US20110087292A1 - Occipital fixation assembly, system and method for attaching the same - Google Patents

Occipital fixation assembly, system and method for attaching the same Download PDF

Info

Publication number
US20110087292A1
US20110087292A1 US12/904,613 US90461310A US2011087292A1 US 20110087292 A1 US20110087292 A1 US 20110087292A1 US 90461310 A US90461310 A US 90461310A US 2011087292 A1 US2011087292 A1 US 2011087292A1
Authority
US
United States
Prior art keywords
mounting plate
coupling member
threaded
threaded post
fixation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/904,613
Inventor
Faheem Sandhu
Kevin R. Strauss
Larry McClintock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K2M Inc
Original Assignee
K2M Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/904,613 priority Critical patent/US20110087292A1/en
Application filed by K2M Inc filed Critical K2M Inc
Assigned to K2M, INC. reassignment K2M, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANDHU, FAHEEM, MCCLINTOCK, LARRY, STRAUSS, KEVIN R
Publication of US20110087292A1 publication Critical patent/US20110087292A1/en
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK ADDENDUM TO INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: K2M, INC.
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: K2M HOLDING, INC., K2M UK LIMITED, K2M, INC.
Assigned to K2M, INC. reassignment K2M, INC. TERMINATION Assignors: SILICON VALLEY BANK
Priority to US14/288,903 priority patent/US9597122B2/en
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK FIRST AMENDMENT TO PATENT SECURITY AGREEMENT Assignors: K2M HOLDINGS, INC., K2M UNLIMITED, K2M, INC.
Priority to US15/453,153 priority patent/US10368920B2/en
Assigned to K2M HOLDINGS, INC., K2M, INC., K2M UK LIMITED reassignment K2M HOLDINGS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SILICON VALLEY BANK
Priority to US16/446,136 priority patent/US11272962B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7055Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant connected to sacrum, pelvis or skull
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/2812Surgical forceps with a single pivotal connection
    • A61B17/282Jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7076Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation
    • A61B17/7082Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation for driving, i.e. rotating, screws or screw parts specially adapted for spinal fixation, e.g. for driving polyaxial or tulip-headed screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/808Instruments for holding or positioning bone plates, or for adjusting screw-to-plate locking mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/809Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with bone-penetrating elements, e.g. blades or prongs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8872Instruments for putting said fixation devices against or away from the bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8875Screwdrivers, spanners or wrenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8875Screwdrivers, spanners or wrenches
    • A61B17/8886Screwdrivers, spanners or wrenches holding the screw head
    • A61B17/8888Screwdrivers, spanners or wrenches holding the screw head at its central region
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00738Aspects not otherwise provided for part of the tool being offset with respect to a main axis, e.g. for better view for the surgeon

Definitions

  • the present disclosure relates to an occipital fixation assembly, system and method for attaching the same. More particularly, the present disclosure relates to an occipital fixation assembly that is configured to support a surgical implant thereon and securely anchor to an inside of a skull of a patient.
  • an occipitocervical junction includes an occiput, atlas and axis.
  • the occipitocervical junction is a unique interface between the cranium and cervical spine. More than 50% of the rotation and flexion-extension are provided from this region. Ligaments in this region must resist forces about all six degrees of freedom. Moreover, instrumentation constructs not only must resist forces in all of these vectors, but also must resist the significant moment created by the suboccipital bone and the cervical spine, which meet at a 50° angle. Any instrumentation construct designed for use in this region must, therefore, have adequate geometry to interface with the osseous structures of the spinal structures as well as have sufficient rigidity and purchase to resist these forces until bone fusion can occur.
  • occipitocervical instability and lesions located at the occipitocervical junction were considered inoperable and terminal. Since the first description of an occipitocervical fusion, multiple methods of fusion in this region have been described. Descriptions of simple bone gratis with halo immobilization; wire, pin, or hook constructs; rigid metallic loops and rectangles fixed to the bone with either screws or wires; and most recently, plate or rod constructs with screws have all been described. In general the evolution of this technology has focused on providing increasingly more rigid constructs to facilitate bone fusion and to minimize the need for and duration of external immobilization.
  • a common technique for fixing occipitocervical instability is the use of an inverted Y-shaped screw plate.
  • the plate is secured to C1-2 with transarticular screws and to the suboccipital bone with paramedian screws; the suboccipital bone varies in thickness, with a mean thickness of 14 mm. Screws must be carefully selected to provide adequate purchase, yet avoid cerebella injury. Utilizing the maximum screw length possible is critical because shorter screws have decreased resistance to pullout. If stabilization is required below the C1-2 level, then lateral mass screws can be placed through additional holes in a longer plate to include these levels as well. In certain instances, a bone graft may be added to promote fusion.
  • the Y-shaped plate, in combination with transarticular screws, is an economical alternative.
  • the present disclosure provides an occipital fixation assembly.
  • the occipital fixation assembly includes a first mounting plate configured for placement within a sinus cavity adjacent a rear portion of a skull of a patient.
  • a threaded post extends from the first mounting plate.
  • a coupling member includes an aperture configured to receive the threaded post therethrough and an offset extension configured to support a surgical rod thereon.
  • a fixation nut configured to threadably engage the threaded post of the first mounting plate, is rotatable about the threaded post and translatable therealong. The fixation nut is rotatable with respect to the first mounting plate and the coupling member such that rotation of the fixation nut in a predetermined direction brings the first mounting plate and the coupling member toward one another and into secured engagement with the skull of a patient.
  • the present disclosure provides an occipital fixation system or system for attaching an occipital fixation assembly to a patient for subsequent attachment of a surgical rod thereto.
  • the system includes a first mounting plate configured for placement within a sinus cavity adjacent a rear portion of a skull of a patient.
  • the first mounting plate has a threaded post that extends therefrom.
  • a coupling member includes an aperture configured to receive the threaded post therethrough.
  • An offset extension disposed in parallel orientation with respect to the threaded post is configured to support a surgical rod thereon.
  • a fixation nut configured to threadably engage the threaded post is rotatable about the threaded post and translatable therealong.
  • the fixation nut is rotatable with respect to the first mounting plate and the coupling member such that rotation of the fixation nut in a predetermined direction brings the first mounting plate and the coupling member toward one another and into secured engagement with the skull of a patient.
  • a forceps is configured to grasp a portion of the threaded post when the threaded post has been inserted through an aperture that has been previously drilled in the sinus cavity.
  • a wrench assembly is adapted to engage and, subsequently, rotate the fixation nut about the threaded post.
  • the present disclosure also provides a method for attaching an occipital fixation assembly to a patient for subsequent attachment of a surgical rod thereto.
  • the method includes creating an aperture within a sinus cavity adjacent a rear portion of a skull of a patient.
  • a threaded post of a first mounting plate of an occipital fixation assembly is, subsequently, positioned through the aperture created within the sinus cavity.
  • a coupling member of the occipital fixation assembly is attached to the threaded post of the first mounting plate.
  • a fixation nut is then positioned about the threaded post and, subsequently, rotated in a predetermined direction about the threaded post such that the first mounting plate and the coupling member move toward one another and into secured engagement with the skull of a patient.
  • a surgical rod is coupled to the coupling member.
  • FIG. 1 is a perspective view of an occipital fixation assembly with a surgical rod secured thereon according to an embodiment of the present disclosure
  • FIG. 2 is a front view of the occipital fixation assembly depicted in FIG. 1 ;
  • FIG. 3 is an exploded view of the occipital fixation assembly depicted in FIG. 1 with components separated;
  • FIG. 4 is an exploded view of a coupling member associated with the occipital fixation assembly depicted in FIG. 1 ;
  • FIG. 5 is a perspective view of an alternative configuration of the occipital fixation assembly depicted in FIG. 1 ;
  • FIG. 6 is a front view of the occipital fixation assembly depicted in FIG. 5 ;
  • FIGS. 7A-7C are perspective views illustrating a mounting plate of the occipital fixation assembly depicted in FIG. 5 with the mounting plate shown in various configurations;
  • FIG. 7D is a cross-sectional view of the mounting plate depicted in the configuration of FIG. 7A taken along section line 7 D- 7 D;
  • FIG. 8A is a perspective view of an alternative embodiment of a threaded post that may be utilized with the occipital fixation assembly depicted in FIG. 1 ;
  • FIG. 8B is a side view of the threaded post depicted in FIG. 8A ;
  • FIG. 9 is a perspective view of a surgical instrument grasping the threaded post depicted in FIG. 8A ;
  • FIG. 10 is an enlarged area of detail depicted in FIG. 9 ;
  • FIGS. 11A-11D are perspective views illustrating an occipital fixation system and method for attaching the occipital fixation assembly to a patient for subsequent attachment of a surgical rod thereto;
  • FIG. 12A is a cross-sectional view of a coupling member according to another embodiment of the present disclosure.
  • FIG. 12B an enlarged area of detail depicted in FIG. 12B .
  • proximal refers to a portion of a surgical instrument closer to the operator while the term “distal” refers to a portion of a surgical instrument farther from the operator.
  • distal refers to a portion of a surgical instrument farther from the operator.
  • cephalad is used in this application to indicate a direction toward a patient's head, whereas the term “caudad” indicates a direction toward the patient's feet.
  • medial indicates a direction toward the middle of the body of the patient, whilst the term “lateral” indicates a direction toward a side of the body of the patient (i.e., away from the middle of the body of the patient).
  • anterior indicates a direction toward the patient's back
  • anterior indicates a direction toward the patient's front
  • an occipital fixation assembly 2 is illustrated.
  • the occipital fixation assembly 2 is positionable within a sinus cavity adjacent a rear portion of the skull, lateral to a brain stem region, i.e., adjacent the occiput.
  • the occipital fixation assembly 2 includes a first mounting plate 4 , a coupling member 6 and a fixation nut 8 .
  • Mounting plate 4 includes a generally elongated configuration having top and bottom surfaces 10 and 12 , respectively.
  • the mounting plate 4 includes a slight curvature or concavity “C” (see FIG. 2 for example) that is configured to follow a contour of the occiput of a skull. As can be appreciated, this curvature or concavity facilitates anchoring the mounting plate 4 to the occiput.
  • barbs 20 a and 20 b are operably disposed on the top surface 10 of the mounting plate 4 ( FIG. 1 ).
  • Barbs 20 a and 20 b are configured to facilitate anchoring the mounting plate 4 into an interior surface of the skull of a patient and to minimize rotation of the mounting plate 4 when the fixation nut 8 is rotated about a threaded post 14 a ( FIGS. 1-5 ) or movement of the mounting plate 4 when installed in the occiput.
  • the barbs 20 a and 20 b include a generally conical configuration with a substantially pointed tip.
  • the barbs 20 a and 20 b may reside in generally circumferential recesses 21 a and 21 b , respectively, see FIGS. 5-7C .
  • the recesses 21 a and 21 b are configured to engage soft tissue that may be disposed adjacent the interior surface of the skull.
  • the barbs 20 a and 20 b are set into the recesses 21 a and 21 b at a depth that allows a majority of a surface area of the barbs 20 a and 20 b to sufficiently anchor into the interior surface of the skull.
  • the elongated post 14 a extends in a generally orthogonal orientation from the top surface 10 such that the mounting plate 4 has a generally “T” shape ( FIG. 3 ).
  • the elongated post 14 a may be monolithically formed with the mounting plate 4 or may be coupled to the mounting plate 4 by one or more suitable coupling methods, e.g., welded to the top surface 10 of the mounting plate 4 .
  • the elongated post 14 a is monolithically formed with the mounting plate 4 .
  • a plurality of threads 16 a extends along an outer circumferential surface of the elongated post 14 a .
  • the plurality of threads 16 a extends along a majority of a length of the elongated post such that a portion of the elongated post 14 a adjacent the top surface 10 of the mounting plate 4 is devoid of the plurality of threads 16 a ( FIGS. 2 and 3 ).
  • This portion of the elongated post devoid of the plurality of threads 16 a serves as a relief for cutting the plurality of threads 16 a .
  • this portion of the elongated post 16 a devoid of the plurality of threads allows a mountng plate 5 to be threaded over the threaded post 16 a until the mounting plate 5 passes the plurality of threads 16 a where it can be rotated 360° (see FIG. 7A in combination with FIG. 7B ) without advancing in or out of the occiput when being deployed into a final position ( FIG. 7C ), described in greater detail below.
  • this portion of the elongated post devoid of the plurality of threads is intended to prevent “over-tightening” of the coupling member 6 to the elongated post 14 a.
  • a proximal end of the threaded post 14 a includes a slot 17 ( FIGS. 1 and 3 ) that is configured to receive a working end of a driving device, e.g., a screwdriver (or the like), that is configured to rotate the mounting plate 4 with respect to the fixation nut 8 when the fixation nut 8 is positioned on the threaded post 14 a .
  • the driving tool may include a blade configured for receipt in the slot 17 for holding the mounting plate 4 in a desired orientation while the fixation nut 8 is rotated about the threaded post 14 a .
  • the slot 17 turns the threaded post 14 a (and, thus, the mounting plate 4 ) after the mounting plate 5 is pulled and set to the inside surface of the occiput (with barbs 20 c and 20 d ) to the final deployed cross position ( FIG. 7C ), described in greater detail below.
  • Coupling member 6 is configured to operably couple to the mounting plate 4 (or, in some instances, to mounting plate 4 and a second mounting plate 5 , see FIGS. 5-7C ) and to engage an exterior surface of a skull.
  • coupling member 6 includes a base member 36 .
  • Base 36 includes a generally annular configuration defined by an outer peripheral wall 35 that joins respective bottom and top surfaces 31 and 33 ( FIGS. 1-4 ) to each other.
  • Bottom surface 31 includes one or more barbs, e.g., three barbs 20 e - 20 g , disposed thereon (see FIG. 2 in combination with FIG. 4 ) that are configured in a manner as described above with respect to barbs 20 a - 20 b .
  • barbs 20 e - 20 g are configured to anchor to an exterior surface of the skull.
  • Top surface 33 is configured to support the fixation nut 8 thereon.
  • An aperture 32 FIGS.
  • 3 and 4 extends from the top surface 33 to the bottom surface 31 and is configured to receive the threaded post 14 a (or in certain embodiments, a threaded post 14 b , described in greater detail below) and a portion of the fixation nut 8 therethrough.
  • Coupling member 6 is also configured to support the surgical rod “R” thereon ( FIG. 1 ). To this end, coupling member 6 includes an offset extension 34 ( FIGS. 1-4 ).
  • Offset extension 34 is disposed in parallel orientation with respect to the threaded post 14 a (or in some embodiments with respect to the threaded post 14 b ), see FIGS. 1-3 and 5 - 7 .
  • the offset extension 34 includes a generally elongated slot 38 ( FIGS. 3 and 4 ) having an intermittent threaded portion 40 ( FIGS. 3 and 4 show one half of the intermittent threaded portion 40 ) configured to receive a set-screw 42 ( FIGS. 1-3 ) therein and a non-threaded portion 44 ( FIGS. 3 and 4 ) configured to receive the surgical rod “R” therein ( FIGS. 1 and 2 ).
  • the threaded and non-threaded portions, 40 and 44 , respectively, of the offset extension 34 are arranged such that when the surgical rod “R” is secured thereto, the surgical rod “R” is oriented perpendicular to the set-screw 42 ( FIGS. 1 and 2 ).
  • Fixation nut 8 is shown.
  • Fixation nut 8 is configured to threadably engage the threaded post 14 a of the mounting plate 4 (or in some instances threaded post 14 b ( FIG. 8A )).
  • Fixation nut 8 is rotatable about the threaded post 14 a and translatable therealong.
  • fixation nut 8 is rotatable with respect to the mounting plate 4 and the coupling member 6 such that rotation of the fixation nut 8 in a predetermined direction, e.g., a clockwise direction, brings the mounting plate 4 and the coupling member 6 toward one another and into secured engagement with the skull of a patient.
  • a bottom surface 48 of the fixation nut 8 includes a generally elongated extension 50 that is configured to extend into an aperture 52 of a washer 54 and the aperture 32 of the base 36 ( FIG. 4 ).
  • the extension 50 is configured to facilitate positioning the fixation nut 8 about the threaded post 14 a (or threaded post 14 b ) and the washer 54 distributes or “spreads” a load of the fixation nut 8 evenly across the top surface 33 of the base member 36 when the fixation nut is rotated about the threaded post 14 a .
  • the washer 56 has a generally conical shape and is also intended to serve as a lock washer. While the fixation nut 8 and washer 56 have been described herein as two separate components that couple to the coupling member 6 , it is within the purview of the present disclosure that the coupling member 6 , fixation nut 8 and washer 56 may be formed as one integral component.
  • a second mounting plate 5 may be operably coupled to the mounting plate 4 , see FIGS. 5-7C .
  • the mounting plate 5 includes an opening 23 of suitable dimension, see FIGS. 7A-7C . More particularly, the opening 23 includes an outer diameter that is less than an outer diameter defined by an outer edge of the plurality of threads 16 a .
  • the mounting plate 5 is rotatable about the threaded post 14 a such that the mounting plate 5 may be rotated from a first position, e.g., a “nested position,” ( FIGS.
  • FIGS. 7A and 7D that is conducive for positioning the mounting plates 4 and 5 adjacent to an interior surface of a skull, to a subsequent or anchoring position ( FIGS. 7B-7C ) that is conducive for securing or lagging the mounting plates 4 and 5 to the interior surface of a skull.
  • the mounting plates 4 and 5 may be disposed transverse to each other and form a generally crisscross or “X” shape or configuration, as best seen in FIG. 7C .
  • Mounting plate 5 includes one or more barbs, e.g., barbs 20 c and 20 d , disposed on a top surface 30 thereof. As described above with respect to barbs 20 a and 20 b , barbs 20 c and 20 d may reside in corresponding recesses 21 c and 21 d , respectively, see FIGS. 5-7C ).
  • a bottom surface 28 of the mounting plate 5 includes a pair of indents 25 a and 25 b that are configured to releasably engage the barbs 20 a and 20 b ( FIG. 7D ); the indents 25 a and 25 b are shown engaged with the barbs 20 a and 20 b , respectively and, as a result thereof, are not explicitly shown.
  • the mounting plate 5 and the mounting plate 4 can be inserted together into an aperture or slot in the occiput and rotated together until a final position, e.g., an anchored position, is achieved for the mounting plate 5 , which can be seated or anchored into the occiput by pulling the nested mounting plates 4 and 5 so that the barbs 20 c and 20 d on the mounting plate 5 “dig” into the inside of the occiput. Subsequently, the mounting plate 4 can be deployed to the final (cross) position ( FIG. 7C ) using the slot 17 in the end of the threaded bolt.
  • the operable end of a screwdriver may be utilized to engage the slot 17 and, subsequently, turn the mounting plate 4 that disengages the barbs 20 a and 20 b from the respective indents 25 a and 25 b .
  • the barbs 20 a and 20 b on the mounting plate 4 may then be brought into contact with the inside of the occiput, thus, fixing both mounting plates 4 and 5 in place.
  • a bottom surface 28 of the mounting plate 5 includes a notched portion 24 that is configured to receive and/or mate with a portion, e.g., a corresponding notched portion 26 disposed on the top surface 10 , of the mounting plate 4 ( FIGS. 7B and 7D ).
  • the notched portions 24 and 26 enable the top surface 10 of the mounting plate and top surface 30 of the mounting plate 5 to be flush with each other, as best seen in FIG. 7D ; this provides a substantially uniform contact surface between the mounting plates 4 and 5 and the interior surface of the skull.
  • This substantially uniform contact surface facilitates positioning the barbs 20 a - 20 d adjacent to the interior surface of the skull, which, in turn, ensures that the barbs 20 a - 20 d properly engage the interior surface of skull.
  • having all the barbs 20 a - 20 d properly engaged to the interior surface of the skull reduces and/or eliminates the likelihood of inadvertent movement of the mounting plates 4 and 5 after the occipital fixation assembly 2 a has been affixed to the interior surface of the skull.
  • an aperture is, initially, created within a sinus cavity adjacent a rear portion of a skull of a patient, i.e., adjacent the occiput.
  • the aperture may be created utilizing one or more suitable surgical devices, e.g., a surgical drill.
  • Mounting plate 4 is positioned through the aperture created within the sinus cavity adjacent the occiput. Thereafter, coupling member 6 is positioned about the threaded post 14 a (see FIG. 1 in combination with FIG. 3 ).
  • one end of the mounting plate 4 is inserted through the opening until the opposing end clears the surface of the skull and can be positioned beneath the surface of the skull.
  • the mounting plate 4 is moved in a generally opposing direction such that the entire mounting plate 4 is disposed beneath the surface of the skull (i.e. on the inside).
  • the threaded post 14 a extends through the opening.
  • This installation technique is applicable to all disclosed embodiments of the occipital fixation assembly.
  • the opening will have a dimension that is slightly greater than the dimensions of the mounting plate 4 .
  • the fixation nut 8 including the washer 54 is positioned about the threaded post 14 a and over the base 36 of coupling member 6 .
  • the fixation nut 8 including washer 54 is shown engaged with the coupling member 6 .
  • the fixation nut 8 is rotated in a predetermined direction, e.g., a clockwise direction, about the threaded post 14 a .
  • a screwdriver or other suitable device is utilized to engage the slot 17 to facilitate rotation the mounting plate 4 and/or fixation nut 8 .
  • Rotation of the fixation nut 8 about the threaded post 14 b causes the coupling member 6 and the mounting plate 4 to move toward one another and into secured engagement with an interior and exterior surface, respectively, of the skull of a patient.
  • the occiput is “sandwiched” between the surgical rod coupling member 6 (with barbs 20 e - 20 g ) and mounting plate 4 (with barbs 20 a - 20 b ) by threading the fixation nut 8 over the threaded post 14 a and tightening to the specified torque.
  • the occiput is “sandwiched” between the surgical rod coupling member 6 (with barbs 20 e - 20 g ) and mounting plates 4 and 5 (with barbs 20 a - 20 d ) by threading the fixation nut 8 over the threaded post 14 a and tightening to the specified torque.
  • the surgical rod “R” is coupled to the offset extension 34 of the coupling member 6 and secured to the coupling member 6 via the set screw 42 .
  • the combination of the unique mounting plate 4 having the threaded post 14 a configured to couple to the coupling member 6 reduces and/or eliminates the likelihood of the occipital fixation assembly 2 inadvertently pulling out from the occiput, which, in turn, reduces the risk for cerebellar injury.
  • anchoring the barbs 20 a - 20 b and the barbs 20 e - 20 g into the interior and exterior surfaces, respectively, of the skull diminishes the likelihood of inadvertent rotation of mounting plate 4 and coupling member 6 after the surgical rod “R” has been attached to the occipital fixation assembly and/or the spine.
  • an alternate embodiment of an elongated post is designated elongated post 14 b .
  • the elongated post 14 b is provided without the slot 17 .
  • elongated post 14 b includes a plurality of non-continuous threads 16 b extending partially along an outer circumferential surface of the elongated post 14 b .
  • a proximal end of the elongated post 14 b includes a threaded aperture 19 that extends into the threaded post 14 b ( FIG. 8A ).
  • the threaded aperture 19 is configured to receive one end of a surgical device, e.g., wrench assembly 80 , for positioning and turning the fixation nut 8 about the threaded post 14 b ( FIGS. 11A-11D ).
  • a non-threaded aperture 21 extends traverse to the threaded aperture 19 and is configured to receive one end of a surgical device, e.g., a forceps 60 , for grasping the threaded post 14 b and maintaining the mounting plate 4 a in a non-rotatable state when the fixation nut 8 is rotated about the elongated post 14 b ( FIGS. 9-11B ).
  • system 100 includes a forceps 60 (FIGS. 9 and 11 A- 11 C), a wrench assembly 80 ( FIGS. 11A-11D ) and the occipital fixation assembly 2 b ( FIG. 11D ) that includes the mounting plate 4 a with the threaded post 14 b ( FIG. 10 ).
  • Forceps 60 is configured to grasp a portion of the threaded post 14 b (as best seen in FIG. 10 ). More particularly, the forceps 60 may be utilized to grasp the threaded post 14 b to facilitate positioning the mounting plate 4 within the aperture created within the sinus cavity adjacent a rear portion of a skull of a patient, i.e., the occiput. Moreover, and as noted above, forceps 60 may be utilized to grasp the threaded post 14 b to maintain the mounting plate 4 a in a non-rotatable state when the fixation nut 8 is rotated about the elongated post 14 b . Forceps 60 includes first and second shafts 61 and 62 .
  • Each shaft 61 and 62 has a respective jaw member 63 and 64 extending from a distal end thereof and a handle 65 and 66 disposed at a proximal end thereof for effecting movement of the jaw members 63 and 64 relative to one another about a pivot 67 .
  • the jaw members 63 and 64 are movable from a first position ( FIG. 11C ) wherein the jaw members 63 and 64 are disposed in spaced relation relative to one another to a second position wherein the jaw members 63 and 64 cooperate to grasp the threaded post ( FIGS. 9-11B ).
  • Each of the jaw members 63 and 64 includes a respective inner facing surface 69 and 68 ( FIGS. 10 and 11C ) having a respective proximal end 70 and 71 ( FIG. 9 ) and a respective distal end 72 and 73 that is offset from the proximal end 70 and 71 ( FIG. 10 ).
  • the distal ends 72 and 73 of the inner facing surfaces 69 and 68 remain spaced-apart from each other to facilitate grasping the threaded post therebetween ( FIGS. 9-11A ).
  • the distal ends 72 and 73 of the jaw members 63 and 64 include a protrusion 74 and 75 ( FIGS. 10 and 11C ) thereon that is configured to releasably engage the non-threaded aperture 21 on the threaded post 14 b.
  • a ratchet mechanism 90 may be operably coupled to the shafts 61 and 62 adjacent the handles 65 and 66 and is configured to maintain the jaw members 63 and 64 in one or more positions. More particularly, each shaft 61 and 62 includes a respective ratchet component 90 a and 90 b each having a plurality of ratchet teeth that are configured to matingly engage with one another.
  • the inner facing surfaces 69 and 68 of the forceps 60 may be provided without the protrusions 74 and 75 .
  • the inner facing surfaces 69 and 68 of forceps 60 may include one or more slots or grooves that are configured to matingly engage with the plurality of threads 16 a on the threaded post 14 a.
  • Wrench assembly 80 is configured to rotate the fixation nut 8 about the threaded post 14 b ( FIGS. 11B and 11C ).
  • Wrench assembly 80 includes a coupling member 81 that is configured to threadably engage the threaded aperture 19 on the threaded post 14 b of the mounting plate 4 ( FIGS. 11A-11C ).
  • Wrench assembly 80 includes a wrench head member 82 that is selectively and coaxially engageable with the coupling member 81 ( FIGS. 11A-11C ).
  • the coupling member 81 includes a generally elongated shaft 83 ( FIGS. 11A and 11D ) having a threaded distal end 84 ( FIGS. 11A and 11C ), and proximal end 85 that is configured to rotate the threaded distal end 84 into the threaded aperture 19 of the threaded post 14 b of the mounting plate 4 a for securement of the coupling member to the mounting plate 4 .
  • a portion 86 ( FIGS. 11A and 11D ) of the coupling member 81 proximate to the threaded distal end 84 has an outer diameter that is slightly smaller than an inner diameter of the fixation nut 8 , so that the fixation nut 8 can slide over portion 86 .
  • the portion 86 is configured to facilitate positioning the fixation nut 8 on the threaded post 14 b of the mounting plate 4 a . More particularly, the portion 86 is configured to guide the fixation nut 8 into position on the threaded post 14 b .
  • the elongated extension 50 of the fixation nut 8 is configured to slide over the portion 86 and guide the fixation nut 8 into position on the threaded post 14 b
  • the proximal end 85 of the coupling member 81 is complementary shaped to receive an open end of a turn-key 87 .
  • the proximal end 85 and the open end of the turn-key 87 include a hexagonal shape.
  • the turn-key 87 is configured to facilitate rotation of the threaded distal end 84 into the threaded aperture 19 on the threaded post 14 b of the mounting plate 4 a.
  • a portion 88 of the shaft 81 proximate to the threaded distal end 84 is textured or otherwise treated to provide an additional gripping surface for a user, or to provide mechanical interface for maintaining the turn-key 87 at the proximal end 85 .
  • the wrench head member 82 is configured to releasably engage the fixation nut 8 and rotate the fixation nut 8 about the threaded post 14 b of the mounting plate 4 a .
  • the wrench head member 82 is complementary shaped to receive and turn the fixation nut 8 .
  • a proximal end 89 of the wrench head member 82 is textured or otherwise treated to facilitate rotation of the wrench member head.
  • the wrench head member 82 may be utilized to rotate the fixation nut 8 about the threaded post 14 a.
  • An aperture is created within a sinus cavity adjacent a rear portion of a skull of a patient.
  • the aperture may be created utilizing one or more suitable surgical devices, e.g., a surgical drill.
  • the forceps 60 may be utilized for grasping the threaded post 14 b to insert the mounting plate 4 a through the aperture created within the sinus cavity and to temporarily hold the threaded post 14 b in place ( FIGS. 9-11B ). Thereafter, coupling member 6 is positioned about the threaded post 14 b.
  • the fixation nut 8 including the washer 54 is positioned about the threaded post 14 b and over the base 36 of coupling member 6 .
  • the coupling member 81 of the wrench assembly 80 may be coupled to the threaded post 14 b , see FIG. 11A where the coupling member 81 is shown adjacent the threaded post 14 b just before coupling the coupling member 81 to the threaded post 14 b .
  • the turn-key may be utilized to facilitate turning the coupling member 81 about the threaded post 14 b.
  • the fixation nut 8 is rotated in a predetermined direction, e.g., a clockwise direction, about the threaded post 14 b .
  • a predetermined direction e.g., a clockwise direction
  • the wrench head member 82 may be positioned coaxially about the coupling member 81 and into engagement with the fixation nut 8 ( FIG. 11B ). It should be noted that once the fixation nut 8 has been engaged to the threaded post 14 b , the forceps 60 may be removed from engagement with the threaded post 14 b ( FIG. 11C ).
  • the threaded engagement between to threaded distal end 84 and the threaded aperture 19 may be opposed to the threaded engagement between fixation nut 8 and post 14 b (i.e., one may engage in a clockwise direction and the other in a counterclockwise direction) so that as the fixation nut 8 is tightened the coupling member 6 does not loosen from the threaded post 14 b . In this manner, even after the forceps 60 have been removed, control may be exerted over the threaded post 14 b as the fixation nut 8 is tightened.
  • the wrench head member 82 is rotated about the fixation nut 8 , which, in turn, rotates the fixation nut 8 about the threaded post 14 b , this in turn, causes the coupling member 6 and the mounting plate 4 a to move toward one another and into secured engagement with an interior and exterior surface, respectively, of the skull of a patient.
  • the wrench assembly 80 is removed from the occipital fixation assembly 2 ( FIG. 11D ). Thereafter, the surgical rod “R” is coupled to the offset extension 34 of the coupling member 6 and secured to the coupling member 6 via the set screw 42 .
  • the slot 38 of the offset extension 34 includes a taper locking mechanism for capturing the surgical rod “R” such that a set screw 42 is not required.
  • the slot 38 of the offset extension 34 includes a polyaxial coupling for capturing the surgical rod “R” such that an angle and trajectory of the surgical rod “R” does not limit the position of the occipital fixation assembly 2 .
  • a fixation nut may be integrally formed with a coupling member. More particularly, and with reference to FIGS. 12A and 12B , a coupling member 6 A and a fixation nut 8 A are integrally formed with one another via one or more suitable coupling methods, e.g., soldering, brazing or welding. In this instance, the fixation nut 8 A is swaged, but rotatable, to the coupling member 8 A along with a washer making it an integral assembly. In this instance, the coupling member 6 A including the fixation nut 8 A are positioned about the threaded post 14 b simultaneously.
  • suitable coupling methods e.g., soldering, brazing or welding.
  • the fixation nut 8 A is swaged, but rotatable, to the coupling member 8 A along with a washer making it an integral assembly.
  • the coupling member 6 A including the fixation nut 8 A are positioned about the threaded post 14 b simultaneously.

Abstract

An occipital fixation assembly is provided. The occipital fixation assembly includes a first mounting plate configured for placement within a sinus cavity adjacent a rear portion of a skull of a patient. A threaded post extends from the first mounting plate. A coupling member includes an aperture configured to receive the threaded post therethrough. The coupling member includes an offset extension configured to support a surgical rod thereon. A fixation nut configured to threadably engage the threaded post of the first mounting plate is rotatable about the threaded post and translatable therealong. The fixation nut is rotatable with respect to the first mounting plate and the coupling member such that rotation of the fixation nut in a predetermined direction brings the first mounting plate and the coupling member toward one another and into secured engagement with the skull of a patient.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit of and priority to U.S. Provisional Application No. 61/278,925 to Sandhu et al., filed on Oct. 14, 2009, the entire contents of which are incorporated by reference herein.
  • BACKGROUND
  • 1. Technical Field
  • The present disclosure relates to an occipital fixation assembly, system and method for attaching the same. More particularly, the present disclosure relates to an occipital fixation assembly that is configured to support a surgical implant thereon and securely anchor to an inside of a skull of a patient.
  • 2. Description of Related Art
  • As is commonly known in the art, an occipitocervical junction includes an occiput, atlas and axis. The occipitocervical junction is a unique interface between the cranium and cervical spine. More than 50% of the rotation and flexion-extension are provided from this region. Ligaments in this region must resist forces about all six degrees of freedom. Moreover, instrumentation constructs not only must resist forces in all of these vectors, but also must resist the significant moment created by the suboccipital bone and the cervical spine, which meet at a 50° angle. Any instrumentation construct designed for use in this region must, therefore, have adequate geometry to interface with the osseous structures of the spinal structures as well as have sufficient rigidity and purchase to resist these forces until bone fusion can occur.
  • At one time, occipitocervical instability and lesions located at the occipitocervical junction were considered inoperable and terminal. Since the first description of an occipitocervical fusion, multiple methods of fusion in this region have been described. Descriptions of simple bone gratis with halo immobilization; wire, pin, or hook constructs; rigid metallic loops and rectangles fixed to the bone with either screws or wires; and most recently, plate or rod constructs with screws have all been described. In general the evolution of this technology has focused on providing increasingly more rigid constructs to facilitate bone fusion and to minimize the need for and duration of external immobilization.
  • A common technique for fixing occipitocervical instability is the use of an inverted Y-shaped screw plate. Using this technique, the plate is secured to C1-2 with transarticular screws and to the suboccipital bone with paramedian screws; the suboccipital bone varies in thickness, with a mean thickness of 14 mm. Screws must be carefully selected to provide adequate purchase, yet avoid cerebella injury. Utilizing the maximum screw length possible is critical because shorter screws have decreased resistance to pullout. If stabilization is required below the C1-2 level, then lateral mass screws can be placed through additional holes in a longer plate to include these levels as well. In certain instances, a bone graft may be added to promote fusion. The Y-shaped plate, in combination with transarticular screws, is an economical alternative. Immediate postoperative stabilization is achieved and very low rates of pseudarthrosis have been reported. Due to the risk of selecting the correct screw size and the potential for cerebellar injury along with the potential for screw pull-out due to the short nature of the screw lengths allowed for use, it may prove advantageous to provide an occipital fixation assembly, and a system and method for attaching the same that can reduce the chance for pull-out and reduce the risk for cerebellar injury.
  • SUMMARY
  • The present disclosure provides an occipital fixation assembly. The occipital fixation assembly includes a first mounting plate configured for placement within a sinus cavity adjacent a rear portion of a skull of a patient. A threaded post extends from the first mounting plate. A coupling member includes an aperture configured to receive the threaded post therethrough and an offset extension configured to support a surgical rod thereon. A fixation nut, configured to threadably engage the threaded post of the first mounting plate, is rotatable about the threaded post and translatable therealong. The fixation nut is rotatable with respect to the first mounting plate and the coupling member such that rotation of the fixation nut in a predetermined direction brings the first mounting plate and the coupling member toward one another and into secured engagement with the skull of a patient.
  • The present disclosure provides an occipital fixation system or system for attaching an occipital fixation assembly to a patient for subsequent attachment of a surgical rod thereto. The system includes a first mounting plate configured for placement within a sinus cavity adjacent a rear portion of a skull of a patient. The first mounting plate has a threaded post that extends therefrom. A coupling member includes an aperture configured to receive the threaded post therethrough. An offset extension disposed in parallel orientation with respect to the threaded post is configured to support a surgical rod thereon. A fixation nut configured to threadably engage the threaded post is rotatable about the threaded post and translatable therealong. The fixation nut is rotatable with respect to the first mounting plate and the coupling member such that rotation of the fixation nut in a predetermined direction brings the first mounting plate and the coupling member toward one another and into secured engagement with the skull of a patient. A forceps is configured to grasp a portion of the threaded post when the threaded post has been inserted through an aperture that has been previously drilled in the sinus cavity. A wrench assembly is adapted to engage and, subsequently, rotate the fixation nut about the threaded post.
  • The present disclosure also provides a method for attaching an occipital fixation assembly to a patient for subsequent attachment of a surgical rod thereto. The method includes creating an aperture within a sinus cavity adjacent a rear portion of a skull of a patient. A threaded post of a first mounting plate of an occipital fixation assembly is, subsequently, positioned through the aperture created within the sinus cavity. Thereafter, a coupling member of the occipital fixation assembly is attached to the threaded post of the first mounting plate. A fixation nut is then positioned about the threaded post and, subsequently, rotated in a predetermined direction about the threaded post such that the first mounting plate and the coupling member move toward one another and into secured engagement with the skull of a patient. A surgical rod is coupled to the coupling member.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various embodiments of the present disclosure are described herein with reference to the drawings wherein:
  • FIG. 1 is a perspective view of an occipital fixation assembly with a surgical rod secured thereon according to an embodiment of the present disclosure;
  • FIG. 2 is a front view of the occipital fixation assembly depicted in FIG. 1;
  • FIG. 3 is an exploded view of the occipital fixation assembly depicted in FIG. 1 with components separated;
  • FIG. 4 is an exploded view of a coupling member associated with the occipital fixation assembly depicted in FIG. 1;
  • FIG. 5 is a perspective view of an alternative configuration of the occipital fixation assembly depicted in FIG. 1;
  • FIG. 6 is a front view of the occipital fixation assembly depicted in FIG. 5;
  • FIGS. 7A-7C are perspective views illustrating a mounting plate of the occipital fixation assembly depicted in FIG. 5 with the mounting plate shown in various configurations;
  • FIG. 7D is a cross-sectional view of the mounting plate depicted in the configuration of FIG. 7A taken along section line 7D-7D;
  • FIG. 8A is a perspective view of an alternative embodiment of a threaded post that may be utilized with the occipital fixation assembly depicted in FIG. 1;
  • FIG. 8B is a side view of the threaded post depicted in FIG. 8A;
  • FIG. 9 is a perspective view of a surgical instrument grasping the threaded post depicted in FIG. 8A;
  • FIG. 10 is an enlarged area of detail depicted in FIG. 9;
  • FIGS. 11A-11D are perspective views illustrating an occipital fixation system and method for attaching the occipital fixation assembly to a patient for subsequent attachment of a surgical rod thereto;
  • FIG. 12A is a cross-sectional view of a coupling member according to another embodiment of the present disclosure; and
  • FIG. 12B an enlarged area of detail depicted in FIG. 12B.
  • DETAILED DESCRIPTION
  • In the following description, as is traditional, the term “proximal” refers to a portion of a surgical instrument closer to the operator while the term “distal” refers to a portion of a surgical instrument farther from the operator. In addition, the term “cephalad” is used in this application to indicate a direction toward a patient's head, whereas the term “caudad” indicates a direction toward the patient's feet. Further still, for the purposes of this application, the term “medial” indicates a direction toward the middle of the body of the patient, whilst the term “lateral” indicates a direction toward a side of the body of the patient (i.e., away from the middle of the body of the patient). The term “posterior” indicates a direction toward the patient's back, and the term “anterior” indicates a direction toward the patient's front. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
  • With reference to FIGS. 1-7C, and initially with reference to FIG. 1, an occipital fixation assembly 2 is illustrated. The occipital fixation assembly 2 is positionable within a sinus cavity adjacent a rear portion of the skull, lateral to a brain stem region, i.e., adjacent the occiput. To this end, the occipital fixation assembly 2 includes a first mounting plate 4, a coupling member 6 and a fixation nut 8.
  • Continuing with reference to FIG. 1, the mounting plate 4 is illustrated. Mounting plate 4 includes a generally elongated configuration having top and bottom surfaces 10 and 12, respectively. In the illustrated embodiments, the mounting plate 4 includes a slight curvature or concavity “C” (see FIG. 2 for example) that is configured to follow a contour of the occiput of a skull. As can be appreciated, this curvature or concavity facilitates anchoring the mounting plate 4 to the occiput.
  • One or more barbs (two barbs 20 a and 20 b are shown in the drawings) are operably disposed on the top surface 10 of the mounting plate 4 (FIG. 1). Barbs 20 a and 20 b are configured to facilitate anchoring the mounting plate 4 into an interior surface of the skull of a patient and to minimize rotation of the mounting plate 4 when the fixation nut 8 is rotated about a threaded post 14 a (FIGS. 1-5) or movement of the mounting plate 4 when installed in the occiput. The barbs 20 a and 20 b include a generally conical configuration with a substantially pointed tip.
  • In one particular embodiment, to facilitate fixation of the mounting plate 4 to an interior surface of a skull, the barbs 20 a and 20 b may reside in generally circumferential recesses 21 a and 21 b, respectively, see FIGS. 5-7C. The recesses 21 a and 21 b are configured to engage soft tissue that may be disposed adjacent the interior surface of the skull. The barbs 20 a and 20 b are set into the recesses 21 a and 21 b at a depth that allows a majority of a surface area of the barbs 20 a and 20 b to sufficiently anchor into the interior surface of the skull.
  • With reference again to FIG. 1, the elongated post 14 a extends in a generally orthogonal orientation from the top surface 10 such that the mounting plate 4 has a generally “T” shape (FIG. 3). The elongated post 14 a may be monolithically formed with the mounting plate 4 or may be coupled to the mounting plate 4 by one or more suitable coupling methods, e.g., welded to the top surface 10 of the mounting plate 4. In the illustrated embodiments, the elongated post 14 a is monolithically formed with the mounting plate 4.
  • A plurality of threads 16 a extends along an outer circumferential surface of the elongated post 14 a. The plurality of threads 16 a extends along a majority of a length of the elongated post such that a portion of the elongated post 14 a adjacent the top surface 10 of the mounting plate 4 is devoid of the plurality of threads 16 a (FIGS. 2 and 3). This portion of the elongated post devoid of the plurality of threads 16 a serves as a relief for cutting the plurality of threads 16 a. Moreover, this portion of the elongated post 16 a devoid of the plurality of threads allows a mountng plate 5 to be threaded over the threaded post 16 a until the mounting plate 5 passes the plurality of threads 16 a where it can be rotated 360° (see FIG. 7A in combination with FIG. 7B) without advancing in or out of the occiput when being deployed into a final position (FIG. 7C), described in greater detail below. In certain instances, this portion of the elongated post devoid of the plurality of threads is intended to prevent “over-tightening” of the coupling member 6 to the elongated post 14 a.
  • In the embodiment illustrated in FIGS. 1-7C, a proximal end of the threaded post 14 a includes a slot 17 (FIGS. 1 and 3) that is configured to receive a working end of a driving device, e.g., a screwdriver (or the like), that is configured to rotate the mounting plate 4 with respect to the fixation nut 8 when the fixation nut 8 is positioned on the threaded post 14 a. The driving tool may include a blade configured for receipt in the slot 17 for holding the mounting plate 4 in a desired orientation while the fixation nut 8 is rotated about the threaded post 14 a. Additionally, the slot 17 turns the threaded post 14 a (and, thus, the mounting plate 4) after the mounting plate 5 is pulled and set to the inside surface of the occiput (with barbs 20 c and 20 d) to the final deployed cross position (FIG. 7C), described in greater detail below.
  • Continuing with reference to FIG. 1, the coupling member 6 is illustrated. Coupling member 6 is configured to operably couple to the mounting plate 4 (or, in some instances, to mounting plate 4 and a second mounting plate 5, see FIGS. 5-7C) and to engage an exterior surface of a skull. To these ends, coupling member 6 includes a base member 36.
  • Base 36 includes a generally annular configuration defined by an outer peripheral wall 35 that joins respective bottom and top surfaces 31 and 33 (FIGS. 1-4) to each other. Bottom surface 31 includes one or more barbs, e.g., three barbs 20 e-20 g, disposed thereon (see FIG. 2 in combination with FIG. 4) that are configured in a manner as described above with respect to barbs 20 a-20 b. However, unlike barbs 20 a-20 b that are configured to anchor into an interior surface of the skull, barbs 20 e-20 g are configured to anchor to an exterior surface of the skull. Top surface 33 is configured to support the fixation nut 8 thereon. An aperture 32 (FIGS. 3 and 4) extends from the top surface 33 to the bottom surface 31 and is configured to receive the threaded post 14 a (or in certain embodiments, a threaded post 14 b, described in greater detail below) and a portion of the fixation nut 8 therethrough.
  • Coupling member 6 is also configured to support the surgical rod “R” thereon (FIG. 1). To this end, coupling member 6 includes an offset extension 34 (FIGS. 1-4).
  • Offset extension 34 is disposed in parallel orientation with respect to the threaded post 14 a (or in some embodiments with respect to the threaded post 14 b), see FIGS. 1-3 and 5-7. The offset extension 34 includes a generally elongated slot 38 (FIGS. 3 and 4) having an intermittent threaded portion 40 (FIGS. 3 and 4 show one half of the intermittent threaded portion 40) configured to receive a set-screw 42 (FIGS. 1-3) therein and a non-threaded portion 44 (FIGS. 3 and 4) configured to receive the surgical rod “R” therein (FIGS. 1 and 2). The threaded and non-threaded portions, 40 and 44, respectively, of the offset extension 34 are arranged such that when the surgical rod “R” is secured thereto, the surgical rod “R” is oriented perpendicular to the set-screw 42 (FIGS. 1 and 2).
  • With reference again to FIG. 1, the fixation nut 8 is shown. Fixation nut 8 is configured to threadably engage the threaded post 14 a of the mounting plate 4 (or in some instances threaded post 14 b (FIG. 8A)). Fixation nut 8 is rotatable about the threaded post 14 a and translatable therealong. Moreover, fixation nut 8 is rotatable with respect to the mounting plate 4 and the coupling member 6 such that rotation of the fixation nut 8 in a predetermined direction, e.g., a clockwise direction, brings the mounting plate 4 and the coupling member 6 toward one another and into secured engagement with the skull of a patient.
  • Preferably, a bottom surface 48 of the fixation nut 8 includes a generally elongated extension 50 that is configured to extend into an aperture 52 of a washer 54 and the aperture 32 of the base 36 (FIG. 4). The extension 50 is configured to facilitate positioning the fixation nut 8 about the threaded post 14 a (or threaded post 14 b) and the washer 54 distributes or “spreads” a load of the fixation nut 8 evenly across the top surface 33 of the base member 36 when the fixation nut is rotated about the threaded post 14 a. In the embodiment illustrated in FIG. 4, the washer 56 has a generally conical shape and is also intended to serve as a lock washer. While the fixation nut 8 and washer 56 have been described herein as two separate components that couple to the coupling member 6, it is within the purview of the present disclosure that the coupling member 6, fixation nut 8 and washer 56 may be formed as one integral component.
  • To facilitate fixation of occipital fixation assembly 2 a to an interior surface of a skull, a second mounting plate 5 may be operably coupled to the mounting plate 4, see FIGS. 5-7C. To this end, the mounting plate 5 includes an opening 23 of suitable dimension, see FIGS. 7A-7C. More particularly, the opening 23 includes an outer diameter that is less than an outer diameter defined by an outer edge of the plurality of threads 16 a. The mounting plate 5 is rotatable about the threaded post 14 a such that the mounting plate 5 may be rotated from a first position, e.g., a “nested position,” (FIGS. 7A and 7D) that is conducive for positioning the mounting plates 4 and 5 adjacent to an interior surface of a skull, to a subsequent or anchoring position (FIGS. 7B-7C) that is conducive for securing or lagging the mounting plates 4 and 5 to the interior surface of a skull. In the anchoring position, the mounting plates 4 and 5 may be disposed transverse to each other and form a generally crisscross or “X” shape or configuration, as best seen in FIG. 7C.
  • Mounting plate 5 includes one or more barbs, e.g., barbs 20 c and 20 d, disposed on a top surface 30 thereof. As described above with respect to barbs 20 a and 20 b, barbs 20 c and 20 d may reside in corresponding recesses 21 c and 21 d, respectively, see FIGS. 5-7C).
  • To facilitate positioning the mounting plates 4 and 5 inside the occiput, a bottom surface 28 of the mounting plate 5 includes a pair of indents 25 a and 25 b that are configured to releasably engage the barbs 20 a and 20 b (FIG. 7D); the indents 25 a and 25 b are shown engaged with the barbs 20 a and 20 b, respectively and, as a result thereof, are not explicitly shown. In the “nested” position, the mounting plate 5 and the mounting plate 4 can be inserted together into an aperture or slot in the occiput and rotated together until a final position, e.g., an anchored position, is achieved for the mounting plate 5, which can be seated or anchored into the occiput by pulling the nested mounting plates 4 and 5 so that the barbs 20 c and 20 d on the mounting plate 5 “dig” into the inside of the occiput. Subsequently, the mounting plate 4 can be deployed to the final (cross) position (FIG. 7C) using the slot 17 in the end of the threaded bolt. More particularly, the operable end of a screwdriver may be utilized to engage the slot 17 and, subsequently, turn the mounting plate 4 that disengages the barbs 20 a and 20 b from the respective indents 25 a and 25 b. The barbs 20 a and 20 b on the mounting plate 4 may then be brought into contact with the inside of the occiput, thus, fixing both mounting plates 4 and 5 in place.
  • To facilitate anchoring the mounting plates 4 and 5 into the interior surface of a skull, a bottom surface 28 of the mounting plate 5 includes a notched portion 24 that is configured to receive and/or mate with a portion, e.g., a corresponding notched portion 26 disposed on the top surface 10, of the mounting plate 4 (FIGS. 7B and 7D). In the anchored position, the notched portions 24 and 26 enable the top surface 10 of the mounting plate and top surface 30 of the mounting plate 5 to be flush with each other, as best seen in FIG. 7D; this provides a substantially uniform contact surface between the mounting plates 4 and 5 and the interior surface of the skull. This substantially uniform contact surface facilitates positioning the barbs 20 a-20 d adjacent to the interior surface of the skull, which, in turn, ensures that the barbs 20 a-20 d properly engage the interior surface of skull. As can be appreciated, having all the barbs 20 a-20 d properly engaged to the interior surface of the skull reduces and/or eliminates the likelihood of inadvertent movement of the mounting plates 4 and 5 after the occipital fixation assembly 2 a has been affixed to the interior surface of the skull.
  • In use, an aperture is, initially, created within a sinus cavity adjacent a rear portion of a skull of a patient, i.e., adjacent the occiput. For purposes herein, the aperture may be created utilizing one or more suitable surgical devices, e.g., a surgical drill.
  • Mounting plate 4 is positioned through the aperture created within the sinus cavity adjacent the occiput. Thereafter, coupling member 6 is positioned about the threaded post 14 a (see FIG. 1 in combination with FIG. 3). In particular, once the physician creates the desired opening the patient's skull, one end of the mounting plate 4 is inserted through the opening until the opposing end clears the surface of the skull and can be positioned beneath the surface of the skull. Subsequently, the mounting plate 4 is moved in a generally opposing direction such that the entire mounting plate 4 is disposed beneath the surface of the skull (i.e. on the inside). Once positioned, the threaded post 14 a extends through the opening. This installation technique is applicable to all disclosed embodiments of the occipital fixation assembly. As will be appreciated, the opening will have a dimension that is slightly greater than the dimensions of the mounting plate 4.
  • The fixation nut 8 including the washer 54 is positioned about the threaded post 14 a and over the base 36 of coupling member 6. For illustrative purposes, the fixation nut 8 including washer 54 is shown engaged with the coupling member 6. Subsequently, the fixation nut 8 is rotated in a predetermined direction, e.g., a clockwise direction, about the threaded post 14 a. In one particular embodiment, a screwdriver (or other suitable device) is utilized to engage the slot 17 to facilitate rotation the mounting plate 4 and/or fixation nut 8. Rotation of the fixation nut 8 about the threaded post 14 b causes the coupling member 6 and the mounting plate 4 to move toward one another and into secured engagement with an interior and exterior surface, respectively, of the skull of a patient. As a result thereof, the occiput is “sandwiched” between the surgical rod coupling member 6 (with barbs 20 e-20 g) and mounting plate 4 (with barbs 20 a-20 b) by threading the fixation nut 8 over the threaded post 14 a and tightening to the specified torque.
  • In some surgical scenarios, the occiput is “sandwiched” between the surgical rod coupling member 6 (with barbs 20 e-20 g) and mounting plates 4 and 5 (with barbs 20 a-20 d) by threading the fixation nut 8 over the threaded post 14 a and tightening to the specified torque.
  • Thereafter, the surgical rod “R” is coupled to the offset extension 34 of the coupling member 6 and secured to the coupling member 6 via the set screw 42.
  • As can be appreciated, the combination of the unique mounting plate 4 having the threaded post 14 a configured to couple to the coupling member 6 reduces and/or eliminates the likelihood of the occipital fixation assembly 2 inadvertently pulling out from the occiput, which, in turn, reduces the risk for cerebellar injury. Moreover, anchoring the barbs 20 a-20 b and the barbs 20 e-20 g into the interior and exterior surfaces, respectively, of the skull diminishes the likelihood of inadvertent rotation of mounting plate 4 and coupling member 6 after the surgical rod “R” has been attached to the occipital fixation assembly and/or the spine.
  • With reference to FIGS. 8A and 8B, an alternate embodiment of an elongated post is designated elongated post 14 b. In this embodiment, the elongated post 14 b is provided without the slot 17. More particularly, unlike the elongated post 14 a, elongated post 14 b includes a plurality of non-continuous threads 16 b extending partially along an outer circumferential surface of the elongated post 14 b. A proximal end of the elongated post 14 b includes a threaded aperture 19 that extends into the threaded post 14 b (FIG. 8A). The threaded aperture 19 is configured to receive one end of a surgical device, e.g., wrench assembly 80, for positioning and turning the fixation nut 8 about the threaded post 14 b (FIGS. 11A-11D). A non-threaded aperture 21 extends traverse to the threaded aperture 19 and is configured to receive one end of a surgical device, e.g., a forceps 60, for grasping the threaded post 14 b and maintaining the mounting plate 4 a in a non-rotatable state when the fixation nut 8 is rotated about the elongated post 14 b (FIGS. 9-11B).
  • With reference to FIGS. 9-11D, system 100 includes a forceps 60 (FIGS. 9 and 11A-11C), a wrench assembly 80 (FIGS. 11A-11D) and the occipital fixation assembly 2 b (FIG. 11D) that includes the mounting plate 4 a with the threaded post 14 b (FIG. 10).
  • Forceps 60 is configured to grasp a portion of the threaded post 14 b (as best seen in FIG. 10). More particularly, the forceps 60 may be utilized to grasp the threaded post 14 b to facilitate positioning the mounting plate 4 within the aperture created within the sinus cavity adjacent a rear portion of a skull of a patient, i.e., the occiput. Moreover, and as noted above, forceps 60 may be utilized to grasp the threaded post 14 b to maintain the mounting plate 4 a in a non-rotatable state when the fixation nut 8 is rotated about the elongated post 14 b. Forceps 60 includes first and second shafts 61 and 62. Each shaft 61 and 62 has a respective jaw member 63 and 64 extending from a distal end thereof and a handle 65 and 66 disposed at a proximal end thereof for effecting movement of the jaw members 63 and 64 relative to one another about a pivot 67. The jaw members 63 and 64 are movable from a first position (FIG. 11C) wherein the jaw members 63 and 64 are disposed in spaced relation relative to one another to a second position wherein the jaw members 63 and 64 cooperate to grasp the threaded post (FIGS. 9-11B).
  • Each of the jaw members 63 and 64 includes a respective inner facing surface 69 and 68 (FIGS. 10 and 11C) having a respective proximal end 70 and 71 (FIG. 9) and a respective distal end 72 and 73 that is offset from the proximal end 70 and 71 (FIG. 10). In the closed configuration, the distal ends 72 and 73 of the inner facing surfaces 69 and 68 remain spaced-apart from each other to facilitate grasping the threaded post therebetween (FIGS. 9-11A).
  • The distal ends 72 and 73 of the jaw members 63 and 64 include a protrusion 74 and 75 (FIGS. 10 and 11C) thereon that is configured to releasably engage the non-threaded aperture 21 on the threaded post 14 b.
  • A ratchet mechanism 90 may be operably coupled to the shafts 61 and 62 adjacent the handles 65 and 66 and is configured to maintain the jaw members 63 and 64 in one or more positions. More particularly, each shaft 61 and 62 includes a respective ratchet component 90 a and 90 b each having a plurality of ratchet teeth that are configured to matingly engage with one another.
  • As can be appreciated, in the instance where the occipital fixation assembly 2 includes a mounting plate 4 with a threaded post 14 a, the inner facing surfaces 69 and 68 of the forceps 60 may be provided without the protrusions 74 and 75. For example, the inner facing surfaces 69 and 68 of forceps 60 may include one or more slots or grooves that are configured to matingly engage with the plurality of threads 16 a on the threaded post 14 a.
  • Wrench assembly 80 is configured to rotate the fixation nut 8 about the threaded post 14 b (FIGS. 11B and 11C). Wrench assembly 80 includes a coupling member 81 that is configured to threadably engage the threaded aperture 19 on the threaded post 14 b of the mounting plate 4 (FIGS. 11A-11C). Wrench assembly 80 includes a wrench head member 82 that is selectively and coaxially engageable with the coupling member 81 (FIGS. 11A-11C).
  • The coupling member 81 includes a generally elongated shaft 83 (FIGS. 11A and 11D) having a threaded distal end 84 (FIGS. 11A and 11C), and proximal end 85 that is configured to rotate the threaded distal end 84 into the threaded aperture 19 of the threaded post 14 b of the mounting plate 4 a for securement of the coupling member to the mounting plate 4.
  • A portion 86 (FIGS. 11A and 11D) of the coupling member 81 proximate to the threaded distal end 84 has an outer diameter that is slightly smaller than an inner diameter of the fixation nut 8, so that the fixation nut 8 can slide over portion 86. The portion 86 is configured to facilitate positioning the fixation nut 8 on the threaded post 14 b of the mounting plate 4 a. More particularly, the portion 86 is configured to guide the fixation nut 8 into position on the threaded post 14 b. In one particular embodiment, the elongated extension 50 of the fixation nut 8 is configured to slide over the portion 86 and guide the fixation nut 8 into position on the threaded post 14 b
  • The proximal end 85 of the coupling member 81 is complementary shaped to receive an open end of a turn-key 87. In the illustrated embodiment, the proximal end 85 and the open end of the turn-key 87 include a hexagonal shape. The turn-key 87 is configured to facilitate rotation of the threaded distal end 84 into the threaded aperture 19 on the threaded post 14 b of the mounting plate 4 a.
  • In the embodiment illustrated in FIGS. 11A-11D, a portion 88 of the shaft 81 proximate to the threaded distal end 84 is textured or otherwise treated to provide an additional gripping surface for a user, or to provide mechanical interface for maintaining the turn-key 87 at the proximal end 85.
  • The wrench head member 82 is configured to releasably engage the fixation nut 8 and rotate the fixation nut 8 about the threaded post 14 b of the mounting plate 4 a. To this end, the wrench head member 82 is complementary shaped to receive and turn the fixation nut 8. In the embodiment illustrated in FIGS. 11A-11D, a proximal end 89 of the wrench head member 82 is textured or otherwise treated to facilitate rotation of the wrench member head. As can be appreciated, the wrench head member 82 may be utilized to rotate the fixation nut 8 about the threaded post 14 a.
  • Operation of the system 100 including the occipital fixation assembly 2 b including the mounting plate 4 a with the threaded post 14 b is described in terms of use of a method for attaching the occipital fixation assembly 2 b for subsequent attachment of a surgical rod “R” thereto.
  • An aperture is created within a sinus cavity adjacent a rear portion of a skull of a patient. For purposes herein, the aperture may be created utilizing one or more suitable surgical devices, e.g., a surgical drill.
  • The forceps 60 may be utilized for grasping the threaded post 14 b to insert the mounting plate 4 a through the aperture created within the sinus cavity and to temporarily hold the threaded post 14 b in place (FIGS. 9-11B). Thereafter, coupling member 6 is positioned about the threaded post 14 b.
  • The fixation nut 8 including the washer 54 is positioned about the threaded post 14 b and over the base 36 of coupling member 6. To facilitate positioning the fixation nut 8 about the threaded post 14 b, the coupling member 81 of the wrench assembly 80 may be coupled to the threaded post 14 b, see FIG. 11A where the coupling member 81 is shown adjacent the threaded post 14 b just before coupling the coupling member 81 to the threaded post 14 b. The turn-key may be utilized to facilitate turning the coupling member 81 about the threaded post 14 b.
  • Subsequently, the fixation nut 8 is rotated in a predetermined direction, e.g., a clockwise direction, about the threaded post 14 b. To facilitate rotating the fixation nut 8 about the threaded post 14 b, the wrench head member 82 may be positioned coaxially about the coupling member 81 and into engagement with the fixation nut 8 (FIG. 11B). It should be noted that once the fixation nut 8 has been engaged to the threaded post 14 b, the forceps 60 may be removed from engagement with the threaded post 14 b (FIG. 11C). It is further contemplated that the threaded engagement between to threaded distal end 84 and the threaded aperture 19 may be opposed to the threaded engagement between fixation nut 8 and post 14 b (i.e., one may engage in a clockwise direction and the other in a counterclockwise direction) so that as the fixation nut 8 is tightened the coupling member 6 does not loosen from the threaded post 14 b. In this manner, even after the forceps 60 have been removed, control may be exerted over the threaded post 14 b as the fixation nut 8 is tightened.
  • The wrench head member 82 is rotated about the fixation nut 8, which, in turn, rotates the fixation nut 8 about the threaded post 14 b, this in turn, causes the coupling member 6 and the mounting plate 4 a to move toward one another and into secured engagement with an interior and exterior surface, respectively, of the skull of a patient.
  • In one surgical scenario, after the coupling member 6 and the mounting plate 4 a are moved into secured engagement with the interior and exterior surface of the skull, the wrench assembly 80 is removed from the occipital fixation assembly 2 (FIG. 11D). Thereafter, the surgical rod “R” is coupled to the offset extension 34 of the coupling member 6 and secured to the coupling member 6 via the set screw 42.
  • From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, in some embodiments the slot 38 of the offset extension 34 includes a taper locking mechanism for capturing the surgical rod “R” such that a set screw 42 is not required.
  • In yet another embodiment, the slot 38 of the offset extension 34 includes a polyaxial coupling for capturing the surgical rod “R” such that an angle and trajectory of the surgical rod “R” does not limit the position of the occipital fixation assembly 2.
  • In yet another embodiment, a fixation nut may be integrally formed with a coupling member. More particularly, and with reference to FIGS. 12A and 12B, a coupling member 6A and a fixation nut 8A are integrally formed with one another via one or more suitable coupling methods, e.g., soldering, brazing or welding. In this instance, the fixation nut 8A is swaged, but rotatable, to the coupling member 8A along with a washer making it an integral assembly. In this instance, the coupling member 6A including the fixation nut 8A are positioned about the threaded post 14 b simultaneously.
  • While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims (25)

1. An occipital fixation assembly, comprising:
a first mounting plate configured for placement within a sinus cavity adjacent a rear portion of a skull of a patient, the first mounting plate having a threaded post extending therefrom;
a coupling member including an aperture configured to receive the threaded post therethrough, the coupling member including an offset extension disposed in parallel orientation with respect to the threaded post and configured to support a surgical rod thereon; and
a fixation nut configured to threadably engage the threaded post of the first mounting plate, the fixation nut rotatable about the threaded post and translatable therealong, the fixation nut rotatable with respect to the first mounting plate and the coupling member such that rotation of the fixation nut in a predetermined direction brings the first mounting plate and the coupling member toward one another and into secured engagement with the skull of a patient.
2. An occipital fixation assembly according to claim 1, wherein at least one barb is operably disposed on a top surface of the first mounting plate and at least one barb is operably disposed on a bottom surface of the coupling member.
3. An occipital fixation assembly according to claim 2, wherein the at least one barb operably disposed on the top surface of the first mounting plate and the at least one barb operably disposed on the bottom surface of the coupling member each configured to anchor into an inside of the skull and outside of the skull, respectively, to minimize respective rotation of the first mounting plate and coupling member when the fixation nut is rotated about the threaded post.
4. An occipital fixation assembly according to claim 1, wherein a washer is disposed between the fixation nut and the aperture on the coupling member and serves as a lock washer.
5. An occipital fixation assembly according to claim 4, wherein a bottom surface of the fixation nut is receivable through the washer and at least partially extends through the aperture of the coupling member, wherein the fixation nut is swaged to the coupling member making the coupling member and fixation nut an integral assembly.
6. An occipital fixation assembly according to claim 1, wherein the offset extension includes a generally elongated slot having a threaded portion configured to receive a set-screw therein and a non-threaded portion configured to receive the surgical rod therein, the threaded and non-threaded portions of the offset extension arranged such that when the surgical rod is secured thereto, the surgical rod is oriented perpendicular to the set-screw.
7. An occipital fixation assembly according to claim 1, wherein a second mounting plate is operably coupled to the first mounting plate and is rotatable about the threaded post.
8. An occipital fixation assembly according to claim 7, wherein a bottom surface of the second mounting plate is notched and configured to receive at least a portion of the first mounting plate therein such that a top surface of the first mounting plate and a top surface of the second mounting plate are flush with each other and the first and second mounting plates are disposed traverse to each other when the first and second mounting plates are attached to a skull of a patient.
9. An occipital fixation assembly according to claim 8, wherein the bottom surface of the second mounting plate includes a pair of indents configured to releasably receive a corresponding pair of barbs operably disposed on the top surface of the first mounting plate, the pair of indents configured to maintain the first mounting plate in a relatively fixed orientation with respect to the second mounting plate to facilitate positioning the first and second mounting plates inside a skull.
10. An occipital fixation assembly according to claim 1, wherein the threaded post of the first mounting plate includes a threaded aperture and a non-threaded aperture that extends traverse to the threaded aperture, the threaded aperture configured to receive one end of a surgical device for turning the fixation nut about the threaded post, and the non-threaded aperture configured to receive one end of a surgical device for grasping the threaded post.
11. An occipital fixation system, comprising:
an occipital fixation assembly, including:
a first mounting plate configured for placement within a sinus cavity adjacent a rear portion of a skull of a patient, the first mounting plate having a threaded post extending therefrom;
a coupling member including an aperture configured to receive the threaded post therethrough, the coupling member including an offset extension disposed in parallel orientation with respect to the threaded post and configured to support a surgical rod thereon;
a fixation nut configured to threadably engage the threaded post, the fixation nut rotatable about the threaded post and translatable therealong, the fixation nut rotatable with respect to the first mounting plate and the coupling member such that rotation of the fixation nut in a predetermined direction brings the first mounting plate and the coupling member toward one another and into secured engagement with the skull of a patient;
a forceps configured to grasp a portion of the threaded post to facilitate positioning the first mounting plate through an aperture that has been previously drilled in the sinus cavity; and
a wrench assembly configured to engage and, subsequently, rotate the fixation nut about the threaded post.
12. An occipital fixation system according to claim 11, wherein at least one barb is operably disposed on a top surface of the first mounting plate and at least one barb is operably disposed on a bottom surface of the coupling member.
13. An occipital fixation system according to claim 12, wherein the at least one barb operably disposed on the top surface of the first mounting plate and the at least one barb operably disposed on the bottom surface of the coupling member each configured to anchor into an inside of the skull and outside of the skull, respectively, to minimize respective rotation of the first mounting plate and coupling member when the fixation nut is rotated about the threaded post.
14. An occipital fixation system according to claim 11, wherein a washer is disposed between the fixation nut and the aperture on the coupling member and serves as a lock washer, wherein a bottom surface of the fixation nut is receivable through the washer and at least partially extends through the aperture of the coupling member, wherein the fixation nut is swaged to the coupling member making the coupling member and fixation nut an integral assembly.
15. An occipital fixation system according to claim 11, wherein the offset extension includes a generally elongated slot having a threaded portion configured to receive a set-screw therein and a non-threaded portion configured to receive the surgical rod therein, the threaded and non-threaded portions of the offset extension arranged such that when the surgical rod is secured thereto, the surgical rod is oriented perpendicular to the set-screw.
16. An occipital fixation system according to claim 11, wherein a second mounting plate is operably coupled to the first mounting plate and is rotatable about the threaded post.
17. An occipital fixation system according to claim 16, wherein in a bottom surface of the second mounting plate is notched and configured to receive at least a portion of the first mounting plate therein such that a top surface of the first mounting plate and a top surface of the second mounting plate are flush with each other and the first and second mounting plates are disposed traverse to each other when the first and second mounting plates are attached to a skull of a patient.
18. An occipital fixation assembly according to claim 17, wherein the bottom surface of the second mounting plate includes a pair of indents configured to releasably receive a corresponding pair of barbs operably disposed on the top surface of the first mounting plate, the pair of indents configured to maintain the first mounting plate in a relatively fixed orientation with respect to the second mounting plate to facilitate positioning the first and second mounting plates inside a skull.
19. An occipital fixation system according to claim 11, wherein the threaded post of the first mounting plate includes a threaded aperture and a non-threaded aperture that extends traverse to the threaded aperture, the threaded aperture configured to receive one end of a surgical device for turning the fixation nut about the threaded post and the non-threaded aperture configured to receive one end of a surgical device for grasping the threaded post.
20. An occipital fixation system according to claim 19, wherein the forceps includes first and second shafts each having a jaw member extending from a distal end thereof and a handle disposed at a proximal end thereof for effecting movement of the jaw members relative to one another about a pivot, the jaw members movable from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp the threaded post.
21. An occipital fixation system according to claim 20, wherein each of the jaw members are curved and includes an inner facing surface having a proximal end and a distal end that is offset from the proximal end such that in the closed configuration the distal ends of the inner facing surfaces remain spaced-apart from each other to facilitate grasping the threaded post therebetween, at least one of distal ends of the jaw members including a protrusion thereon that is configured to releasably engage the non-threaded aperture on the threaded post.
22. An occipital fixation system according to claim 20, wherein the wrench assembly comprises:
a coupling member configured to threadably engage the threaded aperture on the threaded post of the first mounting plate; and
a wrench head member selectively and coaxially engageable with the coupling member, the wrench head member configured to releasably engage the fixation nut and rotate the fixation nut about the threaded post of the first mounting plate,
wherein the proximal end of the coupling member is complementary shaped to receive an end of a turn-key for facilitating rotation of the threaded distal end into the threaded aperture of the threaded post of the first mounting plate.
23. An occipital fixation system according to claim 22, wherein the coupling member includes a generally elongated shaft having a threaded distal end, and proximal end that is configured to rotate the threaded distal end into the threaded aperture of the threaded post of the first mounting plate for securement of the coupling member to the first mounting plate.
24. An occipital fixation system according to claim 23, wherein a portion of the coupling member proximate to the threaded distal end has an outer diameter that is slightly smaller than an inner diameter of the fixation nut 8, the portion of the coupling member proximate to the threaded distal end configured to facilitate positioning the fixation nut on the threaded post of the first mounting plate.
25. A method for attaching an occipital fixation assembly for subsequent attachment of a surgical rod thereon, comprising:
creating an aperture within a sinus cavity adjacent a rear portion of a skull of a patient;
positioning a first mounting plate of an occipital fixation assembly through the aperture created within the sinus cavity;
attaching a coupling member of the occipital fixation assembly to the threaded post of the first mounting plate;
positioning a fixation nut about the threaded post and, subsequently, rotating the fixation nut in a predetermined direction thereabout such that the first mounting plate and the coupling member move toward one another and into secured engagement with the skull of a patient; and
coupling a surgical rod to the coupling member.
US12/904,613 2009-10-14 2010-10-14 Occipital fixation assembly, system and method for attaching the same Abandoned US20110087292A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/904,613 US20110087292A1 (en) 2009-10-14 2010-10-14 Occipital fixation assembly, system and method for attaching the same
US14/288,903 US9597122B2 (en) 2009-10-14 2014-05-28 Occipital fixation assembly, system and method for attaching the same
US15/453,153 US10368920B2 (en) 2009-10-14 2017-03-08 Occipital fixation assembly, system and method for attaching the same
US16/446,136 US11272962B2 (en) 2009-10-14 2019-06-19 Occipital fixation assembly, system and method for attaching the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27892509P 2009-10-14 2009-10-14
US12/904,613 US20110087292A1 (en) 2009-10-14 2010-10-14 Occipital fixation assembly, system and method for attaching the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/288,903 Division US9597122B2 (en) 2009-10-14 2014-05-28 Occipital fixation assembly, system and method for attaching the same

Publications (1)

Publication Number Publication Date
US20110087292A1 true US20110087292A1 (en) 2011-04-14

Family

ID=43855443

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/904,613 Abandoned US20110087292A1 (en) 2009-10-14 2010-10-14 Occipital fixation assembly, system and method for attaching the same
US14/288,903 Active 2031-04-20 US9597122B2 (en) 2009-10-14 2014-05-28 Occipital fixation assembly, system and method for attaching the same
US15/453,153 Active 2030-11-20 US10368920B2 (en) 2009-10-14 2017-03-08 Occipital fixation assembly, system and method for attaching the same
US16/446,136 Active 2031-03-19 US11272962B2 (en) 2009-10-14 2019-06-19 Occipital fixation assembly, system and method for attaching the same

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/288,903 Active 2031-04-20 US9597122B2 (en) 2009-10-14 2014-05-28 Occipital fixation assembly, system and method for attaching the same
US15/453,153 Active 2030-11-20 US10368920B2 (en) 2009-10-14 2017-03-08 Occipital fixation assembly, system and method for attaching the same
US16/446,136 Active 2031-03-19 US11272962B2 (en) 2009-10-14 2019-06-19 Occipital fixation assembly, system and method for attaching the same

Country Status (1)

Country Link
US (4) US20110087292A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102488549A (en) * 2011-11-28 2012-06-13 北京纳通科技集团有限公司 Split type occipital plate
US20170065306A1 (en) * 2004-02-17 2017-03-09 Globus Medical, Inc. Facet joint replacement instruments and methods
US20180344361A1 (en) * 2015-11-20 2018-12-06 Medacta International S.A. Occipital plate for occipito-cervical fixation and system for occipito-cervical fixation
CN109009380A (en) * 2018-06-26 2018-12-18 黄振强 A kind of fixed device of Via Posterior Spinal Approach multiple spot
US11318020B2 (en) * 2018-10-31 2022-05-03 Dignity Health Systems and methods for fixating, fusing and/or realigning the sacroiliac joint

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110087292A1 (en) 2009-10-14 2011-04-14 K2M, Inc. Occipital fixation assembly, system and method for attaching the same
EP2555696B1 (en) * 2010-04-08 2017-07-26 Globus Medical, Inc. Jointed rod
US11559341B2 (en) * 2020-02-25 2023-01-24 Aesculap Ag Surgical instrumentation for cervical-occipito fixation

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1390485A (en) * 1920-01-28 1921-09-13 William L Bell Bolt
US3019887A (en) * 1959-11-06 1962-02-06 Lowden George Securing bolt
US3997138A (en) * 1974-06-18 1976-12-14 Henry Vernon Crock Securing devices and structures
US4648388A (en) * 1985-11-01 1987-03-10 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4743260A (en) * 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US5024213A (en) * 1989-02-08 1991-06-18 Acromed Corporation Connector for a corrective device
US5098433A (en) * 1989-04-12 1992-03-24 Yosef Freedland Winged compression bolt orthopedic fastener
US5127912A (en) * 1990-10-05 1992-07-07 R. Charles Ray Sacral implant system
US5129899A (en) * 1991-03-27 1992-07-14 Smith & Nephew Richards Inc. Bone fixation apparatus
US5167665A (en) * 1991-12-31 1992-12-01 Mckinney William W Method of attaching objects to bone
US5250049A (en) * 1992-01-10 1993-10-05 Michael Roger H Bone and tissue connectors
US5257994A (en) * 1991-09-23 1993-11-02 Lin Chih I Vertebral locking and retrieving system
US5269784A (en) * 1991-12-10 1993-12-14 Synthes (U.S.A.) Screw nut for plate osteosynthesis
US5312404A (en) * 1990-07-24 1994-05-17 Acromed Corporation Spinal column retaining apparatus
US5380325A (en) * 1992-11-06 1995-01-10 Biomat Osteosynthesis device for spinal consolidation
US5507745A (en) * 1994-02-18 1996-04-16 Sofamor, S.N.C. Occipito-cervical osteosynthesis instrumentation
US5545164A (en) * 1992-12-28 1996-08-13 Advanced Spine Fixation Systems, Incorporated Occipital clamp assembly for cervical spine rod fixation
US5545228A (en) * 1991-08-15 1996-08-13 Smith & Nephew Richards Inc. Offset bone bolt
US5591166A (en) * 1995-03-27 1997-01-07 Smith & Nephew Richards, Inc. Multi angle bone bolt
US5649926A (en) * 1994-07-14 1997-07-22 Advanced Spine Fixation Systems, Inc. Spinal segmental reduction derotational fixation system
US5653708A (en) * 1992-12-28 1997-08-05 Advanced Spine Fixation Systems, Inc. Cervical spine rod fixation system
US5713898A (en) * 1993-05-18 1998-02-03 Schafer Micomed Gmbh Orthopedic surgical holding device
US5722976A (en) * 1993-08-27 1998-03-03 Brown; Robin Peter Apparatus and method for surgically securing bone parts
US6039738A (en) * 1997-07-03 2000-03-21 Depuy Orthopaedics, Inc. Fastener
US6059786A (en) * 1998-10-22 2000-05-09 Jackson; Roger P. Set screw for medical implants
US6083224A (en) * 1995-01-25 2000-07-04 Sdgi Holdings, Inc. Dynamic spinal screw-rod connectors
US6146384A (en) * 1995-10-13 2000-11-14 Sdgi Holdings, Inc. Orthopedic fixation device and method of implantation
US20010011173A1 (en) * 1996-02-03 2001-08-02 Karl-Dieter Lerch Device for postoperative fixation back into the cranium of a plug of bone removed therefrom during a surgical operation
US6287308B1 (en) * 1997-07-14 2001-09-11 Sdgi Holdings, Inc. Methods and apparatus for fusionless treatment of spinal deformities
US6682532B2 (en) * 2002-03-22 2004-01-27 Depuy Acromed, Inc. Coupling system and method for extending spinal instrumentation
US6755834B2 (en) * 2000-09-15 2004-06-29 Medtronic, Inc. Cranial flap fixation device
US20040127908A1 (en) * 2001-09-25 2004-07-01 Roman Shawn David Cranial clamp with torque-limiting feature
US20050070899A1 (en) * 2003-09-26 2005-03-31 Doubler Robert L. Polyaxial bone screw with torqueless fastening
US20050137594A1 (en) * 2002-02-04 2005-06-23 Doubler Robert L. Spinal fixation assembly
US7048737B2 (en) * 2002-06-11 2006-05-23 Bioplate, Inc. Cranial bone flap fixation system and method
US20060247628A1 (en) * 2005-04-29 2006-11-02 Sdgi Holdings, Inc. Spinal stabilization apparatus and method
US7303563B2 (en) * 2004-06-17 2007-12-04 Sdgi Holdings, Inc. Orthopedic fixation system and method of use
US20080281359A1 (en) * 2007-01-29 2008-11-13 Abdou M S Spinal stabilization systems and methods of use

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128917C1 (en) * 2001-06-15 2002-10-24 Aesculap Ag & Co Kg Surgical implant for fixing bone plates for repair of broken bone has two discs with crenellated edges, interengaging toothed projections and holes for fastening cord
US5234432A (en) * 1992-03-13 1993-08-10 Brown Byron L Method and apparatus for definitive cutting of a femur
US5947968A (en) * 1997-11-03 1999-09-07 Rogozinski; Chaim Graft anchor and method
US6050997A (en) * 1999-01-25 2000-04-18 Mullane; Thomas S. Spinal fixation system
FR2860703B1 (en) * 2003-10-14 2006-08-25 Eurosurgical OCCIPIENT FIXING DEVICE
US20050256510A1 (en) * 2004-04-28 2005-11-17 Medtronic, Inc. Ventriculo-sinus shunting for disease treatment
US7850719B2 (en) * 2004-05-26 2010-12-14 Warsaw Orthopedic, Inc. Spinal implant apparatus
KR100858306B1 (en) * 2004-06-14 2008-09-11 엠.에스. 아브두 Orthopedic device
US9327069B2 (en) * 2004-12-21 2016-05-03 Boston Scientific Neuromodulation Corporation Methods and systems for treating a medical condition by promoting neural remodeling within the brain
US20060264932A1 (en) * 2005-05-06 2006-11-23 Bert Jeffrey K Attachment to bone
US8979903B2 (en) * 2006-04-26 2015-03-17 Warsaw Orthopedic, Inc. Revision fixation plate and method of use
US8092498B2 (en) * 2007-07-09 2012-01-10 Alphatec Spine, Inc. Occipital fixation screw
US20110087292A1 (en) 2009-10-14 2011-04-14 K2M, Inc. Occipital fixation assembly, system and method for attaching the same
US10548637B2 (en) * 2011-10-03 2020-02-04 Blockhead Of Chicago, Llc Implantable bone support systems

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1390485A (en) * 1920-01-28 1921-09-13 William L Bell Bolt
US3019887A (en) * 1959-11-06 1962-02-06 Lowden George Securing bolt
US3997138A (en) * 1974-06-18 1976-12-14 Henry Vernon Crock Securing devices and structures
US4743260A (en) * 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US4648388A (en) * 1985-11-01 1987-03-10 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4648388B1 (en) * 1985-11-01 1995-10-31 Acromed Corp Apparatus and method for maintaining vertebrae in a desired relationship
US5024213A (en) * 1989-02-08 1991-06-18 Acromed Corporation Connector for a corrective device
US5098433A (en) * 1989-04-12 1992-03-24 Yosef Freedland Winged compression bolt orthopedic fastener
US5312404A (en) * 1990-07-24 1994-05-17 Acromed Corporation Spinal column retaining apparatus
US5127912A (en) * 1990-10-05 1992-07-07 R. Charles Ray Sacral implant system
US5129899A (en) * 1991-03-27 1992-07-14 Smith & Nephew Richards Inc. Bone fixation apparatus
US5545228A (en) * 1991-08-15 1996-08-13 Smith & Nephew Richards Inc. Offset bone bolt
US5257994A (en) * 1991-09-23 1993-11-02 Lin Chih I Vertebral locking and retrieving system
US5269784A (en) * 1991-12-10 1993-12-14 Synthes (U.S.A.) Screw nut for plate osteosynthesis
US5167665A (en) * 1991-12-31 1992-12-01 Mckinney William W Method of attaching objects to bone
US5250049A (en) * 1992-01-10 1993-10-05 Michael Roger H Bone and tissue connectors
US5380325A (en) * 1992-11-06 1995-01-10 Biomat Osteosynthesis device for spinal consolidation
US5545164A (en) * 1992-12-28 1996-08-13 Advanced Spine Fixation Systems, Incorporated Occipital clamp assembly for cervical spine rod fixation
US5653708A (en) * 1992-12-28 1997-08-05 Advanced Spine Fixation Systems, Inc. Cervical spine rod fixation system
US5713898A (en) * 1993-05-18 1998-02-03 Schafer Micomed Gmbh Orthopedic surgical holding device
US5722976A (en) * 1993-08-27 1998-03-03 Brown; Robin Peter Apparatus and method for surgically securing bone parts
US5507745A (en) * 1994-02-18 1996-04-16 Sofamor, S.N.C. Occipito-cervical osteosynthesis instrumentation
US5649926A (en) * 1994-07-14 1997-07-22 Advanced Spine Fixation Systems, Inc. Spinal segmental reduction derotational fixation system
US6083224A (en) * 1995-01-25 2000-07-04 Sdgi Holdings, Inc. Dynamic spinal screw-rod connectors
US5591166A (en) * 1995-03-27 1997-01-07 Smith & Nephew Richards, Inc. Multi angle bone bolt
US6146384A (en) * 1995-10-13 2000-11-14 Sdgi Holdings, Inc. Orthopedic fixation device and method of implantation
US20010011173A1 (en) * 1996-02-03 2001-08-02 Karl-Dieter Lerch Device for postoperative fixation back into the cranium of a plug of bone removed therefrom during a surgical operation
US6039738A (en) * 1997-07-03 2000-03-21 Depuy Orthopaedics, Inc. Fastener
US6287308B1 (en) * 1997-07-14 2001-09-11 Sdgi Holdings, Inc. Methods and apparatus for fusionless treatment of spinal deformities
US6059786A (en) * 1998-10-22 2000-05-09 Jackson; Roger P. Set screw for medical implants
US6755834B2 (en) * 2000-09-15 2004-06-29 Medtronic, Inc. Cranial flap fixation device
US20040127908A1 (en) * 2001-09-25 2004-07-01 Roman Shawn David Cranial clamp with torque-limiting feature
US20050137594A1 (en) * 2002-02-04 2005-06-23 Doubler Robert L. Spinal fixation assembly
US6682532B2 (en) * 2002-03-22 2004-01-27 Depuy Acromed, Inc. Coupling system and method for extending spinal instrumentation
US7048737B2 (en) * 2002-06-11 2006-05-23 Bioplate, Inc. Cranial bone flap fixation system and method
US20050070899A1 (en) * 2003-09-26 2005-03-31 Doubler Robert L. Polyaxial bone screw with torqueless fastening
US7303563B2 (en) * 2004-06-17 2007-12-04 Sdgi Holdings, Inc. Orthopedic fixation system and method of use
US20060247628A1 (en) * 2005-04-29 2006-11-02 Sdgi Holdings, Inc. Spinal stabilization apparatus and method
US20080281359A1 (en) * 2007-01-29 2008-11-13 Abdou M S Spinal stabilization systems and methods of use

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170065306A1 (en) * 2004-02-17 2017-03-09 Globus Medical, Inc. Facet joint replacement instruments and methods
CN102488549A (en) * 2011-11-28 2012-06-13 北京纳通科技集团有限公司 Split type occipital plate
US20180344361A1 (en) * 2015-11-20 2018-12-06 Medacta International S.A. Occipital plate for occipito-cervical fixation and system for occipito-cervical fixation
US10765459B2 (en) * 2015-11-20 2020-09-08 Medacta International S.A. Occipital plate for occipito-cervical fixation and system for occipito-cervical fixation
CN109009380A (en) * 2018-06-26 2018-12-18 黄振强 A kind of fixed device of Via Posterior Spinal Approach multiple spot
US11318020B2 (en) * 2018-10-31 2022-05-03 Dignity Health Systems and methods for fixating, fusing and/or realigning the sacroiliac joint
US11751998B2 (en) 2018-10-31 2023-09-12 Dignity Health Systems and methods for fixating, fusing and/or realigning the sacroiliac joint

Also Published As

Publication number Publication date
US20170238972A1 (en) 2017-08-24
US20140324105A1 (en) 2014-10-30
US20190343561A1 (en) 2019-11-14
US9597122B2 (en) 2017-03-21
US10368920B2 (en) 2019-08-06
US11272962B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
US11272962B2 (en) Occipital fixation assembly, system and method for attaching the same
US20200179009A1 (en) Orthopedic fastener for stabilization and fixation
EP2467076B1 (en) Transverse rod connector
US8267980B2 (en) Spinal stabilizing system
US8454658B2 (en) Surgical bone anchoring device and spinal column fixation system
JP6072012B2 (en) Minimally invasive spinal fixation system including vertebra alignment features
JP6074571B2 (en) Minimally invasive method and apparatus for stabilizing the spinal column
US8894695B2 (en) Occipital plate for cervical fixation
JP3738243B2 (en) Bone fixation assembly
US8100916B2 (en) Instrument for inserting, adjusting and removing a surgical implant
US8690923B2 (en) Bone fixation systems and methods
EP2434973B1 (en) Surgical instrument for fixing a clamp to a bone fixation device
US20040267275A1 (en) Spinal implant holder and rod reduction systems and methods
US20080300638A1 (en) Break-off screw extensions
US20080243185A1 (en) Spinal stabilizing system
KR20090007405A (en) Methods and devices for the interconnection of bone attachment devices
JP2007506525A (en) Multiaxial bone screw with torqueless fastening
EP1919381B1 (en) Apparatus for external fixation of the pelvic ring
JP2007508118A (en) Spinal fixation hook and spinal fixation method
US11246629B2 (en) Transverse connector
EP2079378A2 (en) Orthopedic plate system

Legal Events

Date Code Title Description
AS Assignment

Owner name: K2M, INC., VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANDHU, FAHEEM;STRAUSS, KEVIN R;MCCLINTOCK, LARRY;SIGNING DATES FROM 20101027 TO 20101106;REEL/FRAME:025357/0721

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: ADDENDUM TO INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:K2M, INC.;REEL/FRAME:026565/0482

Effective date: 20110629

AS Assignment

Owner name: SILICON VALLEY BANK, MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNORS:K2M, INC.;K2M HOLDING, INC.;K2M UK LIMITED;REEL/FRAME:029489/0327

Effective date: 20121029

AS Assignment

Owner name: K2M, INC., VIRGINIA

Free format text: TERMINATION;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:030918/0426

Effective date: 20121029

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: FIRST AMENDMENT TO PATENT SECURITY AGREEMENT;ASSIGNORS:K2M, INC.;K2M UNLIMITED;K2M HOLDINGS, INC.;REEL/FRAME:034034/0097

Effective date: 20141021

AS Assignment

Owner name: K2M UK LIMITED, UNITED KINGDOM

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:047496/0001

Effective date: 20181109

Owner name: K2M, INC., VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:047496/0001

Effective date: 20181109

Owner name: K2M HOLDINGS, INC., VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:047496/0001

Effective date: 20181109