US20110127795A1 - Snap-in fastener - Google Patents

Snap-in fastener Download PDF

Info

Publication number
US20110127795A1
US20110127795A1 US12/674,712 US67471208A US2011127795A1 US 20110127795 A1 US20110127795 A1 US 20110127795A1 US 67471208 A US67471208 A US 67471208A US 2011127795 A1 US2011127795 A1 US 2011127795A1
Authority
US
United States
Prior art keywords
leg
fastener
snap
base
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/674,712
Other versions
US8845003B2 (en
Inventor
Kevin A. Still
Kenneth Kreuze
Michael Selle
Ronald C. Perry
Rodney J. Tindall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motus Holdings BV
Daimay North America Automotive Engineering Technology Inc
Original Assignee
Johnson Controls Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Technology Co filed Critical Johnson Controls Technology Co
Priority to US12/674,712 priority Critical patent/US8845003B2/en
Assigned to JOHNSON CONTROLS TECHNOLOGY COMPANY reassignment JOHNSON CONTROLS TECHNOLOGY COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KREUZE, KENNETH, PERRY, RONALD C., SELLE, MICHAEL, STILL, KEVIN A., TINDALL, RODNEY J.
Publication of US20110127795A1 publication Critical patent/US20110127795A1/en
Assigned to OLYMPUS HOLDING B.V. reassignment OLYMPUS HOLDING B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHNSON CONTROLS TECHNOLOGY COMPANY
Application granted granted Critical
Publication of US8845003B2 publication Critical patent/US8845003B2/en
Assigned to MOTUS HOLDING B.V. reassignment MOTUS HOLDING B.V. DEED OF AMENDMENT OF THE ARTICLES OF ASSOCIATION OF MOTUS HOLDING B.V. Assignors: OLYMPUS HOLDING B.V.
Assigned to DAIMAY NORTH AMERICA AUTOMOTIVE ENGINEERING TECHNOLOGY, INC. reassignment DAIMAY NORTH AMERICA AUTOMOTIVE ENGINEERING TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOTUS HOLDING B.V.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/02Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in position
    • B60J3/0204Sun visors
    • B60J3/0213Sun visors characterised by the mounting means

Definitions

  • the present disclosure relates generally to a fastener for a vehicle. More specifically, the present disclosure relates to a fastener for securing a vehicle component to the vehicle (e.g., a fastener for securing a visor and/or a headliner to a vehicle roof, etc.).
  • a fastener for securing a vehicle component to the vehicle e.g., a fastener for securing a visor and/or a headliner to a vehicle roof, etc.
  • fasteners exist for securing a vehicle component to a vehicle.
  • fasteners are used for securing a vehicle visor and/or headliner to a roof of a vehicle.
  • One type of fastener that may be used is a snap-in fastener or clip.
  • the snap-in construction may increase the ease of construction of a vehicle interior.
  • Snap-in fasteners or clips may be used as a separate component to secure a vehicle component to a vehicle or may be used to form a sub-assembly with the vehicle component that may then be subsequently secured to a vehicle.
  • a snap-in fastener may be used to form a sub-assembly with a vehicle visor and/or headliner that is subsequently snapped into a structural portion (e.g., sheet metal roof, etc.) of a vehicle.
  • a structural portion e.g., sheet metal roof, etc.
  • the fastener comprises a base having a longitudinal axis, a first leg extending downwardly and outwardly from the base and configured to apply a force to the vehicle structure in a first direction, and a second leg extending downwardly from the base and configured to apply a force to the vehicle structure in a second direction that is substantially opposite the first direction.
  • the first leg has a first portion extending from the base at a first angle relative to the longitudinal axis and a second portion extending from the first portion at a second angle relative to the longitudinal axis that is different than the first angle.
  • the second portion supports a foot configured to engage an edge of the vehicle structure.
  • the second leg is spaced apart from the first leg.
  • the fastener comprises a base; a first leg extending downwardly and outwardly from the base and configured to apply a force to the vehicle structure in a first direction, and a second leg extending downwardly from the base and configured to apply a force to the vehicle structure in a second direction that is substantially opposite the first direction.
  • the first leg includes a foot configured to engage an edge the vehicle structure.
  • the foot has a contact surface with an inwardly extending profile for engaging the edge.
  • the second leg is spaced apart from the first leg.
  • the mounting assembly comprises a vehicle component, a mounting bracket coupled to the vehicle component, and a snap-in fastener coupled to the mounting bracket.
  • the fastener comprises a base; a first leg extending downwardly and outwardly from the base and configured to apply a force to the structural portion of the vehicle in a first direction, and a second leg extending downwardly and outwardly from the base and configured to apply a force to the structural portion in a second direction that is substantially opposite the first direction.
  • the first leg includes a foot configured to engage an edge the structural portion.
  • the foot has a contact surface with an inwardly extending profile for engaging the edge.
  • the second leg is spaced apart from the first leg.
  • FIG. 1 is a front perspective view of a vehicle according to an exemplary embodiment.
  • FIG. 2 is an exploded isometric view of a mounting assembly including a snap-in fastener according to an exemplary embodiment.
  • FIG. 3 is a top plan view of an aperture in a vehicle structure that is configured to receive the snap-in fastener of FIG. 2 .
  • FIG. 4 is an isometric view of the snap-in fastener of FIG. 2 .
  • FIG. 5 is a top plan view of the snap-in fastener of FIG. 2 .
  • FIG. 6 is a side view of the snap-in fastener of FIG. 2 .
  • FIG. 7 is a cross sectional view through a spring leg of the snap-in fastener of FIG. 2 .
  • FIG. 8 is an end view of the spring leg of the snap-in fastener of FIG. 2 .
  • FIG. 9 is a cross sectional view of the snap-in fastener of FIG. 2 secured to the vehicle structure.
  • FIG. 10A is a partial isometric view of a snap-in fastener according to another exemplary embodiment.
  • FIG. 10B is another partial isometric view of a snap-in fastener according to another exemplary embodiment.
  • FIG. 10C is another partial isometric view of a snap-in fastener according to another exemplary embodiment.
  • FIG. 11 is an isometric view of a snap-in fastener according to another exemplary embodiment.
  • a fastener for securing a vehicle component to a structural portion of a vehicle (e.g., automobiles such as cars, trucks, sport utility vehicles, minivans, buses, and the like; airplanes, boats, etc.) are shown.
  • the fastener is configured to be inserted into an opening in the structural portion of the vehicle and generally includes a base with one or more first or spring legs and one or more second or support legs extending downwardly therefrom.
  • the first leg is configured to exert a first force in a direction towards one surface or side of the structural portion (e.g., a substantially downward force, etc.) and the second leg is configured to exert a second force in a direction towards another surface or side (e.g., a substantially opposite surface or side, etc.) of the structural portion (e.g., a substantially upward force, etc.).
  • the first leg of the fastener may have a configuration that reduces the amount of force needed to insert the fastener into the opening and/or that improves the retention or engagement between the fastener and the structural portion once installed.
  • the fastener is shown and described herein according to an exemplary embodiment as a snap-in fastener 100 that is configured to engage a roof of a vehicle 10 to secure a visor assembly thereto.
  • a snap-in fastener 100 that is configured to engage a roof of a vehicle 10 to secure a visor assembly thereto.
  • the fastener is shown and described with reference to a snap-in fastener for a securing a visor assembly to a vehicle roof, it is to be understood that this embodiment is merely illustrative of the principles and applications of the present inventions.
  • Such a fastener may also be used in any other suitable location within a vehicle (e.g., side walls, floors, overhead systems, etc.) for securing any of a variety of vehicle components (e.g., headliners, grab bars, consoles, trim panels, entertainment devices, user interfaces, etc.) within a vehicle.
  • vehicle components e.g., headliners, grab bars, consoles, trim panels, entertainment devices, user interfaces, etc.
  • the fasteners may be provided in a wide variety of sizes, shapes, and configurations, and made from a wide variety of materials and manufacturing processes according to various exemplary embodiments.
  • FIG. 2 there is shown a mounting arrangement including a vehicle component, shown as a visor 50 , according to an exemplary embodiment.
  • the mounting arrangement is shown as including visor 50 , a mounting bracket 52 , a headliner 54 , a vehicle roof 56 and snap-in fastener 100 .
  • Snap-in fastener 100 is coupled to mounting bracket 52 and vehicle roof 56 for securing visor 50 and/or headliner 54 to vehicle roof 56 .
  • mounting bracket 52 and snap-in fastener 100 are provided on opposite sides of headliner 54 and are coupled together with a fastener (e.g., clip, pin, etc.), shown as a screw, trapping headliner 54 between snap-in fastener 100 and mounting bracket 52 .
  • a fastener e.g., clip, pin, etc.
  • Headliner 54 can be made of conventional construction and include, for example, a molded polymeric or other substrate to which a decorative fabric is integrally attached. Snap-in fastener 100 is inserted into an aperture 58 (shown in FIG. 3 ) in vehicle roof 56 until a portion of snap-in fastener 100 engages the edges vehicle roof 56 defining aperture 58 with a snap fit. According to the various alternative embodiments, snap-in fastener 100 may be first coupled to mounting bracket 52 and then inserted through an aperture in the headliner and aperture 58 in roof 56 . In such an embodiment, headliner 54 would be trapped between snap-in fastener 100 and roof 56 .
  • Snap-fit fastener 100 may be configured to engage any of a variety of apertures in a structural portion of a vehicle.
  • aperture 58 includes a generally circular central aperture and three spaced-apart slots that extend outward from the central aperture. The slots are equally spaced in approximately 120 degree intervals around the periphery of the central aperture.
  • the structural portion of vehicle 10 which includes aperture 58 may be the front header of vehicle 10 , either of the A-pillars, or other suitable structural member having a structure (e.g., a single layer of sheet metal, etc.) sufficiently rigid to support the one or more vehicle components (e.g., visor 50 and headliner 54 , etc.).
  • Snap-in fastener 100 includes a hub or base 102 , a first projection or leg 104 (e.g., spring leg, etc.) and a second projection or leg 106 (e.g., support leg, attachment leg, etc.).
  • first leg 104 is configured to exert a substantially downward force directly on an upper surface of roof 56
  • second leg 106 is configured to exert a substantially upward force directly on a lower surface of roof 56 .
  • first leg 104 would still exert a substantially downward force directly on the upper surface of roof 56 , but second leg 106 would then exert a substantially upward force directly on headliner 54 .
  • one or more intermediate members may be provided between snap-in fastener 100 , headliner 54 and/or roof 56 such that snap-in fastener 100 would be configured to exert an indirect force to one or more of such structures.
  • snap-in fastener 100 is a spider-like member having more than one first leg 104 and second leg 106 .
  • snap-in fastener 100 is shown as having a total of six legs, i.e., three first legs 104 and three second legs 106 that are alternately staggered.
  • the three first legs 104 and the three second legs 106 extend outward and downward from an outer periphery or edge of base 102 to form a generally circular profile around the outer periphery base 102 .
  • Base 102 may be configured to function as a locator for inserting the snap-in fastener 100 into aperture 58 by having a circular profile with a diameter that is smaller than the diameter of the central aperture of aperture 58 .
  • first legs 104 are equally spaced in approximately 120 degree intervals around the periphery of base 102 .
  • second legs 106 are equally spaced in approximately 120 degree intervals around the periphery of base 102 and are in an alternately staggered relationship with first legs 104 .
  • Each of first legs 104 and second legs 106 are shown as being separated by slots extending between the legs. According to the various exemplary embodiments, any number of first legs 104 and second legs 106 may be provided, at any of a number of positions and orientations.
  • first leg 104 has a first or proximate end 110 coupled to base 102 and a second or distal end 112 that is substantially a free end.
  • the second end 112 defines an engagement portion, shown as a foot 124 , for engaging an edge of a structural portion of the vehicle (e.g., roof 56 , etc.).
  • Second leg 106 has a first or proximate end 114 coupled to base 102 and a second or distal end 116 that terminates in a base section, shown as a support member 126 .
  • first leg 104 and second leg 106 are integrally formed with base 102 to provide a one-piece fastener.
  • one or more of first leg 104 and second leg 106 may be a separate member that is subsequently attached to base 102 .
  • snap-in fastener 100 is formed of a resilient spring-like material that is configured to flex.
  • snap-in fastener 100 may be formed of a suitable spring steel material, such as 1074 spring steel having a thickness of approximately 0.67 mm and finished with anti-oxidation finish. Forming snap-in fastener 100 of a resilient material may allow first leg 104 and/or second leg 106 to flex inwardly as snap-in fastener 100 is inserted through aperture 58 .
  • snap-in fastener 100 may be formed of any known or otherwise suitable resilient material or combination of materials that is capable of flexing.
  • first leg 104 and second leg 106 cooperate to define a member having a longitudinal or central axis 118 that extends in a vertical direction relative to snap-in fastener 100 .
  • first leg 104 and second leg 106 extend downwardly and outwardly from base 102 such that first leg 104 and second leg 106 are orientated at an angle relative to axis 118 .
  • snap-in fastener 100 is narrower at base 102 than at some other position between first end 110 and second end 112 of first leg 104 and between first end 114 and second end 116 of second leg 106 (e.g., the distal ends, etc.).
  • Such a configuration allows base 102 to function as a lead-in or locator for inserting fastener 100 into aperture 58 .
  • first leg 104 includes a first portion or segment, shown as an upper portion 120 , that extends downwardly and outwardly at a first angle relative to axis 118 and a second portion or segment, shown as a lower portion 122 , that extends downwardly and outwardly at a second angle relative to axis 118 .
  • the first angle is different than the second angle to provide a first leg 104 that is non-linear (i.e., not extending in a straight line between first end 110 and second end 112 ).
  • first leg 104 may have a profile between first end 110 and second end 112 that is a substantially continuous curve, a combination of linear segments, one or more linear segments in combination with one or more curved segments or any other configuration that may be desirable.
  • upper portion 120 of first leg 104 is a generally vertical portion that is substantially parallel to axis 118 and lower portion 122 of first leg 104 flares outward from upper portion 120 in a substantially curved manner.
  • Such a configuration allows upper portion 120 to pass through aperture 58 relatively unimpeded (e.g., without substantially contacting the edge of roof 56 around aperture 58 , etc.) as snap-in fastener 100 is inserted into aperture 58 .
  • snap-in fastener 100 can be inserted approximately 15 millimeters into aperture 58 before the edges roof 56 defining of aperture 58 contact an outer surface of first leg 104 .
  • Such a configuration may help to insure that snap-in fastener 100 is located within aperture 58 and will not slip out of aperture 58 when an additional force is applied to snap-fit fastener 100 to snap it into place.
  • Such a configuration may also help to reduce the amount of force needed to secure snap-fit fastener 100 to roof 56 (e.g., by reducing the amount of time that snap-in fastener 100 is in contact with roof 56 during the insertion process, etc.).
  • upper portion 120 and lower portion 122 of first leg 104 may be provided at any angle relative to axis 118 and/or relative to each other. For example, it may be desirable to provide upper portion 120 at angle relative to axis 118 that is greater than zero (e.g., between approximately 0 degrees and approximately 30 degrees, etc.). Also, in certain applications it may be desirable to provide upper portion 120 and lower portion 122 at the same angle relative to axis 118 . Further, as noted above, upper portion 120 and lower portion 122 may be substantially linear segments, curved segments or combinations thereof.
  • first leg 104 is configured to flex inward during installation when the outer surface of first leg 104 (e.g., an outer surface of lower portion 122 , etc.) engages the edge of roof 56 at aperture 58 .
  • a cutout or aperture 138 (shown in FIG. 4 ) is provided in first spring leg 104 .
  • aperture 138 may be provided at first end 110 of first leg 104 to reduce the amount of force needed to flex first leg 104 inward while inserting snap-in fastener 100 into aperture 58 .
  • foot 124 is shown according to an exemplary embodiment.
  • foot 124 is configured to engage the edge of roof 56 defining aperture 58 to secure snap-in fastener 100 in the installed position.
  • first leg 104 is forced inward due to the engagement between an outer surface of first leg 104 and the edge of roof 56 at aperture 58 .
  • foot 124 snaps outward to engage the edge of roof 56 .
  • foot 124 has a relatively wide stance or footprint to provide stability when foot 124 engages roof 56 .
  • foot 124 has a U-shaped profile when viewed transversely (as best shown in FIG. 8 ) which provides for the relatively wide footprint.
  • the transverse profile of foot 124 is defined by a pair of edge contact portions or surfaces 128 and a cross member or surface 130 extending therebetween.
  • edge contact surfaces 128 when viewed transversely, are substantially linear segments that are generally parallel to each other and cross surface 130 is an outwardly curved segment extending therebetween.
  • foot 124 may have any of a number of suitable traverse profiles which are configured to secure snap-in fastener 100 to a structural portion of a vehicle.
  • foot 124 may have a U-shaped profile wherein the cross surface is a substantially straight segment or wherein the cross surface curves inward.
  • edge contact surface 128 of foot 124 may be orientated at any of a variety of angles when viewed transversely and/or may be non-linear.
  • foot 124 may be a substantially solid member having a substantially continuous contact surface configured to engage the edge of roof 56 at aperture 58 .
  • edge contact surfaces 128 of foot 124 extend downward from cross surface 130 in a non-linear manner (i.e., not in a straight line).
  • the profile of edge contact surfaces 128 extends inward (i.e., away from the edge about which edge contact surfaces 128 are configured to engage).
  • the profile of edge contact surfaces 128 is curved inward in a substantially concave manner.
  • snap-in fastener 100 is provided with two concave contact surfaces that engage the edge of roof 56 at aperture 58 (e.g., one at each edge contact surface 128 , etc.).
  • the inwardly extending profile of edge contact surfaces 128 may be defined by linear segments, curved segments and/or combinations thereof.
  • the inwardly extending profile may be defined by two linear segments which provide a substantially V-shaped profile.
  • snap-in fastener 100 e.g., a force applied by the weight of visor 50 and/or headliner 54 , a force applied by an occupant on visor 50 , etc.
  • the relatively wide stance of foot 124 and the inwardly-shaped profile (e.g., concave profile, etc.) of edge contact surfaces 128 help to create a greater area of contact between snap-in fastener 100 and roof 56 .
  • edge contact surfaces 128 will slip (e.g., disengage, etc.) and allow snap-in fastener 100 to be pulled back through aperture 58 may be reduced.
  • second leg 106 is shown according to an exemplary embodiment.
  • Second leg 106 is shown as extending downwardly and outwardly in a substantially straight line between first end 114 and second end 116 .
  • second leg 106 may extend from base 102 in any of a number of profiles (e.g., linear, curved, combinations thereof, etc.).
  • second leg 106 may extend downward from base 102 without extending outwardly.
  • second end 116 terminates in support member 126 which is configured to engage an upper surface of headliner 54 and the lower surface of roof 56 according to the embodiment illustrated.
  • support member 126 is shown according to an exemplary embodiment.
  • support member 126 is shown as having a substantially rectangular shape.
  • support member 126 includes one or more projections or raised portions 132 extending from an upper surface of support member 126 .
  • raised portions 132 are in the form of pattern such as a cross-hatch pattern for providing a contact pattern against the lower surface of roof 56 .
  • Second leg 106 and in particular raised portions 132 , cooperate with first leg 104 to couple snap-in fastener 100 to roof 56 by compressing opposite sides of roof 56 .
  • support member 126 also includes one or more fastening elements, shown as an aperture 134 , configured to cooperate with a corresponding fastening element (e.g., screw, clip, etc.) for securing mounting bracket 52 and/or visor 50 to snap-in fastener 100 .
  • a fastening element e.g., screw, clip, etc.
  • support member 126 includes a single aperture 134 that is centrally located therein between a pair of raised portions 132 , but alternatively, may include any of a number of apertures 134 in any of a number of positions.
  • aperture 134 is a thread forming aperture having an angled surface, shown as a ramp 136 , that is provided at the upper surface of support member 126 at least partially around aperture 134 .
  • a ramp 136 Such is embodiment is formed by providing a generally circular center aperture with an outwardly extending notch and forming at the periphery of the aperture, an inclined spiral ramp 136 to define an inclined surface to engage the threads of a screw or clip.
  • support member 126 may further include a projection, shown as a tab 140 in FIG. 4 , that extends upward from support member 126 .
  • Tab 140 is configured to extend upward through one of the slots of aperture 58 to help locate snap-in fastener 100 in aperture 58 during installation.
  • Tab 140 may also act as an anti-rotation feature when inserted into one of the slots of aperture 58 to limit the rotation of snap-in fastener 100 around axis 118 .
  • first leg 104 deflects inwardly when the outer surface of first leg 104 engages the edge of roof 56 at aperture 58 until a portion of foot 124 clears an upper surface roof 56 .
  • first leg 104 extends (e.g., flexes, snaps, etc.) outward into a locking or installed position as shown in FIG. 9 .
  • edge contact surfaces 128 engage the edge of roof 56 at aperture 58 to secure or lock snap-in fastener 100 .
  • headliner 54 is trapped between mounting bracket 52 and snap-in fastener 100 , which is in compressive engagement with roof 56 .
  • first leg 104 may include substantially linear edge contact surfaces 128 for foot 124 .
  • first leg 104 may include curved edges contact surfaces 128 for foot 128 that have a substantially horizontal or flat portion 142 at an end of the surfaces. Inclusion of flat portion 142 may assist in retaining snap-in fastener 100 in the locked position.
  • first leg 104 is shown as having a cutout of notch 144 in foot 124 between edge contact surfaces 128 . Inclusion of notch 144 may further assist in reduce the amount of force needed to insert snap-in fastener 10 by increasing the flex in first leg 104 .
  • snap-in fastener 100 may also include an additional projection, shown as a second locator tab 146 , extending upward from another support member 126 .
  • Second locator tab 146 is configured to extend upward through one of the slots of aperture 58 to help locate snap-in fastener 100 in aperture 58 , and may further act as an anti-rotation feature for snap-in fastener 100 when located in the corresponding slot of aperture 58 .

Abstract

A snap-in fastener is provided for securing a vehicle component to a vehicle structure. The fastener comprises a base having a longitudinal axis, a first leg extending downwardly and outwardly from the base and configured to apply a force to the vehicle structure in a first direction, and a second leg extending downwardly from the base and configured to apply a force to the vehicle structure in a second direction that is substantially opposite the first direction. The first leg may have a first portion extending from the base at a first angle relative to the longitudinal axis and a second portion extending from the first portion at a second angle relative to the longitudinal axis that is different than the first angle. The first leg may also have a foot having a contact surface with an inwardly extending profile for engaging an edge of the vehicle structure.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
  • This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/969,039, having a filing date of Aug. 30, 2007, titled “Snap-In Fastener,” the complete disclosure of which is hereby incorporated by reference.
  • BACKGROUND
  • The present disclosure relates generally to a fastener for a vehicle. More specifically, the present disclosure relates to a fastener for securing a vehicle component to the vehicle (e.g., a fastener for securing a visor and/or a headliner to a vehicle roof, etc.).
  • A variety of fasteners exist for securing a vehicle component to a vehicle. For example, fasteners are used for securing a vehicle visor and/or headliner to a roof of a vehicle. One type of fastener that may be used is a snap-in fastener or clip. The snap-in construction may increase the ease of construction of a vehicle interior. Snap-in fasteners or clips may be used as a separate component to secure a vehicle component to a vehicle or may be used to form a sub-assembly with the vehicle component that may then be subsequently secured to a vehicle. For example, a snap-in fastener may be used to form a sub-assembly with a vehicle visor and/or headliner that is subsequently snapped into a structural portion (e.g., sheet metal roof, etc.) of a vehicle. There continues to be a need for a snap-in fastener that requires less force to snap into place when installing a vehicle component and/or that provides a more secure attachment of the vehicle component to a structural portion of a vehicle once installed.
  • SUMMARY
  • One embodiment relates to a snap-in fastener for securing a vehicle component to a vehicle structure. The fastener comprises a base having a longitudinal axis, a first leg extending downwardly and outwardly from the base and configured to apply a force to the vehicle structure in a first direction, and a second leg extending downwardly from the base and configured to apply a force to the vehicle structure in a second direction that is substantially opposite the first direction. The first leg has a first portion extending from the base at a first angle relative to the longitudinal axis and a second portion extending from the first portion at a second angle relative to the longitudinal axis that is different than the first angle. The second portion supports a foot configured to engage an edge of the vehicle structure. The second leg is spaced apart from the first leg.
  • Another embodiment also relates to a snap-in fastener for securing a vehicle component to a vehicle structure. The fastener comprises a base; a first leg extending downwardly and outwardly from the base and configured to apply a force to the vehicle structure in a first direction, and a second leg extending downwardly from the base and configured to apply a force to the vehicle structure in a second direction that is substantially opposite the first direction. The first leg includes a foot configured to engage an edge the vehicle structure. The foot has a contact surface with an inwardly extending profile for engaging the edge. The second leg is spaced apart from the first leg.
  • Another embodiment relates to a mounting assembly configured to be secured to a structural portion of a vehicle. The mounting assembly comprises a vehicle component, a mounting bracket coupled to the vehicle component, and a snap-in fastener coupled to the mounting bracket. The fastener comprises a base; a first leg extending downwardly and outwardly from the base and configured to apply a force to the structural portion of the vehicle in a first direction, and a second leg extending downwardly and outwardly from the base and configured to apply a force to the structural portion in a second direction that is substantially opposite the first direction. The first leg includes a foot configured to engage an edge the structural portion. The foot has a contact surface with an inwardly extending profile for engaging the edge. The second leg is spaced apart from the first leg.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front perspective view of a vehicle according to an exemplary embodiment.
  • FIG. 2 is an exploded isometric view of a mounting assembly including a snap-in fastener according to an exemplary embodiment.
  • FIG. 3 is a top plan view of an aperture in a vehicle structure that is configured to receive the snap-in fastener of FIG. 2.
  • FIG. 4 is an isometric view of the snap-in fastener of FIG. 2.
  • FIG. 5 is a top plan view of the snap-in fastener of FIG. 2.
  • FIG. 6 is a side view of the snap-in fastener of FIG. 2.
  • FIG. 7 is a cross sectional view through a spring leg of the snap-in fastener of FIG. 2.
  • FIG. 8 is an end view of the spring leg of the snap-in fastener of FIG. 2.
  • FIG. 9 is a cross sectional view of the snap-in fastener of FIG. 2 secured to the vehicle structure.
  • FIG. 10A is a partial isometric view of a snap-in fastener according to another exemplary embodiment.
  • FIG. 10B is another partial isometric view of a snap-in fastener according to another exemplary embodiment.
  • FIG. 10C is another partial isometric view of a snap-in fastener according to another exemplary embodiment.
  • FIG. 11 is an isometric view of a snap-in fastener according to another exemplary embodiment.
  • DETAILED DESCRIPTION
  • Referring generally to the FIGURES, exemplary embodiments of a fastener for securing a vehicle component to a structural portion of a vehicle (e.g., automobiles such as cars, trucks, sport utility vehicles, minivans, buses, and the like; airplanes, boats, etc.) are shown. The fastener is configured to be inserted into an opening in the structural portion of the vehicle and generally includes a base with one or more first or spring legs and one or more second or support legs extending downwardly therefrom. Once the fastener is inserted into the opening in the structural portion of the vehicle, such as a vehicle roof, the first leg is configured to exert a first force in a direction towards one surface or side of the structural portion (e.g., a substantially downward force, etc.) and the second leg is configured to exert a second force in a direction towards another surface or side (e.g., a substantially opposite surface or side, etc.) of the structural portion (e.g., a substantially upward force, etc.). The first leg of the fastener may have a configuration that reduces the amount of force needed to insert the fastener into the opening and/or that improves the retention or engagement between the fastener and the structural portion once installed.
  • The fastener is shown and described herein according to an exemplary embodiment as a snap-in fastener 100 that is configured to engage a roof of a vehicle 10 to secure a visor assembly thereto. Although the fastener is shown and described with reference to a snap-in fastener for a securing a visor assembly to a vehicle roof, it is to be understood that this embodiment is merely illustrative of the principles and applications of the present inventions. Such a fastener may also be used in any other suitable location within a vehicle (e.g., side walls, floors, overhead systems, etc.) for securing any of a variety of vehicle components (e.g., headliners, grab bars, consoles, trim panels, entertainment devices, user interfaces, etc.) within a vehicle. The fasteners may be provided in a wide variety of sizes, shapes, and configurations, and made from a wide variety of materials and manufacturing processes according to various exemplary embodiments.
  • Referring to FIG. 2, there is shown a mounting arrangement including a vehicle component, shown as a visor 50, according to an exemplary embodiment. The mounting arrangement is shown as including visor 50, a mounting bracket 52, a headliner 54, a vehicle roof 56 and snap-in fastener 100. Snap-in fastener 100 is coupled to mounting bracket 52 and vehicle roof 56 for securing visor 50 and/or headliner 54 to vehicle roof 56. According to the embodiment illustrated, mounting bracket 52 and snap-in fastener 100 are provided on opposite sides of headliner 54 and are coupled together with a fastener (e.g., clip, pin, etc.), shown as a screw, trapping headliner 54 between snap-in fastener 100 and mounting bracket 52. Headliner 54 can be made of conventional construction and include, for example, a molded polymeric or other substrate to which a decorative fabric is integrally attached. Snap-in fastener 100 is inserted into an aperture 58 (shown in FIG. 3) in vehicle roof 56 until a portion of snap-in fastener 100 engages the edges vehicle roof 56 defining aperture 58 with a snap fit. According to the various alternative embodiments, snap-in fastener 100 may be first coupled to mounting bracket 52 and then inserted through an aperture in the headliner and aperture 58 in roof 56. In such an embodiment, headliner 54 would be trapped between snap-in fastener 100 and roof 56.
  • Snap-fit fastener 100 may be configured to engage any of a variety of apertures in a structural portion of a vehicle. One such example is shown in FIG. 3. According to the embodiment illustrated, aperture 58 includes a generally circular central aperture and three spaced-apart slots that extend outward from the central aperture. The slots are equally spaced in approximately 120 degree intervals around the periphery of the central aperture. The structural portion of vehicle 10 which includes aperture 58 (e.g., a sheet metal roof, etc.) may be the front header of vehicle 10, either of the A-pillars, or other suitable structural member having a structure (e.g., a single layer of sheet metal, etc.) sufficiently rigid to support the one or more vehicle components (e.g., visor 50 and headliner 54, etc.).
  • Referring to FIGS. 4 through 9, snap-in fastener 100 is shown according to an exemplary embodiment. Snap-in fastener 100 includes a hub or base 102, a first projection or leg 104 (e.g., spring leg, etc.) and a second projection or leg 106 (e.g., support leg, attachment leg, etc.). According to the embodiment illustrated, once snap-in fastener 100 is installed, first leg 104 is configured to exert a substantially downward force directly on an upper surface of roof 56, while second leg 106 is configured to exert a substantially upward force directly on a lower surface of roof 56. If snap-in fastener 100 is coupled to mounting bracket 52 before being inserted through headliner 54 and roof 56, first leg 104 would still exert a substantially downward force directly on the upper surface of roof 56, but second leg 106 would then exert a substantially upward force directly on headliner 54. As can be appreciated, one or more intermediate members may be provided between snap-in fastener 100, headliner 54 and/or roof 56 such that snap-in fastener 100 would be configured to exert an indirect force to one or more of such structures.
  • To accommodate aperture 58 of FIG. 3, snap-in fastener 100, according to an exemplary embodiment, is a spider-like member having more than one first leg 104 and second leg 106. For example, snap-in fastener 100 is shown as having a total of six legs, i.e., three first legs 104 and three second legs 106 that are alternately staggered. According to an exemplary embodiment, the three first legs 104 and the three second legs 106 extend outward and downward from an outer periphery or edge of base 102 to form a generally circular profile around the outer periphery base 102. Base 102 may be configured to function as a locator for inserting the snap-in fastener 100 into aperture 58 by having a circular profile with a diameter that is smaller than the diameter of the central aperture of aperture 58.
  • To further accommodate aperture 58 of FIG. 3, first legs 104 are equally spaced in approximately 120 degree intervals around the periphery of base 102. Likewise, second legs 106 are equally spaced in approximately 120 degree intervals around the periphery of base 102 and are in an alternately staggered relationship with first legs 104. Each of first legs 104 and second legs 106 are shown as being separated by slots extending between the legs. According to the various exemplary embodiments, any number of first legs 104 and second legs 106 may be provided, at any of a number of positions and orientations.
  • Referring to FIGS. 4 through 6 in particular, first leg 104 has a first or proximate end 110 coupled to base 102 and a second or distal end 112 that is substantially a free end. The second end 112 defines an engagement portion, shown as a foot 124, for engaging an edge of a structural portion of the vehicle (e.g., roof 56, etc.). Second leg 106 has a first or proximate end 114 coupled to base 102 and a second or distal end 116 that terminates in a base section, shown as a support member 126. According to an exemplary embodiment, first leg 104 and second leg 106 are integrally formed with base 102 to provide a one-piece fastener. According to the various alternative embodiments, one or more of first leg 104 and second leg 106 may be a separate member that is subsequently attached to base 102.
  • According to an exemplary embodiment, snap-in fastener 100, including base 102, first leg 104 and second leg 106, is formed of a resilient spring-like material that is configured to flex. For example, snap-in fastener 100 may be formed of a suitable spring steel material, such as 1074 spring steel having a thickness of approximately 0.67 mm and finished with anti-oxidation finish. Forming snap-in fastener 100 of a resilient material may allow first leg 104 and/or second leg 106 to flex inwardly as snap-in fastener 100 is inserted through aperture 58. According to the various alternative embodiments, snap-in fastener 100 may be formed of any known or otherwise suitable resilient material or combination of materials that is capable of flexing.
  • As shown in FIG. 6, base 102, first leg 104 and second leg 106 cooperate to define a member having a longitudinal or central axis 118 that extends in a vertical direction relative to snap-in fastener 100. According to an exemplary embodiment, first leg 104 and second leg 106 extend downwardly and outwardly from base 102 such that first leg 104 and second leg 106 are orientated at an angle relative to axis 118. As such, snap-in fastener 100 is narrower at base 102 than at some other position between first end 110 and second end 112 of first leg 104 and between first end 114 and second end 116 of second leg 106 (e.g., the distal ends, etc.). Such a configuration allows base 102 to function as a lead-in or locator for inserting fastener 100 into aperture 58.
  • Referring to FIG. 7, first leg 104 includes a first portion or segment, shown as an upper portion 120, that extends downwardly and outwardly at a first angle relative to axis 118 and a second portion or segment, shown as a lower portion 122, that extends downwardly and outwardly at a second angle relative to axis 118. According to an exemplary embodiment, the first angle is different than the second angle to provide a first leg 104 that is non-linear (i.e., not extending in a straight line between first end 110 and second end 112). For example, first leg 104 may have a profile between first end 110 and second end 112 that is a substantially continuous curve, a combination of linear segments, one or more linear segments in combination with one or more curved segments or any other configuration that may be desirable.
  • According to the embodiment illustrated, upper portion 120 of first leg 104 is a generally vertical portion that is substantially parallel to axis 118 and lower portion 122 of first leg 104 flares outward from upper portion 120 in a substantially curved manner. Such a configuration allows upper portion 120 to pass through aperture 58 relatively unimpeded (e.g., without substantially contacting the edge of roof 56 around aperture 58, etc.) as snap-in fastener 100 is inserted into aperture 58. According to an exemplary embodiment, snap-in fastener 100 can be inserted approximately 15 millimeters into aperture 58 before the edges roof 56 defining of aperture 58 contact an outer surface of first leg 104. Such a configuration may help to insure that snap-in fastener 100 is located within aperture 58 and will not slip out of aperture 58 when an additional force is applied to snap-fit fastener 100 to snap it into place. Such a configuration may also help to reduce the amount of force needed to secure snap-fit fastener 100 to roof 56 (e.g., by reducing the amount of time that snap-in fastener 100 is in contact with roof 56 during the insertion process, etc.).
  • According to the various alternative embodiments, upper portion 120 and lower portion 122 of first leg 104 may be provided at any angle relative to axis 118 and/or relative to each other. For example, it may be desirable to provide upper portion 120 at angle relative to axis 118 that is greater than zero (e.g., between approximately 0 degrees and approximately 30 degrees, etc.). Also, in certain applications it may be desirable to provide upper portion 120 and lower portion 122 at the same angle relative to axis 118. Further, as noted above, upper portion 120 and lower portion 122 may be substantially linear segments, curved segments or combinations thereof.
  • According to an exemplary embodiment, first leg 104 is configured to flex inward during installation when the outer surface of first leg 104 (e.g., an outer surface of lower portion 122, etc.) engages the edge of roof 56 at aperture 58. To facilitate the flexing of first leg 104 during installation, a cutout or aperture 138 (shown in FIG. 4) is provided in first spring leg 104. For example, aperture 138 may be provided at first end 110 of first leg 104 to reduce the amount of force needed to flex first leg 104 inward while inserting snap-in fastener 100 into aperture 58.
  • Referring to FIGS. 7 and 8, foot 124 is shown according to an exemplary embodiment. As noted above, foot 124 is configured to engage the edge of roof 56 defining aperture 58 to secure snap-in fastener 100 in the installed position. As snap-in fastener 100 is inserted (e.g., pushed, etc.) upward into aperture 58, first leg 104 is forced inward due to the engagement between an outer surface of first leg 104 and the edge of roof 56 at aperture 58. Once the outer surface of first leg 104 clears aperture 58, foot 124 snaps outward to engage the edge of roof 56. According to an exemplary embodiment, foot 124 has a relatively wide stance or footprint to provide stability when foot 124 engages roof 56. According to the embodiment illustrated, foot 124 has a U-shaped profile when viewed transversely (as best shown in FIG. 8) which provides for the relatively wide footprint. The transverse profile of foot 124 is defined by a pair of edge contact portions or surfaces 128 and a cross member or surface 130 extending therebetween. According to the embodiment illustrated, when viewed transversely, edge contact surfaces 128 are substantially linear segments that are generally parallel to each other and cross surface 130 is an outwardly curved segment extending therebetween.
  • According to the various alternative embodiments, foot 124 may have any of a number of suitable traverse profiles which are configured to secure snap-in fastener 100 to a structural portion of a vehicle. For example, foot 124 may have a U-shaped profile wherein the cross surface is a substantially straight segment or wherein the cross surface curves inward. According to further alternative embodiments, edge contact surface 128 of foot 124 may be orientated at any of a variety of angles when viewed transversely and/or may be non-linear. According to still further alternative embodiments, foot 124 may be a substantially solid member having a substantially continuous contact surface configured to engage the edge of roof 56 at aperture 58.
  • Referring further to FIG. 7, when viewed from the side, edge contact surfaces 128 of foot 124 extend downward from cross surface 130 in a non-linear manner (i.e., not in a straight line). According to an exemplary embodiment, the profile of edge contact surfaces 128 extends inward (i.e., away from the edge about which edge contact surfaces 128 are configured to engage). According to the embodiment illustrated, the profile of edge contact surfaces 128 is curved inward in a substantially concave manner. As such, snap-in fastener 100 is provided with two concave contact surfaces that engage the edge of roof 56 at aperture 58 (e.g., one at each edge contact surface 128, etc.). According to the various alternative embodiments, the inwardly extending profile of edge contact surfaces 128 may be defined by linear segments, curved segments and/or combinations thereof. For example, the inwardly extending profile may be defined by two linear segments which provide a substantially V-shaped profile.
  • As a downward force is applied to snap-in fastener 100 (e.g., a force applied by the weight of visor 50 and/or headliner 54, a force applied by an occupant on visor 50, etc.), the relatively wide stance of foot 124 and the inwardly-shaped profile (e.g., concave profile, etc.) of edge contact surfaces 128 help to create a greater area of contact between snap-in fastener 100 and roof 56. By increasing the area of contact between snap-in fastener 100 and roof 56, the chance that edge contact surfaces 128 will slip (e.g., disengage, etc.) and allow snap-in fastener 100 to be pulled back through aperture 58 may be reduced.
  • Referring to back to FIGS. 4 through 6, second leg 106 is shown according to an exemplary embodiment. Second leg 106 is shown as extending downwardly and outwardly in a substantially straight line between first end 114 and second end 116. According to the various alternative embodiments, second leg 106 may extend from base 102 in any of a number of profiles (e.g., linear, curved, combinations thereof, etc.). According to further various alternative embodiments, second leg 106 may extend downward from base 102 without extending outwardly. As noted above, second end 116 terminates in support member 126 which is configured to engage an upper surface of headliner 54 and the lower surface of roof 56 according to the embodiment illustrated.
  • Referring to FIG. 5 in particular, support member 126 is shown according to an exemplary embodiment. When viewed from above, support member 126 is shown as having a substantially rectangular shape. According to an exemplary embodiment, support member 126 includes one or more projections or raised portions 132 extending from an upper surface of support member 126. According to the embodiment illustrated, raised portions 132 are in the form of pattern such as a cross-hatch pattern for providing a contact pattern against the lower surface of roof 56. Second leg 106, and in particular raised portions 132, cooperate with first leg 104 to couple snap-in fastener 100 to roof 56 by compressing opposite sides of roof 56.
  • According to an exemplary embodiment, support member 126 also includes one or more fastening elements, shown as an aperture 134, configured to cooperate with a corresponding fastening element (e.g., screw, clip, etc.) for securing mounting bracket 52 and/or visor 50 to snap-in fastener 100. According to the embodiment illustrated, support member 126 includes a single aperture 134 that is centrally located therein between a pair of raised portions 132, but alternatively, may include any of a number of apertures 134 in any of a number of positions.
  • According to an exemplary embodiment, aperture 134 is a thread forming aperture having an angled surface, shown as a ramp 136, that is provided at the upper surface of support member 126 at least partially around aperture 134. Such is embodiment is formed by providing a generally circular center aperture with an outwardly extending notch and forming at the periphery of the aperture, an inclined spiral ramp 136 to define an inclined surface to engage the threads of a screw or clip.
  • According to an exemplary embodiment, support member 126 may further include a projection, shown as a tab 140 in FIG. 4, that extends upward from support member 126. Tab 140 is configured to extend upward through one of the slots of aperture 58 to help locate snap-in fastener 100 in aperture 58 during installation. Tab 140 may also act as an anti-rotation feature when inserted into one of the slots of aperture 58 to limit the rotation of snap-in fastener 100 around axis 118.
  • During insertion, first leg 104, assisted by aperture 138, deflects inwardly when the outer surface of first leg 104 engages the edge of roof 56 at aperture 58 until a portion of foot 124 clears an upper surface roof 56. Once a portion of foot 124 clears the upper surface of roof 56, first leg 104 extends (e.g., flexes, snaps, etc.) outward into a locking or installed position as shown in FIG. 9. In the installed position, edge contact surfaces 128 engage the edge of roof 56 at aperture 58 to secure or lock snap-in fastener 100. According to the embodiment illustrated, once installed, headliner 54 is trapped between mounting bracket 52 and snap-in fastener 100, which is in compressive engagement with roof 56. In this position, raised portions 132 of support member 126 engage a lower surface of roof 56 in the areas adjacent to the slots extending outward from the central aperture of aperture 58. With snap-in fastener 100 coupled to roof 56, visor 50, mounting bracket 52 and/or headliner 54 may be removed (e.g., for repair or replacement, etc.) by removing any fasteners (e.g., screws, etc.) used to secure such components to snap-in fastener 100.
  • The physical properties of snap-in fastener 100, including the force needed to insert snap-in fastener 100 into an aperture of the structural portion of the vehicle and/or the amount of downward force (e.g., weight, etc.) snap-in fastener 100 can support, may be altered by adjusting the shape of snap-in fastener 100. For example, the size of apertures 138 in first end 110 of first arms 104 may be enlarged to increase the amount of flex in first leg 104. Further, the size of the slots separating first leg 104 from second leg 106 may be enlarged to increase the amount of flex in at least first leg 104. Referring to FIG. 10A, first leg 104 may include substantially linear edge contact surfaces 128 for foot 124. FIG. 10B, first leg 104 may include curved edges contact surfaces 128 for foot 128 that have a substantially horizontal or flat portion 142 at an end of the surfaces. Inclusion of flat portion 142 may assist in retaining snap-in fastener 100 in the locked position. Referring to FIG. 10C, first leg 104 is shown as having a cutout of notch 144 in foot 124 between edge contact surfaces 128. Inclusion of notch 144 may further assist in reduce the amount of force needed to insert snap-in fastener 10 by increasing the flex in first leg 104.
  • Referring to FIG. 11, snap-in fastener 100 may also include an additional projection, shown as a second locator tab 146, extending upward from another support member 126. Second locator tab 146 is configured to extend upward through one of the slots of aperture 58 to help locate snap-in fastener 100 in aperture 58, and may further act as an anti-rotation feature for snap-in fastener 100 when located in the corresponding slot of aperture 58.
  • The construction and arrangement of the elements of the fastener as shown in the various exemplary embodiments is illustrative only. Although only a few embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited herein. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability. Components such as those shown herein may be used in non-vehicle applications as well. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the scope of the appended claims.

Claims (15)

1. A snap-in fastener for securing a vehicle component to a vehicle structure, the fastener comprising:
a base having a longitudinal axis;
a first leg extending downwardly and outwardly from the base and configured to apply a force to the vehicle structure in a first direction, the first leg having a first portion extending from the base at a first angle relative to the longitudinal axis and a second portion extending from the first portion at a second angle relative to the longitudinal axis that is different than the first angle, the second portion supporting a foot configured to engage the edge of the vehicle structure; and
a second leg extending downwardly from the base and configured to apply a force to the vehicle structure in a second direction that is substantially opposite the first direction, the second leg being spaced apart from the first leg.
2. The fastener of claim 1 wherein the first angle is smaller than the second angle with respect to the longitudinal axis.
3. The fastener of claim 2 wherein the first portion of the first leg is substantially parallel to the longitudinal axis.
4. The fastener of claim 1 wherein the second portion is non-linear.
5. The fastener of claim 1 wherein the fastener comprises more than one first leg and more than one second leg.
6. The fastener of claim 1 further wherein the foot is provided at an end of the second portion of the first leg, the foot including a contact surface configured to engage the edge the vehicle structure, the contact surface having an inwardly extending profile for engaging the edge.
7. The fastener of claim 6 wherein the inwardly extending profile is substantially concave in shape.
8. A snap-in fastener for securing a vehicle component to a vehicle structure, the fastener comprising:
a base;
a first leg extending downwardly and outwardly from the base and configured to apply a force to the vehicle structure in a first direction, the first leg including a foot configured to engage an edge the vehicle structure, the foot having a contact surface with an inwardly extending profile for engaging the edge; and
a second leg extending downwardly from the base and configured to apply a force to the vehicle structure in a second direction that is substantially opposite the first direction, the second leg being spaced apart from the first leg.
9. The fastener of claim 8 wherein the inwardly extending profile of the contact surface has a curved profile.
10. The fastener of claim 9 wherein the curved profile is substantially concave in shape.
11. The fastener of claim 8 wherein the foot has a substantially U-shaped cross section defined by two substantially parallel members and a cross member, the parallel members each having the contact surface.
12. A mounting assembly configured to be secured to a structural portion of a vehicle, the mounting assembly comprising:
a vehicle component;
a mounting bracket coupled to the vehicle component; and
a snap-in fastener coupled to the mounting bracket, the fastener comprising:
a base;
a first leg extending downwardly and outwardly from the base and configured to apply a force to the structural portion of the vehicle in a first direction, the first leg including a foot configured to engage an edge the structural portion, the foot having a contact surface with an inwardly extending profile for engaging the edge; and
a second leg extending downwardly and outwardly from the base and configured to apply a force to the structural portion in a second direction that is substantially opposite the first direction, the second leg being spaced apart from the first leg.
13. The mounting assembly of claim 12 wherein the foot has a substantially U-shaped cross section defined by two substantially parallel members and a cross member, the parallel members each having the contact surface.
14. The mounting assembly of claim 12 wherein the base defines a longitudinal axis, and wherein the first leg has a first portion extending from the base at a first angle relative to the longitudinal axis and a second portion extending from the first portion at a second angle relative to the longitudinal axis that is smaller than the first angle to allow the first portion to be inserted into the aperture relatively unimpeded.
15. The mounting assembly of claim 12 wherein the vehicle component is a visor.
US12/674,712 2007-08-30 2008-08-29 Snap-in fastener Active 2030-10-27 US8845003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/674,712 US8845003B2 (en) 2007-08-30 2008-08-29 Snap-in fastener

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US96903907P 2007-08-30 2007-08-30
US12/674,712 US8845003B2 (en) 2007-08-30 2008-08-29 Snap-in fastener
PCT/US2008/074770 WO2009029778A1 (en) 2007-08-30 2008-08-29 Snap-in fastener

Publications (2)

Publication Number Publication Date
US20110127795A1 true US20110127795A1 (en) 2011-06-02
US8845003B2 US8845003B2 (en) 2014-09-30

Family

ID=39944290

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/674,712 Active 2030-10-27 US8845003B2 (en) 2007-08-30 2008-08-29 Snap-in fastener

Country Status (4)

Country Link
US (1) US8845003B2 (en)
CA (1) CA2697534C (en)
MX (1) MX2010002221A (en)
WO (1) WO2009029778A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140117692A1 (en) * 2012-10-31 2014-05-01 Kabushiki Kaisha Toyota Jidoshokki Mounting structure of assist grip
US9487067B2 (en) * 2014-10-24 2016-11-08 Daehan Solution Co., Ltd. Fixture for a vehicle
US20170350163A1 (en) * 2016-06-02 2017-12-07 Delta Lock Company, LLC Interchangeable core lock assemblies
USD847693S1 (en) * 2017-02-22 2019-05-07 Sug Whan Kim Fastener
US10435914B2 (en) 2016-04-14 2019-10-08 Delta Lock Company, LLC Interchangeable core lock assemblies
CN113547903A (en) * 2020-04-23 2021-10-26 丰田自动车株式会社 Sun shield
USD988835S1 (en) 2021-05-10 2023-06-13 Innovation Lock, Llc Ratchet locking device
US11879269B2 (en) 2021-05-10 2024-01-23 Innovation Lock, Llc Ratchet lock assemblies

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2503714B (en) 2012-07-05 2017-04-05 Ford Global Tech Llc A combined storage and docking unit for a portable electronic device
US9468122B2 (en) * 2013-03-13 2016-10-11 Ford Global Technologies, Llc Portable device holding apparatus
US10131290B2 (en) * 2017-01-26 2018-11-20 Toyota Motor Engineering & Manufacturing North America, Inc. Removable and serviceable twist lock assembly clip for blind installation
US11541812B2 (en) 2021-02-19 2023-01-03 Ford Global Technologies, Llc Retention assembly for a windshield bracket

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2238238A (en) * 1935-11-02 1941-04-15 Jacobs Co F L Molding fastener
US2884283A (en) * 1956-05-31 1959-04-28 Gen Electric Shaft support
US4422222A (en) * 1980-11-05 1983-12-27 Nifco Inc. Fastening structure
US4529157A (en) * 1983-07-20 1985-07-16 Prince Corporation Visor pivot mount
US4989911A (en) * 1989-08-16 1991-02-05 Prince Corporation Snap-in visor mount
US5056853A (en) * 1989-08-16 1991-10-15 Prince Corporation Snap-in visor mount
US5061005A (en) * 1989-08-16 1991-10-29 Prince Corporation Snap-in visor mount
US5201564A (en) * 1989-08-16 1993-04-13 Prince Corporation Snap-in visor mount
US5967589A (en) * 1998-02-17 1999-10-19 General Motors Corporation Sun visor retention clip
US6021986A (en) * 1997-07-24 2000-02-08 Lear Automotive Dearborn, Inc. Snap-in mount
US6250708B1 (en) * 1999-04-20 2001-06-26 Nifco Inc. Holding device for shaft member
US20020017800A1 (en) * 2000-07-21 2002-02-14 Nifco Inc. Sun visor holder
US6406087B2 (en) * 1999-12-24 2002-06-18 Yazaki Corporation Bracket for attaching interior equipment
US6511029B2 (en) * 2000-03-15 2003-01-28 Yazaki Corporation Bracket for mounting an accessory on vehicle body
US6558193B2 (en) * 2000-12-25 2003-05-06 Yazaki Corporation Connector fitting structure for auxiliary component
US6669263B2 (en) * 2000-08-08 2003-12-30 Neo-Ex Lab, Inc. Attachment devices
US20040004368A1 (en) * 2001-04-04 2004-01-08 Davey Geoffrey W. Sun visor clip
US6799743B2 (en) * 2000-03-23 2004-10-05 Yazaki Corporation Bracket for mounting auxiliary machinery to vehicle body
US6817583B2 (en) * 2002-09-18 2004-11-16 Lear Corporation Interior trim attachment apparatus and method for a vehicle
US7086124B2 (en) * 2002-12-03 2006-08-08 Grupo Antolin-Ingenieria, S.A. System for attaching accessories to a vehicle's bodywork using clips
US7306419B2 (en) * 2005-03-21 2007-12-11 Illinois Tool Works Inc Fastener
US8220858B2 (en) * 2009-10-29 2012-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Base for use with a clip

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015126A (en) 1998-06-01 2000-01-18 Lear Automotive Dearborn, Inc. Triangular snap-in mount
DE102005061450A1 (en) 2005-12-22 2007-07-05 Volkswagen Ag Vehicle sunshade attachment arrangement has plate-shaped mounting support with several coaxial openings engaged in bayonet fashion by locking tongues on radially protruding lugs on attachment element, locking arrangement on mounting support

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2238238A (en) * 1935-11-02 1941-04-15 Jacobs Co F L Molding fastener
US2884283A (en) * 1956-05-31 1959-04-28 Gen Electric Shaft support
US4422222A (en) * 1980-11-05 1983-12-27 Nifco Inc. Fastening structure
US4529157A (en) * 1983-07-20 1985-07-16 Prince Corporation Visor pivot mount
US4989911A (en) * 1989-08-16 1991-02-05 Prince Corporation Snap-in visor mount
US5056853A (en) * 1989-08-16 1991-10-15 Prince Corporation Snap-in visor mount
US5061005A (en) * 1989-08-16 1991-10-29 Prince Corporation Snap-in visor mount
US5201564A (en) * 1989-08-16 1993-04-13 Prince Corporation Snap-in visor mount
US6021986A (en) * 1997-07-24 2000-02-08 Lear Automotive Dearborn, Inc. Snap-in mount
US5967589A (en) * 1998-02-17 1999-10-19 General Motors Corporation Sun visor retention clip
US6250708B1 (en) * 1999-04-20 2001-06-26 Nifco Inc. Holding device for shaft member
US6406087B2 (en) * 1999-12-24 2002-06-18 Yazaki Corporation Bracket for attaching interior equipment
US6511029B2 (en) * 2000-03-15 2003-01-28 Yazaki Corporation Bracket for mounting an accessory on vehicle body
US6799743B2 (en) * 2000-03-23 2004-10-05 Yazaki Corporation Bracket for mounting auxiliary machinery to vehicle body
US20020017800A1 (en) * 2000-07-21 2002-02-14 Nifco Inc. Sun visor holder
US6669263B2 (en) * 2000-08-08 2003-12-30 Neo-Ex Lab, Inc. Attachment devices
US6558193B2 (en) * 2000-12-25 2003-05-06 Yazaki Corporation Connector fitting structure for auxiliary component
US20040004368A1 (en) * 2001-04-04 2004-01-08 Davey Geoffrey W. Sun visor clip
US6817583B2 (en) * 2002-09-18 2004-11-16 Lear Corporation Interior trim attachment apparatus and method for a vehicle
US7086124B2 (en) * 2002-12-03 2006-08-08 Grupo Antolin-Ingenieria, S.A. System for attaching accessories to a vehicle's bodywork using clips
US7306419B2 (en) * 2005-03-21 2007-12-11 Illinois Tool Works Inc Fastener
US8220858B2 (en) * 2009-10-29 2012-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Base for use with a clip

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140117692A1 (en) * 2012-10-31 2014-05-01 Kabushiki Kaisha Toyota Jidoshokki Mounting structure of assist grip
US8931818B2 (en) * 2012-10-31 2015-01-13 Kabushiki Kaisha Toyota Jidoshokki Mounting structure of assist grip
US9487067B2 (en) * 2014-10-24 2016-11-08 Daehan Solution Co., Ltd. Fixture for a vehicle
US10435914B2 (en) 2016-04-14 2019-10-08 Delta Lock Company, LLC Interchangeable core lock assemblies
US20170350163A1 (en) * 2016-06-02 2017-12-07 Delta Lock Company, LLC Interchangeable core lock assemblies
US10724276B2 (en) * 2016-06-02 2020-07-28 Delta Lock Company, LLC Interchangeable core lock assemblies
US11603680B2 (en) 2016-06-02 2023-03-14 Innovation Lock, Llc Interchangeable core lock assemblies
US11732507B2 (en) 2016-06-02 2023-08-22 Innovation Lock, Llc Interchangeable core lock assemblies
USD847693S1 (en) * 2017-02-22 2019-05-07 Sug Whan Kim Fastener
CN113547903A (en) * 2020-04-23 2021-10-26 丰田自动车株式会社 Sun shield
USD988835S1 (en) 2021-05-10 2023-06-13 Innovation Lock, Llc Ratchet locking device
US11879269B2 (en) 2021-05-10 2024-01-23 Innovation Lock, Llc Ratchet lock assemblies

Also Published As

Publication number Publication date
CA2697534A1 (en) 2009-03-05
CA2697534C (en) 2014-05-13
WO2009029778A1 (en) 2009-03-05
US8845003B2 (en) 2014-09-30
MX2010002221A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
US8845003B2 (en) Snap-in fastener
EP2081798B1 (en) Airbag assembly mounting system
EP0795090B1 (en) Mounting clip
US7496993B2 (en) Retention clip
US7226260B2 (en) Sheet metal fastening clip
US5667271A (en) Snap-in attachment clip for plastic panel
EP1510702B1 (en) Resilient clip fastener
US7213304B2 (en) Resilient clip fastener
EP1007381B1 (en) Snap-in mount
US7637527B2 (en) Mounting element, mounting tool, and mounting-set
US20080174151A1 (en) Spring Fastener with Highly Improved Removal to Insertion Ratio
US6928705B2 (en) Low insertion effort U-base retainer
EP0899466B1 (en) Trim clip
US20070065256A1 (en) Clip
EP0627564A2 (en) Panel locator and attachement apparatus
EP1191236B1 (en) Two-piece sliding grommet
WO2010051400A1 (en) Locked base trim clip
KR20150111951A (en) Clip for perimeter trim
EP1403536A1 (en) Clip for attachment to a sheet member
US20040244156A1 (en) Sheet metal fastening clip
US20040256832A1 (en) Method of attaching an accessory such as a running board to a vehicle
US20210284067A1 (en) Ramps for rearview assembly mounts
EP4071056A1 (en) Bump strip
KR20220169235A (en) Reusable headliner mounting clip for vehicles
CN117212316A (en) logo retainer

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOHNSON CONTROLS TECHNOLOGY COMPANY, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STILL, KEVIN A.;KREUZE, KENNETH;SELLE, MICHAEL;AND OTHERS;SIGNING DATES FROM 20101202 TO 20101228;REEL/FRAME:026094/0040

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: OLYMPUS HOLDING B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JOHNSON CONTROLS TECHNOLOGY COMPANY;REEL/FRAME:033002/0839

Effective date: 20140529

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

AS Assignment

Owner name: MOTUS HOLDING B.V., NETHERLANDS

Free format text: DEED OF AMENDMENT OF THE ARTICLES OF ASSOCIATION OF MOTUS HOLDING B.V;ASSIGNOR:OLYMPUS HOLDING B.V.;REEL/FRAME:046422/0652

Effective date: 20140619

AS Assignment

Owner name: DAIMAY NORTH AMERICA AUTOMOTIVE ENGINEERING TECHNO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTUS HOLDING B.V.;REEL/FRAME:046741/0167

Effective date: 20180709

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1555); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8