US20110103089A1 - Light emitting apparatus and display apparatus having the same - Google Patents

Light emitting apparatus and display apparatus having the same Download PDF

Info

Publication number
US20110103089A1
US20110103089A1 US13/004,500 US201113004500A US2011103089A1 US 20110103089 A1 US20110103089 A1 US 20110103089A1 US 201113004500 A US201113004500 A US 201113004500A US 2011103089 A1 US2011103089 A1 US 2011103089A1
Authority
US
United States
Prior art keywords
light emitting
light
emitting device
color
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/004,500
Inventor
Dong Wook Park
Jun Seok Park
Hyung Hwa Park
Han Sin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/004,500 priority Critical patent/US20110103089A1/en
Publication of US20110103089A1 publication Critical patent/US20110103089A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the embodiment relates to a light emitting apparatus and a display apparatus having the same.
  • a white light emitting device When taking the application of such a light emitting device into consideration, the development of a white light emitting device may be an important issue. This is because a full color display representing a high image quality may be manufactured by combining a color filter with the white light emitting device having sufficient brightness, sufficient light emitting efficiency, a long life span, and sufficient chromaticity.
  • the white light emitting device may be employed as a white light source such as a backlight unit or an illumination.
  • a light emitting device having the package of LED chips and phosphors has been developed. Since such a light emitting device can emit colorful light, the light emitting device is used as a light source in various application fields.
  • the embodiment provides a light emitting apparatus provided by combining light emitting devices emitting target lights tingeing complementary colors, and a display apparatus having the same.
  • the embodiment provides a light emitting apparatus and a display apparatus having the same, capable of representing a target chromaticity by mixing lights emitted from light emitting devices having chromaticity out of the target chromaticity.
  • An embodiment provides a light emitting apparatus comprising: a first light emitting device which emits a light of a target color tinged with a first color, and a second light emitting device which emits a light of the target color tinged with a second color complementary to the first color with respect to the target color.
  • An embodiment provides a light emitting apparatus comprising: a first light emitting device which emits a light of a target color tinged with a first color; a second light emitting device which emits a light of the target color tinged with a second color complementary to the first color; and a board comprising the first and second light emitting devices thereon, at least one of the first and second light emitting devices have chromaticity distribution that is out of a target chromaticity area.
  • An embodiment provides a display apparatus comprising: a light emitting apparatus which comprises a first light emitting device emitting a light of a target color tinged with a first color, and a second light emitting device emitting a light of the target color tinged with a second color complementary to the first color with respect to the target color, and a display panel which displays information by light irradiated from the light emitting apparatus.
  • the use efficiency of light emitting devices can be improved.
  • the use efficiency of an LED chip can be improved.
  • FIG. 1 is a side sectional view showing a light emitting device according to a first embodiment
  • FIG. 2 is a view showing the distribution of CIE color coordinates of a light emitting device
  • FIGS. 3A to 3C are graphs showing a color coordinate range based on complementary colors, in which FIG. 3A is a graph showing CIE color coordinates of a blue color and a yellow color, FIG. 3B is a graph showing a complementary relation of FIG. 3A , and FIG. 3C is a graph showing spectrum data according to colors;
  • FIGS. 4A to 4C are graphs showing a color coordinate range based on complementary colors, in which FIG. 4A is a graph showing CIE color coordinates of a blue color, a red color, and a yellow color, FIG. 4B is a graph showing a complementary relation among the colors, and FIG. 4C is a graph showing spectrum data according to colors;
  • FIGS. 5A to 5C are graphs showing a color coordinate range based on complementary colors, in which FIG. 5A is a graph showing CIE color coordinates of a blue color, a red color, a green color, and a yellow color, FIG. 5B is a graph showing a complementary relation among the colors, and FIG. 5C is a graph showing spectrum data according to colors;
  • FIG. 6 is a graph showing an example of the distribution of color coordinates of the light emitting device shown in FIG. 1 ;
  • FIG. 7 is a graph showing an example of the distribution of color coordinates, which are actually used and selected from an area A of the color coordinates of FIG. 6 ;
  • FIG. 8 is a view showing a light emitting device according to a second embodiment
  • FIG. 9 is a view showing a light emitting device according to a third embodiment.
  • FIG. 10 is a view showing a display apparatus according to a fourth embodiment.
  • FIG. 11 is a side sectional view showing a display apparatus according to a fifth embodiment.
  • FIG. 12 is a plan view showing a light emitting apparatus of the display apparatus shown in FIG. 11 .
  • FIG. 1 is a sectional view showing a first light emitting device 101 according to a first embodiment.
  • the first light emitting device 101 comprises a package body 112 , a cavity 115 , a plurality of electrodes 116 and 118 , a light emitting diode (LED) 120 , a phosphor 130 , and a resin member 132 .
  • LED light emitting diode
  • the package body 112 may be fabricated by using a metal core PCB (MCPCB), a silicon material, a wafer level package (WLP) based on the silicon material, silicon carbide (SiC), FR-4 polyphthalamide (PPA), aluminum nitride (AlN), liquid crystal polymer, or a printed circuit board (PCB), and the embodiment is not limited thereto.
  • MCPCB metal core PCB
  • WLP wafer level package
  • SiC silicon carbide
  • PPA FR-4 polyphthalamide
  • AlN aluminum nitride
  • liquid crystal polymer or a printed circuit board (PCB)
  • PCB printed circuit board
  • the first light emitting device 101 may be realized in the form of a chip on board (COB) as well as a package.
  • COB chip on board
  • the package body 112 may be comprises a reflection part 114 and the cavity 115 .
  • the reflection part 114 is provided while surrounding the cavity 115 .
  • the reflection part 114 may have an inner side surface perpendicular to a bottom surface or inclined outward.
  • the reflection part 114 may be integrated with the package body 112 or separated from the body 112 .
  • the reflection part 114 is provided around the cavity 115 to reflect an incident light.
  • the cavity 115 comprises a recess having a predetermined depth, and has a circular shape or a polygonal shape when viewed in a plan view.
  • the embodiment is not limited to the depth and the shape.
  • the package body 112 may not comprise the reflection part 114 and the cavity 115 .
  • the electrodes 116 and 118 are spaced apart from each other. One side of the electrodes 116 and 118 is provided in the cavity 115 , and the opposite side of the electrodes 116 and 118 may be exposed out of both sides of the package body 112 .
  • the configuration of the electrodes 116 and 118 may be modified through a trimming/forming process within the technical scope of the embodiment.
  • the electrodes 116 and 118 may be realized in the form of lead terminals such as PCB type lead terminals, lead-frame type lead terminals, ceramic type lead terminals, or via-hole type lead terminals.
  • lead terminals can be prepared through a plating scheme.
  • the LED 120 is provided in the cavity 115 , and attached to one (the electrode 118 ) of the electrodes 116 and 118 .
  • the LED 120 may be electrically connected to the electrodes 116 and 118 through a wire 122 .
  • the LED 120 may be electrically connected to the electrodes 116 and 118 through at least one of a wire bonding scheme, a die bonding scheme, and a flip bonding scheme.
  • the LED 120 may be mounted in the form of a chip.
  • Such an LED chip may be realized using III and V group-compound semiconductor devices such as indium gallium nitride (InGaN) and gallium nitride (GaN) to emit light having a wavelength of 440 nm to 480 nm.
  • the LED chip may comprise a green LED chip, a red LED chip, or an UV LED chip as well as a blue LED chip.
  • the blue LED chip will be representatively described below.
  • the resin member 132 is provided in the cavity 115 .
  • the resin member 132 may be molded using a resin material having light transmittance.
  • the molding scheme may comprise a transfer molding scheme, a compression molding scheme, an injection molding scheme, or a dispensing molding scheme.
  • the resin material may comprise silicon or epoxy.
  • the phosphor 130 may be added to the resin member 132 .
  • the phosphor 130 may comprise at least one kind of phosphors.
  • the phosphor 130 absorbs light, which has been emitted from the LED 120 , to radiate light having a wavelength different from that of the absorbed light.
  • the phosphor 130 may comprise at least one of a yellow phosphor, a red phosphor, a green phosphor, and an orange phosphor.
  • a yellow phosphor will be representatively described below.
  • the yellow phosphor may comprise a YAG phosphor or a silicate phosphor.
  • the silicate-based yellow phosphor comprises particles comprising strontium (Sr), barium (Ba), magnesium (Mg), gallium (Ga), or sulfur (S).
  • the silicate-based yellow phosphor may comprise Sr 5 BaMgSi 0 2 :Eu 2+ , SrGa 2 S 4 :Eu 2+ , Sr 2 Ga 2 S 5 :Eu 2+ or the like.
  • the type of the phosphor or the rate of content of elements of each phosphor may be changed, and the embodiment is not limited thereto.
  • the resin member 130 may be provided thereon with a lens (not shown).
  • the lens may be integrated with the resin member 130 or separated from the resin member 130 .
  • the resin member 130 may have a flat, concave, or convex surface, and the embodiment is not limited thereto.
  • the LED 120 emits light.
  • the phosphor 130 absorbs a portion of light emitted from the LED 120 to emit light having a wavelength different from the absorbed light. If the LED 120 is a blue LED chip, the LED 120 emits light having a wavelength of 440 nm to 480 nm. If the phosphor 130 is a yellow-based phosphor, the phosphor 130 may light having a wavelength of 500 nm to 700 nm.
  • the first light emitting device 101 emits white light, which is target light, by mixing the blue light and the yellow light.
  • the first light emitting device 101 may emit the target light (e.g., white light) having various color tints according to a chip characteristic and the rate of content of a phosphor.
  • the white light may be divided into bluish white, yellowish white, reddish white, and greenish white according to the difference between the color tints.
  • FIG. 2 is a view showing the distribution of CIE color coordinates of the first light emitting device 101 .
  • the first light emitting device 101 can emit a light having a wavelength of 380 nm to 780 nm, and lights having various colors can be realized by mixing colors having different wavelengths based on the CIE color coordinates.
  • FIGS. 3A to 3C are graphs showing a color coordinate range based on complementary colors.
  • FIG. 3A is a graph showing CIE color coordinates of a blue color and a yellow color
  • FIG. 3B is a graph showing a complementary relation of FIG. 3A
  • FIG. 3C is a graph showing spectrum data according to colors.
  • FIG. 3C is a graph showing spectrum data of the blue color and the yellow color, in which an X-axis represents a wavelength employing ‘nm’ as a unit, and a Y-axis represents a luminous intensity. Accordingly, blue light and yellow light, which have a complementary relation therebetween in the CIE color coordinates, are mixed with each other, thereby realizing white light.
  • FIGS. 4A to 4C are graphs showing a color coordinate range based on complementary colors.
  • FIG. 4A is a graph showing CIE color coordinates of a blue color, a red color, and a yellow color
  • FIG. 4B is a graph showing a complementary relation among the colors
  • FIG. 4C is a graph showing spectrum data according to colors.
  • FIG. 4C is a graph showing spectrum data of the blue color, the red color, and the yellow color, in which an X-axis represents a wavelength employing ‘nm’ as a unit, and a Y-axis represents a luminous intensity. Accordingly, blue light, red light and green light, which have a complementary relation in the CIE color coordinates, are mixed with each other, thereby realizing white light.
  • FIGS. 5A to 5C are graphs showing a color coordinate range based on complementary colors.
  • FIG. 5A is a graph showing CIE color coordinates of a blue color, a red color, a green color, and a yellow color
  • FIG. 5B is a graph showing a complementary relation among the colors
  • FIG. 5C is a graph showing spectrum data according to colors.
  • FIG. 5C is a graph showing spectrum data of the blue color, the red color, the green color, and the yellow color, in which an X-axis represents a wavelength employing ‘nm’ as a unit, and a Y-axis represents a luminous intensity. Accordingly, blue light, red light, green light, and yellow light, which have a complementary relation in the CIE color coordinates, are mixed with each other, thereby realizing white light.
  • the blue light has a wavelength of 440 nm to 460 nm
  • the green light has a wavelength of 525 nm to 535 nm
  • the red light has a wavelength of 615 nm to 630 nm
  • the yellow light has a wavelength of 510 nm to 525 nm.
  • FIG. 6 is a view showing the distribution of the color coordinates of the first light emitting device 101 of FIG. 1
  • FIG. 7 is a view showing a target chromaticity area A, which is applicable to a product, in the distribution of the color coordinates shown in FIG. 6 .
  • the first light emitting device 101 emits white lights by a blue LED and a yellow phosphor.
  • the white lights are distributed with various color tints according to the rate of content of the yellow phosphor.
  • the white lights represents the distribution of color tints of a green color (C 1 ), an orange color (C 2 ), a blue color (C 3 ), a red color (C 4 ), a yellowish green (C 5 ), and a yellow color (C 6 ) in the color coordinates (a Cx coordinate is in the range of 0.27 to 0.3, and a Cy coordinate is in the range of 0.25 to 0.29).
  • the first company employs white light emitting devices having chromaticity in the target chromaticity area (B 1 )
  • the second company employs white light emitting devices having chromaticity in the target chromaticity area (B 2 ⁇ B 1 ).
  • the target chromaticity may be defined as a target chromaticity rank.
  • the white light emitting devices having chromaticity out of the target chromaticity areas (B 1 and B 2 ) cannot be supplied to the first and second companies. In this case, the use efficiency may be less than 40%.
  • the embodiment can be provided to enable the use of the light emitting devices having chromaticity distribution out of the target chromaticity areas (B 1 and 82 ).
  • a target chromaticity of E3a can be realized by combining two light emitting devices having the chromaticity distribution of E2e and E3e, and the chromaticity distribution of E4k and E3b in the color coordinate distribution.
  • a target chromaticity of E3a can be realized by combining two light emitting devices having the chromaticity distribution of E2a to E3i, or the chromaticity distribution of E4i to E3d, in which the E2a and E3i have a complementary relation therebetween, and the E4i and E3d have a complementary relation therebetween in the distribution of the color coordinates.
  • a target chromaticity of E4k can be realized by combining two light emitting devices having the chromaticity distribution of E4c to E5c, or the chromaticity distribution of E4i to E3b, in which the E4c and E5c have a complementary relation therebetween, and the E4i and E3b have a complementary relation therebetween in the distribution of the color coordinates.
  • a target chromaticity of E4n can be realized by combining three light emitting devices having the chromaticity distribution of E5c, E4i, and E5a.
  • a target chromaticity of E4n can be realized by combining three light emitting devices having the chromaticity distribution of E5c, E4i, and E5a.
  • a target chromaticity of E3a can be realized by combining three light emitting devices having the chromaticity distribution of E4c, E4f, and E3k. Therefore, according to the embodiment, a white light emitting apparatus can be realized by combining at least two light emitting devices having a complementary relation therebetween or a symmetrical relation therebetween among light emitting devices having a target chromaticity area and the chromaticity distribution thereof.
  • the light emitting devices may emit bluish white light, yellowish white light, reddish white light, and greenish white light.
  • the white light emitting apparatus may be realized by combining light emitting devices arranged symmetrically to each other about reference chromaticity, or arranged in a circular configuration, a polygonal configuration, or various geometrical configurations.
  • At least one of a plurality of light emitting devices may have a chromaticity existing out of a target chromaticity area or existing in the target chromaticity area.
  • the use efficiency of light emitting devices can be raised to 80% or more by using a plurality of white light emitting devices having such a complementary relation.
  • FIG. 8 is a sectional view showing a light emitting apparatus 110 according to a second embodiment.
  • the light emitting apparatus 110 comprises the first light emitting device 101 and a second light emitting device 102 .
  • the first and second light emitting devices 101 and 102 emit target lights having different color tints.
  • the first light emitting device 101 emits a target light C 11 tinged with a first light
  • the second light emitting device 102 emits a target light C 12 tinged with a second light complementary to the first light.
  • the first light emitting device 101 may emit bluish white light
  • the second light emitting device 102 may emit yellowish white light.
  • the first and second light emitting devices 101 and 102 have color tints having a complementary relation therebetween in the range of the white light.
  • the use efficiency of the light emitting devices can be improved.
  • the light emitting apparatus 110 may additionally comprise other light emitting devices, and the light emitting devices may emit a light having a target chromaticity or a light that does not exert an influence on the target chromaticity. In other words, at least one of three light emitting devices or more may not have a complementary relation with respect to remaining light emitting devices.
  • FIG. 9 is a view showing a light emitting apparatus 110 A according to a third embodiment.
  • the light emitting apparatus 110 A comprises third to fifth light emitting devices 103 , 104 , and 105 .
  • the third to fifth light emitting devices 103 to 105 emit target lights C 21 , C 22 , and C 23 tinged with a color tint of a complementary relation.
  • the third light emitting device 103 emits a bluish white light
  • the fourth light emitting device 104 emits a greenish white light
  • the third light emitting device emits a reddish white light. If such lights emitted from the third to fifth light emitting devices 103 , 104 , and 105 are mixed, lights obtained through the mixture exist in a target chromaticity area.
  • At least one of the third to fifth light emitting devices 103 , 104 , and 105 employs a chromaticity existing out of the target chromaticity area, so that the use efficiency of the light emitting devices can be improved.
  • a target chromaticity is realized by combining at least two white light emitting devices of color tints of a complementary relation. Accordingly, a light emitting device that is out of the target chromaticity can be used to improve the use efficiency.
  • the embodiment is not limited to the blue LED.
  • lights having different colors can be generated by mixing lights obtained through the combination of different LEDs and phosphors without using the blue LED.
  • FIG. 10 is a view showing a display apparatus 100 according to a fourth embodiment.
  • the display apparatus 160 comprises a light emitting apparatus 150 provided therein with a board 140 and the first and second light emitting devices 101 and 102 , a reflective plate 151 , a light guide plate 153 , an optical sheet 155 , and a display panel 157 .
  • the light emitting apparatus 150 comprises the first and second light emitting devices 101 and 102 alternately aligned on the board 140 .
  • the first and second light emitting devices 101 and 102 emit white lights tinged with a color tint of a complementary relation therebetween.
  • the first light emitting device 101 emits a bluish white light
  • the second light emitting device 102 emits a yellowish white light.
  • the first and second light emitting devices 101 and 102 may be realized using a blue LED and a yellow-based phosphor. At least one of the first and second light emitting devices 101 and 102 may be realized by using at least one of a red LED, a green LED, a blue LED, and an UV LED and at least one kind of a phosphor.
  • the two light emitting devices 101 and 102 with a color tint of complementary relation may be provided in a mixed color area.
  • the first and second light emitting devices 101 and 102 may be arranged on the board 140 .
  • the board 140 may be manufactured by using a hard material or a flexible material.
  • the first and second light emitting devices 101 and 102 may be alternately aligned one by one.
  • the first and second light emitting devices 101 and 102 may be alternately aligned in a group unit.
  • at least one of other light emitting devices may be interposed between the first and second light emitting devices 101 and 102 and between a group of the first light emitting device 101 and a group of the second light emitting device 102 .
  • At least one row of the first and second light emitting devices 101 and 102 may be arranged in a zig-zag manner.
  • the embodiment is not limited thereto.
  • the light emitting apparatus 150 can emit a target light with a target chromaticity by mixing lights, which are emitted from the first and second light emitting devices 101 and 102 and have color tints of a complementary relation. Accordingly, the use efficiency of the light emitting device can be raised to 80% or more, and the range of a color coordinate target can be reduced.
  • the first and second light emitting devices 101 and 102 may be arranged in a group unit based on different forward driving voltages (Vf) and/or different luminous intensities (Iv) relative to a reference value (a reference value of an LED). For example, the first and second light emitting devices 101 and 102 having higher forward driving voltage and lower forward driving voltage on the basis of a reference voltage can be arranged together. In addition, the first and second light emitting devices 101 and 102 having higher luminous intensity and lower luminous intensity can be arranged together.
  • the light guide plate 153 is provided at one side of the light emitting device 150 , and the reflective plate 151 is provided at a lower portion of the light guide plate 153 .
  • the optical sheet 155 is provided at an upper portion of the light guide plate 153 .
  • the light guide plate 153 may comprise a PC material or a polymethyl methacrylate (PMMA) material, and the embodiment is not limited thereto.
  • Light emitted from the light emitting device 150 is incident onto the light guide plate 153 .
  • the light guide plate 153 guides the light emitted from the light emitting device 150 to the whole area, so that the light serves as a surface light source.
  • the reflective plate 151 reflects light leaking from the light guide plate 153 .
  • the optical sheet 155 diffuses and collects light from the light guide plate 153 to irradiate the light to the display panel 157 .
  • the optical sheet 155 may comprise at least one of a diffusion sheet, horizontal and vertical prism sheets, and a brightness enhancement film.
  • the diffusion sheet diffuses incident light, and the horizontal and vertical prism sheets condense light into a display region.
  • the brightness enhancement film makes uniform brightness distribution.
  • the light emitting device 150 , the reflective plate 151 , the light guide plate 153 , and the optical sheets 155 constitute a light unit.
  • the display panel 157 is a liquid crystal display (LCD) panel.
  • the display panel 157 comprises first and second substrates, which face each other and comprise a transparent material, and a liquid crystal layer interposed between the first and second substrates.
  • the first substrate may be realized using a color filter array substrate
  • the second substrate may be realized using a TFT array substrate.
  • the first substrate can be realized using a TFT array substrate and the second substrate can be realized using a color filter array substrate.
  • the structure of the display panel 157 may be modified, and the embodiment is not limited thereto.
  • a polarization plate may be attached to at least one surface of the display panel 157 , and the embodiment is not limited to the attachment structure of the polarization plate.
  • the light emitting device 150 may comprise at least three or four white light emitting devices which are aligned alternately or in a group unit while representing color tints of a complementary relation. Accordingly, white light can be realized by periodically arranging three or four white light emitting devices in a unit structure.
  • the three white light emitting devices comprise a bluish white light emitting device, a yellowish white light emitting device, and a reddish white light emitting device.
  • the four white light emitting devices comprise a bluish white light emitting device, a yellowish white light emitting device, a reddish white light emitting device, and a greenish white light emitting device.
  • the grouped white light emitting devices may comprise white emitting device having different color tints, and the embodiment is not limited thereto.
  • FIG. 11 is a side sectional view showing a display apparatus 200 according to a fifth embodiment
  • FIG. 12 is a plan view showing a light emitting device 202 of FIG. 11 .
  • the display apparatus 200 comprises the light emitting device 202 , a bottom cover 251 , an optical sheet 255 , and a display panel 257 .
  • the light emitting device 202 , the bottom cover 251 , and the optical sheet 255 constitute a light unit 250 .
  • the bottom cover 251 comprises a cavity 253 having an opened upper portion.
  • a side surface 252 of the cavity 253 may be inclined.
  • the side surface 252 of the cavity 153 may be integrated with or separated from the bottom cover 251 .
  • the light emitting device 202 is realized as a module. At least one light emitting device 202 may be arranged on a bottom surface of the cavity 253 of the bottom cover 251 .
  • the light emitting device 202 comprises first and second light emitting devices 210 and 211 alternately aligned with each other on a board 201 and having a complementary relation.
  • the first light emitting device 210 may emit bluish white light
  • the second light emitting device 211 may emit yellowish white light.
  • the first and second light emitting devices 210 and 211 have a complementary relation therebetween in a chromaticity area of white light.
  • the light emitting device 202 comprises at least three or four light emitting devices, which have a complementary relation in a target chromaticity area, and are alternately aligned one by one or in a group unit. Accordingly, white light can be realized by periodically aligning three or four white light emitting devices in a unit structure.
  • the three white light emitting devices comprise a bluish white light emitting device, a yellowish white light emitting device, and a reddish white light emitting device.
  • the four white light emitting devices comprise a bluish white light emitting device, a yellowish white light emitting device, a reddish white light emitting device, and a greenish white light emitting device.
  • the grouped light emitting devices may comprise white light emitting devices having different color tints, and the embodiment is not limited thereto.
  • a plurality of light emitting devices 202 are provided in the cavity 253 of the bottom cover 201 .
  • the light emitting devices 202 comprise the first and second light emitting devices 210 and 211 which have a complementary relation therebetween in a target chromaticity area and are alternately aligned with each other in two rows.
  • the first and second light emitting devices 210 and 211 may be aligned in a zig-zag manner between adjacent rows.
  • the first and second light emitting devices 210 and 211 may be realized in the form of a chip on board (COB), in which a chip is mounted on the board 201 , or a package on board (POB) in which a package is mounted on the board 201 .
  • COB chip on board
  • POB package on board
  • the optical sheet 255 may comprise at least one of a diffusion sheet, horizontal and vertical prism sheets, and a brightness enhancement film.
  • the diffusion sheet diffuses incident light, and the horizontal and vertical prism sheets concentrate the incident light into a display area.
  • the brightness enhancement film makes uniform brightness distribution.
  • the display panel 257 is an LCD panel.
  • the display panel 257 comprises first and second substrates, which face each other and comprise a transparent material, and a liquid crystal layer interposed between the first and second substrates.
  • the first substrate may be realized using a color filter array substrate
  • the second substrate may be realized using a TFT array substrate.
  • the first substrate may be realized using a TFT array substrate
  • the second substrate may be realized using a color filter array substrate.
  • the structure of the display panel 157 may be modified, and the embodiment is not limited thereto.
  • a polarization plate may be attached to at least one surface of the display panel 257 , and the embodiment is not limited to the attachment structure of the polarization plate.
  • the light emitting apparatus may be used as an illumination or a light source such as a front light unit and/or a backlight unit in an appliance such as a portable terminal, a portable computer, or broadcast equipment.
  • any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc. means that a particular feature, structure, or characteristic described in connection with the embodiment is comprised in at least one embodiment of the invention.
  • the appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment.
  • the embodiment provides a light emitting apparatus using a light emitting diode.
  • the embodiment provides a light unit equipped with a plurality of light emitting device.
  • the embodiment provides a display apparatus having the light unit.

Abstract

A light emitting apparatus includes an array module including a first light emitting device which emits a light of a second color tinged with a first color, and a second light emitting device which emits a light of a fourth color tinged with a third color complementary to the first color of lights emitted from the first light emitting device.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. application Ser. No. 12/404,042, which claims priority under 35 U.S.C. 119 to Korean Patent Application No. 10-2008-0023792 (filed on Mar. 14, 2008), which is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • The embodiment relates to a light emitting apparatus and a display apparatus having the same.
  • Recently, research and development on a light emitting device has been actively performed. When taking the application of such a light emitting device into consideration, the development of a white light emitting device may be an important issue. This is because a full color display representing a high image quality may be manufactured by combining a color filter with the white light emitting device having sufficient brightness, sufficient light emitting efficiency, a long life span, and sufficient chromaticity. In addition, the white light emitting device may be employed as a white light source such as a backlight unit or an illumination.
  • Accordingly, a light emitting device having the package of LED chips and phosphors has been developed. Since such a light emitting device can emit colorful light, the light emitting device is used as a light source in various application fields.
  • SUMMARY
  • The embodiment provides a light emitting apparatus provided by combining light emitting devices emitting target lights tingeing complementary colors, and a display apparatus having the same.
  • The embodiment provides a light emitting apparatus and a display apparatus having the same, capable of representing a target chromaticity by mixing lights emitted from light emitting devices having chromaticity out of the target chromaticity.
  • An embodiment provides a light emitting apparatus comprising: a first light emitting device which emits a light of a target color tinged with a first color, and a second light emitting device which emits a light of the target color tinged with a second color complementary to the first color with respect to the target color.
  • An embodiment provides a light emitting apparatus comprising: a first light emitting device which emits a light of a target color tinged with a first color; a second light emitting device which emits a light of the target color tinged with a second color complementary to the first color; and a board comprising the first and second light emitting devices thereon, at least one of the first and second light emitting devices have chromaticity distribution that is out of a target chromaticity area.
  • An embodiment provides a display apparatus comprising: a light emitting apparatus which comprises a first light emitting device emitting a light of a target color tinged with a first color, and a second light emitting device emitting a light of the target color tinged with a second color complementary to the first color with respect to the target color, and a display panel which displays information by light irradiated from the light emitting apparatus.
  • As described above, according to the embodiment, the use efficiency of light emitting devices can be improved.
  • According to the embodiment, the use efficiency of an LED chip can be improved.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side sectional view showing a light emitting device according to a first embodiment;
  • FIG. 2 is a view showing the distribution of CIE color coordinates of a light emitting device;
  • FIGS. 3A to 3C are graphs showing a color coordinate range based on complementary colors, in which FIG. 3A is a graph showing CIE color coordinates of a blue color and a yellow color, FIG. 3B is a graph showing a complementary relation of FIG. 3A, and FIG. 3C is a graph showing spectrum data according to colors;
  • FIGS. 4A to 4C are graphs showing a color coordinate range based on complementary colors, in which FIG. 4A is a graph showing CIE color coordinates of a blue color, a red color, and a yellow color, FIG. 4B is a graph showing a complementary relation among the colors, and FIG. 4C is a graph showing spectrum data according to colors;
  • FIGS. 5A to 5C are graphs showing a color coordinate range based on complementary colors, in which FIG. 5A is a graph showing CIE color coordinates of a blue color, a red color, a green color, and a yellow color, FIG. 5B is a graph showing a complementary relation among the colors, and FIG. 5C is a graph showing spectrum data according to colors;
  • FIG. 6 is a graph showing an example of the distribution of color coordinates of the light emitting device shown in FIG. 1;
  • FIG. 7 is a graph showing an example of the distribution of color coordinates, which are actually used and selected from an area A of the color coordinates of FIG. 6;
  • FIG. 8 is a view showing a light emitting device according to a second embodiment;
  • FIG. 9 is a view showing a light emitting device according to a third embodiment;
  • FIG. 10 is a view showing a display apparatus according to a fourth embodiment;
  • FIG. 11 is a side sectional view showing a display apparatus according to a fifth embodiment; and
  • FIG. 12 is a plan view showing a light emitting apparatus of the display apparatus shown in FIG. 11.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Hereinafter, embodiments will be described with reference to accompanying drawings.
  • FIG. 1 is a sectional view showing a first light emitting device 101 according to a first embodiment.
  • Referring to FIG. 1, the first light emitting device 101 comprises a package body 112, a cavity 115, a plurality of electrodes 116 and 118, a light emitting diode (LED) 120, a phosphor 130, and a resin member 132.
  • The package body 112 may be fabricated by using a metal core PCB (MCPCB), a silicon material, a wafer level package (WLP) based on the silicon material, silicon carbide (SiC), FR-4 polyphthalamide (PPA), aluminum nitride (AlN), liquid crystal polymer, or a printed circuit board (PCB), and the embodiment is not limited thereto. In addition, the first light emitting device 101 may be realized in the form of a chip on board (COB) as well as a package.
  • The package body 112 may be comprises a reflection part 114 and the cavity 115. The reflection part 114 is provided while surrounding the cavity 115. The reflection part 114 may have an inner side surface perpendicular to a bottom surface or inclined outward. The reflection part 114 may be integrated with the package body 112 or separated from the body 112.
  • The reflection part 114 is provided around the cavity 115 to reflect an incident light. The cavity 115 comprises a recess having a predetermined depth, and has a circular shape or a polygonal shape when viewed in a plan view. However, the embodiment is not limited to the depth and the shape. In addition, the package body 112 may not comprise the reflection part 114 and the cavity 115.
  • The electrodes 116 and 118 are spaced apart from each other. One side of the electrodes 116 and 118 is provided in the cavity 115, and the opposite side of the electrodes 116 and 118 may be exposed out of both sides of the package body 112. The configuration of the electrodes 116 and 118 may be modified through a trimming/forming process within the technical scope of the embodiment.
  • The electrodes 116 and 118 may be realized in the form of lead terminals such as PCB type lead terminals, lead-frame type lead terminals, ceramic type lead terminals, or via-hole type lead terminals. In addition, the lead terminals can be prepared through a plating scheme.
  • The LED 120 is provided in the cavity 115, and attached to one (the electrode 118) of the electrodes 116 and 118. The LED 120 may be electrically connected to the electrodes 116 and 118 through a wire 122. According to the embodiment, the LED 120 may be electrically connected to the electrodes 116 and 118 through at least one of a wire bonding scheme, a die bonding scheme, and a flip bonding scheme.
  • The LED 120 may be mounted in the form of a chip. Such an LED chip may be realized using III and V group-compound semiconductor devices such as indium gallium nitride (InGaN) and gallium nitride (GaN) to emit light having a wavelength of 440 nm to 480 nm. The LED chip may comprise a green LED chip, a red LED chip, or an UV LED chip as well as a blue LED chip. For the purpose of explanation, the blue LED chip will be representatively described below.
  • The resin member 132 is provided in the cavity 115. The resin member 132 may be molded using a resin material having light transmittance. The molding scheme may comprise a transfer molding scheme, a compression molding scheme, an injection molding scheme, or a dispensing molding scheme. The resin material may comprise silicon or epoxy.
  • The phosphor 130 may be added to the resin member 132. The phosphor 130 may comprise at least one kind of phosphors. The phosphor 130 absorbs light, which has been emitted from the LED 120, to radiate light having a wavelength different from that of the absorbed light.
  • The phosphor 130 may comprise at least one of a yellow phosphor, a red phosphor, a green phosphor, and an orange phosphor. For the purpose of explanation, the yellow phosphor will be representatively described below.
  • The yellow phosphor may comprise a YAG phosphor or a silicate phosphor. The silicate-based yellow phosphor comprises particles comprising strontium (Sr), barium (Ba), magnesium (Mg), gallium (Ga), or sulfur (S). For example, the silicate-based yellow phosphor may comprise Sr5BaMgSi0 2:Eu2+, SrGa2S4:Eu2+, Sr2Ga2S5:Eu2+ or the like. The type of the phosphor or the rate of content of elements of each phosphor may be changed, and the embodiment is not limited thereto.
  • The resin member 130 may be provided thereon with a lens (not shown). The lens may be integrated with the resin member 130 or separated from the resin member 130. The resin member 130 may have a flat, concave, or convex surface, and the embodiment is not limited thereto.
  • If a forward driving voltage is applied to the first light emitting device 101, the LED 120 emits light. The phosphor 130 absorbs a portion of light emitted from the LED 120 to emit light having a wavelength different from the absorbed light. If the LED 120 is a blue LED chip, the LED 120 emits light having a wavelength of 440 nm to 480 nm. If the phosphor 130 is a yellow-based phosphor, the phosphor 130 may light having a wavelength of 500 nm to 700 nm.
  • The first light emitting device 101 emits white light, which is target light, by mixing the blue light and the yellow light.
  • The first light emitting device 101 may emit the target light (e.g., white light) having various color tints according to a chip characteristic and the rate of content of a phosphor. The white light may be divided into bluish white, yellowish white, reddish white, and greenish white according to the difference between the color tints.
  • FIG. 2 is a view showing the distribution of CIE color coordinates of the first light emitting device 101.
  • Referring to FIG. 2, the first light emitting device 101 can emit a light having a wavelength of 380 nm to 780 nm, and lights having various colors can be realized by mixing colors having different wavelengths based on the CIE color coordinates.
  • FIGS. 3A to 3C are graphs showing a color coordinate range based on complementary colors. FIG. 3A is a graph showing CIE color coordinates of a blue color and a yellow color, FIG. 3B is a graph showing a complementary relation of FIG. 3A, and FIG. 3C is a graph showing spectrum data according to colors.
  • Referring to FIGS. 3A and 3B, in the CIE color coordinates, a blue color and a yellow color serve as complementary colors thereof relative to a white color (target color). FIG. 3C is a graph showing spectrum data of the blue color and the yellow color, in which an X-axis represents a wavelength employing ‘nm’ as a unit, and a Y-axis represents a luminous intensity. Accordingly, blue light and yellow light, which have a complementary relation therebetween in the CIE color coordinates, are mixed with each other, thereby realizing white light.
  • FIGS. 4A to 4C are graphs showing a color coordinate range based on complementary colors. FIG. 4A is a graph showing CIE color coordinates of a blue color, a red color, and a yellow color, FIG. 4B is a graph showing a complementary relation among the colors, and FIG. 4C is a graph showing spectrum data according to colors.
  • Referring to FIGS. 4A and 4B, in the CIE color coordinates, a blue color, a red color, and a yellow color serve as complementary colors to make the white color (target color). FIG. 4C is a graph showing spectrum data of the blue color, the red color, and the yellow color, in which an X-axis represents a wavelength employing ‘nm’ as a unit, and a Y-axis represents a luminous intensity. Accordingly, blue light, red light and green light, which have a complementary relation in the CIE color coordinates, are mixed with each other, thereby realizing white light.
  • FIGS. 5A to 5C are graphs showing a color coordinate range based on complementary colors. FIG. 5A is a graph showing CIE color coordinates of a blue color, a red color, a green color, and a yellow color, FIG. 5B is a graph showing a complementary relation among the colors, and FIG. 5C is a graph showing spectrum data according to colors.
  • Referring to FIGS. 5A and 5B, in the CIE color coordinates, a blue color, a red color, a green color, and a yellow color serve as complementary colors to make the white color (target color). FIG. 5C is a graph showing spectrum data of the blue color, the red color, the green color, and the yellow color, in which an X-axis represents a wavelength employing ‘nm’ as a unit, and a Y-axis represents a luminous intensity. Accordingly, blue light, red light, green light, and yellow light, which have a complementary relation in the CIE color coordinates, are mixed with each other, thereby realizing white light.
  • In this case, the blue light has a wavelength of 440 nm to 460 nm, and the green light has a wavelength of 525 nm to 535 nm. The red light has a wavelength of 615 nm to 630 nm, and the yellow light has a wavelength of 510 nm to 525 nm.
  • FIG. 6 is a view showing the distribution of the color coordinates of the first light emitting device 101 of FIG. 1, and FIG. 7 is a view showing a target chromaticity area A, which is applicable to a product, in the distribution of the color coordinates shown in FIG. 6.
  • Referring to FIG. 6, the first light emitting device 101 emits white lights by a blue LED and a yellow phosphor. In this case, the white lights are distributed with various color tints according to the rate of content of the yellow phosphor. For example, the white lights represents the distribution of color tints of a green color (C1), an orange color (C2), a blue color (C3), a red color (C4), a yellowish green (C5), and a yellow color (C6) in the color coordinates (a Cx coordinate is in the range of 0.27 to 0.3, and a Cy coordinate is in the range of 0.25 to 0.29).
  • Referring to FIG. 7, when light emitting devices having the distribution of the color coordinates shown in FIG. 6 are adapted to products, only light emitting devices representing chromaticity in target chromaticity areas (B1 and B2) are employed. For example, the first company employs white light emitting devices having chromaticity in the target chromaticity area (B1), and the second company employs white light emitting devices having chromaticity in the target chromaticity area (B2≧B1). The target chromaticity may be defined as a target chromaticity rank.
  • The white light emitting devices having chromaticity out of the target chromaticity areas (B1 and B2) cannot be supplied to the first and second companies. In this case, the use efficiency may be less than 40%. The embodiment can be provided to enable the use of the light emitting devices having chromaticity distribution out of the target chromaticity areas (B1 and 82).
  • Referring to FIG. 7, a target chromaticity of E3a can be realized by combining two light emitting devices having the chromaticity distribution of E2e and E3e, and the chromaticity distribution of E4k and E3b in the color coordinate distribution.
  • A target chromaticity of E3a can be realized by combining two light emitting devices having the chromaticity distribution of E2a to E3i, or the chromaticity distribution of E4i to E3d, in which the E2a and E3i have a complementary relation therebetween, and the E4i and E3d have a complementary relation therebetween in the distribution of the color coordinates. A target chromaticity of E4k can be realized by combining two light emitting devices having the chromaticity distribution of E4c to E5c, or the chromaticity distribution of E4i to E3b, in which the E4c and E5c have a complementary relation therebetween, and the E4i and E3b have a complementary relation therebetween in the distribution of the color coordinates. A target chromaticity of E4n can be realized by combining three light emitting devices having the chromaticity distribution of E5c, E4i, and E5a. A target chromaticity of E4n can be realized by combining three light emitting devices having the chromaticity distribution of E5c, E4i, and E5a. A target chromaticity of E3a can be realized by combining three light emitting devices having the chromaticity distribution of E4c, E4f, and E3k. Therefore, according to the embodiment, a white light emitting apparatus can be realized by combining at least two light emitting devices having a complementary relation therebetween or a symmetrical relation therebetween among light emitting devices having a target chromaticity area and the chromaticity distribution thereof. For example, the light emitting devices may emit bluish white light, yellowish white light, reddish white light, and greenish white light.
  • The white light emitting apparatus may be realized by combining light emitting devices arranged symmetrically to each other about reference chromaticity, or arranged in a circular configuration, a polygonal configuration, or various geometrical configurations.
  • At least one of a plurality of light emitting devices may have a chromaticity existing out of a target chromaticity area or existing in the target chromaticity area. The use efficiency of light emitting devices can be raised to 80% or more by using a plurality of white light emitting devices having such a complementary relation.
  • FIG. 8 is a sectional view showing a light emitting apparatus 110 according to a second embodiment.
  • Referring to FIG. 8, the light emitting apparatus 110 comprises the first light emitting device 101 and a second light emitting device 102. The first and second light emitting devices 101 and 102 emit target lights having different color tints.
  • The first light emitting device 101 emits a target light C11 tinged with a first light, and the second light emitting device 102 emits a target light C12 tinged with a second light complementary to the first light. For example, the first light emitting device 101 may emit bluish white light, and the second light emitting device 102 may emit yellowish white light.
  • The first and second light emitting devices 101 and 102 have color tints having a complementary relation therebetween in the range of the white light. In addition, since at least one of the first and second light emitting devices 101 and 102 has a chromaticity out of a target chromaticity area, the use efficiency of the light emitting devices can be improved.
  • The light emitting apparatus 110 may additionally comprise other light emitting devices, and the light emitting devices may emit a light having a target chromaticity or a light that does not exert an influence on the target chromaticity. In other words, at least one of three light emitting devices or more may not have a complementary relation with respect to remaining light emitting devices.
  • FIG. 9 is a view showing a light emitting apparatus 110A according to a third embodiment.
  • Referring to FIG. 9, the light emitting apparatus 110A comprises third to fifth light emitting devices 103, 104, and 105.
  • The third to fifth light emitting devices 103 to 105 emit target lights C21, C22, and C23 tinged with a color tint of a complementary relation. For example, the third light emitting device 103 emits a bluish white light, the fourth light emitting device 104 emits a greenish white light, and the third light emitting device emits a reddish white light. If such lights emitted from the third to fifth light emitting devices 103, 104, and 105 are mixed, lights obtained through the mixture exist in a target chromaticity area.
  • At least one of the third to fifth light emitting devices 103, 104, and 105 employs a chromaticity existing out of the target chromaticity area, so that the use efficiency of the light emitting devices can be improved.
  • According to the embodiment, a target chromaticity is realized by combining at least two white light emitting devices of color tints of a complementary relation. Accordingly, a light emitting device that is out of the target chromaticity can be used to improve the use efficiency.
  • Meanwhile, although it has been described in that a blue LED is employed for a reference color, the embodiment is not limited to the blue LED. For example, as well as the white light, lights having different colors can be generated by mixing lights obtained through the combination of different LEDs and phosphors without using the blue LED.
  • Additionally, in order to realize the white light, as well as light emitting devices having a complementary relation, all possible combination of complementary colors, for example, light emitting devices having different optical characteristics (comprising chromaticity and brightness) may be used.
  • FIG. 10 is a view showing a display apparatus 100 according to a fourth embodiment.
  • Referring to FIG. 10, the display apparatus 160 comprises a light emitting apparatus 150 provided therein with a board 140 and the first and second light emitting devices 101 and 102, a reflective plate 151, a light guide plate 153, an optical sheet 155, and a display panel 157.
  • The light emitting apparatus 150 comprises the first and second light emitting devices 101 and 102 alternately aligned on the board 140. The first and second light emitting devices 101 and 102 emit white lights tinged with a color tint of a complementary relation therebetween. For example, the first light emitting device 101 emits a bluish white light, and the second light emitting device 102 emits a yellowish white light.
  • The first and second light emitting devices 101 and 102 may be realized using a blue LED and a yellow-based phosphor. At least one of the first and second light emitting devices 101 and 102 may be realized by using at least one of a red LED, a green LED, a blue LED, and an UV LED and at least one kind of a phosphor.
  • In the light emitting apparatus 150, the two light emitting devices 101 and 102 with a color tint of complementary relation may be provided in a mixed color area. The first and second light emitting devices 101 and 102 may be arranged on the board 140. The board 140 may be manufactured by using a hard material or a flexible material.
  • The first and second light emitting devices 101 and 102 may be alternately aligned one by one. In addition, the first and second light emitting devices 101 and 102 may be alternately aligned in a group unit. In addition, at least one of other light emitting devices may be interposed between the first and second light emitting devices 101 and 102 and between a group of the first light emitting device 101 and a group of the second light emitting device 102. At least one row of the first and second light emitting devices 101 and 102 may be arranged in a zig-zag manner. However, the embodiment is not limited thereto.
  • The light emitting apparatus 150 can emit a target light with a target chromaticity by mixing lights, which are emitted from the first and second light emitting devices 101 and 102 and have color tints of a complementary relation. Accordingly, the use efficiency of the light emitting device can be raised to 80% or more, and the range of a color coordinate target can be reduced.
  • The first and second light emitting devices 101 and 102 may be arranged in a group unit based on different forward driving voltages (Vf) and/or different luminous intensities (Iv) relative to a reference value (a reference value of an LED). For example, the first and second light emitting devices 101 and 102 having higher forward driving voltage and lower forward driving voltage on the basis of a reference voltage can be arranged together. In addition, the first and second light emitting devices 101 and 102 having higher luminous intensity and lower luminous intensity can be arranged together.
  • The light guide plate 153 is provided at one side of the light emitting device 150, and the reflective plate 151 is provided at a lower portion of the light guide plate 153. The optical sheet 155 is provided at an upper portion of the light guide plate 153. The light guide plate 153 may comprise a PC material or a polymethyl methacrylate (PMMA) material, and the embodiment is not limited thereto.
  • Light emitted from the light emitting device 150 is incident onto the light guide plate 153. The light guide plate 153 guides the light emitted from the light emitting device 150 to the whole area, so that the light serves as a surface light source. The reflective plate 151 reflects light leaking from the light guide plate 153. The optical sheet 155 diffuses and collects light from the light guide plate 153 to irradiate the light to the display panel 157.
  • The optical sheet 155 may comprise at least one of a diffusion sheet, horizontal and vertical prism sheets, and a brightness enhancement film. The diffusion sheet diffuses incident light, and the horizontal and vertical prism sheets condense light into a display region. The brightness enhancement film makes uniform brightness distribution.
  • The light emitting device 150, the reflective plate 151, the light guide plate 153, and the optical sheets 155 constitute a light unit.
  • The display panel 157 is a liquid crystal display (LCD) panel. The display panel 157 comprises first and second substrates, which face each other and comprise a transparent material, and a liquid crystal layer interposed between the first and second substrates. For example, the first substrate may be realized using a color filter array substrate, and the second substrate may be realized using a TFT array substrate. In contrast, the first substrate can be realized using a TFT array substrate and the second substrate can be realized using a color filter array substrate. The structure of the display panel 157 may be modified, and the embodiment is not limited thereto. A polarization plate may be attached to at least one surface of the display panel 157, and the embodiment is not limited to the attachment structure of the polarization plate.
  • As a modified example of FIG. 10, the light emitting device 150 may comprise at least three or four white light emitting devices which are aligned alternately or in a group unit while representing color tints of a complementary relation. Accordingly, white light can be realized by periodically arranging three or four white light emitting devices in a unit structure. In this case, the three white light emitting devices comprise a bluish white light emitting device, a yellowish white light emitting device, and a reddish white light emitting device. In addition, the four white light emitting devices comprise a bluish white light emitting device, a yellowish white light emitting device, a reddish white light emitting device, and a greenish white light emitting device. The grouped white light emitting devices may comprise white emitting device having different color tints, and the embodiment is not limited thereto.
  • FIG. 11 is a side sectional view showing a display apparatus 200 according to a fifth embodiment, and FIG. 12 is a plan view showing a light emitting device 202 of FIG. 11.
  • Referring to FIGS. 11 and 12, the display apparatus 200 comprises the light emitting device 202, a bottom cover 251, an optical sheet 255, and a display panel 257. The light emitting device 202, the bottom cover 251, and the optical sheet 255 constitute a light unit 250.
  • The bottom cover 251 comprises a cavity 253 having an opened upper portion. A side surface 252 of the cavity 253 may be inclined. The side surface 252 of the cavity 153 may be integrated with or separated from the bottom cover 251.
  • The light emitting device 202 is realized as a module. At least one light emitting device 202 may be arranged on a bottom surface of the cavity 253 of the bottom cover 251. The light emitting device 202 comprises first and second light emitting devices 210 and 211 alternately aligned with each other on a board 201 and having a complementary relation.
  • The first light emitting device 210 may emit bluish white light, and the second light emitting device 211 may emit yellowish white light. In other words, the first and second light emitting devices 210 and 211 have a complementary relation therebetween in a chromaticity area of white light.
  • The light emitting device 202 comprises at least three or four light emitting devices, which have a complementary relation in a target chromaticity area, and are alternately aligned one by one or in a group unit. Accordingly, white light can be realized by periodically aligning three or four white light emitting devices in a unit structure. In this case, the three white light emitting devices comprise a bluish white light emitting device, a yellowish white light emitting device, and a reddish white light emitting device. The four white light emitting devices comprise a bluish white light emitting device, a yellowish white light emitting device, a reddish white light emitting device, and a greenish white light emitting device. The grouped light emitting devices may comprise white light emitting devices having different color tints, and the embodiment is not limited thereto.
  • As shown in FIG. 12, a plurality of light emitting devices 202 are provided in the cavity 253 of the bottom cover 201. The light emitting devices 202 comprise the first and second light emitting devices 210 and 211 which have a complementary relation therebetween in a target chromaticity area and are alternately aligned with each other in two rows. In this case, the first and second light emitting devices 210 and 211 may be aligned in a zig-zag manner between adjacent rows.
  • The first and second light emitting devices 210 and 211 may be realized in the form of a chip on board (COB), in which a chip is mounted on the board 201, or a package on board (POB) in which a package is mounted on the board 201.
  • The optical sheet 255 may comprise at least one of a diffusion sheet, horizontal and vertical prism sheets, and a brightness enhancement film. The diffusion sheet diffuses incident light, and the horizontal and vertical prism sheets concentrate the incident light into a display area. The brightness enhancement film makes uniform brightness distribution.
  • The display panel 257 is an LCD panel. The display panel 257 comprises first and second substrates, which face each other and comprise a transparent material, and a liquid crystal layer interposed between the first and second substrates. For example, the first substrate may be realized using a color filter array substrate, and the second substrate may be realized using a TFT array substrate. In contrast, the first substrate may be realized using a TFT array substrate, and the second substrate may be realized using a color filter array substrate. The structure of the display panel 157 may be modified, and the embodiment is not limited thereto. A polarization plate may be attached to at least one surface of the display panel 257, and the embodiment is not limited to the attachment structure of the polarization plate.
  • According to the embodiment, the light emitting apparatus may be used as an illumination or a light source such as a front light unit and/or a backlight unit in an appliance such as a portable terminal, a portable computer, or broadcast equipment.
  • Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is comprised in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
  • As described above, the embodiment provides a light emitting apparatus using a light emitting diode.
  • The embodiment provides a light unit equipped with a plurality of light emitting device.
  • The embodiment provides a display apparatus having the light unit.
  • Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

Claims (19)

1. A light emitting apparatus comprising:
an array module comprising a first light emitting device which emits a light of a second color tinged with a first color; and
a second light emitting device which emits a light of a fourth color tinged with a third color complementary to the first color of lights emitted from the first light emitting device.
2. The light emitting apparatus of claim 1, wherein the first color is a blue color, the third color is a yellow color, and the second and fourth colors are a white color.
3. The light emitting apparatus of claim 1, further comprising a third light emitting device emitting a light of a sixth color tinged with a fifth color.
4. The light emitting apparatus of claim 1, wherein the array module includes the at least one first light emitting device and the at least one second light emitting device arrayed therein, and includes at least one third light emitting device adjacent to the at least one first light emitting device and the at least one second light emitting device.
5. The light emitting apparatus of claim 1, wherein the first light emitting device has a driving voltage or a light intensity different from a driving voltage or a light intensity of the second light emitting device.
6. The light emitting apparatus of claim 1, further comprising a light guide plate disposed at one side of the array module including the first and second light emitting devices, and a bottom cover including the array module and the light guide plate.
7. The light emitting apparatus of claim 1, further comprising at least one optical sheet disposed on the array module including the first and second light emitting devices.
8. The light emitting apparatus of claim 1, wherein the first and second light emitting devices include an LED chip and a phosphor excited by a light emitted from the LED chip to emit a light having a different wavelength.
9. A light emitting apparatus comprising:
an array module comprising a first light emitting device including a first LED chip and a first phosphor; and
a second light emitting device including a second LED chip and a second phosphor,
wherein the second light emitting device emits a light of a second mixed color complementary to a first mixed color of lights emitted from the first light emitting device in a same color band.
10. The light emitting apparatus of claim 9, wherein the first and second phosphors include at least one selected from the group consisting of yellow, red, green, and orange phosphors.
11. The light emitting apparatus of claim 9, wherein the array module includes the at least one first light emitting device and the at least one second light emitting device arrayed therein, and includes at least one third light emitting device adjacent to the at least one first light emitting device and the at least one second light emitting device.
12. The light emitting apparatus of claim 9, wherein the first light emitting device has a driving voltage or a light intensity different from a driving voltage or a light intensity of the second light emitting device.
13. The light emitting apparatus of claim 9, further comprising a light guide plate disposed at one side of the array module including the first and second light emitting devices, and a bottom cover including the array module and the light guide plate.
14. The light emitting apparatus of claim 9, further comprising at least one optical sheet disposed on the array module including the first and second light emitting devices.
15. The light emitting apparatus of claim 9, wherein the second light emitting device includes at least one selected from the group consisting of a light emitting device emitting a yellowish white light, a light emitting device emitting a reddish white light, and a light emitting device emitting a greenish white light.
16. A display apparatus comprising:
a light emitting apparatus including a first light emitting device emitting a bluish white light and a second light emitting device emitting a light complementary to the light emitted from the first light emitting device;
a light guide plate emitting a surface light source by using a light irradiated from the light emitting device;
an optical sheet disposed on the light guide plate;
a reflective sheet disposed under the light guide plate; and
a display panel disposed on the optical sheet.
17. The display apparatus of claim 16, wherein the second light emitting device includes at least one of a light emitting device emitting a yellowish white, a light emitting device emitting a reddish white light, and a light emitting device emitting a greenish white light.
18. The display apparatus of claim 16, wherein the first and second light emitting devices include a blue LED chip and a yellow phosphor excited by a light emitted from the blue LED chip to generate a light having a different wavelength.
19. The display apparatus of claim 17, wherein the first and second light emitting devices include a blue LED chip and a yellow phosphor excited by a light emitted from the blue LED chip to generate a light having a different wavelength.
US13/004,500 2008-03-14 2011-01-11 Light emitting apparatus and display apparatus having the same Abandoned US20110103089A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/004,500 US20110103089A1 (en) 2008-03-14 2011-01-11 Light emitting apparatus and display apparatus having the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0023792 2008-03-14
KR1020080023792A KR100986359B1 (en) 2008-03-14 2008-03-14 Light emitting apparatus and display apparatus having the same
US12/404,042 US8278670B2 (en) 2008-03-14 2009-03-13 Light emitting apparatus and display apparatus having the same
US13/004,500 US20110103089A1 (en) 2008-03-14 2011-01-11 Light emitting apparatus and display apparatus having the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/404,042 Continuation US8278670B2 (en) 2008-03-14 2009-03-13 Light emitting apparatus and display apparatus having the same

Publications (1)

Publication Number Publication Date
US20110103089A1 true US20110103089A1 (en) 2011-05-05

Family

ID=41065683

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/404,042 Active 2030-08-25 US8278670B2 (en) 2008-03-14 2009-03-13 Light emitting apparatus and display apparatus having the same
US13/004,500 Abandoned US20110103089A1 (en) 2008-03-14 2011-01-11 Light emitting apparatus and display apparatus having the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/404,042 Active 2030-08-25 US8278670B2 (en) 2008-03-14 2009-03-13 Light emitting apparatus and display apparatus having the same

Country Status (6)

Country Link
US (2) US8278670B2 (en)
EP (1) EP2237326B1 (en)
KR (1) KR100986359B1 (en)
CN (1) CN101939859B (en)
TW (1) TW200949383A (en)
WO (1) WO2009113838A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217794A1 (en) * 2010-03-02 2011-09-08 Micron Technology, Inc. Microelectronic workpiece processing systems and associated methods of color correction

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8272758B2 (en) 2005-06-07 2012-09-25 Oree, Inc. Illumination apparatus and methods of forming the same
US8215815B2 (en) 2005-06-07 2012-07-10 Oree, Inc. Illumination apparatus and methods of forming the same
WO2006131924A2 (en) 2005-06-07 2006-12-14 Oree, Advanced Illumination Solutions Inc. Illumination apparatus
US8172447B2 (en) 2007-12-19 2012-05-08 Oree, Inc. Discrete lighting elements and planar assembly thereof
US20090161369A1 (en) 2007-12-19 2009-06-25 Keren Regev Waveguide sheet and methods for manufacturing the same
US8297786B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US8301002B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US8558782B2 (en) * 2009-03-24 2013-10-15 Apple Inc. LED selection for white point control in backlights
US8624527B1 (en) 2009-03-27 2014-01-07 Oree, Inc. Independently controllable illumination device
US8328406B2 (en) 2009-05-13 2012-12-11 Oree, Inc. Low-profile illumination device
WO2010150202A2 (en) 2009-06-24 2010-12-29 Oree, Advanced Illumination Solutions Inc. Illumination apparatus with high conversion efficiency and methods of forming the same
KR101134815B1 (en) * 2010-01-15 2012-04-13 엘지이노텍 주식회사 Display device and manufacturing method of the same
KR101655463B1 (en) * 2010-03-26 2016-09-07 엘지이노텍 주식회사 Light emitting device package and light unit having the same
JPWO2012042962A1 (en) * 2010-09-30 2014-02-06 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
US8434924B1 (en) * 2010-11-18 2013-05-07 Google Inc. White light source using two colored LEDs and phosphor
CN102883497A (en) * 2011-07-15 2013-01-16 奥斯兰姆有限公司 Lighting equipment and lighting method
US8591072B2 (en) 2011-11-16 2013-11-26 Oree, Inc. Illumination apparatus confining light by total internal reflection and methods of forming the same
KR101881065B1 (en) * 2011-12-21 2018-07-24 삼성전자주식회사 Light source module and backlight unit
US9857519B2 (en) 2012-07-03 2018-01-02 Oree Advanced Illumination Solutions Ltd. Planar remote phosphor illumination apparatus
KR101422037B1 (en) 2012-09-04 2014-07-23 엘지전자 주식회사 Display device using semiconductor light emitting device
EP2803715B1 (en) * 2013-05-16 2020-02-26 LG Innotek Co., Ltd. Phosphor and light emitting device package including the same
CN107918226B (en) * 2016-10-08 2020-11-06 瀚宇彩晶股份有限公司 Organic fluorescent material and light source module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508564B1 (en) * 1999-11-26 2003-01-21 Sanyo Electric Co., Ltd. Surface light source device and adjusting method of chromaticity thereof
US20040090174A1 (en) * 2000-12-28 2004-05-13 Stefan Tasch Light source comprising a light-emitting element
US20050135094A1 (en) * 2003-12-19 2005-06-23 Lee Soo G. Method and apparatus for producing untainted white light using off-white light emitting diodes
US20060245208A1 (en) * 2005-04-27 2006-11-02 Mitsubishi Denki Kabushiki Kaisha Planar light-source device
US20070194333A1 (en) * 2006-02-23 2007-08-23 Lg Innotek Co., Ltd Light emitting diode package and method of manufacturing the same
US7294956B2 (en) * 2001-10-01 2007-11-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element and light emitting device using this
US20070274093A1 (en) * 2006-05-25 2007-11-29 Honeywell International, Inc. LED backlight system for LCD displays
US20070291467A1 (en) * 2004-06-29 2007-12-20 Hideo Nagai Illumination Source
US20090146158A1 (en) * 2004-12-17 2009-06-11 Jun Seok Park Package for Light Emitting Device and Method for Packaging the Same
US20100231613A1 (en) * 2006-04-28 2010-09-16 Sharp Kabushiki Kaisha Illumination device and liquid crystal display device provided therewith

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658700B1 (en) * 2004-05-13 2006-12-15 서울옵토디바이스주식회사 Light emitting device with RGB diodes and phosphor converter
KR20050111666A (en) * 2004-05-21 2005-11-28 주식회사 비첼 White light emitting device
CN100385690C (en) * 2004-07-08 2008-04-30 光宝科技股份有限公司 White light illuminating method and apparatus capable of regulating colour temp.
KR100698928B1 (en) 2005-05-23 2007-03-23 서울반도체 주식회사 Light emitting diode
KR100875443B1 (en) 2006-03-31 2008-12-23 서울반도체 주식회사 Light emitting device
WO2009093895A1 (en) 2008-01-21 2009-07-30 Eldolab Holding B.V. A method for producing a led assembly and led assembly produced by the method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508564B1 (en) * 1999-11-26 2003-01-21 Sanyo Electric Co., Ltd. Surface light source device and adjusting method of chromaticity thereof
US20040090174A1 (en) * 2000-12-28 2004-05-13 Stefan Tasch Light source comprising a light-emitting element
US7294956B2 (en) * 2001-10-01 2007-11-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element and light emitting device using this
US20050135094A1 (en) * 2003-12-19 2005-06-23 Lee Soo G. Method and apparatus for producing untainted white light using off-white light emitting diodes
US20070291467A1 (en) * 2004-06-29 2007-12-20 Hideo Nagai Illumination Source
US20090146158A1 (en) * 2004-12-17 2009-06-11 Jun Seok Park Package for Light Emitting Device and Method for Packaging the Same
US20060245208A1 (en) * 2005-04-27 2006-11-02 Mitsubishi Denki Kabushiki Kaisha Planar light-source device
US20070194333A1 (en) * 2006-02-23 2007-08-23 Lg Innotek Co., Ltd Light emitting diode package and method of manufacturing the same
US20100231613A1 (en) * 2006-04-28 2010-09-16 Sharp Kabushiki Kaisha Illumination device and liquid crystal display device provided therewith
US20070274093A1 (en) * 2006-05-25 2007-11-29 Honeywell International, Inc. LED backlight system for LCD displays

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217794A1 (en) * 2010-03-02 2011-09-08 Micron Technology, Inc. Microelectronic workpiece processing systems and associated methods of color correction
US8716038B2 (en) * 2010-03-02 2014-05-06 Micron Technology, Inc. Microelectronic workpiece processing systems and associated methods of color correction
US11075319B2 (en) 2010-03-02 2021-07-27 Micron Technology, Inc. Microelectronic workpiece processing systems and associated methods of color correction
US11757061B2 (en) 2010-03-02 2023-09-12 Micron Technology, Inc. Microelectronic workpiece processing systems and associated methods of color correction

Also Published As

Publication number Publication date
WO2009113838A2 (en) 2009-09-17
CN101939859B (en) 2012-12-19
TW200949383A (en) 2009-12-01
EP2237326A2 (en) 2010-10-06
KR100986359B1 (en) 2010-10-08
US20090236620A1 (en) 2009-09-24
CN101939859A (en) 2011-01-05
KR20090098411A (en) 2009-09-17
US8278670B2 (en) 2012-10-02
WO2009113838A3 (en) 2009-11-05
EP2237326A4 (en) 2011-04-13
EP2237326B1 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
US8278670B2 (en) Light emitting apparatus and display apparatus having the same
US9594207B2 (en) LED package and a backlight unit comprising said LED package
US8132934B2 (en) Light emitting device and light unit having the same
KR101907390B1 (en) White light emitting device and display apparatus
US8864357B2 (en) Light emitting device and light unit having the same
US8317348B2 (en) White light emitting device and white light source module using the same
US20080180948A1 (en) White light emitting device and light source module for liquid crystal display backlight using the same
US20080123021A1 (en) Light emitting diode package, backlight unit and liquid crystal display having the same
KR20110048397A (en) LED Package and Backlight Assembly using the same
KR101683888B1 (en) Light emitting apparatus and display apparatus having the same
TWI434432B (en) Led package and backlight unit having the same
KR101195430B1 (en) White light emitting device and white light source module using the same
KR101896684B1 (en) Light emitting module and lighting system having the same
US20240072220A1 (en) Planar light-emitting device
KR20100029926A (en) Backlight unit employing light emitting diode package for ac source operation
KR20080025715A (en) Light emitting diode module for backlight unit and backlight using the same
KR20110108704A (en) Light emitting apparatus and display apparatus having the same
KR101664487B1 (en) Light unit device
KR101505429B1 (en) Backlighting unit employing polarized light source
KR102098318B1 (en) Phosphor and light emitting device having thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION