US20110182790A1 - Transition metal-containing aluminosilicate zeolite - Google Patents

Transition metal-containing aluminosilicate zeolite Download PDF

Info

Publication number
US20110182790A1
US20110182790A1 US13/057,911 US200913057911A US2011182790A1 US 20110182790 A1 US20110182790 A1 US 20110182790A1 US 200913057911 A US200913057911 A US 200913057911A US 2011182790 A1 US2011182790 A1 US 2011182790A1
Authority
US
United States
Prior art keywords
aluminosilicate zeolite
zeolite catalyst
group
aluminosilicate
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/057,911
Inventor
Guy Richard Chandler
Neil Robert Collins
Rodney Foo Kok Shin
Alexander Nicholas Michael Green
Paul Richard Phillips
Raj Rao Rajaram
Stuart David Reid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40084059&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110182790(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Assigned to JOHNSON MATTHEY PUBLIC LIMITED COMPANY reassignment JOHNSON MATTHEY PUBLIC LIMITED COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANDLER, GUY RICHARD, GREEN, ALEXANDER NICHOLAS MICHAEL, REID, STUART DAVID, COLLINS, NEIL ROBERT, PHILLIPS, PAUL RICHARD, RAJARAM, RAJ RAO, SHIN, RODNEY FOO KOK
Publication of US20110182790A1 publication Critical patent/US20110182790A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • B01J29/52Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
    • B01J29/56Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • B01J35/19
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • B01J35/60
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a synthetic aluminosilicate zeolite catalyst containing at least one catalytically active transition metal.
  • the zeolites can be used for selective catalytic reduction (SCR) of nitrogen oxides in exhaust gases, such as exhaust gases from internal combustion engines, using a nitrogenous reductant.
  • U.S. Pat. No. 4,544,538 discloses a synthetic zeolite having a crystal structure of chabazite (CHA), designated SSZ-13 prepared using a Structure Directing Agent (SDA) such as the N,N,N-trimethyl-1-adamantammonium cation.
  • SDA Structure Directing Agent
  • the SSZ-13 can be ion exchanged with transition metals such as rare earth, Mn, Ca, Mg, Zn, Cd, Pt, Pd, Ni, Co, Ti, Al, Sn, Fe and Co for use e.g. in hydrocarbon conversion reactions.
  • U.S. Pat. No. 6,709,644 discloses a synthetic zeolite having a crystal structure of chabazite (CHA) of small crystallite size (on average ⁇ 0.5 micrometers) designated SSZ-62.
  • SSZ-62 can also be prepared using the N,N,N-trimethyl-1-adamantammonium cation SDA.
  • Example 1 of U.S. Pat. No. 6,709,644 compares the average crystal size of SSZ-62 with the average crystal size of SSZ-13.
  • SSZ-62 can be used in a process for converting lower alcohols or the zeolite can be exchanged with copper or cobalt for use in catalysing the reduction of NO x in a lean gas stream e.g. of an internal combustion engine.
  • a lean gas stream e.g. of an internal combustion engine.
  • the activity of small and large crystallite size materials are only illustrated by a methanol to olefin reaction.
  • transition metal/zeolite catalysts such as Cu/Beta and/or Fe/Beta are being considered for urea and/or NH 3 SCR of NO x from mobile diesel engines to meet new emission standards.
  • These catalysts are required to withstand relatively high temperatures under exhaust conditions, and may also be exposed to relatively high levels of hydrocarbons (HC), which can be adsorbed onto or into the pores of the zeolites.
  • HC hydrocarbons
  • the adsorbed HC may affect the NH 3 SCR activities of these metal zeolites catalysts by blocking the active sites or blocking access to the active sites for the NH 3 —NO x reaction.
  • these adsorbed HC species may be oxidised as the temperature of the catalytic system is raised, generating a significant exotherm, which can thermally or hydrothermally damage the catalyst. It is therefore desirable to minimise HC adsorption on the SCR catalyst, especially during cold start when significant amounts of HC can be emitted from the engine.
  • the invention provides a synthetic aluminosilicate zeolite catalyst containing at least one catalytically active transition metal selected from the group consisting of Cu, Fe, Hf, La, Au, In, V, lanthanides and Group VIII transition metals, which aluminosilicate zeolite is a small pore aluminosilicate zeolite having a maximum ring size of eight tetrahedral atoms, wherein the mean crystallite size of the aluminosilicate zeolite determined by scanning electron microscope is >0.50 micrometer.
  • the at least one catalytically active transition metal is one of copper and iron.
  • the zeolite can contain both copper and iron.
  • the Examples show a trend of increasing NO x reduction activity of fresh and aged copper/CHA catalysts with increasing crystallite size.
  • Scanning electron microscopy can determine the morphology and crystallite size of zeolites according to the invention. It is desirable that the mean particle size of the aluminosilicate zeolite as measured by SEM is >0.50 micrometer, but preferably greater than 1.00 micrometer, such as >1.50 micrometers. In embodiments, the mean crystallite size is ⁇ 15.0 micrometers, such as ⁇ 10.0 micrometers or ⁇ 5.0 micrometers.
  • the aluminosilicate zeolite catalyst according to the invention is selected from the group consisting of zeolites having a maximum ring size of eight tetrahedral atoms especially Framework Type Codes CHA, ERI and LEV, most preferably CHA.
  • an isotype framework structure of CHA can be selected from the group consisting of, for example, Linde-D, Linde-R, SSZ-13, LZ-218, Phi and ZK-14.
  • a type material or isotype framework structure of ERI Framework Type Code zeolites can be, for example, erionite, ZSM-34 or Linde Type T.
  • LEV Framework Type Code isotype framework structures or type material can be, for example, levynite, Nu-3, LZ-132 or ZK-20.
  • the total at least one transition metal present in the catalyst is from 0.1 to 10.0 wt % based on the total weight of the zeolite catalyst, such as 0.5 to 5.0 wt % based on the total weight of the zeolite catalyst.
  • the invention provides a method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of an aluminosilicate zeolite catalyst according to the invention.
  • the nitrogen oxides can be reduced with the reducing agent at a temperature of at least 100° C., for example from about 150° C. to 750° C.
  • the nitrogen oxides reduction is performed in the presence of oxygen.
  • nitrogenous reductant can be controlled so that NH 3 at the zeolite catalyst inlet is controlled to be 60% to 200% of theoretical ammonia calculated at 1:1 NH 3 /NO and 4:3 NH 3 /NO 2 .
  • nitrogen monoxide in the gas is oxidised to nitrogen dioxide using an oxidation catalyst located upstream of the zeolite catalyst and the resulting gas is then mixed with nitrogenous reductant before the mixture is fed into the zeolite catalyst, wherein the oxidation catalyst is adapted to yield a gas stream entering the zeolite catalyst having a ratio of NO to NO 2 of from about 4:1 to about 1:3 by volume.
  • the nitrogenous reductant can be ammonia per se, hydrazine or an ammonia precursor selected from the group consisting of urea ((NH 2 ) 2 C0), ammonium carbonate, ammonium carbamate, ammonium hydrogen carbonate and ammonium formate.
  • the gas containing nitrogen oxides to be treated with the method according to the present invention can be derived from a combustion process, particularly from an internal combustion engine such as a stationary source or preferably a vehicular lean burn internal combustion engine.
  • the invention provides an exhaust system for a vehicular lean-burn internal combustion engine, which system comprising a conduit for carrying a flowing exhaust gas, a source of nitrogenous reductant, a synthetic aluminosilicate zeolite catalyst containing at least one catalytically active transition metal selected from the group consisting of Cu, Fe, Hf, La, Au, In, V, lanthanides and Group VIII transition metals, which aluminosilicate zeolite is a small pore aluminosilicate zeolite having a maximum ring size of eight tetrahedral atoms, disposed in a flow path of the exhaust gas and means for metering nitrogenous reductant into a flowing exhaust gas upstream of the zeolite catalyst, wherein the mean crystallite size of the aluminosilicate zeolite determined by scanning electron microscope is >0.50 micrometer.
  • Small crystallite CHA was prepared according to Example 1 of U.S. Pat. No. 6,709,644 (the entire contents of which is incorporated herein by reference).
  • a reaction mixture was prepared of molar composition 60 SiO 2 .1.5 Al 2 O 3 -6 Na 2 O-12 NNNAnOH-2640 H 2 O, where NNNAnOH is the structure directing agent (SDA) or template N,N,N-trimethyladamantanammonium hydroxide
  • the reaction was prepared using cab-o-sil M5 (Cabot Corporation) as the source of silica, sodium aluminate (BDH Ltd), sodium hydroxide (Alfa Aesar).
  • the SDA NNAnOH
  • the required amount of the SDA solution was weighed out and the NaOH added and stirred until it dissolved.
  • the sodium aluminate solid was then added with stirring and stirring was continued until it dissolved.
  • the cab-o-sil was then mixed in and the resulting mixture transferred to a 1 L stainless steel autoclave. The autoclave was sealed and the mixture heated to 165 C with stirring (300 rpm) for 4 days.
  • the resulting product was identified as a CHA type material by powder x-ray diffraction. Visually, the product crystals were approximately 2 microns on edge.
  • the product composition had a silica-alumina ratio (SAR) of 24:1.
  • Copper was deposited on zeolites A, B and C prepared according to Example 1 by the standard wet impregnation method using copper acetate as the copper precursor.
  • aluminosilicate zeolite 0.471 g of copper acetate was dissolved in a sufficient amount of water to wet the aluminosilicate zeolite material. The solution was added to the aluminosilicate zeolite material and stirred. The wet powder was dried at 105° C., before being calcined at 500° C. for 2 hours. Following calcination, a majority of the copper is understood to be present as copper (II) oxide.
  • Catalysts A, B and C The copper-loaded catalysts prepared according to this Example were designated as Catalysts A, B and C.
  • Catalysts prepared according to Example 2 are referred to as “Fresh Catalysts A-C”.
  • Fresh Catalysts A-C prepared according to Example 2 were hydrothermally aged in an atmosphere containing 10% oxygen, 10% water, balance nitrogen at 750° C. for a period of 24 hours.
  • the hydrothermally aged catalyst is referred to as “Aged Catalysts A-C”.
  • Counting and sizing was determined by number averaged digital particle size analysis, based on “thresholding” the intensities from each pixel of an image, and exploiting the differences in intensity between particles and the background. The software assumes that each object detected is circular/spherical.
  • the NO x conversion of Catalysts A-C of Examples 2 and 3 at an inlet gas temperature of 200° C. or 400° C. are given in Table 2.
  • the NO x reduction performance was measured on a powder sample in a laboratory reactor by ramping the catalyst at 5° C. per minute in a gas mixture containing 500 ppm NO and NH 3 , 10% O 2 , 10% H 2 O and N 2 .

Abstract

A synthetic alumino silicate zeolite catalyst containing at least one catalytically active transition metal selected from the group consisting of Cu, Fe, Hf, La, Au, In, V, lanthanides and Group VIII transition metals, which alumino silicate zeolite is a small pore aluminosilicate zeolite having a maximum ring size of eight tetrahedral atoms, wherein the mean crystallite size of the aluminosilicate zeolite determined by scanning electron microscope is >0.50 micrometer.

Description

  • The present invention relates to a synthetic aluminosilicate zeolite catalyst containing at least one catalytically active transition metal. The zeolites can be used for selective catalytic reduction (SCR) of nitrogen oxides in exhaust gases, such as exhaust gases from internal combustion engines, using a nitrogenous reductant.
  • It is known to convert oxides of nitrogen (NOx) in a gas to nitrogen by contacting the NOx with a nitrogenous reducing agent, e.g. ammonia or an ammonia precursor such as urea, in the presence of a zeolite catalyst containing at least one transition metal, and it has been suggested to adopt this technique for treating NOx emitted from vehicular lean-burn internal combustion engines, see for example DieselNet Technology Guide “Selective Catalytic Reduction” Revision 2005.05d, by W. Addy Majewski published on www.dieselnet.com.
  • U.S. Pat. No. 4,544,538 discloses a synthetic zeolite having a crystal structure of chabazite (CHA), designated SSZ-13 prepared using a Structure Directing Agent (SDA) such as the N,N,N-trimethyl-1-adamantammonium cation. The SSZ-13 can be ion exchanged with transition metals such as rare earth, Mn, Ca, Mg, Zn, Cd, Pt, Pd, Ni, Co, Ti, Al, Sn, Fe and Co for use e.g. in hydrocarbon conversion reactions.
  • U.S. Pat. No. 6,709,644 discloses a synthetic zeolite having a crystal structure of chabazite (CHA) of small crystallite size (on average <0.5 micrometers) designated SSZ-62. SSZ-62 can also be prepared using the N,N,N-trimethyl-1-adamantammonium cation SDA. Example 1 of U.S. Pat. No. 6,709,644 compares the average crystal size of SSZ-62 with the average crystal size of SSZ-13. The document suggests that SSZ-62 can be used in a process for converting lower alcohols or the zeolite can be exchanged with copper or cobalt for use in catalysing the reduction of NOx in a lean gas stream e.g. of an internal combustion engine. However, the activity of small and large crystallite size materials are only illustrated by a methanol to olefin reaction.
  • In our International patent application no. PCT/GB2008/001451 filed 24 Apr. 2008 we explain that transition metal/zeolite catalysts such as Cu/Beta and/or Fe/Beta are being considered for urea and/or NH3SCR of NOx from mobile diesel engines to meet new emission standards. These catalysts are required to withstand relatively high temperatures under exhaust conditions, and may also be exposed to relatively high levels of hydrocarbons (HC), which can be adsorbed onto or into the pores of the zeolites. The adsorbed HC may affect the NH3SCR activities of these metal zeolites catalysts by blocking the active sites or blocking access to the active sites for the NH3—NOx reaction. Furthermore, these adsorbed HC species may be oxidised as the temperature of the catalytic system is raised, generating a significant exotherm, which can thermally or hydrothermally damage the catalyst. It is therefore desirable to minimise HC adsorption on the SCR catalyst, especially during cold start when significant amounts of HC can be emitted from the engine.
  • In our PCT/GB2008/001451 we suggest that both of these disadvantages of larger pore zeolite catalysts can be reduced or overcome by using small pore zeolites, which generally allow the diffusion of NH3 and NOx to the active sites inside the zeolite pores, but which generally hinder diffusion of hydrocarbon molecules into the pores. Zeolites that have the small pore dimensions to induce this shape selectivity whereby larger hydrocarbons are prevented from accessing the active metal sites within the zeolite cavities include CHA, ERI and LEV. Additionally, small pore zeolite-based SCR catalysts produce less N2O as a by-product of the NOx reduction reaction.
  • We have researched into aluminosilicate zeolite materials and have discovered, very surprisingly, that large crystallite aluminosilicate zeolite materials have higher activity for the SCR process using a nitrogenous reductant than the same aluminosilicate zeolite material of smaller crystallite size.
  • According to one aspect, the invention provides a synthetic aluminosilicate zeolite catalyst containing at least one catalytically active transition metal selected from the group consisting of Cu, Fe, Hf, La, Au, In, V, lanthanides and Group VIII transition metals, which aluminosilicate zeolite is a small pore aluminosilicate zeolite having a maximum ring size of eight tetrahedral atoms, wherein the mean crystallite size of the aluminosilicate zeolite determined by scanning electron microscope is >0.50 micrometer. Preferably, the at least one catalytically active transition metal is one of copper and iron. In embodiments, the zeolite can contain both copper and iron.
  • The Examples show a trend of increasing NOx reduction activity of fresh and aged copper/CHA catalysts with increasing crystallite size.
  • Scanning electron microscopy can determine the morphology and crystallite size of zeolites according to the invention. It is desirable that the mean particle size of the aluminosilicate zeolite as measured by SEM is >0.50 micrometer, but preferably greater than 1.00 micrometer, such as >1.50 micrometers. In embodiments, the mean crystallite size is <15.0 micrometers, such as <10.0 micrometers or <5.0 micrometers.
  • In embodiments, the aluminosilicate zeolite catalyst according to the invention is selected from the group consisting of zeolites having a maximum ring size of eight tetrahedral atoms especially Framework Type Codes CHA, ERI and LEV, most preferably CHA.
  • Where the Framework Type Code of the aluminosilicate zeolite is CHA, an isotype framework structure of CHA can be selected from the group consisting of, for example, Linde-D, Linde-R, SSZ-13, LZ-218, Phi and ZK-14.
  • A type material or isotype framework structure of ERI Framework Type Code zeolites can be, for example, erionite, ZSM-34 or Linde Type T.
  • LEV Framework Type Code isotype framework structures or type material can be, for example, levynite, Nu-3, LZ-132 or ZK-20.
  • The total at least one transition metal present in the catalyst is from 0.1 to 10.0 wt % based on the total weight of the zeolite catalyst, such as 0.5 to 5.0 wt % based on the total weight of the zeolite catalyst.
  • According to another aspect, the invention provides a method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of an aluminosilicate zeolite catalyst according to the invention.
  • The nitrogen oxides can be reduced with the reducing agent at a temperature of at least 100° C., for example from about 150° C. to 750° C.
  • In a particular embodiment, the nitrogen oxides reduction is performed in the presence of oxygen.
  • The addition of nitrogenous reductant can be controlled so that NH3 at the zeolite catalyst inlet is controlled to be 60% to 200% of theoretical ammonia calculated at 1:1 NH3/NO and 4:3 NH3/NO2.
  • In a particular embodiment, wherein nitrogen monoxide in the gas is oxidised to nitrogen dioxide using an oxidation catalyst located upstream of the zeolite catalyst and the resulting gas is then mixed with nitrogenous reductant before the mixture is fed into the zeolite catalyst, wherein the oxidation catalyst is adapted to yield a gas stream entering the zeolite catalyst having a ratio of NO to NO2 of from about 4:1 to about 1:3 by volume.
  • In the method according to the invention, the nitrogenous reductant can be ammonia per se, hydrazine or an ammonia precursor selected from the group consisting of urea ((NH2)2C0), ammonium carbonate, ammonium carbamate, ammonium hydrogen carbonate and ammonium formate.
  • The gas containing nitrogen oxides to be treated with the method according to the present invention can be derived from a combustion process, particularly from an internal combustion engine such as a stationary source or preferably a vehicular lean burn internal combustion engine.
  • According to another aspect, the invention provides an exhaust system for a vehicular lean-burn internal combustion engine, which system comprising a conduit for carrying a flowing exhaust gas, a source of nitrogenous reductant, a synthetic aluminosilicate zeolite catalyst containing at least one catalytically active transition metal selected from the group consisting of Cu, Fe, Hf, La, Au, In, V, lanthanides and Group VIII transition metals, which aluminosilicate zeolite is a small pore aluminosilicate zeolite having a maximum ring size of eight tetrahedral atoms, disposed in a flow path of the exhaust gas and means for metering nitrogenous reductant into a flowing exhaust gas upstream of the zeolite catalyst, wherein the mean crystallite size of the aluminosilicate zeolite determined by scanning electron microscope is >0.50 micrometer.
  • In order that the invention may be more fully understood, the following Examples are provided by way of illustration only.
  • EXAMPLE 1 Preparation of Zeolite Samples Zeolite A
  • Small crystallite CHA was prepared according to Example 1 of U.S. Pat. No. 6,709,644 (the entire contents of which is incorporated herein by reference).
  • Zeolite B
  • Large crystallite CHA was prepared according to a method of making SSZ-13 by S. I. Zones and R A. Van Nordstrand, Zeolites 8 (1988) 166 (the entire contents of which is incorporated herein by reference) also published on International Zeolite Association Synthesis Commission website http://www.iza-online.org/synthesis/, as follows:
      • The source materials were:
      • sodium hydroxide (1 N), (Baker, reagent grade);
      • N,N,N, trimethyl-1-adamantanammonium hydroxide (RN—OH)(0.72M);
      • deionized water;
      • aluminium hydroxide (Reheis F-2000 dried gel, 50% Al2O3); and
      • fumed silica (Cab-Q-Sil, M5 grade, 97% SiO2).
      • The reaction mixture was prepared as follows:
      • (1) 2.00 g 1N NaOH+2.78 g 0.72 M RNOH+3.22 g water, add sequentially to a Teflon cup of a Parr 23 mL autoclave;
      • (2) (1)+0.05 g aluminum hydroxide, mix until solution clears;
      • (3) (2)+0.60 g fumed silica, mix until uniform.
      • The reaction mixture was crystallised:
      • in a teflon-lined 23 mL autoclave (Parr model 4745) at a temperature of 160° C. for 4 days without agitation;
      • After cooling to room temperature the mixture was filtered, washed with de-mineralised water and air-dried overnight.
      • The resulting product was characterised by powder x-ray diffraction and identified as:
      • CHA zeolite with a SiO2/Al2O3 ratio of 28 as determined by ICP.
      • SEM analysis showed:
      • cubes of 2-5 micrometers.
    Zeolite C
  • A reaction mixture was prepared of molar composition 60 SiO2.1.5 Al2O3-6 Na2O-12 NNNAnOH-2640 H2O, where NNNAnOH is the structure directing agent (SDA) or template N,N,N-trimethyladamantanammonium hydroxide
  • The reaction was prepared using cab-o-sil M5 (Cabot Corporation) as the source of silica, sodium aluminate (BDH Ltd), sodium hydroxide (Alfa Aesar). The SDA (NNNAnOH) was prepared following the method described in U.S. Pat. No. 4,544,538 (the entire contents of which is incorporated herein by reference). The required amount of the SDA solution was weighed out and the NaOH added and stirred until it dissolved. The sodium aluminate solid was then added with stirring and stirring was continued until it dissolved. The cab-o-sil was then mixed in and the resulting mixture transferred to a 1 L stainless steel autoclave. The autoclave was sealed and the mixture heated to 165 C with stirring (300 rpm) for 4 days.
  • The resulting product was identified as a CHA type material by powder x-ray diffraction. Visually, the product crystals were approximately 2 microns on edge. The product composition had a silica-alumina ratio (SAR) of 24:1.
  • EXAMPLE 2 Preparation of 3 wt % Cu/aluminosilicate zeolite
  • Copper was deposited on zeolites A, B and C prepared according to Example 1 by the standard wet impregnation method using copper acetate as the copper precursor. For 10 g of aluminosilicate zeolite, 0.471 g of copper acetate was dissolved in a sufficient amount of water to wet the aluminosilicate zeolite material. The solution was added to the aluminosilicate zeolite material and stirred. The wet powder was dried at 105° C., before being calcined at 500° C. for 2 hours. Following calcination, a majority of the copper is understood to be present as copper (II) oxide.
  • The copper-loaded catalysts prepared according to this Example were designated as Catalysts A, B and C. Catalysts prepared according to Example 2 are referred to as “Fresh Catalysts A-C”.
  • EXAMPLE 3 Hydrothermal Ageing
  • Fresh Catalysts A-C prepared according to Example 2 were hydrothermally aged in an atmosphere containing 10% oxygen, 10% water, balance nitrogen at 750° C. for a period of 24 hours. The hydrothermally aged catalyst is referred to as “Aged Catalysts A-C”.
  • TABLE 1
    surface area, silica alumina ratio, crystal size and
    copper loading of the different catalysts (fresh).
    Chabazite Silica to Average SEM
    Alumino- alumina Crystal
    silicate BET surface ratio Dimension Cu loading
    code area (SAR) (micrometer)* wt %
    A 784 26 0.15 3
    B 634 24 0.5 3
    C 616 24 1.4 3
    *The samples were dispersed in methanol and subjected to ultrasound for 20 mins and a drop of this liquid was put on a standard carbon padded Scanning Electron Microscope (SEM) stub.

    Counting and sizing was determined by number averaged digital particle size analysis, based on “thresholding” the intensities from each pixel of an image, and exploiting the differences in intensity between particles and the background. The software assumes that each object detected is circular/spherical.
  • EXAMPLE 4 Activity Tests
  • The NOx conversion of Catalysts A-C of Examples 2 and 3 at an inlet gas temperature of 200° C. or 400° C. are given in Table 2. The NOx reduction performance was measured on a powder sample in a laboratory reactor by ramping the catalyst at 5° C. per minute in a gas mixture containing 500 ppm NO and NH3, 10% O2, 10% H2O and N2.
  • TABLE 2
    NOx conversion at a catalyst inlet gas temperature of 200° C. and
    400° C. for Fresh and 750° C. 24 hour-Aged Conditions
    Average
    SEM Crystal Cu 500° C. Calcined 750° C. Aged
    Dimension Loading % NOx Conversion % NOx Conversion
    Catalyst SAR (micrometer) † wt % 190° C. 200° C. 400° C. 190° C. 200° C. 400° C.
    A 26 0.15 3 73 86 99 44 58 96
    B 24 0.5 3 85 95 99 51 66 97
    C 24 1.4 3 87 97 99 68 83 99
    † See notes on Table 1.
  • It can be seen from Table 2 that the activity of the catalysts generally follows a trend of increasing activity with crystallite size. Hence we conclude that larger crystallite size aluminosilicate zeolite materials are surprisingly more active either fresh or hydrothermally aged than catalysts prepared from smaller crystals of the same aluminosilicate zeolite material.

Claims (23)

1. A synthetic aluminosilicate zeolite catalyst containing at least one catalytically active transition metal selected from the group consisting of Cu, Fe, Hf, La, Au, In, V, lanthanides and Group VIII transition metals, which aluminosilicate zeolite is a small pore aluminosilicate zeolite having a maximum ring size of eight tetrahedral atoms, wherein the mean crystallite size of the aluminosilicate zeolite determined by scanning electron microscope is >0.50 micrometer.
2. An aluminosilicate zeolite catalyst according to claim 1, wherein the at least one catalytically active transition metal is copper, iron or copper and iron.
3. (canceled)
4. An aluminosilicate zeolite catalyst according to claim 1, wherein the mean crystallite size is >1.00 micrometer
5. An aluminosilicate zeolite catalyst according to claim 1, wherein the mean crystallite size is >1.50 micrometers.
6. An aluminosilicate zeolite catalyst according to claim 1, wherein the mean crystallite size is <15.00 micrometers.
7. An aluminosilicate zeolite catalyst according to claim 1, wherein the aluminosilicate zeolite is selected from the group consisting of Framework Type Codes CHA, ERI and LEV.
8. (canceled)
9. An aluminosilicate zeolite catalyst according to claim 1, wherein the aluminosilicate zeolite has Framework Type Code CHA and isotype framework structures of CHA are selected from the group consisting of Linde-D, Linde-R, SSZ-13, LZ-218, Phi and ZK-14.
10. An aluminosilicate zeolite catalyst according to claim 1, wherein the aluminosilicate zeolite has Framework Type Code ERI and a type material or isotype framework structures of ERI are erionite, ZSM-34 or Linde Type T.
11. An aluminosilicate zeolite catalyst according to claim 1, wherein the aluminosilicate zeolite has Framework Type Code LEV and a type material or isotype framework structures of LEV are levynite, Nu-3, LZ-132 or ZK-20.
12. An aluminosilicate zeolite catalyst according to claim 1, wherein the total at least one transition metal present in the catalyst is from 0.1 to 10.0 wt % based on the total weight of the zeolite catalyst.
13. (canceled)
14. A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a synthetic aluminosilicate zeolite catalyst containing at least one catalytically active transition metal selected from the group consisting of Cu, Fe, Hf, La, Au, In, V, lanthanides and Group VIII transition metals, which aluminosilicate zeolite is a small pore aluminosilicate zeolite having a maximum ring size of eight tetrahedral atoms, wherein the mean crystallite size of the aluminosilicate zeolite determined by scanning electron microscope is >0.50 micrometer.
15. A method according to claim 14, wherein the nitrogen oxides are reduced with the reducing agent at a temperature of at least 100° C.
16. A method according to claim 15, wherein the temperature is from about 150° C. to 750° C.
17. A method according to claim 14, wherein the nitrogen oxides reduction is performed in the presence of oxygen.
18. A method according to claim 14, wherein addition of nitrogenous reductant is controlled so that NH3 at the zeolite catalyst inlet is controlled to be 60% to 200% of theoretical ammonia calculated at 1:1 NH3/NO and 4:3 NH3/NO2.
19. A method according to claim 14, wherein nitrogen monoxide in the gas is oxidised to nitrogen dioxide using an oxidation catalyst located upstream of the zeolite catalyst and the resulting gas is then mixed with nitrogenous reductant before the mixture is fed into the zeolite catalyst, wherein the oxidation catalyst is adapted to yield a gas stream entering the zeolite catalyst having a ratio of NO to NO2 of from about 4:1 to about 1:3 by volume.
20. A method according to claim 14, wherein the nitrogenous reductant is ammonia per se, hydrazine or an ammonia precursor selected from the group consisting of urea ((NH2)2CO), ammonium carbonate, ammonium carbamate, ammonium hydrogen carbonate and ammonium formate.
21. A method according to claim 14, wherein the gas containing nitrogen oxides is derived from a combustion process.
22. A method according to claim 21, wherein the combustion process is the combustion of fuel in a vehicular lean burn internal combustion engine.
23. An exhaust system for a vehicular lean-burn internal combustion engine, which system comprising a conduit for carrying a flowing exhaust gas, a source of nitrogenous reductant, a synthetic aluminosilicate zeolite catalyst containing at least one catalytically active transition metal selected from the group consisting of Cu, Fe, Hf, La, Au, In, V, lanthanides and Group VIII transition metals, which aluminosilicate zeolite is a small pore aluminosilicate zeolite having a maximum ring size of eight tetrahedral atoms, disposed in a flow path of the exhaust gas and means for metering nitrogenous reductant into a flowing exhaust gas upstream of the zeolite catalyst, wherein the mean crystallite size of the aluminosilicate zeolite determined by scanning electron microscope is >0.50 micrometer.
US13/057,911 2008-10-15 2009-10-13 Transition metal-containing aluminosilicate zeolite Abandoned US20110182790A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0818887A GB2464478A (en) 2008-10-15 2008-10-15 Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment
GB0818887.2 2008-10-15
PCT/GB2009/051361 WO2010043891A1 (en) 2008-10-15 2009-10-13 Transition metal-containing aluminosilicate zeolite

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2009/051361 A-371-Of-International WO2010043891A1 (en) 2008-10-15 2009-10-13 Transition metal-containing aluminosilicate zeolite

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/833,172 Continuation US20150360212A1 (en) 2008-10-15 2015-08-24 Transition metal-containing aluminosilicate zeolite

Publications (1)

Publication Number Publication Date
US20110182790A1 true US20110182790A1 (en) 2011-07-28

Family

ID=40084059

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/057,911 Abandoned US20110182790A1 (en) 2008-10-15 2009-10-13 Transition metal-containing aluminosilicate zeolite
US14/833,172 Abandoned US20150360212A1 (en) 2008-10-15 2015-08-24 Transition metal-containing aluminosilicate zeolite
US15/485,638 Abandoned US20170216826A1 (en) 2008-10-15 2017-04-12 Transition metal-containing aluminosilicate zeolite

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/833,172 Abandoned US20150360212A1 (en) 2008-10-15 2015-08-24 Transition metal-containing aluminosilicate zeolite
US15/485,638 Abandoned US20170216826A1 (en) 2008-10-15 2017-04-12 Transition metal-containing aluminosilicate zeolite

Country Status (11)

Country Link
US (3) US20110182790A1 (en)
EP (2) EP2878361A1 (en)
JP (1) JP5499042B2 (en)
KR (1) KR101680286B1 (en)
CN (2) CN102186564A (en)
BR (1) BRPI0919338B1 (en)
DE (1) DE202009018988U1 (en)
DK (1) DK2340103T4 (en)
GB (1) GB2464478A (en)
RU (1) RU2535706C2 (en)
WO (1) WO2010043891A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092362A1 (en) * 2007-03-26 2010-04-15 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
US20110251048A1 (en) * 2008-12-22 2011-10-13 Tosoh Corporation Chabazite-type zeolite and process for producing the same
US20120208691A1 (en) * 2009-10-14 2012-08-16 Basf Catalysts Llc Copper Containing Levyne Molecular Sieve For Selective Reduction Of NOx
US20130280160A1 (en) * 2010-12-22 2013-10-24 Tosoh Corporation Chabazite-type zeolite and method for producing same, copper loaded low-silica zeolite and nox reductive removal catalyst containing the zeolite, and method of nox reductive removal using this catalyst
US8961914B2 (en) 2012-10-19 2015-02-24 Basf Corporation 8-ring small pore molecular sieve with promoter to improve low temperature performance
US9309340B2 (en) 2011-03-30 2016-04-12 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
EP2908946A4 (en) * 2012-10-19 2016-06-29 Basf Corp 8-ring small pore molecular sieve as high temperature scr catalyst
US9782761B2 (en) 2013-10-03 2017-10-10 Ford Global Technologies, Llc Selective catalytic reduction catalyst
US9968917B2 (en) 2013-06-14 2018-05-15 Tosoh Corporation LEV-type zeolite and production method therefor
EP3366644A1 (en) 2017-02-22 2018-08-29 Tosoh Corporation Chabazite-type zeolite and method of manufacturing chabazite-type zeolite
EP3470372A1 (en) 2017-10-11 2019-04-17 Tosoh Corporation Metal-containing cha-type zeolite and method for producing the same
US10272421B2 (en) 2015-06-28 2019-04-30 Johnson Matthey Public Limited Company Catalytic wall-flow filter having a membrane
CN109963811A (en) * 2016-11-18 2019-07-02 优美科股份公司及两合公司 Crystalline zeolite with ERI/CHA symbiosis framework types
US20190321783A1 (en) * 2018-04-20 2019-10-24 GM Global Technology Operations LLC Nitrogen oxides and hydrocarbon storage catalyst and methods of using the same
US10618040B2 (en) 2016-10-25 2020-04-14 Jgc Catalysts And Chemicals Ltd. Chabazite zeolite for substrate coating
US10703640B2 (en) 2014-12-17 2020-07-07 Consejo Superioer de Investigaciones Cientificas Synthesis of zeolite with the CHA crystal structure, synthesis process and use thereof for catalytic applications
US11667536B2 (en) 2018-08-24 2023-06-06 Umicore Ag & Co. Kg Method for the preparation of a molecular sieve of the CHA-type

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668422B2 (en) * 2009-11-10 2015-02-12 三菱化学株式会社 Method for producing aluminosilicate
US8293198B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
US8293182B2 (en) 2010-05-05 2012-10-23 Basf Corporation Integrated SCR and AMOx catalyst systems
US9289756B2 (en) 2010-07-15 2016-03-22 Basf Se Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx
JP5810852B2 (en) * 2010-11-09 2015-11-11 東ソー株式会社 Chabazite-type zeolite and nitrogen oxide reduction catalyst containing the same
RU2614411C2 (en) 2010-12-02 2017-03-28 Джонсон Мэтти Паблик Лимитед Компани Zeolite catalyst including metal
WO2012145323A1 (en) * 2011-04-18 2012-10-26 Pq Corporation Large crystal, organic-free chabazite, methods of making and using the same
US20120258032A1 (en) 2011-11-02 2012-10-11 Johnson Matthey Public Limited Company Catalyzed filter for treating exhaust gas
US20140328738A1 (en) * 2011-12-01 2014-11-06 Johnson Matthey Public Limited Company Catalyst for Treating Exhaust Gas
RU2017146613A (en) 2012-01-31 2018-10-17 Джонсон Мэтти Паблик Лимитед Компани CATALYTIC MIXTURES
CN102614908A (en) * 2012-03-16 2012-08-01 北京工业大学 Preparation method of SSZ-13 loaded Cu-Fe catalyst for selectively catalyzing and eliminating NOx by ammonia
CN107583649A (en) * 2012-04-11 2018-01-16 庄信万丰股份有限公司 Zeolite catalyst containing metal
PL2931423T3 (en) 2012-12-12 2022-01-31 Basf Corporation Method of making a catalytic article using large particle molecular sieves
GB2558467B (en) * 2013-03-15 2019-01-30 Johnson Matthey Plc Catalyst for treating exhaust gas
JP6303842B2 (en) * 2013-06-14 2018-04-04 東ソー株式会社 LEV type zeolite, nitrogen oxide reduction catalyst containing the same, and nitrogen oxide reduction method
CN103418427B (en) * 2013-07-23 2016-05-18 北京石油化工学院 A kind of NH3Selective reduction NOxCatalysts and its preparation method and application
JP5732169B1 (en) * 2013-12-27 2015-06-10 イビデン株式会社 Zeolite production method and honeycomb catalyst
BR112016021805B1 (en) * 2014-03-24 2022-05-17 Johnson Matthey Public Limited Company METHOD FOR REDUCING N2O EMISSIONS IN AN EXHAUST GAS, AND, SYSTEM FOR TREATMENT OF AN EXHAUST GAS
DE102014205783A1 (en) * 2014-03-27 2015-10-01 Johnson Matthey Public Limited Company Catalyst and method for producing a catalyst
GB2540832B (en) * 2015-02-20 2019-04-17 Johnson Matthey Plc Bi-metal molecular sieve catalysts
US10188986B2 (en) 2015-11-06 2019-01-29 Paccar Inc Electrochemical reductant generation while dosing DEF
US9757691B2 (en) * 2015-11-06 2017-09-12 Paccar Inc High efficiency and durability selective catalytic reduction catalyst
US10058819B2 (en) 2015-11-06 2018-08-28 Paccar Inc Thermally integrated compact aftertreatment system
US9764287B2 (en) 2015-11-06 2017-09-19 Paccar Inc Binary catalyst based selective catalytic reduction filter
CN105621436B (en) * 2016-01-29 2018-06-12 瑞声光电科技(常州)有限公司 The preparation method and loud speaker of zeolite molecular sieve
CN109070066B (en) * 2016-05-03 2022-01-04 优美科股份公司及两合公司 Active SCR catalyst
US10512904B2 (en) * 2016-05-25 2019-12-24 The Regents Of The University Of California Zeolitic materials having encapsulated bimetallic clusters
EP3281698A1 (en) * 2016-08-11 2018-02-14 Umicore AG & Co. KG Scr active material
GB2558371B (en) 2016-10-28 2021-08-18 Johnson Matthey Plc Catalytic wall-flow filter with partial surface coating
WO2018151289A1 (en) 2017-02-20 2018-08-23 株式会社キャタラー Exhaust gas purifying catalyst
US10835866B2 (en) 2017-06-02 2020-11-17 Paccar Inc 4-way hybrid binary catalysts, methods and uses thereof
US10675586B2 (en) 2017-06-02 2020-06-09 Paccar Inc Hybrid binary catalysts, methods and uses thereof
JP6991104B2 (en) 2018-06-26 2022-01-12 日華化学株式会社 Joining material and joining method using it
GB201900484D0 (en) * 2019-01-14 2019-02-27 Johnson Matthey Catalysts Germany Gmbh Iron-loaded small pore aluminosilicate zeolites and method of making metal loaded small pore aluminosilicate zeolites
US10703986B1 (en) 2019-01-30 2020-07-07 Exxonmobil Research And Engineering Company Selective oxidation using encapsulated catalytic metal
US11007514B2 (en) 2019-04-05 2021-05-18 Paccar Inc Ammonia facilitated cation loading of zeolite catalysts
US10906031B2 (en) 2019-04-05 2021-02-02 Paccar Inc Intra-crystalline binary catalysts and uses thereof
CN110038629A (en) * 2019-05-27 2019-07-23 河南师范大学 A kind of preparation method of rare earth metal Nd doping H-ZSM-34 molecular sieve
US10934918B1 (en) 2019-10-14 2021-03-02 Paccar Inc Combined urea hydrolysis and selective catalytic reduction for emissions control

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025571A (en) * 1976-05-12 1977-05-24 Mobil Oil Corporation Manufacture of hydrocarbons
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US20020183192A1 (en) * 1996-05-29 2002-12-05 Verduijn Johannes Petrus Zeolite catalyst and use for hydrocarbon conversion
US6709644B2 (en) * 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
US20060115403A1 (en) * 2004-11-29 2006-06-01 Chevron U.S.A. Inc. Reduction of oxides of nitrogen in a gas stream using high-silics molecular sieve CHA
US20080202107A1 (en) * 2007-02-27 2008-08-28 Basf Catalysts Llc Scr on low thermal mass filter substrates
US20080226545A1 (en) * 2007-02-27 2008-09-18 Ivor Bull Copper CHA Zeolinte Catalysts
US20080241060A1 (en) * 2007-03-26 2008-10-02 Hong-Xin Li Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
US20100092362A1 (en) * 2007-03-26 2010-04-15 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
US20110251048A1 (en) * 2008-12-22 2011-10-13 Tosoh Corporation Chabazite-type zeolite and process for producing the same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147470A (en) 1975-06-12 1976-12-17 Toa Nenryo Kogyo Kk A process for catalytic reduction of nitrogen oxides
US4297328A (en) 1979-09-28 1981-10-27 Union Carbide Corporation Three-way catalytic process for gaseous streams
US4912776A (en) 1987-03-23 1990-03-27 W. R. Grace & Co.-Conn. Process for removal of NOx from fluid streams
AU617908B2 (en) * 1988-12-16 1991-12-05 Tosoh Corporation Method for exhaust gas cleaning
CA2044893C (en) 1990-06-20 1998-11-03 Senshi Kasahara Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
RU2088316C1 (en) * 1995-02-28 1997-08-27 Институт катализа имени Г.К.Борескова СО РАН Method of scrubbing the exhaust gases from nitrogen oxides
MY125670A (en) * 1995-06-13 2006-08-30 Shell Int Research Catalytic dewaxing process and catalyst composition
RU2108140C1 (en) * 1996-06-24 1998-04-10 Александр Юрьевич Логинов Method of treating exhaust gases
GB9802504D0 (en) 1998-02-06 1998-04-01 Johnson Matthey Plc Improvements in emission control
WO2000072965A1 (en) * 1999-05-27 2000-12-07 The Regents Of The University Of Michigan Zeolite catalysts for selective catalytic reduction of nitric oxide by ammonia and method of making
DE50011443D1 (en) * 2000-03-01 2005-12-01 Umicore Ag & Co Kg Catalyst for the purification of exhaust gases of diesel engines and process for its production
DE10020100A1 (en) * 2000-04-22 2001-10-31 Dmc2 Degussa Metals Catalysts Process and catalyst for the reduction of nitrogen oxides
US7229597B2 (en) 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
WO2005063622A2 (en) * 2003-12-23 2005-07-14 Exxonmobil Chemical Patents Inc. Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
WO2007053239A1 (en) 2005-10-31 2007-05-10 Exxonmobil Chemical Patents Inc. Synthesis of chabazite-containing molecular sieves and their use in the conversion of oxygenates to olefins
US8580228B2 (en) * 2006-12-27 2013-11-12 Chevron U.S.A. Inc. Treatment of cold start engine exhaust
WO2008106523A2 (en) * 2007-02-27 2008-09-04 Basf Catalysts Llc Bifunctional catalysts for selective ammonia oxidation
EP2517773B2 (en) 2007-04-26 2019-08-07 Johnson Matthey Public Limited Company Copper/LEV-zeolite SCR catalyst
US20090196812A1 (en) 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
CN103771440B (en) * 2008-05-21 2015-12-30 巴斯夫欧洲公司 Direct synthesis has the method containing Cu zeolite of CHA structure
RU2614411C2 (en) * 2010-12-02 2017-03-28 Джонсон Мэтти Паблик Лимитед Компани Zeolite catalyst including metal
WO2012145323A1 (en) 2011-04-18 2012-10-26 Pq Corporation Large crystal, organic-free chabazite, methods of making and using the same
US8661790B2 (en) * 2011-11-07 2014-03-04 GM Global Technology Operations LLC Electronically heated NOx adsorber catalyst
US10988151B2 (en) 2018-08-06 2021-04-27 Alstom Transport Technologies System and method for controlling a level crossing of a railway track

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025571A (en) * 1976-05-12 1977-05-24 Mobil Oil Corporation Manufacture of hydrocarbons
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US20020183192A1 (en) * 1996-05-29 2002-12-05 Verduijn Johannes Petrus Zeolite catalyst and use for hydrocarbon conversion
US6709644B2 (en) * 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
US20060115403A1 (en) * 2004-11-29 2006-06-01 Chevron U.S.A. Inc. Reduction of oxides of nitrogen in a gas stream using high-silics molecular sieve CHA
US20080202107A1 (en) * 2007-02-27 2008-08-28 Basf Catalysts Llc Scr on low thermal mass filter substrates
US20080226545A1 (en) * 2007-02-27 2008-09-18 Ivor Bull Copper CHA Zeolinte Catalysts
US7601662B2 (en) * 2007-02-27 2009-10-13 Basf Catalysts Llc Copper CHA zeolite catalysts
US20080241060A1 (en) * 2007-03-26 2008-10-02 Hong-Xin Li Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
US7645718B2 (en) * 2007-03-26 2010-01-12 Pq Corporation Microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
US20100092362A1 (en) * 2007-03-26 2010-04-15 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
US20110251048A1 (en) * 2008-12-22 2011-10-13 Tosoh Corporation Chabazite-type zeolite and process for producing the same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
US20100092362A1 (en) * 2007-03-26 2010-04-15 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
US10029247B2 (en) * 2008-12-22 2018-07-24 Tosoh Corporation Chabazite-type zeolite and process for producing the same
US20110251048A1 (en) * 2008-12-22 2011-10-13 Tosoh Corporation Chabazite-type zeolite and process for producing the same
US20120208691A1 (en) * 2009-10-14 2012-08-16 Basf Catalysts Llc Copper Containing Levyne Molecular Sieve For Selective Reduction Of NOx
US9242241B2 (en) * 2009-10-14 2016-01-26 Base Se Copper containing levyne molecular sieve for selective reduction of NOx
US20130280160A1 (en) * 2010-12-22 2013-10-24 Tosoh Corporation Chabazite-type zeolite and method for producing same, copper loaded low-silica zeolite and nox reductive removal catalyst containing the zeolite, and method of nox reductive removal using this catalyst
US9889436B2 (en) * 2010-12-22 2018-02-13 Tosoh Corporation Chabazite-type zeolite and method for producing same, copper loaded low-silica zeolite and NOx reductive removal catalyst containing the zeolite, and method of NOx reductive removal using this catalyst
US9309340B2 (en) 2011-03-30 2016-04-12 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
US10633471B2 (en) 2011-03-30 2020-04-28 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
US11643485B2 (en) 2011-03-30 2023-05-09 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
US9975972B2 (en) 2011-03-30 2018-05-22 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
US8961914B2 (en) 2012-10-19 2015-02-24 Basf Corporation 8-ring small pore molecular sieve with promoter to improve low temperature performance
RU2767067C1 (en) * 2012-10-19 2022-03-16 Басф Корпорейшн 8-ring molecular sieve with small pores as high-temperature scr catalyst
EP2908946A4 (en) * 2012-10-19 2016-06-29 Basf Corp 8-ring small pore molecular sieve as high temperature scr catalyst
RU2704617C2 (en) * 2012-10-19 2019-10-30 Басф Корпорейшн 8-ring molecular sieve with small pores as high-temperature scr catalyst
US9968917B2 (en) 2013-06-14 2018-05-15 Tosoh Corporation LEV-type zeolite and production method therefor
US9782761B2 (en) 2013-10-03 2017-10-10 Ford Global Technologies, Llc Selective catalytic reduction catalyst
US10703640B2 (en) 2014-12-17 2020-07-07 Consejo Superioer de Investigaciones Cientificas Synthesis of zeolite with the CHA crystal structure, synthesis process and use thereof for catalytic applications
US10703639B2 (en) 2014-12-17 2020-07-07 Consejo Superior De Investigaciones Cientificas Synthesis of zeolite with the CHA crystal structure, synthesis process and use thereof for catalytic applications
US10703638B2 (en) 2014-12-17 2020-07-07 Consejo Superior De Investigaciones Cientificas Synthesis of zeolite with the CHA crystal structure, synthesis process and use thereof for catalytic applications
US10272421B2 (en) 2015-06-28 2019-04-30 Johnson Matthey Public Limited Company Catalytic wall-flow filter having a membrane
US10618040B2 (en) 2016-10-25 2020-04-14 Jgc Catalysts And Chemicals Ltd. Chabazite zeolite for substrate coating
CN109963811A (en) * 2016-11-18 2019-07-02 优美科股份公司及两合公司 Crystalline zeolite with ERI/CHA symbiosis framework types
EP3674265A1 (en) 2017-02-22 2020-07-01 Tosoh Corporation Chabazite-type zeolite and method of manufacturing chabazite-type zeolite
US10407314B2 (en) 2017-02-22 2019-09-10 Tosoh Corporation Chabazite-type zeolite and method of manufacturing chabazite-type zeolite
EP3366644A1 (en) 2017-02-22 2018-08-29 Tosoh Corporation Chabazite-type zeolite and method of manufacturing chabazite-type zeolite
US10821426B2 (en) 2017-10-11 2020-11-03 Tosoh Corporation Metal-containing cha-type zeolite and method for producing the same
EP3470372A1 (en) 2017-10-11 2019-04-17 Tosoh Corporation Metal-containing cha-type zeolite and method for producing the same
US20190321783A1 (en) * 2018-04-20 2019-10-24 GM Global Technology Operations LLC Nitrogen oxides and hydrocarbon storage catalyst and methods of using the same
US10953366B2 (en) * 2018-04-20 2021-03-23 GM Global Technology Operations LLC Nitrogen oxides and hydrocarbon storage catalyst and methods of using the same
US11667536B2 (en) 2018-08-24 2023-06-06 Umicore Ag & Co. Kg Method for the preparation of a molecular sieve of the CHA-type

Also Published As

Publication number Publication date
EP2340103B2 (en) 2020-07-22
KR101680286B1 (en) 2016-11-28
RU2011119436A (en) 2012-11-27
EP2340103B1 (en) 2014-12-03
BRPI0919338B1 (en) 2019-05-07
CN102186564A (en) 2011-09-14
GB0818887D0 (en) 2008-11-19
US20150360212A1 (en) 2015-12-17
EP2878361A1 (en) 2015-06-03
JP2012505744A (en) 2012-03-08
RU2535706C2 (en) 2014-12-20
CN105148982A (en) 2015-12-16
BRPI0919338A2 (en) 2015-12-29
DK2340103T4 (en) 2020-10-12
US20170216826A1 (en) 2017-08-03
KR20110081936A (en) 2011-07-15
DE202009018988U1 (en) 2015-03-05
JP5499042B2 (en) 2014-05-21
WO2010043891A1 (en) 2010-04-22
GB2464478A (en) 2010-04-21
DK2340103T3 (en) 2015-03-02
EP2340103A1 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US20110182790A1 (en) Transition metal-containing aluminosilicate zeolite
US9675935B2 (en) Metallosilicates, processes for producing the same, nitrogen oxide removal catalyst, process for producing the same, and method for removing nitrogen oxide with the same
JP5169779B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
CN112236230B (en) Stabilized small pore zeolite
EP2072128B1 (en) Catalyst for reducing nitrogen oxides and process for reducing nitrogen oxides
EP3597293B1 (en) Transition metal-carrying zeolite and production method therefor, and nitrogen oxide purification catalyst and method for using same
JP6171255B2 (en) NOx selective reduction catalyst, method for producing the same, and NOx purification method using the same
JP5594121B2 (en) Novel metallosilicate and nitrogen oxide purification catalyst
JP5309936B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
US20020094314A1 (en) Method for the reduction and removal of nitrogen oxides
US20240109058A1 (en) Rare earth element containing zeolitic material having the aei framework type and coated monolith substrate
JPH08173761A (en) Method for removing nitrogen oxide
WO2023036238A1 (en) Synthesis of cha zeolitic materials, cha zeolitic materials obtainable therefrom and scr catalysts comprising the same
EP3458416B1 (en) Molecular sieve ssz-104, its synthesis and use
CN116586105A (en) Metal limited catalyst and preparation method and application thereof
JP3806167B2 (en) Exhaust gas purification catalyst
JP2019171243A (en) Zeolite powder

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOHNSON MATTHEY PUBLIC LIMITED COMPANY, UNITED KIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANDLER, GUY RICHARD;COLLINS, NEIL ROBERT;SHIN, RODNEY FOO KOK;AND OTHERS;SIGNING DATES FROM 20110317 TO 20110328;REEL/FRAME:026135/0710

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION