 shows an LED arrangement in which the optical component comprise a solid substantially spherical lens 26 and the phosphor is provided on at least a part of the spherical surface 44. In a preferred arrangement, as illustrated, the phosphor is applied to only a portion of the surface, which surface is then mounted within the volume defined by the enclosure. By mounting the lens 26 in this way this provides environmental protection of the phosphor 30.
  • [0061]
    Referring to FIG. 8 there is shown a preferred method of fabricating lenses in accordance with the invention. An array of lenses 46 is provided in which the lenses have a common planar surface 48 onto which the phosphor 30 is provided. In the example illustrated the lenses 36 are substantially hemispherical in form. After the phosphor has been deposited the lenses can be separated and mounted to the LED assemblies. Such a method is found to be particularly advantageous for mass production of the optical components.
  • [0062]
    It will be appreciated that the present invention is not restricted to the specific embodiments described and that modifications can be made which are within the scope of the invention. For example although in the foregoing description reference is made to a lens the phosphor can be deposited onto other optical components such as for example a window through which light passes though is not necessarily focused or directed or a waveguide which guides, directs, light. Moreover the optical component can have many forms which will be readily apparent to those skilled in the art.
  • [0063]
    It will be appreciated that the phosphor and LED chip can be selected depending on the intended application to provide light of a desired color. It is also envisaged to provide two or more phosphor materials to achieve the desired color, spectral content, of emitted light. The different phosphors can be provided by mixing the powdered material and incorporating them within a single layer or alternatively by providing multiple layers of different phosphors.
  • [0064]
    Examples of preferred phosphors are:
      • YAG-based phosphors which comprising a photoluminescent material having a formula (YA)3(AlB)5(OC)12:Ce3+ where A is a trivalent metal selected from the group comprising Gd (Gadolinium), Tb (Terbium), La (Lanthanum), Sm (Samarium) or divalent metal ions such as Sr (Strontium), Ca (Calcium), Ba (Barium), Mg (Magnesium), Zn (Zinc) and Cd (Cadmium), B comprising Si (Silicon), B (Boron), P (phosphorous), and Ga (Gadolinium) and C is a dopant selected from the group comprising F (Fluorine), Cl (Chlorine), Br (Bromine), I (Iodine), P (phosphorous), S (Sulfur) and N (Nitrogen);
      • orange-red silicate-based phosphors of general formula (SrM1)3Si(OD)5:Eu where M1 is selected from the group comprising Ba, Ca, Mg, Zn. and D is selected from the group comprising F, Cl, S, and N (such a phosphor can be used for emitting light in a wavelength range from green to yellow (580 to 630 nm));
      • red silicon nitride based phosphors of general formula of (SrM1)Si5N8 where M1 is selected from the group comprising Sr, Ca, Mg, and Zn;
      • red sulfate based phosphors having a general formula (SrM1)S where M1 is selected from the group comprising Ca, Ba, and Mg; and
      • green sulfate based phosphors having a general formula (SrM1)(GaM2)2S4:Eu where M1 is selected from the group comprising Ca, Ba, and Mg, and where M2 is selected from the group comprising Al and In.
  • [0070]
    In addition to providing an LED lighting arrangement the invention further provides a novel optical component and method of fabrication thereof.
  • [0071]
    In a further embodiment it is also envisaged to incorporate the phosphor within material comprising the optical component. Moreover the phosphor can be provided as a layer on the encapsulating material.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3593055 *16 Apr 196913 Jul 1971Bell Telephone Labor IncElectro-luminescent device
US3670193 *14 May 197013 Jun 1972Duro Test CorpElectric lamps producing energy in the visible and ultra-violet ranges
US3676668 *29 Dec 196911 Jul 1972Gen ElectricSolid state lamp assembly
US3691482 *19 Jan 197012 Sep 1972Bell Telephone Labor IncDisplay system
US3709685 *18 Feb 19719 Jan 1973Ilford LtdPhotoconductive zinc oxide sensitized by substituted thiazolidene dyes
US3743833 *16 Jul 19713 Jul 1973Eastman Kodak CoRadiographic elements and binders
US3793046 *6 Dec 197119 Feb 1974Philips CorpMethod of manufacturing a pigment
US3819973 *2 Nov 197225 Jun 1974Hosford AElectroluminescent filament
US3819974 *12 Mar 197325 Jun 1974D StevensonGallium nitride metal-semiconductor junction light emitting diode
US3875456 *4 Apr 19731 Apr 1975Hitachi LtdMulti-color semiconductor lamp
US3932881 *7 Mar 197513 Jan 1976Nippon Electric Co., Inc.Electroluminescent device including dichroic and infrared reflecting components
US3937998 *25 Sep 197410 Feb 1976U.S. Philips CorporationLuminescent coating for low-pressure mercury vapour discharge lamp
US3972717 *20 Mar 19743 Aug 1976Hoechst AktiengesellschaftElectrophotographic recording material
US4047075 *27 Feb 19766 Sep 1977Licentia-Patent-Verwaltungs-G.M.B.H.Encapsulated light-emitting diode structure and array thereof
US4081764 *10 Sep 197328 Mar 1978Minnesota Mining And Manufacturing CompanyZinc oxide light emitting diode
US4104076 *8 Sep 19761 Aug 1978Saint-Gobain IndustriesManufacture of novel grey and bronze glasses
US4143394 *20 Jul 19776 Mar 1979Licentia Patent-Verwaltungs-G.M.B.H.Semiconductor luminescence device with housing
US4211955 *2 Mar 19788 Jul 1980Ray Stephen WSolid state lamp
US4315192 *31 Dec 19799 Feb 1982Westinghouse Electric Corp.Fluorescent lamp using high performance phosphor blend which is protected from color shifts by a very thin overcoat of stable phosphor of similar chromaticity
US4443532 *29 Jul 198117 Apr 1984Bell Telephone Laboratories, IncorporatedInduced crystallographic modification of aromatic compounds
US4573766 *19 Dec 19834 Mar 1986Cordis CorporationLED Staggered back lighting panel for LCD module
US4638214 *21 Apr 198620 Jan 1987General Electric CompanyFluorescent lamp containing aluminate phosphor
US4667036 *20 Aug 198419 May 1987Basf AktiengesellschaftConcentration of light over a particular area, and novel perylene-3,4,9,10-tetracarboxylic acid diimides
US4678285 *10 Jan 19857 Jul 1987Ricoh Company, Ltd.Liquid crystal color display device
US4727003 *25 Sep 198623 Feb 1988Ricoh Company, Ltd.Electroluminescence device
US4772885 *18 Nov 198520 Sep 1988Ricoh Company, Ltd.Liquid crystal color display device
US4845223 *8 Dec 19864 Jul 1989Basf AktiengesellschaftFluorescent aryloxy-substituted perylene-3,4,9,10-tetracarboxylic acid diimides
US4859539 *19 Sep 198822 Aug 1989Eastman Kodak CompanyOptically brightened polyolefin coated paper support
US4915478 *5 Oct 198810 Apr 1990The United States Of America As Represented By The Secretary Of The NavyLow power liquid crystal display backlight
US4918497 *14 Dec 198817 Apr 1990Cree Research, Inc.Blue light emitting diode formed in silicon carbide
US4946621 *24 Feb 19887 Aug 1990Centre National De La Recherche Scientifique (Cnrs)Luminescent mixed borates based on rare earths
US4992704 *17 Apr 198912 Feb 1991Basic Electronics, Inc.Variable color light emitting diode
US5110931 *8 Nov 19895 May 1992Hoechst AktiengesellschaftProcess for the preparation of n,n'-dimethylperylene-3,4,9,10-tetracarboxylic diimide in high-hiding pigment form
US5126214 *5 Mar 199030 Jun 1992Idemitsu Kosan Co., Ltd.Electroluminescent element
US5131916 *22 Feb 199121 Jul 1992Bayer AktiengesellschaftColored fluorescent polymer emulsions for marker pens: graft copolymers and fluorescent dyes in aqueous phase
US5143433 *1 Nov 19911 Sep 1992Litton Systems Canada LimitedNight vision backlighting system for liquid crystal displays
US5143438 *10 Oct 19911 Sep 1992Thorn Emi PlcLight sources
US5208462 *19 Dec 19914 May 1993Allied-Signal Inc.Wide bandwidth solid state optical source
US5210051 *5 Jun 199111 May 1993Cree Research, Inc.High efficiency light emitting diodes from bipolar gallium nitride
US5211467 *7 Jan 199218 May 1993Rockwell International CorporationFluorescent lighting system
US5237182 *26 Nov 199117 Aug 1993Sharp Kabushiki KaishaElectroluminescent device of compound semiconductor with buffer layer
US5283425 *29 Jan 19931 Feb 1994Rohm Co., Ltd.Light emitting element array substrate with reflecting means
US5405709 *13 Sep 199311 Apr 1995Eastman Kodak CompanyWhite light emitting internal junction organic electroluminescent device
US5439971 *2 Aug 19948 Aug 1995Eastman Chemical CompanyFluorescent pigment concentrates
US5518808 *5 Nov 199321 May 1996E. I. Du Pont De Nemours And CompanyLuminescent materials prepared by coating luminescent compositions onto substrate particles
US5535230 *3 Jan 19959 Jul 1996Shogo TzuzukiIlluminating light source device using semiconductor laser element
US5557168 *30 Mar 199417 Sep 1996Okaya Electric Industries Co., Ltd.Gas-discharging type display device and a method of manufacturing
US5619356 *16 Sep 19948 Apr 1997Sharp Kabushiki KaishaReflective liquid crystal display device having a compensator with a retardation value between 0.15 μm and 0.38 μm and a single polarizer
US5660461 *8 Dec 199426 Aug 1997Quantum Devices, Inc.Arrays of optoelectronic devices and method of making same
US5763901 *2 Oct 19969 Jun 1998Kabushiki Kaisha ToshibaSemiconductor light-emitting device and method for manufacturing the device
US5770887 *11 Oct 199423 Jun 1998Mitsubishi Cable Industries, Ltd.GaN single crystal
US5771039 *6 Jun 199423 Jun 1998Ditzik; Richard J.Direct view display device integration techniques
US5777350 *30 Nov 19957 Jul 1998Nichia Chemical Industries, Ltd.Nitride semiconductor light-emitting device
US5869199 *17 Mar 19949 Feb 1999Sumitomo Electric Industries, Ltd.Organic electroluminescent elements comprising triazoles
US5959316 *1 Sep 199828 Sep 1999Hewlett-Packard CompanyMultiple encapsulation of phosphor-LED devices
US6147367 *26 Mar 199814 Nov 2000Industrial Technology Research InstitutePackaging design for light emitting diode
US6252254 *30 Nov 199826 Jun 2001General Electric CompanyLight emitting device with phosphor composition
US6340824 *31 Aug 199822 Jan 2002Kabushiki Kaisha ToshibaSemiconductor light emitting device including a fluorescent material
US6504301 *3 Sep 19997 Jan 2003Lumileds Lighting, U.S., LlcNon-incandescent lightbulb package using light emitting diodes
US6555958 *15 May 200029 Apr 2003General Electric CompanyPhosphor for down converting ultraviolet light of LEDs to blue-green light
US6576488 *11 Jun 200110 Jun 2003Lumileds Lighting U.S., LlcUsing electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor
US6576930 *7 Dec 200010 Jun 2003Osram Opto Semiconductors GmbhLight-radiating semiconductor component with a luminescence conversion element
US6583550 *23 Oct 200124 Jun 2003Toyoda Gosei Co., Ltd.Fluorescent tube with light emitting diodes
US6600175 *26 Mar 199629 Jul 2003Advanced Technology Materials, Inc.Solid state white light emitter and display using same
US6614170 *26 Feb 20012 Sep 2003Arima Optoelectronics CorporationLight emitting diode with light conversion using scattering optical media
US6709132 *16 May 200223 Mar 2004Atex Co., Ltd.LED bulb
US6717353 *14 Oct 20026 Apr 2004Lumileds Lighting U.S., LlcPhosphor converted light emitting device
US6869812 *13 May 200322 Mar 2005Heng LiuHigh power AllnGaN based multi-chip light emitting diode
US6903380 *11 Apr 20037 Jun 2005Weldon Technologies, Inc.High power light emitting diode
US7029935 *9 Sep 200318 Apr 2006Cree, Inc.Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
US7220022 *21 Feb 200622 May 2007Fiber Optic Designs, Inc.Jacketed LED assemblies and light strings containing same
US7390437 *1 Jul 200524 Jun 2008Intematix CorporationAluminate-based blue phosphors
US7479662 *29 Aug 200320 Jan 2009Lumination LlcCoated LED with improved efficiency
US7575697 *8 Nov 200518 Aug 2009Intematix CorporationSilicate-based green phosphors
US7655156 *25 Oct 20052 Feb 2010Intematix CorporationSilicate-based orange phosphors
US7943945 *1 Nov 200517 May 2011Cree, Inc.Solid state white light emitter and display using same
US20010000622 *6 Dec 20003 May 2001Osram Opto Semiconductors Gmbh & Co., OhgLight-radiating semiconductor component with a luminescence conversion element
US20020047516 *23 Oct 200125 Apr 2002Tadanobu IwasaFluorescent tube
US20030038596 *28 Feb 200227 Feb 2003Wen-Chih HoLight-mixing layer and method
US20030052595 *18 Jul 200220 Mar 2003Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen MbhIllumination unit having at least one LED as light source
US20030067264 *9 Oct 200210 Apr 2003Agilent Technologies, Inc.Light-emitting diode and method for its production
US20040016908 *21 Jul 200329 Jan 2004Klaus HohnWavelength-converting casting composition and white light-emitting semiconductor component
US20040016938 *18 Jul 200329 Jan 2004Bruce BaretzSolid state white light emitter and display using same
US20040101391 *21 Nov 200227 May 2004Simon DudaiMotor vehicle chair system for physically disabled persons
US20040201025 *11 Apr 200314 Oct 2004Barnett Thomas J.High power light emitting diode
US20050051782 *9 Sep 200310 Mar 2005Negley Gerald H.Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
US20050057917 *25 Mar 200417 Mar 2005Yasushi YatsudaLight source and vehicle lamp
US20050093430 *24 Feb 20045 May 2005Cree, Inc.Composite white light source and method for fabricating
US20050168127 *17 Aug 20044 Aug 2005Shih-Chang Shei[white light led]
US20060028122 *22 Sep 20049 Feb 2006Intematix CorporationNovel silicate-based yellow-green phosphors
US20060049416 *1 Nov 20059 Mar 2006Bruce BaretzSolid state white light emitter and display using same
US20060097245 *20 Dec 200511 May 2006Aanegola Srinath KLight emitting diode component
US20060124947 *10 Dec 200415 Jun 2006Mueller Gerd OPhosphor converted light emitting device
US20060244358 *16 Feb 20062 Nov 2006Samsung Electro-Mechanics Co., Ltd.White light emitting device
US20070120135 *29 Aug 200331 May 2007Soules Thomas FCoated led with improved efficiency
US20070170840 *21 Jul 200526 Jul 2007Lg Innotek Co., Ltd.Phosphor and light emitting device using the same
US20080029720 *15 Dec 20067 Feb 2008Intematix CorporationLED lighting arrangement including light emitting phosphor
US20080062672 *21 Nov 200713 Mar 2008Avago Technologies Ecbu Ip (Singapore) Pte. Ltd.Light emitting device
US20080111472 *9 Apr 200715 May 2008Intematix CorporationAluminum-silicate based orange-red phosphors with mixed divalent and trivalent cations
US20110147778 *16 Dec 201023 Jun 2011Nichia CorporationLight emitting device
US20110149548 *13 Dec 201023 Jun 2011Intematix CorporationLight emitting diode based linear lamps
US20120086034 *4 Oct 201112 Apr 2012Intematix CorporationSolid-state light emitting devices and signage with photoluminescence wavelength conversion
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN105190160A *28 Feb 201423 Dec 2015信越化学工业株式会社Red lamp and lighting system for vehicle
EP2988058A4 *28 Feb 201411 Jan 2017Shin-Etsu Chemical Co LtdRed lamp and lighting system for vehicle
WO2013073986A16 Feb 201223 May 2013Obschestvo S Ogranichennoi Otvetstvennostyu "Nauchno-Tekhnologicheskiy Ispytatel'nyj Centr "Nanoteh-Dubna" (Ooo "Ntic "Nanoteh-Dubna")Luminescent composite material and light-emitting device based thereon
Classifications
U.S. Classification313/483
International ClassificationH01J1/62
Cooperative ClassificationY10T428/31663, Y10T428/24479, Y10T428/265, Y10T428/31511, Y10T428/13, F21Y2103/10, F21Y2115/10, F21Y2101/00, F21Y2115/30, H01L2933/0041, H01L33/502, C09K11/7734, F21V5/041, F21V9/16, C09K11/7774, F21V3/0481, C09K11/0883, C09K11/7741
European ClassificationC09K11/77S6, C09K11/77N6, C09K11/77N14, C09K11/08J, F21V5/04B