US20110153005A1 - Medical implant, coating method and implantation method - Google Patents

Medical implant, coating method and implantation method Download PDF

Info

Publication number
US20110153005A1
US20110153005A1 US12/972,102 US97210210A US2011153005A1 US 20110153005 A1 US20110153005 A1 US 20110153005A1 US 97210210 A US97210210 A US 97210210A US 2011153005 A1 US2011153005 A1 US 2011153005A1
Authority
US
United States
Prior art keywords
active substance
coating
medical implant
base body
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/972,102
Inventor
Claus Harder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotronik VI Patent AG
Original Assignee
Biotronik VI Patent AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotronik VI Patent AG filed Critical Biotronik VI Patent AG
Priority to US12/972,102 priority Critical patent/US20110153005A1/en
Assigned to BIOTRONIK VI PATENT AG reassignment BIOTRONIK VI PATENT AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARDER, CLAUS, DR.
Publication of US20110153005A1 publication Critical patent/US20110153005A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances

Definitions

  • An example of the invention relates to a medical implant and a method, in particular a coating method for coating a medical implant, and a method for implantation of a medical implant in an animal or human body.
  • Implants are used in medicine to be introduced into an animal or human body permanently or at least for a prolonged period of time to fulfill replacement functions. Examples include cardiac pacemakers, cerebral pacemakers for Parkinson's patients, cardiac implants, cochlear implants, retinal implants, dental implants, joint replacement implants, vascular prostheses and stents. Stents coated with an active substance, in particular, so-called drug-eluting stents (DES), have recently been used with increasing frequency in the field of cardiovascular disease to reduce the sequelae of procedures, such as a restenosis or reocclusion of blood vessels, through local administration of an active substance following dilatation of stenosed coronary vessels by means of angioplasty and stabilization by stent implantation.
  • DES drug-eluting stents
  • a stent may have a so-called layer-by-layer coating with a radial active substance gradient, so that one or more active substances are eluted in various time-dependent doses and/or in one or more different time slots.
  • this prior art document discloses a method for producing the coated stent, in which the active substance gradient is produced by applying different active substance/polymer mixtures layer by layer radially.
  • US 2005 0075714 A1 also discloses such a stent as well as a comparable method.
  • US 2008 0195079 A1 discloses a stent having three areas of different coatings, such that the areas at the ends of the stent have the same drug concentration, which is higher than the drug concentration in the area between the two ends.
  • a feature of some invention embodiments is to create a medical implant and a method for implantation of a medical implant in an animal or human body that will permit enhanced administration of an active substance and will achieve a targeted mechanism of action. Furthermore, some invention embodiments provide a method for coating a medical implant
  • An example of the invention is directed to a medical implant having a base body with a first end and a second end, arranged opposite one another in the main direction of the extent of the base body (by way of example, the distal opposing ends of the implant), and a coating, such that the coating has at least one active substance with an active substance gradient.
  • Other example embodiments include methods for making an implant, and methods for implanting one.
  • FIG. 1 shows an inventive medical implant in a view from above with a coating
  • FIG. 2 shows a schematic diagram of a section through the medical implant from FIG. 1 with a coating in a first embodiment
  • FIG. 3 shows a diagram of an active substance gradient
  • FIG. 4 shows the implant from FIG. 1 implanted in a cavity
  • FIG. 5 a - c show three simulations of elution of an active substance of three medical implants with different coatings according to the state of the art
  • FIG. 6 shows a schematic diagram of a coating method of the medical implant from FIG. 1 .
  • FIG. 7 shows a schematic diagram of a section through a medical implant with an alternative embodiment of the coating.
  • the quantity of active substance deposited at a certain location on the vascular wall not only depends on the local elution of the active substance at this location but also is influenced by the medium flowing through the stent because this medium conveys the active substance, which enters the stream there, downstream proximally away from this location and can deposit it at this location.
  • this effect plays a role that must be taken into account in achieving targeted deposition of the active substance.
  • Some embodiments of the invention direct that the quantity of active substance should decrease from the first end to the second end, at least in the main direction of extent of the base body.
  • the term “decrease” should be understood to refer to a continuous or quasi-continuous reduction in the amount of active substance, which declines by stages, monotonically and/or strictly monotonically.
  • end of the base body should be understood here to refer to an area of the implant, to which is connected an implant structure and/or a base body structure, such as a wire mesh, in only one direction.
  • main extent here should be understood to refer to the length of the base body and/or, in the implanted state of the implant, a direction along the direction of flow of a fluid medium.
  • opposite ends should be understood here to refer in particular to ends situated at different ends relative to the direction of flow, i.e., at the beginning and end (e.g., upstream and downstream portions) of the implant.
  • the quantity of active substance in the coating may thus either increase or decrease in the axial direction of flow, depending on the direction of implantation.
  • An embodiment of the invention makes available a medical implant, which is coordinated with the parameters of the implantation site, such as the absorption rate of active substance by a cavity wall adjacent to or in contact with the implant and/or the flow rate of a medium flowing through the cavity and/or the implant. In this way, a desired homogeneous concentration of active substance is achieved in the surrounding cavity wall, so that local overdosing or underdosing can be prevented in an especially advantageous manner.
  • an “implant” should be understood to be a body which fulfills a replacement function when implanted in an animal or human body either permanently or for an extended period of time.
  • All medical implants that seem expedient to those skilled in the art would be conceivable here, e.g., a cardiac pacemaker, a cerebral pacemaker, a cardiac implant, a cochlear implant, a retinal implant, a dental implant, a joint prosthesis implant, a vascular prosthesis or, especially advantageously, an embodiment of the medical implant as a stent, in particular as a coronary stent is proposed as being especially advantageous.
  • the implant and/or the stent preferably comprises a depot for a pharmaceutically active substance, so that dosing of the active substance may advantageously be coordinated with the needs of the vascular wall surrounding the implant, taking into account the rate of blood flow.
  • the term “base body” should be understood to refer to a structure such as a wire mesh (although other structures are possible in addition to a wire mesh), which essentially forms the shape and/or form of the implant and/or stent.
  • the base body is preferably manufactured from a metallic material or from a combination of several metallic and non-metallic materials such as iron, magnesium, nickel, tungsten, titanium, zirconium, niobium, tantalum, zinc, silicon, lithium, sodium, potassium, calcium, manganese or any other material that seems suitable to those skilled in the art.
  • a zinc-calcium alloy or a shape memory material such as a nickel-titanium alloy or a copper-zinc-aluminum alloy, preferably Nitinol, are also possible in invention embodiments.
  • the base body comprises at least cobalt and/or chromium, preferably in the form of stainless steel and/or a Cr—Ni—Fe steel (preferably the alloy 316L) or a Co—Cr steel.
  • the base body of the implant consists at least partially of a plastic, a ceramic, or a biodegradable material.
  • a “coating” should be understood to refer to at least partial sheathing or covering of the implant, preferably a stent and/or filling and/or loading comprising at least one recess, preferably in the form of a hole, a cavity or a basket in or on the implant, with a suitable matrix comprising at least one active substance.
  • Preferred polymers for a polymer matrix of embodiments of the implant are selected, depending on need, from the following groups:
  • the coating preferably contains at least one polylactide, such as poly-L-lactide, so that a biocompatible and especially low-weight coating can be provided.
  • polylactide such as poly-L-lactide
  • an “active substance” should be understood here to be a substance which induces and/or suppresses a biochemical and/or biological response in the animal or human body.
  • an active substance may also be used as synonymous with a “drug” and/or a “pharmaceutical agent.” It is preferred that at least one active substance is selected from the group consisting of lipid regulators (fibrates), immunosuppressants, immunomodulators, vasodilators (sartans), calcium channel blockers, calcineurin inhibitors (tacrolimus), antiphlogistics (glucocorticoids, cortisone, diclofenac), anti-inflammatories (imidazoles), anti-allergies, oligonucleotides (dODN), estrogens (genistein), endothelializing agents (fibrin), steroids, proteins/peptides, proliferation inhibitors, analgesics, antirheumatics, cytostatics.
  • the invention has proved to be advantageous in use of an active substance having a narrow therapeutic window.
  • narrow therapeutic window as used here should be understood to refer to a narrow therapeutic scope, where “therapeutic scope” refers to the ratio between a therapeutic dose and a toxic dose of the active substance.
  • therapeutic scope refers to the ratio between a therapeutic dose and a toxic dose of the active substance.
  • the active substance gradient should be adjusted through the thickness of the coating.
  • Thiickness here defines a radial measurement of the coating with respect to a midpoint of the implant, the midpoint being a line along the longitudinal axis of the implant, generally positioned in the direction of fluid flow.
  • An “active substance gradient” should be understood here to refer to a change in the quantity of active substance between two points and, particularly, between the first end and the second end.
  • the thickness of the coating, and thus also the quantity of active substance, at the first end is preferably greater than the thickness of the coating at the second end of the base body. Due to the variable thickness, preferably decreasing monotonically along the length in the main direction of extent of the base body, the active substance gradient can be established and adjusted through design techniques.
  • the active substance gradient is preferably set by means of one or more active substance concentrations along the coating.
  • the radial thickness of the coating along the main direction of extent of the implant is the same over the entire length but the quantities of active substance differ at the first end and at the second end.
  • the implant may advantageously be designed and produced to be homogeneous in its dimensions.
  • the first end should be positioned at the upstream end in an axial direction of flow.
  • the term “cavity” should be understood in particular to refer to a cavity in an animal or human body such as a tubular structure and/or a tubular vessel through which a fluid medium and/or a body fluid such as lymph, bile, urine, lacrimal fluid, saliva, cerebrospinal fluid, or blood flows.
  • An “upstream end” should be understood here to refer in particular to a proximal end and/or an end which comes in contact with the fluid medium at an earlier point in time than another end and/or the second end and/or a distal end.
  • the term “end” when used in this context is not intended to refer to the absolute start or finish of a cavity—any section of a cavity may be considered to have an upstream and downstream end.
  • the implant is preferably situated with an inside surface of the wall of the cavity and/or a vascular wall at least partially for support thereof.
  • an implant of the invention in an implanted state in use within a cavity an implant of the invention may be in contact with the surrounding cavity—an exterior surface of the implant may lie adjacent and in supporting contact with the cavity wall. Through this orientation, the implant is thus designed to be optimized in particular with regard to both flow and the varied coating profile.
  • the at least one active substance is elutable so that a desired local concentration distribution is achieved in an adjacent cavity wall
  • this makes available an implant that is especially valuable therapeutically and has an especially balanced spectrum of effects and/or potential.
  • the phrase “desired local concentration distribution” should be understood to mean that a concentration distribution or an active substance distribution is coordinated with at least one parameter of the implant-cavity system.
  • the parameter may refer to the active substance, the cavity, the cavity wall or the medium and/or flow medium surrounding and/or flowing through the cavity and may represent a type of active substance, a volume, an absorbability, an elasticity, a flow rate, etc.
  • the active substance distribution may be heterogeneous or homogeneous.
  • the desired local concentration distribution of a respective active substance distribution in the coating may be ascertained and/or optimized by simulation (see also FIG. 5 ).
  • elution is intended to broadly refer to release. Elution may occur in short, long or intermediate time periods depending on a desired application as well as other factors. In at least some embodiments, elution of the active substance occurs during a time period of several minutes, in others an hour or more, and in others longer periods of time.
  • inventive implant comprising the implant base body, the carrier matrix and the active substance:
  • another invention embodiment is directed to a method, in particular, a coating method for coating a medical implant comprising a base body having a first end and a second end and the coating, which contains at least one active substance with an active substance gradient.
  • a coating stream with a polymer/active substance mixture is moved at a variable rate from the first end to the second end.
  • a “polymer/active substance mixture” should be understood to refer to any combination of one or more of the polymers already listed and one or more of the active substances already listed, or any other combination of similar materials relevant in the art.
  • a “variable rate” should be understood here to refer to a changing rate, with one example being a linear or modified linear rate.
  • the implant is a stent or preferably a coronary stent
  • different coating thicknesses are applied along a main direction of extent from the first end to the second end, or any other length in the direction of fluid flow, of the implant, resulting in different quantities of active substance at different axial positions of the implant and/or stent.
  • the coating stream may be produced by any coating unit that seems appropriate to those skilled in the art, e.g., equipped with a two-substance nozzle (with or without forced conveyance), a single-substance nozzle, a rebound nozzle, a dosing valve, a rotary atomizer or an ultrasonic atomizer. In general, movement of the implant relative to the coating stream would also be conceivable.
  • any other method of coating the implant expedient to those skilled in the art e.g., by means of a roller application or by means of an immersion reservoir, is also contemplated. Varying the concentration of active substance in the polymer/active substance mixture through different mixing conditions or other steps is also contemplated.
  • the coating layer containing the polymer active substance is applied in a substantially even thickness over the implant between first and second ends, but the concentration gradient of the one or more active substances in the coating varies over the length.
  • the active substance gradient can be adjusted and/or established easily through the design.
  • the coating can be applied reliably and in a reliable process.
  • the coating stream it is possible to provide for the coating stream to move from the first end to the second end at an increasing rate.
  • the radial thickness of the coating becomes thinner along the length, starting from one coating thickness at the first end (where the stream is applied moving slowest to result in a high thickness), the proximal end in the implanted state of the coated implant, to the second end, the distal end (where the stream is applied moving fastest to result in a low thickness), so the quantity of active substance preferably declines monotonically, i.e., becomes smaller from the first end to the second end.
  • a coating with a monotonically decreasing active substance gradient can be applied quickly and reliably by increasing the rate of application.
  • the coating stream is moved in the axial direction or in the circumferential direction relative to the medical implant, or both.
  • the coating stream is moved by a length ⁇ z axially starting from the first end in the direction of the second end after a revolution of the implant around the circumference of the implant, i.e., by 360° around the implant's axis, where ⁇ z is limited only by the design specifications of the coating device.
  • an embodiment of the invention is directed to a method, in particular, an implantation method for implanting a medical implant in an animal or human body, with a first end and second end, such that the first end has a greater loading of active substance than the second end.
  • the first end should be arranged in a cavity at the upstream end in the axial direction of flow.
  • active substance loading here should be understood to refer to the quantity of active substance per unit of area.
  • the implant is a stent and preferably a coronary stent.
  • the cavity is formed by a vessel, in particular a blood vessel and especially preferably a coronary artery.
  • the active substance is any substance that appears suitable to those skilled in the art and in particular may be one or more of the substances mentioned in the introduction.
  • FIG. 1 shows in a view from above an example medical implant 10 a in the form of a stent 36 a , i.e., a coronary stent having a base body 12 a made of chromium-cobalt steel, having as the base body structure a wire mesh 50 a embodied by stent struts 52 a .
  • the base body 12 a has a first end 14 a and a second end 16 a , which are arranged on opposite ends of the base body 12 a in a main direction of extent 18 a of the base body 12 a .
  • the embodiment of the wire mesh 50 a may be of any desired form that seems appropriate to those skilled in the art.
  • the implant 10 a and/or the stent 36 a is also coated with a coating 20 a , which is introduced into cavities 54 a of the stent struts 52 a . These cavities 54 a are distributed over the entire area of the stent struts 52 a in a manner with which those skilled in the art are familiar, but only one cavity 54 a is indicated here to yield a simpler diagram and is shown symbolically enlarged.
  • the coating 20 a is formed by a polymer/active substance mixture 44 a , which contains the immunosuppressant sirolimus as the active substance 22 a , and poly-L-lactide (PLLA) as the polymer matrix 56 a .
  • the active substance 22 a thus has a narrow therapeutic window.
  • the active substance 22 a of the coating 20 a has an active substance gradient 24 a ( FIGS. 2 and 3 ).
  • the medical implant 10 a is shown schematically in a sectional diagram along line II-II in FIG. 1 .
  • the coating 20 a is represented symbolically here to illustrate the coating profile on an exterior surface 58 a of the base body 12 a .
  • the entire exterior surface of the implant base body may thus be coated in some embodiments, while in other embodiments only portions of the exterior surface are coated.
  • the inside surfaces and side surfaces of the stent struts may also be coated, but for the sake of brevity, this is not shown in the drawing. In some embodiments these surfaces are not coated.
  • the coating 20 a has thicknesses 28 a ′, 28 a ′′ which vary in a radial direction 60 a along the main direction of extent 18 a , resulting in an active substance gradient 24 a through the thickness 28 a ′, 28 a ′′ of the coating 20 a .
  • the thickness 28 a ′ of the coating 20 a is thicker than the thickness 28 a ′′ on the second end 16 a .
  • the polymer/active substance matrix of the coating 20 a has the same active substance concentration over the entire length 62 a of the base body 12 a , the quantity of active substance 26 a in the main direction of extent 18 a of the base body 12 a declines from the first end 14 a to the second end 16 a and has a strictly monotonic decline ( FIG. 3 ).
  • FIG. 3 shows a diagram of the active substance gradient 24 a , where the position of the stent length in mm is plotted on the x axis and the load in ⁇ g active substance per cm 2 stent area is plotted on the y axis. It can be seen clearly here that the coating at the beginning of the implant 10 a and/or at the first end 14 a at the position at 1 mm has a coating of approximately 200 ⁇ g/cm 2 and at one end of the implant 10 a and/or at the second end 16 a at 20 mm has a coating of approximately 50 ⁇ g/cm 2 .
  • the quantities of active substance 26 a decrease and thus the active substance 24 a also decreases from the first end 14 a to the second end 16 a according to a strictly monotonic decline.
  • the loading has decreased by a factor of 4 from first to second end (200 to 50 ⁇ g/cm 2 ). It has been discovered that a loading difference of at a factor of 4 from first end (highest) to second end (lowest) is useful in many applications. Other invention embodiments, however, have loading differences that are less than 4, with one example being a difference of 2.
  • FIG. 4 shows the medical implant 10 a , or the stent 36 a , in an implanted state in a cavity 32 a of a human body 38 a .
  • the implant 10 a is introduced into the human body 38 a by means of a method for implantation of the medical implant 10 a and/or an implantation method in the human body 38 a .
  • the cavity 32 a is formed by a tubular vessel, or a coronary artery 64 a .
  • the implant 10 a is in contact with an inside surface 68 a of the cavity wall 40 a , or vascular wall 70 a of the coronary artery 64 a (not represented correctly here by the symbolic and enlarged diagram of the coating 20 a ).
  • the first end 14 a which has a higher active substance load than the second end 16 a , is introduced into the cavity 32 a , or the coronary artery 64 a , so that at the upstream end, it flows through the cavity 32 a in an axial direction of flow 34 a of a fluid medium 72 a and comprises a bodily fluid and/or blood
  • the medical implant 10 a has an embodiment for eluting the active substance 22 a in the human body 38 a , such that the active substance 22 a is eluted to yield a desired local concentration distribution in the adjacent cavity wall 40 a .
  • This desired local concentration distribution of the respective active substance distribution in the coating 20 a can be determined and optimized by simulation.
  • the elution is described as Example C.
  • a medical implant 10 or a stent 36 , is implanted in a coronary artery 64 , and a bodily fluid (not shown) flows through it in the direction of flow 34 .
  • the stent 36 is provided with a coating 20 over its entire length 62 .
  • the quantity of active substance deposited in the vascular wall is illustrated by means of gray shading.
  • FIG. 6 shows schematically a device 74 a for a method for coating a medical implant 10 a in the form of a stent 36 a with a base body 12 a , which has a first end 14 a and a second end 16 a . Furthermore, the base body 12 a has a coating 20 a , which has an active substance 22 a with an active substance gradient 24 a .
  • the device 74 a has a reservoir 76 a with the polymer/active substance mixture 44 a , which is applied as a coating stream 42 a to the implant 10 a , or the stent 36 a , by means of a nozzle 78 a .
  • the coating stream 42 a of the polymer/active substance mixture 44 a is moved at a variable rate, preferably an increasing velocity, from the first end 14 a to the second end 16 a of the base body 12 a . Due to the increase in velocity, the coating 20 a becomes progressively thinner from a first position proximate to or at the first end 14 a , to a second position 80 a proximate to or at the second end 16 a (coating result on the second end 16 a not shown). Velocity can be varied in one or both of fluid flow through the nozzle, or movement of the nozzle relative to the implant.
  • the coating stream 42 a is moved in the circumferential direction 46 a and in the axial direction 48 a by means of the device 74 a relative to the medical implant 10 a .
  • a section ⁇ z is coated only in the circumferential direction 46 a around the entire circumference of the implant 10 a , and then the coating stream 40 a is moved further in the direction of the second end 16 a by the distance ⁇ z in the axial direction 48 a to coat the next section ⁇ z′ in the circumferential direction 46 a . This is continued until the medical implant 10 a has been coated completely.
  • the implant 10 a is moved relative to the nozzle, in one or both of the ⁇ z direction and in the circumferential direction.
  • FIG. 7 shows an alternative exemplary embodiment of the medical implant 10 a .
  • Components, features and functions that remain the same are essentially labeled with the same reference numerals.
  • the letters a and b are added to the reference numerals of the exemplary embodiments.
  • the following description is limited essentially to the differences in comparison with the exemplary embodiment in FIGS. 1 to 6 , whereby reference can be made to the description of the exemplary embodiment in FIGS. 1 to 6 with regard to the same components, features and functions.
  • FIG. 7 shows an alternative medical implant 10 b in the form of a stent 36 b with a base body 12 b of a chromium-cobalt steel.
  • the base body 12 b has a first end 14 b and a second end 16 b , which are arranged on opposite ends of the base body 12 b in a main direction of extent 18 b of the base body 12 b .
  • the base body 12 b has a coating 20 b , containing the immunosuppressant sirolimus with a narrow therapeutic window as the active substance 22 b and a polymer matrix 56 b of poly-L-lactide.
  • the active substance 22 b is introduced into the coating 20 b with an active substance gradient 24 b , so the quantity of active substance 26 b in the main direction of extent 18 b of the base body 12 b decreases from the first end 14 b to the second end 16 b .
  • This decline in the active substance gradient 24 b is adjusted by means of several active substance concentrations 30 b along the coating 20 b .
  • the coating 20 b which has a constant thickness 28 b over the entire length 62 b in the radical direction 60 b , has a higher active substance concentration 30 b ′ than the active substance concentration 30 b ′′ at the second end 16 b.
  • the coating 20 b may be applied by means of a method in which the polymer and the active substance 22 b are mixed in different ratios prior to coating by means of a suitable mixing unit (not shown) such as a gradient pump, a multi-way valve, a conveyer screw.
  • This mixing unit may also be provided as a dosing unit to regulate the concentration of the active substance.

Abstract

One example of the invention relates to a medical implant having a base body comprising a first end and a second end, which are arranged at opposite ends of the base body in a main direction of the extent of the base body, and a coating, such that the coating has at least one active substance with an active substance gradient. It is proposed that the quantity of active substance shall decrease from the first end to the second end, at least in the main direction of extent of the base body.

Description

    CROSS REFERENCE
  • The present application claims priority on U.S. Provisional Application No. 61/288,346 filed on Dec. 21, 2009; which application is incorporated by reference herein.
  • TECHNICAL FIELD
  • An example of the invention relates to a medical implant and a method, in particular a coating method for coating a medical implant, and a method for implantation of a medical implant in an animal or human body.
  • BACKGROUND
  • Implants are used in medicine to be introduced into an animal or human body permanently or at least for a prolonged period of time to fulfill replacement functions. Examples include cardiac pacemakers, cerebral pacemakers for Parkinson's patients, cardiac implants, cochlear implants, retinal implants, dental implants, joint replacement implants, vascular prostheses and stents. Stents coated with an active substance, in particular, so-called drug-eluting stents (DES), have recently been used with increasing frequency in the field of cardiovascular disease to reduce the sequelae of procedures, such as a restenosis or reocclusion of blood vessels, through local administration of an active substance following dilatation of stenosed coronary vessels by means of angioplasty and stabilization by stent implantation.
  • It is known from DE 10 1006 038239 A1 that a stent may have a so-called layer-by-layer coating with a radial active substance gradient, so that one or more active substances are eluted in various time-dependent doses and/or in one or more different time slots. Furthermore, this prior art document discloses a method for producing the coated stent, in which the active substance gradient is produced by applying different active substance/polymer mixtures layer by layer radially. US 2005 0075714 A1 also discloses such a stent as well as a comparable method.
  • US 2008 0195079 A1 discloses a stent having three areas of different coatings, such that the areas at the ends of the stent have the same drug concentration, which is higher than the drug concentration in the area between the two ends.
  • SUMMARY
  • A feature of some invention embodiments is to create a medical implant and a method for implantation of a medical implant in an animal or human body that will permit enhanced administration of an active substance and will achieve a targeted mechanism of action. Furthermore, some invention embodiments provide a method for coating a medical implant
  • This feature is achieved by the elements of the independent claims. Example embodiments of the invention are derived from the additional claims, the drawings, and the description.
  • An example of the invention is directed to a medical implant having a base body with a first end and a second end, arranged opposite one another in the main direction of the extent of the base body (by way of example, the distal opposing ends of the implant), and a coating, such that the coating has at least one active substance with an active substance gradient. Other example embodiments include methods for making an implant, and methods for implanting one.
  • DESCRIPTION OF THE DRAWINGS
  • The invention is described in greater detail below on the basis of exemplary embodiments illustrated in the drawings, in which schematically:
  • FIG. 1 shows an inventive medical implant in a view from above with a coating,
  • FIG. 2 shows a schematic diagram of a section through the medical implant from FIG. 1 with a coating in a first embodiment,
  • FIG. 3 shows a diagram of an active substance gradient,
  • FIG. 4 shows the implant from FIG. 1 implanted in a cavity,
  • FIG. 5 a-c show three simulations of elution of an active substance of three medical implants with different coatings according to the state of the art,
  • FIG. 6 shows a schematic diagram of a coating method of the medical implant from FIG. 1, and
  • FIG. 7 shows a schematic diagram of a section through a medical implant with an alternative embodiment of the coating.
  • Elements that are functionally the same or have the same effect are each labeled with the same reference numerals in the figures. The figures show schematic diagrams of the invention. They illustrate nonspecific parameters of the invention. In addition, the figures show only typical embodiments of the invention are not intended to restrict the invention to the embodiments shown here.
  • DETAILED DESCRIPTION
  • The discovery that the quantity of active substance deposited at a certain location on the vascular wall not only depends on the local elution of the active substance at this location but also is influenced by the medium flowing through the stent because this medium conveys the active substance, which enters the stream there, downstream proximally away from this location and can deposit it at this location. In particular it has been discovered that when using active substances having a narrow therapeutic window, this effect plays a role that must be taken into account in achieving targeted deposition of the active substance.
  • Some embodiments of the invention direct that the quantity of active substance should decrease from the first end to the second end, at least in the main direction of extent of the base body. In this context, the term “decrease” should be understood to refer to a continuous or quasi-continuous reduction in the amount of active substance, which declines by stages, monotonically and/or strictly monotonically. The phrase “end of the base body” should be understood here to refer to an area of the implant, to which is connected an implant structure and/or a base body structure, such as a wire mesh, in only one direction. The phrase “main extent” here should be understood to refer to the length of the base body and/or, in the implanted state of the implant, a direction along the direction of flow of a fluid medium. The phrase “opposite ends” should be understood here to refer in particular to ends situated at different ends relative to the direction of flow, i.e., at the beginning and end (e.g., upstream and downstream portions) of the implant. In the implanted state of the implant in a cavity body through which a fluid medium is flowing in an animal or human body, the quantity of active substance in the coating may thus either increase or decrease in the axial direction of flow, depending on the direction of implantation. An embodiment of the invention makes available a medical implant, which is coordinated with the parameters of the implantation site, such as the absorption rate of active substance by a cavity wall adjacent to or in contact with the implant and/or the flow rate of a medium flowing through the cavity and/or the implant. In this way, a desired homogeneous concentration of active substance is achieved in the surrounding cavity wall, so that local overdosing or underdosing can be prevented in an especially advantageous manner.
  • Furthermore, an “implant” should be understood to be a body which fulfills a replacement function when implanted in an animal or human body either permanently or for an extended period of time. All medical implants that seem expedient to those skilled in the art would be conceivable here, e.g., a cardiac pacemaker, a cerebral pacemaker, a cardiac implant, a cochlear implant, a retinal implant, a dental implant, a joint prosthesis implant, a vascular prosthesis or, especially advantageously, an embodiment of the medical implant as a stent, in particular as a coronary stent is proposed as being especially advantageous. The implant and/or the stent preferably comprises a depot for a pharmaceutically active substance, so that dosing of the active substance may advantageously be coordinated with the needs of the vascular wall surrounding the implant, taking into account the rate of blood flow.
  • Furthermore, in this context, the term “base body” should be understood to refer to a structure such as a wire mesh (although other structures are possible in addition to a wire mesh), which essentially forms the shape and/or form of the implant and/or stent. Furthermore, the base body is preferably manufactured from a metallic material or from a combination of several metallic and non-metallic materials such as iron, magnesium, nickel, tungsten, titanium, zirconium, niobium, tantalum, zinc, silicon, lithium, sodium, potassium, calcium, manganese or any other material that seems suitable to those skilled in the art. A zinc-calcium alloy or a shape memory material, such as a nickel-titanium alloy or a copper-zinc-aluminum alloy, preferably Nitinol, are also possible in invention embodiments. In addition, it may be advantageous for at least some applications if the base body comprises at least cobalt and/or chromium, preferably in the form of stainless steel and/or a Cr—Ni—Fe steel (preferably the alloy 316L) or a Co—Cr steel. Through this embodiment, it is possible to provide an implant that leads to satisfactory coating results and has good dilatability and an advantageous flexibility combined with a high stability.
  • In other embodiments the base body of the implant consists at least partially of a plastic, a ceramic, or a biodegradable material.
  • Furthermore, in this context a “coating” should be understood to refer to at least partial sheathing or covering of the implant, preferably a stent and/or filling and/or loading comprising at least one recess, preferably in the form of a hole, a cavity or a basket in or on the implant, with a suitable matrix comprising at least one active substance. Preferred polymers for a polymer matrix of embodiments of the implant are selected, depending on need, from the following groups:
      • nonresorbable/permanent polymers, such as:
      • polypropylene, polyethylene, polyvinyl chloride, polyacrylates (polyethyl and polymethyl acrylates, polymethyl methacrylate, polymethyl-co-ethyl acrylate, ethylene/ethyl acrylate), polytetrafluoroethylene (ethylene/chlorotrifluoroethylene copolymer, ethylene/tetrafluoro-ethylene copolymer), polyamides (polyamidimide, PA-11, -12, -46, -66), polyetherimide, polyethersulfone, poly(iso)butylene, polyvinyl chloride, polyvinyl fluoride, polyvinyl alcohol, polyurethane, polybutylene terephthalate, silicones, polyphosphazene, polymer foams (e.g. from carbonates, styrenes), as well as the copolymers and blends of the selected classes and/or the class of thermoplastics and elastomers in general;
      • resorbable/bioresorbable/degradable polymers, such as: polydioxanone, polyglycolide, polycaprolactone, polylactides [poly-L-lactide, poly-D,L-lactide, and copolymers as well as blends, such as poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(L-lactide-co-D,L-lactide), poly(L-lactide-co-trimethylenecarbonate)], triblock copolymers, polysaccharides [chitosan, levan, hyaluronic acid, heparin, dextran, cellulose, etc.], polyhydroxyvalerate, ethylvinyl acetate, polyethylene oxide, polyphosphorylcholine, fibrin, albumin, polyhydroxybutyric acid (atactic, isotactic, syndiotactic and blends thereof), etc.
  • The coating preferably contains at least one polylactide, such as poly-L-lactide, so that a biocompatible and especially low-weight coating can be provided.
  • An “active substance” should be understood here to be a substance which induces and/or suppresses a biochemical and/or biological response in the animal or human body. In this sense, “an active substance” may also be used as synonymous with a “drug” and/or a “pharmaceutical agent.” It is preferred that at least one active substance is selected from the group consisting of lipid regulators (fibrates), immunosuppressants, immunomodulators, vasodilators (sartans), calcium channel blockers, calcineurin inhibitors (tacrolimus), antiphlogistics (glucocorticoids, cortisone, diclofenac), anti-inflammatories (imidazoles), anti-allergies, oligonucleotides (dODN), estrogens (genistein), endothelializing agents (fibrin), steroids, proteins/peptides, proliferation inhibitors, analgesics, antirheumatics, cytostatics. A medical implant and/or a stent having a broad spectrum of applications can be made available in this way.
  • In another embodiment, the invention has proved to be advantageous in use of an active substance having a narrow therapeutic window. The phrase “narrow therapeutic window” as used here should be understood to refer to a narrow therapeutic scope, where “therapeutic scope” refers to the ratio between a therapeutic dose and a toxic dose of the active substance. For example, through the inventive coating profile of the medical implant, it is possible to advantageously minimize the risks of substances having a narrow therapeutic window by utilizing critical limits with respect to overdosing or underdosing. An especially advantageous result can be achieved if at least one active substance is the immunosuppressant sirolimus.
  • In addition, one embodiment proposes that the active substance gradient should be adjusted through the thickness of the coating. “Thickness” here defines a radial measurement of the coating with respect to a midpoint of the implant, the midpoint being a line along the longitudinal axis of the implant, generally positioned in the direction of fluid flow. An “active substance gradient” should be understood here to refer to a change in the quantity of active substance between two points and, particularly, between the first end and the second end. The thickness of the coating, and thus also the quantity of active substance, at the first end is preferably greater than the thickness of the coating at the second end of the base body. Due to the variable thickness, preferably decreasing monotonically along the length in the main direction of extent of the base body, the active substance gradient can be established and adjusted through design techniques.
  • The active substance gradient is preferably set by means of one or more active substance concentrations along the coating. The radial thickness of the coating along the main direction of extent of the implant is the same over the entire length but the quantities of active substance differ at the first end and at the second end. Through the implementation of multiple active substance concentrations, the implant may advantageously be designed and produced to be homogeneous in its dimensions.
  • Furthermore, it is proposed that in the implanted state in a cavity, the first end should be positioned at the upstream end in an axial direction of flow. In this context, the term “cavity” should be understood in particular to refer to a cavity in an animal or human body such as a tubular structure and/or a tubular vessel through which a fluid medium and/or a body fluid such as lymph, bile, urine, lacrimal fluid, saliva, cerebrospinal fluid, or blood flows. An “upstream end” should be understood here to refer in particular to a proximal end and/or an end which comes in contact with the fluid medium at an earlier point in time than another end and/or the second end and/or a distal end. Put another way, fluid flows from an upstream end towards the downstream end. Also, the term “end” when used in this context is not intended to refer to the absolute start or finish of a cavity—any section of a cavity may be considered to have an upstream and downstream end. In the implanted state, the implant is preferably situated with an inside surface of the wall of the cavity and/or a vascular wall at least partially for support thereof. Put another way, in an implanted state in use within a cavity an implant of the invention may be in contact with the surrounding cavity—an exterior surface of the implant may lie adjacent and in supporting contact with the cavity wall. Through this orientation, the implant is thus designed to be optimized in particular with regard to both flow and the varied coating profile.
  • In an example medical implant embodiment for elution of at least one active substance in a human and/or animal body, such that the at least one active substance is elutable so that a desired local concentration distribution is achieved in an adjacent cavity wall, then this makes available an implant that is especially valuable therapeutically and has an especially balanced spectrum of effects and/or potential. The phrase “desired local concentration distribution” should be understood to mean that a concentration distribution or an active substance distribution is coordinated with at least one parameter of the implant-cavity system. The parameter may refer to the active substance, the cavity, the cavity wall or the medium and/or flow medium surrounding and/or flowing through the cavity and may represent a type of active substance, a volume, an absorbability, an elasticity, a flow rate, etc. The active substance distribution may be heterogeneous or homogeneous. The desired local concentration distribution of a respective active substance distribution in the coating may be ascertained and/or optimized by simulation (see also FIG. 5).
  • As used herein the term “elution” is intended to broadly refer to release. Elution may occur in short, long or intermediate time periods depending on a desired application as well as other factors. In at least some embodiments, elution of the active substance occurs during a time period of several minutes, in others an hour or more, and in others longer periods of time. Various methods of elution or release of the active substance from the coating or its polymer matrix are differentiated according to the design of the inventive implant comprising the implant base body, the carrier matrix and the active substance:
      • Active substances may be applied directly to the implant base body, e.g., to a metallic stent base body, either by covalent bonding or by ionic or van der Waals' interaction.
      • Covalent bonding of the active substance(s) to a coating is also contemplated. The active substance(s) is/are then released via hydrolytic or enzymatic cleavage of the bond.
      • Active substances may be incorporated into cavities in the stent material and provided with a polymeric cover layer. Elution takes place either by diffusion processes though the cover layer or directly, in the case of a layer that dissolves immediately after implantation.
      • The active substance may be contained within a porous, usually inorganic, carrier matrix and released by it into the tissue.
      • An active substance may be released by swelling of its carrier matrix.
      • Elution can be achieved by erosion of a carrier matrix comprising biodegradable polymers.
      • The active substance may be applied on top of a first layer and underneath a later applied second layer. The active substance thus embedded between two polymer layers may elute out of this sandwich structure through diffusion processes.
      • A blend of polymer and active substance may be applied to the implant base body, particularly in the case of a stent, thus enabling its release through diffusion.
      • A topcoat, i.e., an additional polymer layer without an active substance, may be situated around a polymer layer in which the active substance is incorporated, leading to retardation of the elution process until after the overlaid polymer topcoat layer has dissolved.
  • Furthermore, another invention embodiment is directed to a method, in particular, a coating method for coating a medical implant comprising a base body having a first end and a second end and the coating, which contains at least one active substance with an active substance gradient.
  • In one embodiment, a coating stream with a polymer/active substance mixture is moved at a variable rate from the first end to the second end. In this context, a “polymer/active substance mixture” should be understood to refer to any combination of one or more of the polymers already listed and one or more of the active substances already listed, or any other combination of similar materials relevant in the art. A “variable rate” should be understood here to refer to a changing rate, with one example being a linear or modified linear rate. For example, where the implant is a stent or preferably a coronary stent, because of the variable rate, different coating thicknesses are applied along a main direction of extent from the first end to the second end, or any other length in the direction of fluid flow, of the implant, resulting in different quantities of active substance at different axial positions of the implant and/or stent. The coating stream may be produced by any coating unit that seems appropriate to those skilled in the art, e.g., equipped with a two-substance nozzle (with or without forced conveyance), a single-substance nozzle, a rebound nozzle, a dosing valve, a rotary atomizer or an ultrasonic atomizer. In general, movement of the implant relative to the coating stream would also be conceivable. Furthermore, any other method of coating the implant expedient to those skilled in the art, e.g., by means of a roller application or by means of an immersion reservoir, is also contemplated. Varying the concentration of active substance in the polymer/active substance mixture through different mixing conditions or other steps is also contemplated. In such embodiments the coating layer containing the polymer active substance is applied in a substantially even thickness over the implant between first and second ends, but the concentration gradient of the one or more active substances in the coating varies over the length. Through an example embodiment, the active substance gradient can be adjusted and/or established easily through the design. Furthermore, the coating can be applied reliably and in a reliable process.
  • In an alternative embodiment, it is possible to provide for the coating stream to move from the first end to the second end at an increasing rate. In this way, the radial thickness of the coating becomes thinner along the length, starting from one coating thickness at the first end (where the stream is applied moving slowest to result in a high thickness), the proximal end in the implanted state of the coated implant, to the second end, the distal end (where the stream is applied moving fastest to result in a low thickness), so the quantity of active substance preferably declines monotonically, i.e., becomes smaller from the first end to the second end. A coating with a monotonically decreasing active substance gradient can be applied quickly and reliably by increasing the rate of application.
  • According to a preferred further embodiment, the coating stream is moved in the axial direction or in the circumferential direction relative to the medical implant, or both. In this embodiment, the coating stream is moved by a length Δz axially starting from the first end in the direction of the second end after a revolution of the implant around the circumference of the implant, i.e., by 360° around the implant's axis, where Δz is limited only by the design specifications of the coating device. By implementation of the movement in the axial direction and/or in the circumferential direction, the coating of the implant may be applied so that it is advantageously uniform and homogeneous.
  • Furthermore, an embodiment of the invention is directed to a method, in particular, an implantation method for implanting a medical implant in an animal or human body, with a first end and second end, such that the first end has a greater loading of active substance than the second end.
  • In one such embodiment, it is proposed that the first end should be arranged in a cavity at the upstream end in the axial direction of flow. The term “active substance loading” here should be understood to refer to the quantity of active substance per unit of area. In one embodiment the implant is a stent and preferably a coronary stent. The cavity is formed by a vessel, in particular a blood vessel and especially preferably a coronary artery. The active substance is any substance that appears suitable to those skilled in the art and in particular may be one or more of the substances mentioned in the introduction. Through the inventive embodiment, it is possible to make available an especially well-developed form of treatment, which is coordinated in particular with the in vivo requirements of an implantation site.
  • To further illustrate various aspects of invention embodiments, the figures will now be referenced. To avoid unnecessary repetition, reference is made to the respective description of the elements in the figures indicated above in the case of elements that are not described more specifically in a figure.
  • FIG. 1 shows in a view from above an example medical implant 10 a in the form of a stent 36 a, i.e., a coronary stent having a base body 12 a made of chromium-cobalt steel, having as the base body structure a wire mesh 50 a embodied by stent struts 52 a. Furthermore, the base body 12 a has a first end 14 a and a second end 16 a, which are arranged on opposite ends of the base body 12 a in a main direction of extent 18 a of the base body 12 a. In general, the embodiment of the wire mesh 50 a may be of any desired form that seems appropriate to those skilled in the art.
  • The implant 10 a and/or the stent 36 a is also coated with a coating 20 a, which is introduced into cavities 54 a of the stent struts 52 a. These cavities 54 a are distributed over the entire area of the stent struts 52 a in a manner with which those skilled in the art are familiar, but only one cavity 54 a is indicated here to yield a simpler diagram and is shown symbolically enlarged. The coating 20 a is formed by a polymer/active substance mixture 44 a, which contains the immunosuppressant sirolimus as the active substance 22 a, and poly-L-lactide (PLLA) as the polymer matrix 56 a. The active substance 22 a thus has a narrow therapeutic window. Furthermore, the active substance 22 a of the coating 20 a has an active substance gradient 24 a (FIGS. 2 and 3).
  • In FIG. 2 the medical implant 10 a is shown schematically in a sectional diagram along line II-II in FIG. 1. The coating 20 a is represented symbolically here to illustrate the coating profile on an exterior surface 58 a of the base body 12 a. The entire exterior surface of the implant base body may thus be coated in some embodiments, while in other embodiments only portions of the exterior surface are coated. The inside surfaces and side surfaces of the stent struts may also be coated, but for the sake of brevity, this is not shown in the drawing. In some embodiments these surfaces are not coated. The coating 20 a has thicknesses 28 a′, 28 a″ which vary in a radial direction 60 a along the main direction of extent 18 a, resulting in an active substance gradient 24 a through the thickness 28 a′, 28 a″ of the coating 20 a. On the first end 14 a of the base body 12 a, the thickness 28 a′ of the coating 20 a is thicker than the thickness 28 a″ on the second end 16 a. Since the polymer/active substance matrix of the coating 20 a has the same active substance concentration over the entire length 62 a of the base body 12 a, the quantity of active substance 26 a in the main direction of extent 18 a of the base body 12 a declines from the first end 14 a to the second end 16 a and has a strictly monotonic decline (FIG. 3).
  • FIG. 3 shows a diagram of the active substance gradient 24 a, where the position of the stent length in mm is plotted on the x axis and the load in μg active substance per cm2 stent area is plotted on the y axis. It can be seen clearly here that the coating at the beginning of the implant 10 a and/or at the first end 14 a at the position at 1 mm has a coating of approximately 200 μg/cm2 and at one end of the implant 10 a and/or at the second end 16 a at 20 mm has a coating of approximately 50 μg/cm2. The quantities of active substance 26 a decrease and thus the active substance 24 a also decreases from the first end 14 a to the second end 16 a according to a strictly monotonic decline. In this example, the loading has decreased by a factor of 4 from first to second end (200 to 50 μg/cm2). It has been discovered that a loading difference of at a factor of 4 from first end (highest) to second end (lowest) is useful in many applications. Other invention embodiments, however, have loading differences that are less than 4, with one example being a difference of 2.
  • FIG. 4 shows the medical implant 10 a, or the stent 36 a, in an implanted state in a cavity 32 a of a human body 38 a. The implant 10 a is introduced into the human body 38 a by means of a method for implantation of the medical implant 10 a and/or an implantation method in the human body 38 a. The cavity 32 a is formed by a tubular vessel, or a coronary artery 64 a. At its outer lateral surface 66 a, the implant 10 a is in contact with an inside surface 68 a of the cavity wall 40 a, or vascular wall 70 a of the coronary artery 64 a (not represented correctly here by the symbolic and enlarged diagram of the coating 20 a). The first end 14 a, which has a higher active substance load than the second end 16 a, is introduced into the cavity 32 a, or the coronary artery 64 a, so that at the upstream end, it flows through the cavity 32 a in an axial direction of flow 34 a of a fluid medium 72 a and comprises a bodily fluid and/or blood
  • The medical implant 10 a has an embodiment for eluting the active substance 22 a in the human body 38 a, such that the active substance 22 a is eluted to yield a desired local concentration distribution in the adjacent cavity wall 40 a. This desired local concentration distribution of the respective active substance distribution in the coating 20 a can be determined and optimized by simulation.
  • FIG. 5 shows three simulations of elution of an active substance from three medical implants coated variously according to the prior art (http://medtechinsider.com/?p=4000) as an example. Such a simulation would also be conceivable for the stent 36 a coated according to the present invention. The elution is described as Example C. A medical implant 10, or a stent 36, is implanted in a coronary artery 64, and a bodily fluid (not shown) flows through it in the direction of flow 34. Furthermore, the stent 36 is provided with a coating 20 over its entire length 62. The quantity of active substance deposited in the vascular wall is illustrated by means of gray shading. It can be seen that upstream from the stent 36 in the direction of flow 34, there is a small quantity of active substance due to elution and diffusion. In the area of the stent 36, elution of the quantity of active substance increases over its entire length 62, then decreasing downstream from the stent 36. Through such a simulation, it is possible to coordinate the coating with the parameters of the implant-cavity system.
  • FIG. 6 shows schematically a device 74 a for a method for coating a medical implant 10 a in the form of a stent 36 a with a base body 12 a, which has a first end 14 a and a second end 16 a. Furthermore, the base body 12 a has a coating 20 a, which has an active substance 22 a with an active substance gradient 24 a. The device 74 a has a reservoir 76 a with the polymer/active substance mixture 44 a, which is applied as a coating stream 42 a to the implant 10 a, or the stent 36 a, by means of a nozzle 78 a. In doing so, the coating stream 42 a of the polymer/active substance mixture 44 a is moved at a variable rate, preferably an increasing velocity, from the first end 14 a to the second end 16 a of the base body 12 a. Due to the increase in velocity, the coating 20 a becomes progressively thinner from a first position proximate to or at the first end 14 a, to a second position 80 a proximate to or at the second end 16 a (coating result on the second end 16 a not shown). Velocity can be varied in one or both of fluid flow through the nozzle, or movement of the nozzle relative to the implant. That is, if the nozzle moves at a constant velocity relative to the implant but coating material flows through the nozzle at a varying rate, a varying amount of coating material will be deposited on the implant along its length. If, on the other hand, coating material flows through the nozzle at a constant rate but the velocity of the nozzle is varied relative to the implant, a varying amount of coating material will likewise be deposited on the implant. In one embodiment, to achieve a complete coating of the implant 10 a, the coating stream 42 a is moved in the circumferential direction 46 a and in the axial direction 48 a by means of the device 74 a relative to the medical implant 10 a. A section Δz is coated only in the circumferential direction 46 a around the entire circumference of the implant 10 a, and then the coating stream 40 a is moved further in the direction of the second end 16 a by the distance Δz in the axial direction 48 a to coat the next section Δz′ in the circumferential direction 46 a. This is continued until the medical implant 10 a has been coated completely. In other embodiments the implant 10 a is moved relative to the nozzle, in one or both of the Δz direction and in the circumferential direction.
  • FIG. 7 shows an alternative exemplary embodiment of the medical implant 10 a. Components, features and functions that remain the same are essentially labeled with the same reference numerals. To differentiate the exemplary embodiments, however, the letters a and b are added to the reference numerals of the exemplary embodiments. The following description is limited essentially to the differences in comparison with the exemplary embodiment in FIGS. 1 to 6, whereby reference can be made to the description of the exemplary embodiment in FIGS. 1 to 6 with regard to the same components, features and functions.
  • FIG. 7 shows an alternative medical implant 10 b in the form of a stent 36 b with a base body 12 b of a chromium-cobalt steel. The base body 12 b has a first end 14 b and a second end 16 b, which are arranged on opposite ends of the base body 12 b in a main direction of extent 18 b of the base body 12 b. Furthermore, the base body 12 b has a coating 20 b, containing the immunosuppressant sirolimus with a narrow therapeutic window as the active substance 22 b and a polymer matrix 56 b of poly-L-lactide. Furthermore, the active substance 22 b is introduced into the coating 20 b with an active substance gradient 24 b, so the quantity of active substance 26 b in the main direction of extent 18 b of the base body 12 b decreases from the first end 14 b to the second end 16 b. This decline in the active substance gradient 24 b is adjusted by means of several active substance concentrations 30 b along the coating 20 b. At the first end 14 b, the coating 20 b, which has a constant thickness 28 b over the entire length 62 b in the radical direction 60 b, has a higher active substance concentration 30 b′ than the active substance concentration 30 b″ at the second end 16 b.
  • The coating 20 b may be applied by means of a method in which the polymer and the active substance 22 b are mixed in different ratios prior to coating by means of a suitable mixing unit (not shown) such as a gradient pump, a multi-way valve, a conveyer screw. This mixing unit may also be provided as a dosing unit to regulate the concentration of the active substance.
  • It will be apparent to those skilled in the art that numerous modifications and variations of the described examples and embodiments are possible in light of the above teaching. The disclosed examples and embodiments are presented for purposes of illustration only. Therefore, it is the intent to cover all such modifications and alternate embodiments as may come within the true scope of this invention.

Claims (20)

1. A medical implant comprising a base body which has a first end and a second end arranged opposite one another in a main direction of the extent of the base body, and a coating such that the coating has at least one active substance with an active substance gradient, characterized in that the quantity of active substance decreases from the first end to the second end at least in the main direction of extent of the base body.
2. The medical implant according to claim 1, characterized in that the active substance gradient varies with the thickness of the coating.
3. The medical implant according to claim 1, characterized in that the active substance gradient varies through changing active substance concentrations along the coating length from first to second end.
4. The medical implant according to claim 1, characterized in that at least one active substance is selected from a group consisting of:
lipid regulators (fibrates),
immunosuppressants,
immunomodulators,
vasodilators (sartans),
calcium channel blockers,
calcineurin inhibitors (tacrolimus),
antiphlogistics (glucocorticoids, cortisone, diclofenac),
anti-inflammatories (imidazoles),
anti-allergics,
oligonucleotides (dODN),
estrogens (genistein),
endothelializers (fibrin),
steroids,
proteins/peptides,
proliferation inhibitors,
analgesics,
antirheumatics,
cytostatics.
5. The medical implant according to claim 1, characterized in that the at least one active substance has a narrow therapeutic window.
6. The medical implant according to claim 1, characterized in that the first end is configured to be arranged in a cavity at an upstream end in an axial direction of flow in an implanted state.
7. The medical implant according to claim 1, characterized in that it is embodied as a stent.
8. The medical implant according to claim 1, characterized in that the base body comprises at least one of cobalt and chromium.
9. The medical implant according to claim 1, characterized in that the coating contains at least one polylactide.
10. The medical implant according to claim 1, characterized in that it is designed to elute at least one active substance in a human or animal body, at least one active substance being elutable, such that a desired local concentration distribution in an adjacent cavity wall is achieved.
11. The medical implant according to claim 1 made through a method comprising the steps of applying a coating stream with a polymer/active substance mixture at a variable velocity from the first end to the second end.
12. The medical implant according to claim 11, characterized in that the coating stream is moved at an increasing velocity from the first end to the second end.
13. The medical implant according to claim 11, characterized in that the coating stream is moved in at least one of the circumferential direction and in the axial direction relative to the medical implant.
14. A method for implanting the medical implant of claim 1 in an animal or human body, characterized in that the first end is arranged in a cavity in the animal or human body at an upstream end in an axial direction of flow.
15. A medical implant as defined by claim 1 wherein the active substance loading is at least 4 times greater at the first end than it is at the second end.
16. A medical implant as defined by claim 1 wherein the active substance loading varies linearly along the main direction of the implant.
17. A medical implant comprising:
a base body having a first end and an opposing distal second end in a main direction of the base body, the base body comprising at least one of cobalt and chromium; and,
a coating covering at least a portion of the base body and comprising at least one active substance, the coating active substance present in a quantitative gradient along the base body main direction and decreasing from the first end to the second end, the at least one active substance being elutable wherein a eluted active substance gradient concentration is achieved in an adjacent cavity wall when the implant is implanted in a cavity corresponding generally to the gradient concentration in the coating along the base body main direction.
18. A medical implant as defined by claim 17 wherein the at least one active substance is provided in a constant concentration in the coating and the coating thickness varies between the first and second ends to achieve the quantitative active substance gradient between first and second ends, and wherein the coating contains at least one polylactide.
19. An implant as defined by claim 17 wherein the coating is provided in a substantially constant thickness between the first and second ends and the concentration of the at least one active substance in the coating varies between the first and second ends to achieve the quantitative gradient.
20. An implant as defined by claim 17 wherein:
the at least one active substance has a narrow therapeutic window and comprises at least one of: lipid regulators (fibrates), immunosuppressants, immunomodulators, vasodilators (sartans), calcium channel blockers, calcineurin inhibitors (tacrolimus), antiphlogistics (glucocorticoids, cortisone, diclofenac), anti-inflammatories (imidazoles), anti-allergics, oligonucleotides (dODN), estrogens (genistein), endothelializers (fibrin), steroids, proteins/peptides, proliferation inhibitors, analgesics, antirheumatics, cytostatics; and,
the active substance loading at the first end is at least 4 times greater than the active substance loading at the second end.
US12/972,102 2009-12-21 2010-12-17 Medical implant, coating method and implantation method Abandoned US20110153005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/972,102 US20110153005A1 (en) 2009-12-21 2010-12-17 Medical implant, coating method and implantation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28834609P 2009-12-21 2009-12-21
US12/972,102 US20110153005A1 (en) 2009-12-21 2010-12-17 Medical implant, coating method and implantation method

Publications (1)

Publication Number Publication Date
US20110153005A1 true US20110153005A1 (en) 2011-06-23

Family

ID=43585638

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/972,102 Abandoned US20110153005A1 (en) 2009-12-21 2010-12-17 Medical implant, coating method and implantation method

Country Status (2)

Country Link
US (1) US20110153005A1 (en)
EP (1) EP2338534A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102579172A (en) * 2012-02-15 2012-07-18 北京航空航天大学 Drug-coating stent
US20140336750A1 (en) * 2013-05-07 2014-11-13 Abbott Cardiovascular Systems Inc. Bioresorbable scaffold for neurologic drug delivery
JP2016116812A (en) * 2014-12-24 2016-06-30 ニプロ株式会社 Stent

Citations (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152782A (en) * 1989-05-26 1992-10-06 Impra, Inc. Non-porous coated ptfe graft
US5769884A (en) * 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US5824045A (en) * 1996-10-21 1998-10-20 Inflow Dynamics Inc. Vascular and endoluminal stents
US5916234A (en) * 1993-12-28 1999-06-29 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5972027A (en) * 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
US5984905A (en) * 1994-07-11 1999-11-16 Southwest Research Institute Non-irritating antimicrobial coating for medical implants and a process for preparing same
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US6027526A (en) * 1996-04-10 2000-02-22 Advanced Cardiovascular Systems, Inc. Stent having varied amounts of structural strength along its length
US6099562A (en) * 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US6099561A (en) * 1996-10-21 2000-08-08 Inflow Dynamics, Inc. Vascular and endoluminal stents with improved coatings
US6106454A (en) * 1997-06-17 2000-08-22 Medtronic, Inc. Medical device for delivering localized radiation
US6153252A (en) * 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
US6156064A (en) * 1998-08-14 2000-12-05 Schneider (Usa) Inc Stent-graft-membrane and method of making the same
US6174329B1 (en) * 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US6174326B1 (en) * 1996-09-25 2001-01-16 Terumo Kabushiki Kaisha Radiopaque, antithrombogenic stent and method for its production
US6217607B1 (en) * 1998-10-20 2001-04-17 Inflow Dynamics Inc. Premounted stent delivery system for small vessels
US6240616B1 (en) * 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6245104B1 (en) * 1999-02-28 2001-06-12 Inflow Dynamics Inc. Method of fabricating a biocompatible stent
US6251136B1 (en) * 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
US6254632B1 (en) * 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US6258121B1 (en) * 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6267782B1 (en) * 1997-11-20 2001-07-31 St. Jude Medical, Inc. Medical article with adhered antimicrobial metal
US6306176B1 (en) * 1997-01-27 2001-10-23 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6306166B1 (en) * 1997-08-13 2001-10-23 Scimed Life Systems, Inc. Loading and release of water-insoluble drugs
US6315791B1 (en) * 1996-12-03 2001-11-13 Atrium Medical Corporation Self-expanding prothesis
US6315794B1 (en) * 1997-11-13 2001-11-13 Medinol Ltd. Multilayered metal stent
US6364903B2 (en) * 1999-03-19 2002-04-02 Meadox Medicals, Inc. Polymer coated stent
US6395326B1 (en) * 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US20020065553A1 (en) * 2000-11-28 2002-05-30 Scimed Life System, Inc. Method for manufacturing a medical device having a coated portion by laser ablation
US6413272B1 (en) * 1997-03-31 2002-07-02 Kabushikikaisha Igaki Iryo Sekkei Stent for vessel
US6488701B1 (en) * 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US20020183581A1 (en) * 2001-05-31 2002-12-05 Yoe Brandon James Radiation or drug delivery source with activity gradient to minimize edge effects
US6527863B1 (en) * 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US6530951B1 (en) * 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US6537310B1 (en) * 1999-11-19 2003-03-25 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable devices and method of making same
US20030073961A1 (en) * 2001-09-28 2003-04-17 Happ Dorrie M. Medical device containing light-protected therapeutic agent and a method for fabricating thereof
US6565659B1 (en) * 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US6585632B2 (en) * 1999-11-23 2003-07-01 Sorin Biomedica Cardio S.P.A. Device for conveying radioactive agents on angioplasty stents, respective method and kit
US6596296B1 (en) * 1999-08-06 2003-07-22 Board Of Regents, The University Of Texas System Drug releasing biodegradable fiber implant
US6602287B1 (en) * 1999-12-08 2003-08-05 Advanced Cardiovascular Systems, Inc. Stent with anti-thrombogenic coating
US20030181973A1 (en) * 2002-03-20 2003-09-25 Harvinder Sahota Reduced restenosis drug containing stents
US6663662B2 (en) * 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
US6673105B1 (en) * 2001-04-02 2004-01-06 Advanced Cardiovascular Systems, Inc. Metal prosthesis coated with expandable ePTFE
US6699281B2 (en) * 2001-07-20 2004-03-02 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US6716242B1 (en) * 1999-10-13 2004-04-06 Peter A. Altman Pulmonary vein stent and method for use
US20040098106A1 (en) * 2002-11-14 2004-05-20 Williams Michael S. Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
US6743253B2 (en) * 2000-02-29 2004-06-01 Biomod Surfaces Polyurethane-sealed biocompatible device and method for its preparation
US6746482B2 (en) * 1994-10-17 2004-06-08 Baxter International Inc. Method for producing medical devices and devices so produced
US6753071B1 (en) * 2001-09-27 2004-06-22 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US6764505B1 (en) * 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US20040148012A9 (en) * 2000-06-05 2004-07-29 Jang G. David Intravascular stent with increasing coating retaining capacity
US20040162609A1 (en) * 1999-12-23 2004-08-19 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
US6805709B1 (en) * 1999-10-26 2004-10-19 Biotronik Mess- Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin Stent having discontinuous coating in the form of coating islands
US6805898B1 (en) * 2000-09-28 2004-10-19 Advanced Cardiovascular Systems, Inc. Surface features of an implantable medical device
US6824559B2 (en) * 2000-12-22 2004-11-30 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
US6849089B2 (en) * 2001-10-08 2005-02-01 Biotronik Mess-Und Therapiegeraete Gmbh & Co Ingenieurbuero Berlin Implant with proliferation-inhibiting substance
US6865810B2 (en) * 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
US20050060021A1 (en) * 2003-09-16 2005-03-17 O'brien Barry Medical devices
US6869701B1 (en) * 1999-08-16 2005-03-22 Carolyn Aita Self-repairing ceramic coatings
US20050075714A1 (en) * 2003-09-24 2005-04-07 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US20050119723A1 (en) * 2003-11-28 2005-06-02 Medlogics Device Corporation Medical device with porous surface containing bioerodable bioactive composites and related methods
US6908624B2 (en) * 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6918929B2 (en) * 2003-01-24 2005-07-19 Medtronic Vascular, Inc. Drug-polymer coated stent with pegylated styrenic block copolymers
US6939376B2 (en) * 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US6979346B1 (en) * 2001-08-08 2005-12-27 Advanced Cardiovascular Systems, Inc. System and method for improved stent retention
US7022135B2 (en) * 2001-08-17 2006-04-04 Medtronic, Inc. Film with highly porous vascular graft prostheses
US7052512B2 (en) * 2001-07-18 2006-05-30 Boston Scientific Scimed, Inc. Fluorescent dyed lubricant for medical devices
US7056339B2 (en) * 2001-04-20 2006-06-06 The Board Of Trustees Of The Leland Stanford Junior University Drug delivery platform
US20060135476A1 (en) * 2000-03-15 2006-06-22 Orbus Medical Technologies, Inc. Medical device with coating that promotes endothelial cell adherence and differentiation
US7094256B1 (en) * 2002-12-16 2006-08-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical device containing polycationic peptides
US20060210816A1 (en) * 2005-03-15 2006-09-21 Finley Michael J Compliant polymeric coatings for insertable medical articles
US20060224234A1 (en) * 2001-08-29 2006-10-05 Swaminathan Jayaraman Drug eluting structurally variable stent
US7160592B2 (en) * 2002-02-15 2007-01-09 Cv Therapeutics, Inc. Polymer coating for medical devices
US7169178B1 (en) * 2002-11-12 2007-01-30 Advanced Cardiovascular Systems, Inc. Stent with drug coating
US7175658B1 (en) * 2000-07-20 2007-02-13 Multi-Gene Vascular Systems Ltd. Artificial vascular grafts, their construction and use
US7195640B2 (en) * 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US7208010B2 (en) * 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US7211108B2 (en) * 2004-01-23 2007-05-01 Icon Medical Corp. Vascular grafts with amphiphilic block copolymer coatings
US20070123977A1 (en) * 2000-03-15 2007-05-31 Orbusneich Medical, Inc. Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device
US20070129789A1 (en) * 2000-03-15 2007-06-07 Orbusneich Medical, Inc. Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device
US7238199B2 (en) * 2001-03-06 2007-07-03 The Board Of Regents Of The University Of Texas System Method and apparatus for stent deployment with enhanced delivery of bioactive agents
US20070173923A1 (en) * 2006-01-20 2007-07-26 Savage Douglas R Drug reservoir stent
US20070185569A1 (en) * 2006-02-06 2007-08-09 Soonkap Hahn Drug eluting stent coating with extended duration of drug release
US20070191931A1 (en) * 2006-02-16 2007-08-16 Jan Weber Bioerodible endoprostheses and methods of making the same
US7261735B2 (en) * 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US7318944B2 (en) * 2003-08-07 2008-01-15 Medtronic Vascular, Inc. Extrusion process for coating stents
US7318945B2 (en) * 2003-07-09 2008-01-15 Medtronic Vascular, Inc. Laminated drug-polymer coated stent having dipped layers
US20080033523A1 (en) * 2006-07-10 2008-02-07 Gale David C Stent crack reduction
US7329431B2 (en) * 2003-06-05 2008-02-12 Terumo Kabushiki Kaisha Stent and method of manufacturing stent
US20080071358A1 (en) * 2006-09-18 2008-03-20 Boston Scientific Scimed, Inc. Endoprostheses
US20080097569A1 (en) * 2006-10-20 2008-04-24 Boston Scientific Scimed, Inc. Reduction of burst release from therapeutically treated medical devices
US20080147165A1 (en) * 2006-07-11 2008-06-19 Hossainy Syed F A Stent fabricated from polymer composite toughened by a dispersed phase
US20090005861A1 (en) * 2002-06-21 2009-01-01 Hossainy Syed F A Stent coatings with engineered drug release rate
US20090030507A1 (en) * 2007-07-24 2009-01-29 Biotronik Vi Patent Ag Degradable metal stent having agent-containing coating
US20090132023A1 (en) * 2004-05-05 2009-05-21 Karl Sieradzki Methods and apparatus with porous materials
US20090138077A1 (en) * 2007-07-27 2009-05-28 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US20090157166A1 (en) * 2007-12-12 2009-06-18 Boston Scientific Scimed, Inc. Medical Devices Having Porous Component For Controlled Diffusion
US7645504B1 (en) * 2003-06-26 2010-01-12 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices comprising hydrophobic and hydrophilic polymers
US7655038B2 (en) * 2003-02-28 2010-02-02 Biointeractions Ltd. Polymeric network system for medical devices and methods of use
US20100049310A1 (en) * 2006-02-15 2010-02-25 Acandis Gmbh & Co. Kg Method for coating a stent
US7682647B2 (en) * 1999-09-03 2010-03-23 Advanced Cardiovascular Systems, Inc. Thermal treatment of a drug eluting implantable medical device
US7695731B2 (en) * 2004-03-22 2010-04-13 Cordis Corporation Local vascular delivery of etoposide in combination with rapamycin to prevent restenosis following vascular injury
US20100094409A1 (en) * 2006-08-23 2010-04-15 Stephen George Edward Barker Improvements in and relating to medical devices
US20100100172A1 (en) * 2005-01-28 2010-04-22 Greatbatch, Inc. Stent Coating For Eluting Medication
US7713297B2 (en) * 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US20100125329A1 (en) * 2000-11-02 2010-05-20 Zhi Cheng Lin Pseudoelastic stents having a drug coating and a method of producing the same
US20100131050A1 (en) * 2008-11-25 2010-05-27 Zhao Jonathon Z ABSORBABLE STENT HAVING A COATING FOR CONTROLLING DEGRADATION OF THE STENT AND MAINTAINING pH NEUTRALITY
US20100137977A1 (en) * 2007-08-03 2010-06-03 Boston Scientific Scimed, Inc. Coating for Medical Device Having Increased Surface Area
US20100137978A1 (en) * 2008-12-03 2010-06-03 Boston Scientific Scimed, Inc. Medical Implants Including Iridium Oxide
US20100137673A1 (en) * 2005-02-10 2010-06-03 Suresh Srivastava Dosimetry implant for treating restenosis and hyperplasia
US20110004289A1 (en) * 1998-09-05 2011-01-06 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for a stent having an expandable web structure
US20110022162A1 (en) * 2009-07-23 2011-01-27 Boston Scientific Scimed, Inc. Endoprostheses
US20110022005A1 (en) * 2008-03-20 2011-01-27 Bayer Materialscience Ag Medical device having hydrophilic coatings
US20110046724A1 (en) * 2008-03-31 2011-02-24 Avidal Vascular Gmbh Expansible Biocompatible Coats Comprising a Biologically Active Substance
US20110046723A1 (en) * 1995-06-07 2011-02-24 Bates Brian L Coated implantable medical device
US7901451B2 (en) * 2004-09-24 2011-03-08 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US7918181B2 (en) * 2002-09-26 2011-04-05 Advanced Cardiovascular Systems, Inc. Stent mandrel fixture and method for reducing coating defects
US7942926B2 (en) * 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US20110118826A1 (en) * 2008-07-30 2011-05-19 Boston Scientific Scimed. Inc. Bioerodible Endoprosthesis
US20110125253A1 (en) * 2005-11-09 2011-05-26 C.R. Bard Inc. Grafts and stent grafts having a radiopaque marker
US7951194B2 (en) * 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US7967854B2 (en) * 2002-10-02 2011-06-28 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US20110160839A1 (en) * 2009-12-29 2011-06-30 Boston Scientific Scimed, Inc. Endoprosthesis
US20120027819A1 (en) * 2006-09-28 2012-02-02 Isch Andrew P Medical Devices Incorporating a Bioactive and Methods of Preparing Such Devices
US20120053677A1 (en) * 2010-08-27 2012-03-01 Biotronik Ag Implant with a surface layer having a topographic modification
US8133278B2 (en) * 2008-08-14 2012-03-13 Boston Scientific Scimed, Inc. Medical devices having electrodeposited conductive polymer coatings
US8133269B2 (en) * 2007-05-16 2012-03-13 Gelita Ag Vascular stent
US20120065726A1 (en) * 2006-12-28 2012-03-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8147540B2 (en) * 2006-03-10 2012-04-03 Cook Medical Technologies Llc Taxane coatings for implantable medical devices
US8167931B2 (en) * 2005-12-12 2012-05-01 Advanced Cardiovascular Systems, Inc. Method of making a coated stent
US8182527B2 (en) * 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006038239A1 (en) 2006-08-07 2008-02-14 Biotronik Vi Patent Ag Medical implant for animals and humans comprises an implant base body completely or partially covered with a polymer matrix containing active ingredients and made from one or more polymers
EP2125058B1 (en) 2007-02-07 2014-12-03 Cook Medical Technologies LLC Medical device coatings for releasing a therapeutic agent at multiple rates

Patent Citations (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152782A (en) * 1989-05-26 1992-10-06 Impra, Inc. Non-porous coated ptfe graft
US5916234A (en) * 1993-12-28 1999-06-29 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5984905A (en) * 1994-07-11 1999-11-16 Southwest Research Institute Non-irritating antimicrobial coating for medical implants and a process for preparing same
US6746482B2 (en) * 1994-10-17 2004-06-08 Baxter International Inc. Method for producing medical devices and devices so produced
US6620194B2 (en) * 1995-04-19 2003-09-16 Boston Scientific Scimed, Inc. Drug coating with topcoat
US20110046723A1 (en) * 1995-06-07 2011-02-24 Bates Brian L Coated implantable medical device
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US6027526A (en) * 1996-04-10 2000-02-22 Advanced Cardiovascular Systems, Inc. Stent having varied amounts of structural strength along its length
US6099562A (en) * 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US5769884A (en) * 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US6174329B1 (en) * 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US6174326B1 (en) * 1996-09-25 2001-01-16 Terumo Kabushiki Kaisha Radiopaque, antithrombogenic stent and method for its production
US6099561A (en) * 1996-10-21 2000-08-08 Inflow Dynamics, Inc. Vascular and endoluminal stents with improved coatings
US5824045A (en) * 1996-10-21 1998-10-20 Inflow Dynamics Inc. Vascular and endoluminal stents
US6530951B1 (en) * 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US6315791B1 (en) * 1996-12-03 2001-11-13 Atrium Medical Corporation Self-expanding prothesis
US6306176B1 (en) * 1997-01-27 2001-10-23 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6413272B1 (en) * 1997-03-31 2002-07-02 Kabushikikaisha Igaki Iryo Sekkei Stent for vessel
US6240616B1 (en) * 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6106454A (en) * 1997-06-17 2000-08-22 Medtronic, Inc. Medical device for delivering localized radiation
US6306166B1 (en) * 1997-08-13 2001-10-23 Scimed Life Systems, Inc. Loading and release of water-insoluble drugs
US7963990B2 (en) * 1997-09-30 2011-06-21 Boston Scientific Scimed, Inc. Stent drug delivery system
US6253443B1 (en) * 1997-09-30 2001-07-03 Scimed Life Systems, Inc. Method of forming a stent
US5972027A (en) * 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
US6315794B1 (en) * 1997-11-13 2001-11-13 Medinol Ltd. Multilayered metal stent
US6267782B1 (en) * 1997-11-20 2001-07-31 St. Jude Medical, Inc. Medical article with adhered antimicrobial metal
US6488701B1 (en) * 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US7713297B2 (en) * 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US6153252A (en) * 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
US6156064A (en) * 1998-08-14 2000-12-05 Schneider (Usa) Inc Stent-graft-membrane and method of making the same
US20110004289A1 (en) * 1998-09-05 2011-01-06 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for a stent having an expandable web structure
US6217607B1 (en) * 1998-10-20 2001-04-17 Inflow Dynamics Inc. Premounted stent delivery system for small vessels
US6245104B1 (en) * 1999-02-28 2001-06-12 Inflow Dynamics Inc. Method of fabricating a biocompatible stent
US6364903B2 (en) * 1999-03-19 2002-04-02 Meadox Medicals, Inc. Polymer coated stent
US6733524B2 (en) * 1999-03-19 2004-05-11 Scimed Life Systems, Inc. Polymer coated stent
US6258121B1 (en) * 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6596296B1 (en) * 1999-08-06 2003-07-22 Board Of Regents, The University Of Texas System Drug releasing biodegradable fiber implant
US6869701B1 (en) * 1999-08-16 2005-03-22 Carolyn Aita Self-repairing ceramic coatings
US7682647B2 (en) * 1999-09-03 2010-03-23 Advanced Cardiovascular Systems, Inc. Thermal treatment of a drug eluting implantable medical device
US6716242B1 (en) * 1999-10-13 2004-04-06 Peter A. Altman Pulmonary vein stent and method for use
US6805709B1 (en) * 1999-10-26 2004-10-19 Biotronik Mess- Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin Stent having discontinuous coating in the form of coating islands
US6537310B1 (en) * 1999-11-19 2003-03-25 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable devices and method of making same
US6585632B2 (en) * 1999-11-23 2003-07-01 Sorin Biomedica Cardio S.P.A. Device for conveying radioactive agents on angioplasty stents, respective method and kit
US6251136B1 (en) * 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
US6602287B1 (en) * 1999-12-08 2003-08-05 Advanced Cardiovascular Systems, Inc. Stent with anti-thrombogenic coating
US6908624B2 (en) * 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6790228B2 (en) * 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US20040162609A1 (en) * 1999-12-23 2004-08-19 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
US6743253B2 (en) * 2000-02-29 2004-06-01 Biomod Surfaces Polyurethane-sealed biocompatible device and method for its preparation
US20070129789A1 (en) * 2000-03-15 2007-06-07 Orbusneich Medical, Inc. Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device
US20060135476A1 (en) * 2000-03-15 2006-06-22 Orbus Medical Technologies, Inc. Medical device with coating that promotes endothelial cell adherence and differentiation
US20070123977A1 (en) * 2000-03-15 2007-05-31 Orbusneich Medical, Inc. Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device
US6395326B1 (en) * 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US20040148012A9 (en) * 2000-06-05 2004-07-29 Jang G. David Intravascular stent with increasing coating retaining capacity
US6783543B2 (en) * 2000-06-05 2004-08-31 Scimed Life Systems, Inc. Intravascular stent with increasing coating retaining capacity
US7175658B1 (en) * 2000-07-20 2007-02-13 Multi-Gene Vascular Systems Ltd. Artificial vascular grafts, their construction and use
US6805898B1 (en) * 2000-09-28 2004-10-19 Advanced Cardiovascular Systems, Inc. Surface features of an implantable medical device
US6254632B1 (en) * 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US7208010B2 (en) * 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US20100125329A1 (en) * 2000-11-02 2010-05-20 Zhi Cheng Lin Pseudoelastic stents having a drug coating and a method of producing the same
US20020065553A1 (en) * 2000-11-28 2002-05-30 Scimed Life System, Inc. Method for manufacturing a medical device having a coated portion by laser ablation
US6824559B2 (en) * 2000-12-22 2004-11-30 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
US6663662B2 (en) * 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
US7390523B2 (en) * 2000-12-28 2008-06-24 Advanced Cardiovascular Systems Inc. Method of forming a diffusion barrier layer for implantable devices
US7238199B2 (en) * 2001-03-06 2007-07-03 The Board Of Regents Of The University Of Texas System Method and apparatus for stent deployment with enhanced delivery of bioactive agents
US6673105B1 (en) * 2001-04-02 2004-01-06 Advanced Cardiovascular Systems, Inc. Metal prosthesis coated with expandable ePTFE
US8119184B2 (en) * 2001-04-12 2012-02-21 Advanced Cardiovascular Systems, Inc. Method of making a variable surface area stent
US6764505B1 (en) * 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US20040191404A1 (en) * 2001-04-12 2004-09-30 Syed Hossainy Method of making a variable surface area stent
US7056339B2 (en) * 2001-04-20 2006-06-06 The Board Of Trustees Of The Leland Stanford Junior University Drug delivery platform
US7261735B2 (en) * 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US8182527B2 (en) * 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release
US20020183581A1 (en) * 2001-05-31 2002-12-05 Yoe Brandon James Radiation or drug delivery source with activity gradient to minimize edge effects
US6565659B1 (en) * 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US6527863B1 (en) * 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US7052512B2 (en) * 2001-07-18 2006-05-30 Boston Scientific Scimed, Inc. Fluorescent dyed lubricant for medical devices
US6699281B2 (en) * 2001-07-20 2004-03-02 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US6979346B1 (en) * 2001-08-08 2005-12-27 Advanced Cardiovascular Systems, Inc. System and method for improved stent retention
US7022135B2 (en) * 2001-08-17 2006-04-04 Medtronic, Inc. Film with highly porous vascular graft prostheses
US20060224234A1 (en) * 2001-08-29 2006-10-05 Swaminathan Jayaraman Drug eluting structurally variable stent
US7195640B2 (en) * 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US7014913B2 (en) * 2001-09-27 2006-03-21 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US6753071B1 (en) * 2001-09-27 2004-06-22 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US20030073961A1 (en) * 2001-09-28 2003-04-17 Happ Dorrie M. Medical device containing light-protected therapeutic agent and a method for fabricating thereof
US6849089B2 (en) * 2001-10-08 2005-02-01 Biotronik Mess-Und Therapiegeraete Gmbh & Co Ingenieurbuero Berlin Implant with proliferation-inhibiting substance
US6939376B2 (en) * 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US7160592B2 (en) * 2002-02-15 2007-01-09 Cv Therapeutics, Inc. Polymer coating for medical devices
US20030181973A1 (en) * 2002-03-20 2003-09-25 Harvinder Sahota Reduced restenosis drug containing stents
US20090005861A1 (en) * 2002-06-21 2009-01-01 Hossainy Syed F A Stent coatings with engineered drug release rate
US6865810B2 (en) * 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
US7918181B2 (en) * 2002-09-26 2011-04-05 Advanced Cardiovascular Systems, Inc. Stent mandrel fixture and method for reducing coating defects
US7967854B2 (en) * 2002-10-02 2011-06-28 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US7169178B1 (en) * 2002-11-12 2007-01-30 Advanced Cardiovascular Systems, Inc. Stent with drug coating
US20040098106A1 (en) * 2002-11-14 2004-05-20 Williams Michael S. Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
US7094256B1 (en) * 2002-12-16 2006-08-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical device containing polycationic peptides
US6918929B2 (en) * 2003-01-24 2005-07-19 Medtronic Vascular, Inc. Drug-polymer coated stent with pegylated styrenic block copolymers
US7655038B2 (en) * 2003-02-28 2010-02-02 Biointeractions Ltd. Polymeric network system for medical devices and methods of use
US7329431B2 (en) * 2003-06-05 2008-02-12 Terumo Kabushiki Kaisha Stent and method of manufacturing stent
US7645504B1 (en) * 2003-06-26 2010-01-12 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices comprising hydrophobic and hydrophilic polymers
US7318945B2 (en) * 2003-07-09 2008-01-15 Medtronic Vascular, Inc. Laminated drug-polymer coated stent having dipped layers
US7318944B2 (en) * 2003-08-07 2008-01-15 Medtronic Vascular, Inc. Extrusion process for coating stents
US20050060021A1 (en) * 2003-09-16 2005-03-17 O'brien Barry Medical devices
US20050075714A1 (en) * 2003-09-24 2005-04-07 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US20050119723A1 (en) * 2003-11-28 2005-06-02 Medlogics Device Corporation Medical device with porous surface containing bioerodable bioactive composites and related methods
US7211108B2 (en) * 2004-01-23 2007-05-01 Icon Medical Corp. Vascular grafts with amphiphilic block copolymer coatings
US7695731B2 (en) * 2004-03-22 2010-04-13 Cordis Corporation Local vascular delivery of etoposide in combination with rapamycin to prevent restenosis following vascular injury
US20090132023A1 (en) * 2004-05-05 2009-05-21 Karl Sieradzki Methods and apparatus with porous materials
US7901451B2 (en) * 2004-09-24 2011-03-08 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US20100100172A1 (en) * 2005-01-28 2010-04-22 Greatbatch, Inc. Stent Coating For Eluting Medication
US20100137673A1 (en) * 2005-02-10 2010-06-03 Suresh Srivastava Dosimetry implant for treating restenosis and hyperplasia
US20060210816A1 (en) * 2005-03-15 2006-09-21 Finley Michael J Compliant polymeric coatings for insertable medical articles
US20110125253A1 (en) * 2005-11-09 2011-05-26 C.R. Bard Inc. Grafts and stent grafts having a radiopaque marker
US8167931B2 (en) * 2005-12-12 2012-05-01 Advanced Cardiovascular Systems, Inc. Method of making a coated stent
US20070173923A1 (en) * 2006-01-20 2007-07-26 Savage Douglas R Drug reservoir stent
US20070185569A1 (en) * 2006-02-06 2007-08-09 Soonkap Hahn Drug eluting stent coating with extended duration of drug release
US20100049310A1 (en) * 2006-02-15 2010-02-25 Acandis Gmbh & Co. Kg Method for coating a stent
US20070191931A1 (en) * 2006-02-16 2007-08-16 Jan Weber Bioerodible endoprostheses and methods of making the same
US8147540B2 (en) * 2006-03-10 2012-04-03 Cook Medical Technologies Llc Taxane coatings for implantable medical devices
US7951194B2 (en) * 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US20080033523A1 (en) * 2006-07-10 2008-02-07 Gale David C Stent crack reduction
US20080147165A1 (en) * 2006-07-11 2008-06-19 Hossainy Syed F A Stent fabricated from polymer composite toughened by a dispersed phase
US20100094409A1 (en) * 2006-08-23 2010-04-15 Stephen George Edward Barker Improvements in and relating to medical devices
US20080071358A1 (en) * 2006-09-18 2008-03-20 Boston Scientific Scimed, Inc. Endoprostheses
US20120027819A1 (en) * 2006-09-28 2012-02-02 Isch Andrew P Medical Devices Incorporating a Bioactive and Methods of Preparing Such Devices
US20080097569A1 (en) * 2006-10-20 2008-04-24 Boston Scientific Scimed, Inc. Reduction of burst release from therapeutically treated medical devices
US20120065726A1 (en) * 2006-12-28 2012-03-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8133269B2 (en) * 2007-05-16 2012-03-13 Gelita Ag Vascular stent
US7942926B2 (en) * 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US20090030507A1 (en) * 2007-07-24 2009-01-29 Biotronik Vi Patent Ag Degradable metal stent having agent-containing coating
US20090138077A1 (en) * 2007-07-27 2009-05-28 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US20100137977A1 (en) * 2007-08-03 2010-06-03 Boston Scientific Scimed, Inc. Coating for Medical Device Having Increased Surface Area
US20090157166A1 (en) * 2007-12-12 2009-06-18 Boston Scientific Scimed, Inc. Medical Devices Having Porous Component For Controlled Diffusion
US20110022005A1 (en) * 2008-03-20 2011-01-27 Bayer Materialscience Ag Medical device having hydrophilic coatings
US20110046724A1 (en) * 2008-03-31 2011-02-24 Avidal Vascular Gmbh Expansible Biocompatible Coats Comprising a Biologically Active Substance
US20110118826A1 (en) * 2008-07-30 2011-05-19 Boston Scientific Scimed. Inc. Bioerodible Endoprosthesis
US8133278B2 (en) * 2008-08-14 2012-03-13 Boston Scientific Scimed, Inc. Medical devices having electrodeposited conductive polymer coatings
US20100131050A1 (en) * 2008-11-25 2010-05-27 Zhao Jonathon Z ABSORBABLE STENT HAVING A COATING FOR CONTROLLING DEGRADATION OF THE STENT AND MAINTAINING pH NEUTRALITY
US20100137978A1 (en) * 2008-12-03 2010-06-03 Boston Scientific Scimed, Inc. Medical Implants Including Iridium Oxide
US20110022162A1 (en) * 2009-07-23 2011-01-27 Boston Scientific Scimed, Inc. Endoprostheses
US20110160839A1 (en) * 2009-12-29 2011-06-30 Boston Scientific Scimed, Inc. Endoprosthesis
US20120053677A1 (en) * 2010-08-27 2012-03-01 Biotronik Ag Implant with a surface layer having a topographic modification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102579172A (en) * 2012-02-15 2012-07-18 北京航空航天大学 Drug-coating stent
US20140336750A1 (en) * 2013-05-07 2014-11-13 Abbott Cardiovascular Systems Inc. Bioresorbable scaffold for neurologic drug delivery
US9486559B2 (en) * 2013-05-07 2016-11-08 Abbott Cardiovascular Systems Inc. Methods of treatment with a bioresorbable scaffold for neurologic drug delivery
JP2016116812A (en) * 2014-12-24 2016-06-30 ニプロ株式会社 Stent

Also Published As

Publication number Publication date
EP2338534A2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
US8257729B2 (en) Implants with membrane diffusion-controlled release of active ingredient
US7396539B1 (en) Stent coatings with engineered drug release rate
JP4960873B2 (en) Medical devices that deliver treatments to different delivery periods
US7913371B2 (en) Medication depot for medical implants
AU2007299659B2 (en) A specially configured and surface modified medical device with certain design features that utilize the intrinsic properties of tungsten, zirconium, tantalum and/or niobium
US7135038B1 (en) Drug eluting stent
US8323333B2 (en) Fragile structure protective coating
US20050147644A1 (en) Reduced restenosis drug containing stents
US20050055078A1 (en) Stent with outer slough coating
MX2010007571A (en) Rapamycin reservoir eluting stent.
JP2009523489A (en) Coated medical device and manufacturing method thereof
WO2004105646A2 (en) Devices and methods for treatment of stenotic regions
JP2004305753A (en) Medicine elution stent for controlled drug administration
EP2214742A2 (en) Endoprosthesis with coating
WO2006110197A2 (en) Polymer biodegradable medical device
US20080215137A1 (en) Therapeutic driving layer for a medical device
CA2525393A1 (en) Methods of delivering anti-restenotic agents from a stent
DE102006038239A1 (en) Medical implant for animals and humans comprises an implant base body completely or partially covered with a polymer matrix containing active ingredients and made from one or more polymers
US9615948B2 (en) Drug eluting folded stent and stent delivery system
JP2004222953A (en) Indwelling stent
US20110153005A1 (en) Medical implant, coating method and implantation method
EP2190494B1 (en) Implantable medical devices having thin absorbable coatings
US7682388B2 (en) Stent with longitudinal groove
CA2678611A1 (en) Differential drug release from a medical device
EP2554140B1 (en) Stent

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIOTRONIK VI PATENT AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARDER, CLAUS, DR.;REEL/FRAME:025520/0547

Effective date: 20101112

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION