US20110075694A1 - III-Nitride semiconductor laser device, and method of fabricating the III-Nitride semiconductor laser device - Google Patents

III-Nitride semiconductor laser device, and method of fabricating the III-Nitride semiconductor laser device Download PDF

Info

Publication number
US20110075694A1
US20110075694A1 US12/831,566 US83156610A US2011075694A1 US 20110075694 A1 US20110075694 A1 US 20110075694A1 US 83156610 A US83156610 A US 83156610A US 2011075694 A1 US2011075694 A1 US 2011075694A1
Authority
US
United States
Prior art keywords
nitride
iii
axis
oxide
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/831,566
Inventor
Yusuke Yoshizumi
Yohei ENYA
Takashi Kyono
Masahiro Adachi
Shinji Tokuyama
Takamichi SUMITOMO
Masaki Ueno
Takatoshi Ikegami
Koji Katayama
Takao Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Assigned to SUMITOMO ELECTRIC INDUSTRIES, LTD. reassignment SUMITOMO ELECTRIC INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IKEGAMI, TAKATOSHI, TOKUYAMA, SHINJI, ADACHI, MASAHIRO, KATAYAMA, KOJI, KYONO, TAKASHI, NAKAMURA, TAKAO, Sumitomo, Takamichi, UENO, MASAKI, ENYA, YOHEI, YOSHIZUMI, YUSUKE
Publication of US20110075694A1 publication Critical patent/US20110075694A1/en
Priority to US13/416,844 priority Critical patent/US8541253B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/320275Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth semi-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3213Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • the present invention relates to a group-III nitride semiconductor laser device, and a method of fabricating the group-III nitride semiconductor laser device.
  • Non Patent Literature 1 APPLIED PHYSICS LETTERS 94, (2009), 071105.
  • Non Patent Literature 2 Applied Physics Express 2, (2009), 082102.
  • a light emitting device is made on a semipolar surface of a GaN substrate.
  • the c-axis of GaN is inclined with respect to a normal to the semipolar surface of the GaN substrate.
  • the end faces available for an optical cavity.
  • Dielectric multilayer films with desired reflectances are formed on these respective end faces to form the optical cavity.
  • the thicknesses of the dielectric multilayer films on the two end faces are different from each other in order to obtain the dielectric multilayer films with the mutually different reflectances. Since a laser beam is emitted from the front end face, the reflectance of the dielectric multilayer film on the front end face is set smaller than that of the dielectric multilayer film on the rear end face.
  • a III-nitride semiconductor laser device comprises: (a) a laser structure comprising a support base and a semiconductor region, the support base having a semipolar primary surface of a III-nitride semiconductor, and the semiconductor region being provided on the semipolar primary surface of the support base; and (b) first and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device, the first and second dielectric multilayer films being provided on first and second end faces of the semiconductor region, respectively, the semiconductor region including a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer, and the an active layer being provided between the first cladding layer and the second cladding layer, the first cladding layer, the second cladding layer, and the active layer being arranged in a normal axis to the semipolar primary surface, the active layer comprising a gallium
  • the c+ axis vector makes the acute angle with the waveguide vector and this waveguide vector is directed in the direction from the second end face to the first end face.
  • An angle between the c+ axis vector and a vector normal to the second end face is larger than an angle between the c+ axis vector and a vector normal to the first end face.
  • the second dielectric multilayer film on the second end face works as the front side and a laser beam is emitted from this front side.
  • the III-nitride semiconductor laser device can be configured as follows: the semiconductor region is located between the first surface and the support base, and wherein each of the first and second end faces is included in a fractured face, and the fractured face extends from an edge of the first surface to an edge of the second surface.
  • the first and second end faces of the laser structure intersect with the reference plane defined by the normal axis to the primary surface and the a-axis or m-axis of the hexagonal III-nitride semiconductor, the first and second end faces can be formed as fractured faces, and each of the fractured faces extends from the edge of the first surface to the edge of the second surface.
  • the III-nitride semiconductor laser device can be configured so that the primary surface of the support base is inclined in the range of not less than ⁇ 4 degrees and not more than +4 degrees with respect to any one of ⁇ 10-11 ⁇ , ⁇ 20-21 ⁇ , ⁇ 20-2-1 ⁇ , and ⁇ 10-1-1 ⁇ planes. Furthermore, the III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the primary surface of the support base is any one of the ⁇ 10-11 ⁇ plane, ⁇ 20-21 ⁇ plane, ⁇ 20-2-1 ⁇ plane, and ⁇ 10-1-1 ⁇ plane.
  • the III-nitride semiconductor laser device can be configured so that the active layer comprises a well layer comprised of a strained gallium nitride-based semiconductor containing indium as a constituent element. Furthermore, the III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the active layer comprises a well layer comprised of strained InGaN.
  • the degradation of interest is observed in the GaN-based semiconductor containing indium as a Group III constituent element.
  • the degree of degradation becomes more prominent with increase in the indium composition.
  • the III-nitride semiconductor laser device can be configured so that the active layer is adapted to generate light at a wavelength of 430 to 550 nm.
  • the III-nitride semiconductor laser device can be configured so that the III-nitride semiconductor is GaN.
  • the emission of light in the aforementioned wavelength range can be provided by creation of the laser structure using the GaN primary surface.
  • the first dielectric multilayer film has a dielectric layer
  • the dielectric layer in the first dielectric multilayer film is comprised of at least one of silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and ga
  • the second dielectric multilayer film has a dielectric layer, and the dielectric layer in the second dielectric multilayer film is comprised of at least one of silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and gadolinium oxide.
  • practical materials of the dielectric films can include silicon oxide (e.g., SiO 2 ), silicon nitride (e.g., Si 3 N 4 ), silicon oxynitride (e.g., SiO x N 1-x ), titanium oxide (e.g., TiO 2 ), titanium nitride (e.g., TiN), titanium oxynitride (e.g., TiO x N 1-x ), zirconium oxide (e.g., ZrO 2 ), zirconium nitride (e.g., ZrN), zirconium oxynitride (e.g., ZrO x N 1-x ), zirconium fluoride (e.g., ZrF 4 ), tantalum oxide (e.g., Ta 2 O 5 ), tantalum nitride (e.g., Ta 3 N 5 ), tantalum oxynitride (e.g.
  • a second aspect of the present invention relates to a method of fabricating a III-nitride semiconductor laser device.
  • This method comprises the steps of (a) preparing a substrate with a semipolar primary surface, the semipolar primary surface comprising a hexagonal III-nitride semiconductor; (b) forming a substrate product having a laser structure, an anode electrode, and a cathode electrode, the laser structure comprising a substrate and a semiconductor region, and the semiconductor region being formed on the semipolar primary surface; (c) after forming the substrate product, forming first and second end faces; and (d) forming first and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device on the first and second end faces, respectively, the first and second end faces intersecting with a reference plane, the reference plane being defined by a normal axis to the semipolar primary surface and any one crystal axis of a- and m-axes of the hexagonal III-nitride semiconductor, the semiconductor region comprising a first
  • the waveguide vector making the acute angle with the c+ axis vector corresponds to the direction from the second end face to the first end face and the second dielectric multilayer film (C ⁇ side) on the second end face is formed so as to be thinner than the first dielectric multilayer film (C+ side) on the first end face in thickness; therefore, it is feasible to reduce the device degradation with deterioration of crystal quality proceeding from the second end face due to the dielectric multilayer film on the end face, and thereby avoiding the reduction in device lifetime.
  • the angle between the c+ axis vector and the normal vector to the second end face is larger than the angle between the c+ axis vector and the normal vector to the first end face.
  • the second dielectric multilayer film (C ⁇ side) on the front side When the thickness of the second dielectric multilayer film (C ⁇ side) on the front side is smaller than the thickness of the first dielectric multilayer film (C+ side) on the rear side, the second dielectric multilayer film on the second end face works as the front side and a laser beam is emitted from this front side.
  • the first dielectric multilayer film on the first end face works as the rear side and most of the laser beam is reflected by this rear side.
  • the step of forming the first and second end faces comprises: the step of forming the first and second end faces comprises the steps of scribing a first surface of the substrate product; and breaking the substrate product by press against a second surface of the substrate product to form a laser bar having the first and second end faces, the first and second end faces of the laser bar being formed by the breaking, the first surface being opposite to the second surface, the semiconductor region being provided between the first surface and the substrate, and each of the first and second end faces of the laser bar being included in a fractured face, and the fractured face extending from the first surface to the second surface and being formed by the breaking.
  • the method according to the second aspect of the present invention can be configured so that the primary surface of the substrate is inclined in a range of not less than ⁇ 4 degrees and not more than +4 degrees with respect to any one of ⁇ 10-11 ⁇ , ⁇ 20-21 ⁇ , ⁇ 20-2-1 ⁇ , and ⁇ 10-1-1 ⁇ planes. Furthermore, the method according to the second aspect of the present invention can be configured so that the primary surface of the substrate is any one of the ⁇ 10-11 ⁇ plane, ⁇ 20-21 ⁇ plane, ⁇ 20-2-1 ⁇ plane, and ⁇ 10-1-1 ⁇ plane.
  • practical plane orientations and angular range for the primary surface include at least the aforementioned plane orientations and angle range.
  • the method according to the second aspect of the present invention can be configured so that the primary surface of the substrate is inclined in the range of not less than ⁇ 4 degrees and not more than +4 degrees from any one of ⁇ 11-22 ⁇ , ⁇ 11-21 ⁇ , ⁇ 11-2-1 ⁇ , and ⁇ 11-2-2 ⁇ planes. Furthermore, the method according to the second aspect of the present invention can be configured so that the primary surface of the substrate is any one of the ⁇ 11-22 ⁇ plane, ⁇ 11-21 ⁇ plane, ⁇ 11-2-1 ⁇ plane, and ⁇ 11-2-2 ⁇ plane.
  • practical plane orientations and angular range for the primary surface include at least the aforementioned plane orientations and angle range.
  • formation of the active layer comprises a step of growing a well layer of a strained gallium nitride-based semiconductor, and the strained gallium nitride-based semiconductor contains indium as a constituent element.
  • the well layer is grown in the formation of the active layer and comprises strained InGaN, and this strain results from stress from and through a semiconductor layer adjacent to the well layer.
  • the degradation of interest is observed in a GaN-based semiconductor containing indium as a Group III constituent element. The degree of degradation becomes more prominent with increase in the indium composition.
  • the active layer can be adapted to generate light at a wavelength of 430 to 550 nm.
  • This method can provide the light in the aforementioned wavelength range by use of the well layer comprised of the strained GaN-based semiconductor containing indium as a constituent element.
  • a dielectric layer in the second dielectric multilayer film can be formed using at least one selected from silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and gadolinium oxide.
  • practical dielectric films can include silicon oxide (e.g., SiO 2 ), silicon nitride (e.g., Si 3 N 4 ), silicon oxynitride (e.g., SiO x N 1-x ), titanium oxide (e.g., TiO 2 ), titanium nitride (e.g., TiN), titanium oxynitride (e.g., TiO x N 1-x ), zirconium oxide (e.g., ZrO 2 ), zirconium nitride (e.g., ZrN), zirconium oxynitride (e.g., ZrO x N 1-x ), zirconium fluoride (e.g., ZrF 4 ), tantalum oxide (e.g., Ta 2 O 5 ), tantalum nitride (e.g., Ta 3 N 5 ), tantalum oxynitride (e.g., TaO x N 1-x ), ha
  • FIG. 1 is a drawing schematically showing a structure of a III-nitride semiconductor laser device according to an embodiment of the present invention.
  • FIG. 2 is a drawing showing polarization of emission in an active layer of the III-nitride semiconductor laser device.
  • FIG. 3 is a drawing showing relations between end faces of the III-nitride semiconductor laser device and an m-plane in the active layer.
  • FIG. 14 is a drawing showing atomic arrangements in (10-17) and ( ⁇ 101-7) planes perpendicular to a (20-2-1)-plane primary surface and atomic arrangements in (20-27) and ( ⁇ 202-7) planes perpendicular to a (10-1-1)-plane primary surface.
  • FIG. 16 is a drawing showing atomic arrangements in (10-10) and ( ⁇ 1010) planes perpendicular to the (000-1)-plane.
  • FIG. 1 is a drawing schematically showing a structure of a III-nitride semiconductor laser device according to an embodiment of the present invention.
  • the III-nitride semiconductor laser device 11 has the gain guiding structure, but embodiments of the present invention are not limited to the gain guiding structure.
  • the III-nitride semiconductor laser device 11 has a laser structure 13 and an electrode 15 .
  • the laser structure 13 includes a support base 17 and a semiconductor region 19 .
  • the support base 17 has a semipolar primary surface 17 a , which comprises a hexagonal III-nitride semiconductor, and has a back surface 17 b .
  • the semiconductor region 19 is provided on the semipolar primary surface 17 a of the support base 17 .
  • the electrode 15 is provided on the semiconductor region 19 of the laser structure 13 .
  • the semiconductor region 19 includes a first cladding layer 21 , a second cladding layer 23 , and an active layer 25 .
  • the first cladding layer 21 comprises a first conductivity type gallium nitride (GaN)-based semiconductor, e.g., n-type AlGaN, n-type InAlGaN, or the like.
  • the second cladding layer 23 comprises a second conductivity type GaN-based semiconductor, e.g., p-type AlGaN, p-type InAlGaN, or the like.
  • the active layer 25 is provided between the first cladding layer 21 and the second cladding layer 23 .
  • the active layer 25 includes GaN-based semiconductor layer and this GaN-based semiconductor layers is provided for, for example, well layers 25 a .
  • the active layer 25 includes barrier layers 25 b , which comprises a GaN-based semiconductor, and the well layers 25 a and the barrier layers 25 b are alternately arranged.
  • the well layers 25 a comprises, for example, InGaN or the like
  • the barrier layers 25 b comprises, for example, GaN, InGaN, or the like.
  • the active layer 25 can include a quantum well structure provided to generate light at the wavelength of not less than 360 nm and not more than 600 nm.
  • the use of the semipolar plane is suitable for generation of light at the wavelength of not less than 430 nm and not more than 550 nm.
  • each of the first end face 26 and the second end face 28 can be a fractured face.
  • first end face 26 , and the second end face 28 will be referred to as first fractured face 27 and second fractured face 29 .
  • the first fractured face 27 and the second fractured face 29 intersect with the m-n plane that is defined by the normal axis NX and the m-axis of the hexagonal III-nitride semiconductor.
  • the optical cavity of the III-nitride semiconductor laser device 11 includes the first and second fractured faces 27 and 29 , and the laser waveguide extends from one of the first fractured face 27 and the second fractured face 29 to the other.
  • the III-nitride semiconductor laser device 11 has the optical cavity enabling a low threshold current.
  • the support base 17 can be constituted by any one of GaN, AlGaN, InGaN, and InAlGaN.
  • the substrate is composed of any one of these GaN-based semiconductors, it is feasible to obtain the fractured faces 27 and 29 applicable to the optical cavity.
  • Step S 102 a substrate product SP is formed. Although a member of nearly a disk shape is depicted as the substrate product SP in part (a) of FIG. 5 , the shape of the substrate product SP is not limited thereto.
  • step S 103 is first carried out to form a laser structure 55 .
  • the laser structure 55 includes a semiconductor region 53 and the substrate 51 , and in step S 103 , the semiconductor region 53 is formed on the semipolar primary surface 51 a .
  • a first conductivity type GaN-based semiconductor region 57 , a light emitting layer 59 , and a second conductivity type GaN-based semiconductor region 61 are grown in order on the semipolar primary surface 51 a .
  • step S 105 the end faces for the optical cavity for laser is formed.
  • a laser bar is produced from the substrate product SP.
  • the laser bar has a pair of end faces on which a dielectric multilayer film can be formed. An example of production of the laser bar and end faces will be described below.
  • step S 106 the first surface 63 a of the substrate product SP is scribed as shown in part (b) of FIG. 5 .
  • This scribing is carried out using a laser scriber 10 a .
  • the scribing forms scribed grooves 65 a . Referring to part (b) of FIG. 5 , five scribed grooves are already formed, and formation of a scribed groove 65 b is under way with a laser beam LB.
  • the length of the scribed grooves 65 a is smaller than a length of an intersecting line AIS defined by the intersection between the first surface 63 a and the a-n plane, which is defined by the normal axis NX and the a-axis of the hexagonal III-nitride semiconductor, and the laser beam LB is applied to a part of the intersecting line AIS. With application of the laser beam LB, a groove extending in the specific direction and reaching the semiconductor region is formed in the first surface 63 a .
  • the scribed grooves 65 a can be formed, for example, at one edge of the substrate product SP.
  • step S 107 the substrate product SP is broken by press against the second surface 63 b of the substrate product SP to form a substrate product SP 1 and a laser bar LB 1 .
  • the press is implemented, for example, with a breaking device such as blade 69 .
  • the blade 69 includes an edge 69 a extending in one direction and at least two blade faces 69 b and 69 c that define the edge 69 a .
  • the press against the substrate product SP 1 is carried out on a support device 71 .
  • the support device 71 includes a support surface 71 a and a recess 71 b , and the recess 71 b extends in one direction.
  • the recess 71 b is provided in the support surface 71 a .
  • the substrate product SP 1 is positioned with respect to the recess 71 b on the support device 71 such that the orientation and position of the scribed groove 65 a of the substrate product SP 1 are aligned with the extending direction of the recess 71 b of the support device 71 .
  • the orientation of the edge of the breaking device is aligned with the extending direction of the recess 71 b , and the edge of the breaking device is then moved to the substrate product SP 1 from a direction intersecting with the second surface 63 b , to be in contact with the substrate product SP 1 .
  • the intersecting direction is preferably an approximately perpendicular direction to the second surface 63 b .
  • the substrate product SP is broken by this press work to form the substrate product SP 1 and laser bar LB 1 .
  • the laser bar LB 1 with first and second end faces 67 a and 67 b is formed by the press, and in these end faces 67 a and 67 b , at least a part of the light emitting layer has the verticality and flatness enough to be applicable to the optical cavity mirrors of the semiconductor laser.
  • the laser bar LB 1 thus formed has the first and second end faces 67 a and 67 b formed by the above-described breaking work, and each of the end faces 67 a and 67 b extends from the first surface 63 a to the second surface 63 b .
  • the end faces 67 a and 67 b constitute the laser optical cavity of the III-nitride semiconductor laser device and intersect with the XZ plane.
  • This XZ plane corresponds to the m-n plane defined by the m-axis of the hexagonal III-nitride semiconductor and the normal axis NX.
  • a waveguide vector WV is shown in each of laser bars LB 0 and LB 1 .
  • the waveguide vector WV is directed in the direction from the end face 67 a to the end face 67 b .
  • the laser bar LB 0 is depicted which is partly broken in order to show the direction of the c-axis vector VC.
  • the waveguide vector WV makes an acute angle with the c-axis vector VC.
  • the first surface 63 a of the substrate product SP is first scribed in the direction of the a-axis of the hexagonal III-nitride semiconductor, and thereafter the substrate product SP is broken by press against the second surface 63 b of the substrate product SP to form a new substrate product SP 1 and a new laser bar LB 1 .
  • the first and second end faces 67 a and 67 b are formed in the laser bar LB 1 so as to intersect with the m-n plane.
  • This end-face forming method provides the first and second end faces 67 a and 67 b with flatness and verticality enough to constitute the laser cavity for the III-nitride semiconductor laser device.
  • the laser waveguide thus formed extends in the direction toward which the c-axis of the hexagonal III-nitride is inclined. This method forms mirror end faces for the optical cavity capable of providing this laser waveguide.
  • the new substrate product SP 1 and laser bar LB 1 are formed by fracture of the substrate product.
  • Step S 108 the breaking by press is repeated to produce many laser bars. This fracture is induced with the scribed grooves 65 a shorter than a fracture line BREAK of the laser bar LB 1 .
  • step S 109 a dielectric multilayer film is formed on the end faces 67 a and 67 b of the laser bar LB 1 to form a laser bar product.
  • an angle between a normal vector normal to the second end face 67 b , and the c+ axis vector is larger than an angle between a normal vector to the first end face 67 a and the c+ axis vector.
  • step S 111 is carried out to form a dielectric multilayer film on each of the end faces 67 a and 67 b of the laser bar LB 1 .
  • the direction of the waveguide vector WV making the acute angle with the c+ axis vector corresponds to the direction from the second end face 67 a to the first end face 67 b in the laser bar LB 1 .
  • the thickness DREF 2 of the second dielectric multilayer film (C ⁇ ) on the second end face 67 a is made smaller than the thickness DREF 1 of the first dielectric multilayer film (C+) on the first end face 67 b , it is feasible to reduce the device degradation with deterioration of crystal quality proceeding from the second end face due to the dielectric multilayer film on the end face and thus to avoid reduction in device lifetime.
  • the second dielectric multilayer film on the second end face is provided for the front side and a laser beam is emitted from this front side.
  • the first dielectric multilayer film on the first end face is provided for the rear side, and most of the laser beam is reflected by this rear side.
  • Step S 112 this laser bar product is broken into individual semiconductor laser dies.
  • the angle ALPHA can be in the range of not less than 45 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 135 degrees. At angles below 45 degrees and above 135 degrees, an end face formed by press is highly likely to be comprised of an m-plane. At angles above 80 degrees and below 100 degrees, the desired flatness and verticality could not be achieved. More preferably, the angle ALPHA can be in the range of not less than 63 degrees and not more than 80 degrees and in the range of not less than 100 degrees and not more than 117 degrees. At angles below 63 degrees and above 117 degrees, an m-plane could be formed in part of an end face formed by press.
  • the semipolar primary surface 51 a can be any one of a ⁇ 20-21 ⁇ plane, a ⁇ 10-11 ⁇ plane, a ⁇ 20-2-1 ⁇ plane, and a ⁇ 10-1-1 ⁇ plane; or, when the c-axis is inclined toward the direction of the a-axis, the semipolar primary surface 51 a can be any one of a ⁇ 11-22 ⁇ plane, a ⁇ 11-21 ⁇ plane, a ⁇ 11-2-1 ⁇ plane, and a ⁇ 11-2-2 ⁇ plane.
  • a plane slightly inclined with respect to the above planes in the range of not less than ⁇ 4 degrees and not more than +4 degrees is also suitably applicable to the foregoing primary surface.
  • these typical semipolar planes it is feasible to provide the end faces for the laser cavity with flatness and verticality enough to constitute the laser cavity of the III-nitride semiconductor laser device.
  • the substrate 51 can be composed of any one of GaN, AlGaN, InGaN, and InAlGaN. When the substrate used is one comprised of any one of these GaN-based semiconductors, it is feasible to obtain the end faces applicable to the laser cavity.
  • the substrate 51 is preferably made of GaN.
  • the semiconductor substrate used in the crystal growth is subjected to processing such as slicing or grinding so that the substrate thickness becomes not more than 400 ⁇ m, and the second surface 63 b can include a processed surface formed by polishing.
  • the use of fracture permits the flatness and verticality, with a good yield, enough to constitute the laser optical cavity of the III-nitride semiconductor laser device.
  • the use of fracture allows formation of the end faces 67 a and 67 b that are not subjected to any ion damages.
  • the second surface 63 b is a polished surface made by polishing, and the thickness of the polished substrate is not more than 100 ⁇ m.
  • the substrate thickness is preferably not less than 50 ⁇ m. If the fracture is not used, then the end faces can be, for example, etched faces made by etching and this light emitting layer has end faces exposed at the etched faces.
  • the angle BETA which was described with reference to FIG. 2 , can be also defined in the laser bar LB 1 .
  • the component (BETA) 1 of the angle BETA is preferably in the range of not less than (ALPHA-4) degrees and not more than (ALPHA+4) degrees on a first plane (plane corresponding to the first plane S 1 shown with reference to FIG. 2 ) defined by the c-axis and m-axis of the III-nitride semiconductor.
  • the end faces 67 a and 67 b are formed by the breaking process by press onto the plurality of GaN-based semiconductor layers that are epitaxially grown on the semipolar plane 51 a . Since the semiconductor layers are made of the epitaxial films on the semipolar plane 51 a , the end faces 67 a and 67 b are not cleaved facets with a low plane index such as c-plane, m-plane, or a-plane having been used heretofore as optical cavity mirrors. In breaking the laminate of the epitaxial films on the semipolar plane 51 a , however, the end faces 67 a and 67 b have the flatness and verticality applicable to the optical cavity mirrors.
  • a laser diode is grown by organometallic vapor phase epitaxy as described below.
  • Raw materials used are as follows: trimethyl gallium (TMGa); trimethyl aluminum (TMA 1 ); trimethyl indium (TMIn); ammonia (NH 3 ); silane (SiH 4 ); and bis(cyclopentadienyl) magnesium (Cp 2 Mg).
  • TMGa trimethyl gallium
  • TMA 1 trimethyl aluminum
  • TMIn trimethyl indium
  • NH 3 ammonia
  • SiH 4 silane
  • Cp 2 Mg bis(cyclopentadienyl) magnesium
  • a substrate 71 is prepared, which is a ⁇ 20-21 ⁇ GaN substrate. This GaN substrate is fabricated by cutting a (0001) GaN ingot, grown thick by HVPE, with a wafer slicing apparatus at an angle of 75 degrees with respect to the m-axis direction.
  • This substrate is loaded into a susceptor in a growth reactor, and thereafter epitaxial layers for the laser structure shown in FIG. 7 are grown through the following growth procedure.
  • an n-type GaN layer (thickness: 1000 nm) 72 is first grown on the substrate 71 .
  • an n-type InAlGaN cladding layer (thickness: 1200 nm) 73 is grown on the n-type GaN layer 72 .
  • the light emitting layer is formed.
  • an n-type GaN guiding layer (thickness: 200 nm) 74 a and an undoped InGaN guiding layer (thickness: 65 nm) 74 b are grown on the n-type InAlGaN cladding layer 73 .
  • an active layer 75 is grown. This active layer 75 has a multiple quantum well structure (MQW) of two cycles of GaN (thickness: 15 nm)/InGaN (thickness: 3 nm).
  • MQW multiple quantum well structure
  • Device A >500 h (over the lifetime of 500 hours).
  • Device B 299 h (the average lifetime of 299 hours).
  • Device C >400 h (over the lifetime of 400 hours).
  • the end faces for the optical cavity are the (10-10) plane and ( ⁇ 1010) plane; these two crystal planes have the same types of constituent elements in the outermost surface and the same number and angles of bonds bound to the crystal, and thus have the same chemical properties. It is shown that the types of constituent elements in the surfaces of the end faces and the number and angles of bonds bound to the crystal significantly vary with increase in the angle of inclination of the substrate primary surface from the (0001) plane.
  • the angle ALPHA can be in the range of not less than 45 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 135 degrees. In order to improve the lasing chip yield and device lifetime, the angle ALPHA can be in the range of not less than 63 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 117 degrees.
  • the primary surface can be any one of typical semipolar planes, e.g., the ⁇ 20-21 ⁇ plane, ⁇ 10-11 ⁇ plane, ⁇ 20-2-1 ⁇ plane, and ⁇ 10-1-1 ⁇ plane.

Abstract

In a III-nitride semiconductor laser device, a laser structure includes a support base with a semipolar primary surface comprised of a III-nitride semiconductor, and a semiconductor region provided on the semipolar primary surface of the support base. First and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device are provided on first and second end faces of the semiconductor region, respectively. The semiconductor region includes a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer provided between the first cladding layer and the second cladding layer. The first cladding layer, the second cladding layer, and the active layer are arranged in an axis normal to the semipolar primary surface. A c+ axis vector indicating a direction of the <0001> axis of the III-nitride semiconductor of the support base is inclined at an angle in the range of not less than 45 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 135 degrees toward a direction of any one crystal axis of the m- and a-axes of the III-nitride semiconductor with respect to a normal vector indicating a direction of the normal axis. The first and second end faces intersect with a reference plane defined by the normal axis and the one crystal axis of the hexagonal III-nitride semiconductor. The c+ axis vector makes an acute angle with a waveguide vector indicating a direction from the second end face to the first end face. A thickness of the second dielectric multilayer film is smaller than a thickness of the first dielectric multilayer film.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a group-III nitride semiconductor laser device, and a method of fabricating the group-III nitride semiconductor laser device.
  • 2. Related Background Art
  • Non Patent Literature 1 discloses a laser diode made on an m-plane GaN substrate. The laser diode has two cleaved end faces for an optical cavity. One of the cleaved end faces is a +c plane and the other cleaved end faces is a −c plane. In this laser diode, the reflectance of a dielectric multilayer film on the front end face (emitting face) is 70% and the reflectance of a dielectric multilayer film on the rear end face is 99%.
  • Non Patent Literature 2 discloses a laser diode made on a GaN substrate inclined at the angle of 1 degree with respect to the m-plane to the −c axis direction. The laser diode has two cleaved end faces for an optical cavity. One cleaved end face is a +c plane and the other cleaved end face is a −c plane. In this laser diode, the reflectance of the dielectric multilayer film on the front end face (exit face) is 90% and the reflectance of the dielectric multilayer film on the rear end face is 95%.
  • Non Patent Literature 1: APPLIED PHYSICS LETTERS 94, (2009), 071105.
  • Non Patent Literature 2: Applied Physics Express 2, (2009), 082102.
  • SUMMARY OF THE INVENTION
  • A light emitting device is made on a semipolar surface of a GaN substrate. In the GaN surface having semipolar nature, the c-axis of GaN is inclined with respect to a normal to the semipolar surface of the GaN substrate. In fabrication of a semiconductor laser using the GaN semipolar surface, when the c-axis of GaN is inclined toward an extending direction of a waveguide of the semiconductor laser, it becomes feasible to form the end faces available for an optical cavity. Dielectric multilayer films with desired reflectances are formed on these respective end faces to form the optical cavity. The thicknesses of the dielectric multilayer films on the two end faces are different from each other in order to obtain the dielectric multilayer films with the mutually different reflectances. Since a laser beam is emitted from the front end face, the reflectance of the dielectric multilayer film on the front end face is set smaller than that of the dielectric multilayer film on the rear end face.
  • It is found by Inventors' experiments that when some semiconductor lasers are fabricated as described above, these semiconductor lasers have various device lifetimes and we do not have any clear reasons for the long device lifetimes and short device lifetimes. The Inventors conduct research on this point and come to find that the difference in the device lifetime is associated with crystal orientations of the semiconductor end faces for the optical cavity and the thicknesses of the dielectric multilayer films formed thereon.
  • It is an object of the present invention to provide a III-nitride semiconductor laser device with a long device lifetime. It is another object of the present invention to provide a method of fabricating a III-nitride semiconductor laser device with a long device lifetime.
  • A III-nitride semiconductor laser device according to a first aspect of the present invention comprises: (a) a laser structure comprising a support base and a semiconductor region, the support base having a semipolar primary surface of a III-nitride semiconductor, and the semiconductor region being provided on the semipolar primary surface of the support base; and (b) first and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device, the first and second dielectric multilayer films being provided on first and second end faces of the semiconductor region, respectively, the semiconductor region including a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer, and the an active layer being provided between the first cladding layer and the second cladding layer, the first cladding layer, the second cladding layer, and the active layer being arranged in a normal axis to the semipolar primary surface, the active layer comprising a gallium nitride-based semiconductor layer, a c+ axis vector being inclined at an angle in a range of not less than 45 degrees and not more than 80 degrees and of not less than 100 degrees and not more than 135 degrees toward a direction of any one crystal axis of m- and a-axes of the III-nitride semiconductor with respect to a normal vector, the c+ axis vector indicating a direction of a <0001> axis of the III-nitride semiconductor of the support base, and the normal vector indicating a direction of the normal axis, the first and second end faces intersecting with a reference plane, the reference plane being defined by the normal axis and the one crystal axis of the hexagonal III-nitride semiconductor, the c+ axis vector making an acute angle with a waveguide vector, and the waveguide vector indicating a direction from the second end face to the first end face, and a thickness of the second dielectric multilayer film being smaller than a thickness of the first dielectric multilayer film.
  • In this III-nitride semiconductor laser device, the c+ axis vector makes the acute angle with the waveguide vector and this waveguide vector is directed in the direction from the second end face to the first end face. An angle between the c+ axis vector and a vector normal to the second end face is larger than an angle between the c+ axis vector and a vector normal to the first end face. In this laser device, since the thickness of the second dielectric multilayer film on the second end face is smaller than the thickness of the first dielectric multilayer film on the first end face, the second dielectric multilayer film on the second end face works as the front side and a laser beam is emitted from this front side. The first dielectric multilayer film on the first end face works as the rear side and most of the laser beam is reflected by this rear side. In the laser device on the semipolar plane, when the thickness of the second dielectric multilayer film on the front side is smaller than the thickness of the first dielectric multilayer film on the rear side, reduction is achieved in device degradation due to the dielectric multilayer film on the end face, so as to avoid reduction in device lifetime.
  • The III-nitride semiconductor laser device according to the first aspect of the present invention can be configured as follows: the semiconductor region is located between the first surface and the support base, and wherein each of the first and second end faces is included in a fractured face, and the fractured face extends from an edge of the first surface to an edge of the second surface.
  • Since in the III-nitride semiconductor laser device the first and second end faces of the laser structure intersect with the reference plane defined by the normal axis to the primary surface and the a-axis or m-axis of the hexagonal III-nitride semiconductor, the first and second end faces can be formed as fractured faces, and each of the fractured faces extends from the edge of the first surface to the edge of the second surface.
  • The III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the c-axis of the III-nitride semiconductor is inclined toward the direction of the m-axis of the nitride semiconductor. In another embodiment, the III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the c-axis of the III-nitride semiconductor is inclined toward the direction of the a-axis of the nitride semiconductor.
  • The III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the primary surface of the support base is inclined in the range of not less than −4 degrees and not more than +4 degrees with respect to any one of {10-11}, {20-21}, {20-2-1}, and {10-1-1} planes. Furthermore, the III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the primary surface of the support base is any one of the {10-11} plane, {20-21} plane, {20-2-1} plane, and {10-1-1} plane.
  • In this III-nitride semiconductor laser device, when the c-axis of the III-nitride semiconductor is inclined toward the direction of the m-axis of the nitride semiconductor, practical plane orientations and angular range for the primary surface can include at least the aforementioned plane orientations and angle range.
  • The III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the primary surface of the support base is inclined in the range of not less than −4 degrees and not more than +4 degrees from any one of {11-22}, {11-21}, {11-2-1}, and {11-2-2} planes. Furthermore, the III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the primary surface of the support base is any one of the {11-22} plane, {11-21} plane, {11-2-1} plane, and {11-2-2} plane.
  • In this III-nitride semiconductor laser device, when the c-axis of the III-nitride semiconductor is inclined toward the direction of the a-axis of the nitride semiconductor, practical plane orientations and angular range for the primary surface can encompass at least the aforementioned plane orientations and angle range.
  • The III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the active layer comprises a well layer comprised of a strained gallium nitride-based semiconductor containing indium as a constituent element. Furthermore, the III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the active layer comprises a well layer comprised of strained InGaN.
  • With this III-nitride semiconductor laser device, the degradation of interest is observed in the GaN-based semiconductor containing indium as a Group III constituent element. The degree of degradation becomes more prominent with increase in the indium composition.
  • The III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the active layer is adapted to generate light at a wavelength of 430 to 550 nm.
  • This III-nitride semiconductor laser device can provide the light in the aforementioned wavelength range by use of the well layer that comprises the strained GaN-based semiconductor containing, for example, indium as a Group III constituent element.
  • The III-nitride semiconductor laser device according to the first aspect of the present invention can be configured so that the III-nitride semiconductor is GaN. With this III-nitride semiconductor laser device, for example, the emission of light in the aforementioned wavelength range (wavelength range from blue to green) can be provided by creation of the laser structure using the GaN primary surface.
  • In the III-nitride semiconductor laser device according to the first aspect of the present invention, the first dielectric multilayer film has a dielectric layer, and the dielectric layer in the first dielectric multilayer film is comprised of at least one of silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and gadolinium oxide. The second dielectric multilayer film has a dielectric layer, and the dielectric layer in the second dielectric multilayer film is comprised of at least one of silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and gadolinium oxide.
  • In this III-nitride semiconductor laser device, practical materials of the dielectric films can include silicon oxide (e.g., SiO2), silicon nitride (e.g., Si3N4), silicon oxynitride (e.g., SiOxN1-x), titanium oxide (e.g., TiO2), titanium nitride (e.g., TiN), titanium oxynitride (e.g., TiOxN1-x), zirconium oxide (e.g., ZrO2), zirconium nitride (e.g., ZrN), zirconium oxynitride (e.g., ZrOxN1-x), zirconium fluoride (e.g., ZrF4), tantalum oxide (e.g., Ta2O5), tantalum nitride (e.g., Ta3N5), tantalum oxynitride (e.g., TaOxN1-x), hafnium oxide (e.g., HfO2), hafnium nitride (e.g., HfN), hafnium oxynitride (e.g., HfOxN1-x), hafnium fluoride (e.g., HfF4), aluminum oxide (e.g., Al2O3), aluminum nitride (e.g., AlN), aluminum oxynitride (e.g., AlOxN1-x), magnesium fluoride (e.g., MgF2), magnesium oxide (e.g., MgO), magnesium nitride (e.g., Mg3N2), magnesium oxynitride (e.g., MgOxN1-x), calcium fluoride (e.g., CaF2), barium fluoride (e.g., BaF2), cerium fluoride (e.g., CeF3), antimony oxide (e.g., Sb2O3), bismuth oxide (e.g., Bi2O3), and gadolinium oxide (e.g., Gd2O3).
  • A second aspect of the present invention relates to a method of fabricating a III-nitride semiconductor laser device. This method comprises the steps of (a) preparing a substrate with a semipolar primary surface, the semipolar primary surface comprising a hexagonal III-nitride semiconductor; (b) forming a substrate product having a laser structure, an anode electrode, and a cathode electrode, the laser structure comprising a substrate and a semiconductor region, and the semiconductor region being formed on the semipolar primary surface; (c) after forming the substrate product, forming first and second end faces; and (d) forming first and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device on the first and second end faces, respectively, the first and second end faces intersecting with a reference plane, the reference plane being defined by a normal axis to the semipolar primary surface and any one crystal axis of a- and m-axes of the hexagonal III-nitride semiconductor, the semiconductor region comprising a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer, and the active layer being provided between the first cladding layer and the second cladding layer, the first cladding layer, the second cladding layer, and the active layer being arranged in a direction of the normal axis, the active layer comprising a gallium nitride-based semiconductor layer, the semipolar primary surface of the substrate being inclined at an angle in a range of not less than 45 degrees and not more than 80 degrees and of not less than 100 degrees and not more than 135 degrees with respect to a plane perpendicular to a c+ axis vector, and the c+ axis vector indicating a direction of the <0001> axis of the nitride semiconductor, the c+ axis vector making an acute angle with a waveguide vector, and the waveguide vector indicating a direction from the second end face to the first end face, and a thickness of the second dielectric multilayer film being smaller than a thickness of the first dielectric multilayer film.
  • According to this method, the waveguide vector making the acute angle with the c+ axis vector corresponds to the direction from the second end face to the first end face and the second dielectric multilayer film (C− side) on the second end face is formed so as to be thinner than the first dielectric multilayer film (C+ side) on the first end face in thickness; therefore, it is feasible to reduce the device degradation with deterioration of crystal quality proceeding from the second end face due to the dielectric multilayer film on the end face, and thereby avoiding the reduction in device lifetime. In this III-nitride semiconductor laser device, the angle between the c+ axis vector and the normal vector to the second end face is larger than the angle between the c+ axis vector and the normal vector to the first end face. When the thickness of the second dielectric multilayer film (C− side) on the front side is smaller than the thickness of the first dielectric multilayer film (C+ side) on the rear side, the second dielectric multilayer film on the second end face works as the front side and a laser beam is emitted from this front side. The first dielectric multilayer film on the first end face works as the rear side and most of the laser beam is reflected by this rear side.
  • The method according to the second aspect of the present invention further comprises the step of, prior to forming the first and second dielectric multilayer films, determining plane orientations of the first and second end faces. This method allows the selection of the appropriate dielectric multilayer films for the respective end faces in accordance with the result of determination and allows the growth of the dielectric multilayer films on the respective end faces.
  • The method according to the second aspect of the present invention can be configured as follows: the step of forming the first and second end faces comprises: the step of forming the first and second end faces comprises the steps of scribing a first surface of the substrate product; and breaking the substrate product by press against a second surface of the substrate product to form a laser bar having the first and second end faces, the first and second end faces of the laser bar being formed by the breaking, the first surface being opposite to the second surface, the semiconductor region being provided between the first surface and the substrate, and each of the first and second end faces of the laser bar being included in a fractured face, and the fractured face extending from the first surface to the second surface and being formed by the breaking.
  • In this method, since the first and second end faces of the laser bar intersect with the reference plane defined by the normal axis to the primary surface and the a-axis or m-axis of the hexagonal III-nitride semiconductor, the first and second end faces can be formed as fractured faces by the scribe formation and press, and the fractured faces each extend from an edge of the first surface to an edge of the second surface.
  • The method according to the second aspect of the present invention can be configured so that the c-axis of the III-nitride semiconductor is inclined toward the direction of the m-axis of the nitride semiconductor. In another embodiment, the method according to the second aspect of the present invention can be configured so that the c-axis of the III-nitride semiconductor is inclined toward the direction of the a-axis of the nitride semiconductor.
  • The method according to the second aspect of the present invention can be configured so that the primary surface of the substrate is inclined in a range of not less than −4 degrees and not more than +4 degrees with respect to any one of {10-11}, {20-21}, {20-2-1}, and {10-1-1} planes. Furthermore, the method according to the second aspect of the present invention can be configured so that the primary surface of the substrate is any one of the {10-11} plane, {20-21} plane, {20-2-1} plane, and {10-1-1} plane.
  • In this method, when the c-axis of the III-nitride semiconductor is inclined toward the direction of the m-axis of the nitride semiconductor, practical plane orientations and angular range for the primary surface include at least the aforementioned plane orientations and angle range.
  • The method according to the second aspect of the present invention can be configured so that the primary surface of the substrate is inclined in the range of not less than −4 degrees and not more than +4 degrees from any one of {11-22}, {11-21}, {11-2-1}, and {11-2-2} planes. Furthermore, the method according to the second aspect of the present invention can be configured so that the primary surface of the substrate is any one of the {11-22} plane, {11-21} plane, {11-2-1} plane, and {11-2-2} plane.
  • In this substrate, when the c-axis of the III-nitride semiconductor is inclined toward the direction of the a-axis of the nitride semiconductor, practical plane orientations and angular range for the primary surface include at least the aforementioned plane orientations and angle range.
  • In the method according to the second aspect of the present invention, preferably, formation of the active layer comprises a step of growing a well layer of a strained gallium nitride-based semiconductor, and the strained gallium nitride-based semiconductor contains indium as a constituent element. In this method according to the second aspect of the present invention, the well layer is grown in the formation of the active layer and comprises strained InGaN, and this strain results from stress from and through a semiconductor layer adjacent to the well layer. In this method, the degradation of interest is observed in a GaN-based semiconductor containing indium as a Group III constituent element. The degree of degradation becomes more prominent with increase in the indium composition.
  • In the method according to the second aspect of the present invention, the active layer can be adapted to generate light at a wavelength of 430 to 550 nm. This method can provide the light in the aforementioned wavelength range by use of the well layer comprised of the strained GaN-based semiconductor containing indium as a constituent element.
  • In the method according to the second aspect of the present invention, preferably, the III-nitride semiconductor is GaN. In this method, for example, the emission of light in the aforementioned wavelength range (wavelength range from blue to green) can be provided by creation of the laser structure using the GaN primary surface.
  • In the method according to the second aspect of the present invention, a dielectric layer in the first dielectric multilayer film can be formed using at least one selected from silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and gadolinium oxide. A dielectric layer in the second dielectric multilayer film can be formed using at least one selected from silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and gadolinium oxide.
  • In this method, practical dielectric films can include silicon oxide (e.g., SiO2), silicon nitride (e.g., Si3N4), silicon oxynitride (e.g., SiOxN1-x), titanium oxide (e.g., TiO2), titanium nitride (e.g., TiN), titanium oxynitride (e.g., TiOxN1-x), zirconium oxide (e.g., ZrO2), zirconium nitride (e.g., ZrN), zirconium oxynitride (e.g., ZrOxN1-x), zirconium fluoride (e.g., ZrF4), tantalum oxide (e.g., Ta2O5), tantalum nitride (e.g., Ta3N5), tantalum oxynitride (e.g., TaOxN1-x), hafnium oxide (e.g., HfO2), hafnium nitride (e.g., HfN), hafnium oxynitride (e.g., HfOxN1-x), hafnium fluoride (e.g., HfF4), aluminum oxide (e.g., Al2O3), aluminum nitride (e.g., AlN), aluminum oxynitride (e.g., AlOxN1-x), magnesium fluoride (e.g., MgF2), magnesium oxide (e.g., MgO), magnesium nitride (e.g., Mg3N2), magnesium oxynitride (e.g., MgOxN1-x), calcium fluoride (e.g., CaF2), barium fluoride (e.g., BaF2), cerium fluoride (e.g., CeF3), antimony oxide (e.g., Sb2O3), bismuth oxide (e.g., Bi2O3), and gadolinium oxide (e.g., Gd2O3).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing object and other objects, features, and advantages of the present invention can more readily become apparent in view of the following detailed description of the preferred embodiments of the present invention proceeding with reference to the accompanying drawings.
  • FIG. 1 is a drawing schematically showing a structure of a III-nitride semiconductor laser device according to an embodiment of the present invention.
  • FIG. 2 is a drawing showing polarization of emission in an active layer of the III-nitride semiconductor laser device.
  • FIG. 3 is a drawing showing relations between end faces of the III-nitride semiconductor laser device and an m-plane in the active layer.
  • FIG. 4 is a fabrication flowchart showing major steps in a method of fabricating a III-nitride semiconductor laser device according to an embodiment.
  • FIG. 5 is a drawing schematically showing major steps in the method of fabricating the III-nitride semiconductor laser device according to the embodiment.
  • FIG. 6 is a drawing showing a {20-21} plane in a crystal lattice and showing a scanning electron microscopic image of an end face of the optical cavity.
  • FIG. 7 is a drawing showing a structure of a laser diode shown in Example 1.
  • FIG. 8 is a drawing showing the structure of the laser diode shown in Example 1.
  • FIG. 9 is a drawing showing a relationship of determined polarization degree p versus threshold current density.
  • FIG. 10 is a drawing showing a relationship of inclination angle of the c-axis toward the m-axis direction of GaN substrate versus lasing yield.
  • FIG. 11 is a drawing showing atomic arrangements in (−1010) and (10-10) planes perpendicular to a (0001)-plane primary surface, and atomic arrangements in (−2021) and (20-2-1) planes perpendicular to a (10-17)-plane of the primary surface.
  • FIG. 12 is a drawing showing atomic arrangements in (−4047) and (40-4-7) planes perpendicular to a (10-12)-plane primary surface and atomic arrangements in (−2027) and (20-2-7) planes perpendicular to a (10-11)-plane primary surface.
  • FIG. 13 is a drawing showing atomic arrangements in (−1017) and (10-1-7) planes perpendicular to a (20-21)-plane primary surface and atomic arrangements in (0001) and (000-1) planes perpendicular to a (10-10)-plane primary surface.
  • FIG. 14 is a drawing showing atomic arrangements in (10-17) and (−101-7) planes perpendicular to a (20-2-1)-plane primary surface and atomic arrangements in (20-27) and (−202-7) planes perpendicular to a (10-1-1)-plane primary surface.
  • FIG. 15 is a drawing showing atomic arrangements in (40-47) and (−404-7) planes perpendicular to a (10-1-2)-plane primary surface and atomic arrangements in (20-21) and (−202-1) planes perpendicular to a (10-1-7)-plane primary surface.
  • FIG. 16 is a drawing showing atomic arrangements in (10-10) and (−1010) planes perpendicular to the (000-1)-plane.
  • LIST OF REFERENCE SIGNS
    • 11: III-nitride semiconductor laser device;
    • 13: laser structure;
    • 13 a: first surface;
    • 13 b: second surface;
    • 13 c, 13 d: edges;
    • 15: electrode;
    • 17: support base;
    • 17 a: semipolar primary surface;
    • 17 b: backside of support base;
    • 17 c: end face of support base;
    • 19: semiconductor region;
    • 19 a: top surface of semiconductor region;
    • 19 c: end face of semiconductor region;
    • 21: first cladding layer;
    • 23: second cladding layer;
    • 25: active layer;
    • 25 a well layers;
    • 25 b barrier layers;
    • 27, 29: fractured faces;
    • ALPHA: angle;
    • Sc: c-plane;
    • NX: normal axis;
    • 31: insulating film;
    • 31 a: aperture of insulating film;
    • 35: n-side optical guiding layer;
    • 37: p-side optical guiding layer;
    • 39: carrier block layer;
    • 41: electrode;
    • 43 a, 43 b: dielectric multilayer films;
    • MA: m-axis vector;
    • BETA: angle;
    • DSUB: thickness of support base;
    • 51: substrate;
    • 51 a: semipolar primary surface;
    • SP: substrate product;
    • 57: GaN-based semiconductor region;
    • 59: light emitting layer;
    • 61: GaN-based semiconductor region;
    • 53: semiconductor region;
    • 54: insulating film;
    • 54 a: aperture of insulating film;
    • 55: laser structure;
    • 58 a: anode electrode;
    • 58 b: cathode electrode;
    • 63 a: first surface;
    • 63 b: second surface;
    • 10 a: laser scriber;
    • 65 a: scribed grooves;
    • 65 b: scribed groove;
    • LB: laser beam;
    • SP1: substrate product;
    • LB1: laser bar;
    • 69: blade;
    • 69 a: edge;
    • 69 b, 69 c: blade faces;
    • 71: support device;
    • 71 a: support surface;
    • 71 b: recess.
    DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The expertise of the present invention can be readily understood in view of the following detailed description with reference to the accompanying drawings presented by way of illustration. Embodiments of the III-nitride semiconductor laser device and the method for fabricating the III-nitride semiconductor laser device is described with reference to the accompanying drawings. The same portions will be denoted by the same reference signs if possible.
  • FIG. 1 is a drawing schematically showing a structure of a III-nitride semiconductor laser device according to an embodiment of the present invention. The III-nitride semiconductor laser device 11 has the gain guiding structure, but embodiments of the present invention are not limited to the gain guiding structure. The III-nitride semiconductor laser device 11 has a laser structure 13 and an electrode 15. The laser structure 13 includes a support base 17 and a semiconductor region 19. The support base 17 has a semipolar primary surface 17 a, which comprises a hexagonal III-nitride semiconductor, and has a back surface 17 b. The semiconductor region 19 is provided on the semipolar primary surface 17 a of the support base 17. The electrode 15 is provided on the semiconductor region 19 of the laser structure 13. The semiconductor region 19 includes a first cladding layer 21, a second cladding layer 23, and an active layer 25. The first cladding layer 21 comprises a first conductivity type gallium nitride (GaN)-based semiconductor, e.g., n-type AlGaN, n-type InAlGaN, or the like. The second cladding layer 23 comprises a second conductivity type GaN-based semiconductor, e.g., p-type AlGaN, p-type InAlGaN, or the like. The active layer 25 is provided between the first cladding layer 21 and the second cladding layer 23. The active layer 25 includes GaN-based semiconductor layer and this GaN-based semiconductor layers is provided for, for example, well layers 25 a. The active layer 25 includes barrier layers 25 b, which comprises a GaN-based semiconductor, and the well layers 25 a and the barrier layers 25 b are alternately arranged. The well layers 25 a comprises, for example, InGaN or the like, and the barrier layers 25 b comprises, for example, GaN, InGaN, or the like. The active layer 25 can include a quantum well structure provided to generate light at the wavelength of not less than 360 nm and not more than 600 nm. The use of the semipolar plane is suitable for generation of light at the wavelength of not less than 430 nm and not more than 550 nm. The first cladding layer 21, the second cladding layer 23, and the active layer 25 are arranged in the direction of an axis NX normal to the semipolar primary surface 17 a. The normal axis NX extends in the direction of a normal vector NV. The c-axis Cx of the III-nitride semiconductor of the support base 17 extends in the direction of a c-axis vector VC.
  • The laser structure 13 includes a first end face 26 and a second end face 28 for an optical cavity. A waveguide for the optical cavity extends from the second end face 28 to the first end face 26, and a waveguide vector WV indicates a direction from the second end face 28 to the first end face 26. The first and second end faces 26 and 28 of the laser structure 13 intersect with a reference plane defined by the normal axis NX and a crystal axis of the hexagonal III-nitride semiconductor (m-axis or a-axis). In FIG. 1, the first and second end faces 26 and 28 intersect with an m-n plane, which is defined by the m-axis of the hexagonal III-nitride semiconductor and the normal axis NX. However, the first and second end faces 26 and 28 may intersect with an a-n plane, which is defined by the normal axis NX and the a-axis of the hexagonal III-nitride semiconductor.
  • With reference to FIG. 1, an orthogonal coordinate system S and a crystal coordinate system CR are depicted. The normal axis NX is directed in a direction of the Z-axis of the orthogonal coordinate system S. The semipolar primary surface 17 a extends in parallel with a predetermined plane defined by the X-axis and Y-axis of the orthogonal coordinate system S. A typical c-plane Sc is also depicted in FIG. 1. A c+ axis vector indicating the direction of the <0001> axis of the III-nitride semiconductor of the support base 17 is inclined with respect to the normal vector NV toward a direction of either one crystal axis of the m-axis and a-axis of the III-nitride semiconductor. An angle of this inclination is in the range of not less than 45 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 135 degrees. In the present embodiment, the direction of the c+ axis vector is selected to be coincident with the direction of the vector VC. In the embodiment shown in FIG. 1, the c+ axis vector of the hexagonal III-nitride semiconductor of the support base 17 is inclined at an inclination angle ALPHA with respect to the normal axis NX toward the direction of the m-axis of the hexagonal III-nitride semiconductor. This angle ALPHA can be in the range of not less than 45 degrees and not more than 80 degrees or can be in the range of not less than 100 degrees and not more than 135 degrees.
  • The thickness DREF2 of a second dielectric multilayer film (C− side) 43 b is smaller than the thickness DREF1 of a first dielectric multilayer film (C+ side) 43 a. In the III-nitride semiconductor laser device 11, the c+ axis vector makes an acute angle with the waveguide vector WV, and this waveguide vector WV indicates a direction from the second end face 28 to the first end face 26. In this example, since the thickness of the second dielectric multilayer film 43 b on the second end face (C− side) 28 is smaller than the thickness of the first dielectric multilayer film 43 a on the first end face 26 (C+ side), the second dielectric multilayer film 43 b forms a front side, and thus a laser beam is emitted from this front side. The first dielectric multilayer film 43 a forms the rear side, and most of the laser beam is reflected by this rear side. When the thickness of the second dielectric multilayer film 43 b on the front side is smaller than the thickness of the first dielectric multilayer film 43 a on the rear side, reduction is achieved in the device degradation with progressive crystal quality deterioration which proceeds from the second end face due to the dielectric multilayer film on the end face and is associated with lifetime of the device.
  • The III-nitride semiconductor laser device 11 further has an insulating film 31. The insulating film 31 is provided on a top surface 19 a of the semiconductor region 19 of the laser structure 13, and covers the top surface 19 a. The semiconductor region 19 is located between the insulating film 31 and the support base 17. The support base 17 comprises the hexagonal III-nitride semiconductor. The insulating film 31 has an aperture 31 a. The aperture 31 a has, for example, a stripe shape. When the c-axis is inclined toward the direction of the m-axis as in the present embodiment, the aperture 31 a extends along a direction of an intersecting line LIX between the top surface 19 a of the semiconductor region 19 and the m-n plane mentioned above. The intersecting line LIX extends in the direction of the waveguide vector WV. If the c-axis is inclined toward the direction of the a-axis, the aperture 31 a extends in a direction of another intersecting line LIX between the a-n plane and the top surface 19 a.
  • The electrode 15 is in contact with the top surface 19 a (e.g., second conductivity type contact layer 33) of the semiconductor region 19 through the aperture 31 a, and extends along the direction of the aforementioned intersecting line LIX. In the III-nitride semiconductor laser device 11, the laser waveguide includes the first cladding layer 21, second cladding layer 23 and active layer 25, and extends along the direction of the aforementioned intersecting line LIX.
  • In the III-nitride semiconductor laser device 11, each of the first end face 26 and the second end face 28 can be a fractured face. In the subsequent description, the first end face 26, and the second end face 28 will be referred to as first fractured face 27 and second fractured face 29. The first fractured face 27 and the second fractured face 29 intersect with the m-n plane that is defined by the normal axis NX and the m-axis of the hexagonal III-nitride semiconductor. The optical cavity of the III-nitride semiconductor laser device 11 includes the first and second fractured faces 27 and 29, and the laser waveguide extends from one of the first fractured face 27 and the second fractured face 29 to the other. The laser structure 13 includes a first surface 13 a and a second surface 13 b, and the first surface 13 a is opposite to the second surface 13 b. Each of the first and second fractured faces 27 and 29 extends from an edge 13 c of the first surface 13 a to an edge 13 d of the second surface 13 b. The first and second fractured faces 27 and 29 are different from the conventional cleaved facets, such as c-plane, m-plane, or a-plane.
  • In this III-nitride semiconductor laser device 11, the first and second fractured faces 27 and 29 constituting the optical cavity intersect with the m-n plane. For this reason, it is feasible to provide the laser waveguide extending in the direction of the intersecting line between the m-n plane and the semipolar plane 17 a. Therefore, the III-nitride semiconductor laser device 11 has the optical cavity enabling a low threshold current.
  • The III-nitride semiconductor laser device 11 includes an n-side optical guiding layer 35 and a p-side optical guiding layer 37. The n-side optical guiding layer 35 includes a first part 35 a and a second part 35 b, and the n-side optical guiding layer 35 comprises, for example, GaN, InGaN, or the like. The p-side optical guiding layer 37 includes a first part 37 a and a second part 37 b, and the p-side optical guiding layer 37 comprises, for example, GaN, InGaN, or the like. A carrier block layer 39 is provided, for example, between the first part 37 a and the second part 37 b. Another electrode 41 is provided on the back surface 17 b of the support base 17, and the electrode 41 covers, for example, the back surface 17 b of the support base 17.
  • FIG. 2 is a drawing showing polarization of emission from the active layer 25 of the III-nitride semiconductor laser device 11. FIG. 3 is a drawing schematically showing a cross section defined by the c-axis and the m-axis. As shown in FIG. 2, the dielectric multilayer films 43 a and 43 b are provided on the first and second fractured faces 27 and 29, respectively. Material of each of the dielectric multilayer films 43 a and 43 b can comprise at least one selected, for example, from silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and gadolinium oxide. In this III-nitride semiconductor laser device 11, a practical dielectric film can be made of at least one of silicon oxide (e.g., SiO2), silicon nitride (e.g., Si3N4), silicon oxynitride (e.g., SiOxN1-x), titanium oxide (e.g., TiO2), titanium nitride (e.g., TiN), titanium oxynitride (e.g., TiOxN1-x), zirconium oxide (e.g., ZrO2), zirconium nitride (e.g., ZrN), zirconium oxynitride (e.g., ZrOxN1-x), zirconium fluoride (e.g., ZrF4), tantalum oxide (e.g., Ta2O5), tantalum nitride (e.g., Ta3N5), tantalum oxynitride (e.g., TaOxN1-x), hafnium oxide (e.g., HfO2), hafnium nitride (e.g., HfN), hafnium oxynitride (e.g., HfOxN1-x), hafnium fluoride (e.g., HfF4), aluminum oxide (e.g., Al2O3), aluminum nitride (e.g., AlN), aluminum oxynitride (e.g., AlOxN1-x), magnesium fluoride (e.g., MgF2), magnesium oxide (e.g., MgO), magnesium nitride (e.g., Mg3N2), magnesium oxynitride (e.g., MgOxN1-x), calcium fluoride (e.g., CaF2), barium fluoride (e.g., BaF2), cerium fluoride (e.g., CeF3), antimony oxide (e.g., Sb2O3), bismuth oxide (e.g., Bi2O3), and gadolinium oxide (e.g., Gd2O3). By making use of these materials, an end face coating is also applicable to the fractured faces 27 and 29. The reflectance can be adjusted by the end face coating. When the reflectance of the second dielectric multilayer film (C− side) 43 b is smaller than the reflectance of the first dielectric multilayer film (C+ side) 43 a, this controlling of the reflectance enables reduction to be achieved in the device degradation with deterioration of crystal quality, concerning the device lifetime, that proceeds from the second end face due to the dielectric multilayer film thereon.
  • As shown in part (b) of FIG. 2, the laser beam L from the active layer 25 is polarized in the direction of the a-axis of the hexagonal III-nitride semiconductor. In this III-nitride semiconductor laser device 11, an inter-band transition capable of demonstrating a low threshold current can generate light with polarized nature. The first and second fractured faces 27 and 29 for the optical cavity are different from the conventional cleaved facets, such as c-plane, m-plane and a-plane. However, the first and second fractured faces 27 and 29 have flatness and verticality as mirrors enough for optical cavities for lasers. This optical cavity can demonstrate lasing with a low threshold by use of emission I1 based on a stronger transition than emission I2 based on a transition that generates light polarized in a direction of the projected c-axis onto the primary surface, as shown in part (b) of FIG. 2, using the first and second fractured faces 27 and 29 and the laser waveguide extending between these fractured faces 27 and 29.
  • In the III-nitride semiconductor laser device 11, an end face 17 c of the support base 17 and an end face 19 c of the semiconductor region 19 are exposed in each of the first and second fractured faces 27 and 29, and the end face 17 c and the end face 19 c are covered with a dielectric multilayer film 43 a. An angle BETA between an m-axis vector MA of the active layer 25 and a vector NA normal to an end face 25 c of the active layer 25 and the end face 17 c of the support base 17 is defined by a component (BETA)1, which is defined on a first plane S1 defined by the c-axis and m-axis of the III-nitride semiconductor, and a component (BETA)2, which is defined on a second plane S2 perpendicular to the first plane S1 and the normal axis NX. The component (BETA)1 is preferably in the range of not less than (ALPHA-4) degrees and not more than (ALPHA+4) degrees on the first plane S1 that is defined by the c-axis and m-axis of the III-nitride semiconductor. This angular range is shown as an angle between a typical m-plane SM and a reference plane FA in FIG. 3. For easier understanding, the typical m-plane SM is depicted from the inside to the outside of the laser structure in FIG. 3. The reference plane FA extends along the end face 25 c of the active layer 25. This III-nitride semiconductor laser device 11 has the end faces satisfying the above-mentioned verticality as to the angle BETA taken from one of the c-axis and the m-axis to the other. Furthermore, the component (BETA)2 is preferably in the range of not less than −4 degrees and not more than +4 degrees on the second plane S2. It is noted herein that BETA2=(BETA)1 2+(BETA)2 2. In this case, the end faces 27 and 29 of the III-nitride semiconductor laser device 11 satisfy the above-mentioned verticality about the angle defined on the plane perpendicular to the normal axis NX to the semipolar plane 17 a.
  • Referring again to FIG. 1, the thickness DSUB of the support base 17 is preferably not more than 400 μm in the III-nitride semiconductor laser device 11. This III-nitride semiconductor laser device is suitable for obtaining the good-quality fractured faces for the optical cavity. In the III-nitride semiconductor laser device 11, the thickness DSUB of the support base 17 is more preferably not less than 50 μm and not more than 100 μm. This III-nitride semiconductor laser device 11 is more suitable for obtaining the good-quality fractured faces for the optical cavity, and the handling of the III-nitride semiconductor laser device 11 becomes easier to improve production yield.
  • In the III-nitride semiconductor laser device 11, the angle ALPHA between the normal axis NX and the c-axis of the hexagonal III-nitride semiconductor is preferably not less than 45 degrees and preferably not more than 80 degrees, and the angle ALPHA is preferably not less than 100 degrees and not more than 135 degrees. At angles below 45 degrees and above 135 degrees, end faces made by press are highly likely to be composed of m-planes. At angles above 80 degrees and below 100 degrees, its desired flatness and verticality could not be achieved.
  • In the III-nitride semiconductor laser device 11, in terms of formation of the fractured faces, the angle ALPHA between the normal axis NX and the c-axis of the hexagonal III-nitride semiconductor is more preferably not less than 63 degrees and not more than 80 degrees. Furthermore, the angle ALPHA is preferably not less than 100 degrees and not more than 117 degrees. At angles below 63 degrees and above 117 degrees, an m-plane can appear in part of an end face formed by press. The angle ALPHA in an angle above 80 degrees and below 100 degrees can provide the end faces with desired flatness and verticality.
  • In the III-nitride semiconductor laser device 11, when the c-axis of the III-nitride semiconductor is inclined toward the direction of the m-axis of the nitride semiconductor, practical plane orientations and angular range include at least the following plane orientations and angular range for the primary surface. For example, the primary surface 17 a of the support base 17 can be inclined in the range of not less than −4 degrees and not more than 4 degrees from any one of a {10-11} plane, a {20-21} plane, a {20-2-1} plane, and a {10-1-1} plane. Furthermore, the primary surface 17 a of the support base 17 can be any one of the {10-11} plane, {20-21} plane, {20-2-1} plane, and {10-1-1} plane.
  • In the III-nitride semiconductor laser device 11, when the c-axis of the III-nitride semiconductor is inclined toward the direction of the a-axis of the nitride semiconductor, practical plane orientations and angular range for the primary surface include at least the following plane orientations and angular range. The primary surface 17 a of the support base 17 can be inclined in the range of not less than −4 degrees and not more than 4 degrees from any one of a {11-22} plane, a {11-21} plane, a {11-2-1} plane, and a {11-2-2} plane. Furthermore, the primary surface 17 a of the support base 17 can be any one of the {11-22} plane, {11-21} plane, {11-2-1} plane, and {11-2-2} plane.
  • With these typical semipolar planes 17 a, it is feasible to provide the first and second end faces 26 and 28 with flatness and verticality enough to constitute the optical cavity of the III-nitride semiconductor laser device 11. In the range of angles encompassing the above typical plane orientations, the end faces with sufficient flatness and verticality are obtained. The second dielectric multilayer film (C− side) 43 b having a thickness smaller than that of the first dielectric multilayer film (C+ side) 43 a can avoid the degradation of the device lifetime due to the dielectric multilayer film. The second dielectric multilayer film (C− side) 43 b having a reflectance smaller than that of the first dielectric multilayer film (C+ side) 43 a can avoid the degradation of the device lifetime due to the dielectric multilayer film.
  • The support base 17 can be constituted by any one of GaN, AlGaN, InGaN, and InAlGaN. When the substrate is composed of any one of these GaN-based semiconductors, it is feasible to obtain the fractured faces 27 and 29 applicable to the optical cavity.
  • The support base 17 can be made of GaN. In this III-nitride semiconductor laser device, provision of the laser structure using the GaN primary surface leads to provision of emission, for example, in the aforementioned wavelength range (wavelength range from blue to green). When an AlN or AlGaN substrate is used as the substrate, the degree of polarization can be increased and optical confinement can be enhanced by its low refractive index. When an InGaN substrate is used as the substrate, the lattice mismatch rate between the substrate and the light emitting layer can be decreased to improve its crystal quality. In the III-nitride semiconductor laser device 11, the stacking fault density of the support base 17 can be not more than 1×104 cm−1. Since the stacking fault density is not more than 1×104 cm−1, the flatness and/or verticality of the fractured faces is less likely to be disordered for an accidental reason.
  • FIG. 4 is a drawing showing major steps in a method of fabricating a III-nitride semiconductor laser device according to an embodiment of the present invention. Referring to part (a) of FIG. 5, a substrate 51 is shown. The c-axis of the substrate 51 is inclined toward the direction of the m-axis in the present embodiment, but the present fabrication method is also applicable to the substrate 51 the c-axis of which is inclined toward the direction of the a-axis. In Step S101 the substrate is prepared 51 for fabrication of the III-nitride semiconductor laser device. The c-axis (vector VC) of a hexagonal III-nitride semiconductor of the substrate 51 is inclined at the angle ALPHA with respect to the normal axis NX toward the m-axis direction (vector VM) of the hexagonal III-nitride semiconductor. For this reason, the substrate 51 has a semipolar primary surface 51 a comprised of the hexagonal III-nitride semiconductor.
  • In Step S102, a substrate product SP is formed. Although a member of nearly a disk shape is depicted as the substrate product SP in part (a) of FIG. 5, the shape of the substrate product SP is not limited thereto. For obtaining the substrate product SP, step S103 is first carried out to form a laser structure 55. The laser structure 55 includes a semiconductor region 53 and the substrate 51, and in step S103, the semiconductor region 53 is formed on the semipolar primary surface 51 a. For forming the semiconductor region 53, a first conductivity type GaN-based semiconductor region 57, a light emitting layer 59, and a second conductivity type GaN-based semiconductor region 61 are grown in order on the semipolar primary surface 51 a. The GaN-based semiconductor region 57 can include, for example, an n-type cladding layer, and the GaN-based semiconductor region 61 can include, for example, a p-type cladding layer. The light emitting layer 59 is provided between the GaN-based semiconductor region 57 and the GaN-based semiconductor region 61, and can include an active layer, optical guiding layers, an electron block layer, and so on. The GaN-based semiconductor region 57, the light emitting layer 59, and the second conductivity type GaN-based semiconductor region 61 are arranged in the direction of the axis NX normal to the semipolar primary surface 51 a. These semiconductor layers are epitaxially grown on the primary surface 51 a. The top surface of the semiconductor region 53 is covered with an insulating film 54. The insulating film 54 is made, for example, of silicon oxide. The insulating film 54 has an aperture 54 a. The aperture 54 a has, for example, a stripe shape. Referring to part (a) of FIG. 5, a waveguide vector WV is depicted, and in the present embodiment, this vector WV extends in parallel with the m-n plane. If necessary, prior to formation of the insulating film 54, a ridge structure may be formed in the semiconductor region 53, and this ridge structure can include the GaN-based semiconductor region 61 which is processed in a ridge shape.
  • In step S104, an anode electrode 58 a and a cathode electrode 58 b are formed on the laser structure 55. Before formation of the electrode on the back surface of the substrate 51, the back surface of the substrate used in the crystal growth is polished to form the substrate product SP having a desired thickness DSUB. In the formation of electrodes, for example, the anode electrode 58 a is formed on the semiconductor region 53, and the cathode electrode 58 b is formed on the back surface (polished surface) 51 b of the substrate 51. The anode electrode 58 a extends in the X-axis direction, and the cathode electrode 58 b covers the entire area of the back surface 51 b. Through these steps, the substrate product SP is formed. The substrate product SP includes a first surface 63 a and a second surface 63 b which is opposite thereto. The semiconductor region 53 is located between the first surface 63 a and the substrate 51.
  • Next, in step S105, the end faces for the optical cavity for laser is formed. In the present embodiment, a laser bar is produced from the substrate product SP. The laser bar has a pair of end faces on which a dielectric multilayer film can be formed. An example of production of the laser bar and end faces will be described below.
  • In step S106, the first surface 63 a of the substrate product SP is scribed as shown in part (b) of FIG. 5. This scribing is carried out using a laser scriber 10 a. The scribing forms scribed grooves 65 a. Referring to part (b) of FIG. 5, five scribed grooves are already formed, and formation of a scribed groove 65 b is under way with a laser beam LB. The length of the scribed grooves 65 a is smaller than a length of an intersecting line AIS defined by the intersection between the first surface 63 a and the a-n plane, which is defined by the normal axis NX and the a-axis of the hexagonal III-nitride semiconductor, and the laser beam LB is applied to a part of the intersecting line AIS. With application of the laser beam LB, a groove extending in the specific direction and reaching the semiconductor region is formed in the first surface 63 a. The scribed grooves 65 a can be formed, for example, at one edge of the substrate product SP.
  • In step S107, as shown in part (c) of FIG. 5, the substrate product SP is broken by press against the second surface 63 b of the substrate product SP to form a substrate product SP1 and a laser bar LB1. The press is implemented, for example, with a breaking device such as blade 69. The blade 69 includes an edge 69 a extending in one direction and at least two blade faces 69 b and 69 c that define the edge 69 a. Furthermore, the press against the substrate product SP1 is carried out on a support device 71. The support device 71 includes a support surface 71 a and a recess 71 b, and the recess 71 b extends in one direction. The recess 71 b is provided in the support surface 71 a. The substrate product SP1 is positioned with respect to the recess 71 b on the support device 71 such that the orientation and position of the scribed groove 65 a of the substrate product SP1 are aligned with the extending direction of the recess 71 b of the support device 71. The orientation of the edge of the breaking device is aligned with the extending direction of the recess 71 b, and the edge of the breaking device is then moved to the substrate product SP1 from a direction intersecting with the second surface 63 b, to be in contact with the substrate product SP1. The intersecting direction is preferably an approximately perpendicular direction to the second surface 63 b. The substrate product SP is broken by this press work to form the substrate product SP1 and laser bar LB1. The laser bar LB1 with first and second end faces 67 a and 67 b is formed by the press, and in these end faces 67 a and 67 b, at least a part of the light emitting layer has the verticality and flatness enough to be applicable to the optical cavity mirrors of the semiconductor laser.
  • The laser bar LB1 thus formed has the first and second end faces 67 a and 67 b formed by the above-described breaking work, and each of the end faces 67 a and 67 b extends from the first surface 63 a to the second surface 63 b. For this reason, the end faces 67 a and 67 b constitute the laser optical cavity of the III-nitride semiconductor laser device and intersect with the XZ plane. This XZ plane corresponds to the m-n plane defined by the m-axis of the hexagonal III-nitride semiconductor and the normal axis NX. A waveguide vector WV is shown in each of laser bars LB0 and LB1. The waveguide vector WV is directed in the direction from the end face 67 a to the end face 67 b. In part (c) of FIG. 5, the laser bar LB0 is depicted which is partly broken in order to show the direction of the c-axis vector VC. The waveguide vector WV makes an acute angle with the c-axis vector VC.
  • In this method, the first surface 63 a of the substrate product SP is first scribed in the direction of the a-axis of the hexagonal III-nitride semiconductor, and thereafter the substrate product SP is broken by press against the second surface 63 b of the substrate product SP to form a new substrate product SP1 and a new laser bar LB1. Accordingly, the first and second end faces 67 a and 67 b are formed in the laser bar LB1 so as to intersect with the m-n plane. This end-face forming method provides the first and second end faces 67 a and 67 b with flatness and verticality enough to constitute the laser cavity for the III-nitride semiconductor laser device. The laser waveguide thus formed extends in the direction toward which the c-axis of the hexagonal III-nitride is inclined. This method forms mirror end faces for the optical cavity capable of providing this laser waveguide.
  • By this method, the new substrate product SP1 and laser bar LB1 are formed by fracture of the substrate product. In Step S108, the breaking by press is repeated to produce many laser bars. This fracture is induced with the scribed grooves 65 a shorter than a fracture line BREAK of the laser bar LB1.
  • In step S109, a dielectric multilayer film is formed on the end faces 67 a and 67 b of the laser bar LB1 to form a laser bar product.
  • This step is carried out, for example, as follows. Step S110 is carried out to determine plane orientations of the end faces 67 a and 67 b of the laser bar LB1. This determination can be made, for example, by measuring the orientation of the c+ axis vector. Alternatively, the determination can also be made, for example, by carrying out the following process and/or operation to associate the end faces 67 a and 67 b with the direction of the c+ axis vector in production of the end faces 67 a and 67 b: a mark indicative of the direction of the c+ axis vector is formed on the laser bar; and/or the produced laser bar is arranged so as to indicate the direction of the c+ axis vector. After the determination, in the laser bar LB1 an angle between a normal vector normal to the second end face 67 b, and the c+ axis vector is larger than an angle between a normal vector to the first end face 67 a and the c+ axis vector.
  • After the determination, step S111 is carried out to form a dielectric multilayer film on each of the end faces 67 a and 67 b of the laser bar LB1. According to this method, the direction of the waveguide vector WV making the acute angle with the c+ axis vector corresponds to the direction from the second end face 67 a to the first end face 67 b in the laser bar LB1. In this laser bar product, since the thickness DREF2 of the second dielectric multilayer film (C−) on the second end face 67 a is made smaller than the thickness DREF1 of the first dielectric multilayer film (C+) on the first end face 67 b, it is feasible to reduce the device degradation with deterioration of crystal quality proceeding from the second end face due to the dielectric multilayer film on the end face and thus to avoid reduction in device lifetime. When the thickness of the second dielectric multilayer film (C−) on the front side is smaller than the thickness of the first dielectric multilayer film (C+) on the rear side, the second dielectric multilayer film on the second end face is provided for the front side and a laser beam is emitted from this front side. The first dielectric multilayer film on the first end face is provided for the rear side, and most of the laser beam is reflected by this rear side.
  • In Step S112, this laser bar product is broken into individual semiconductor laser dies.
  • In the fabrication method according to the present embodiment, the angle ALPHA can be in the range of not less than 45 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 135 degrees. At angles below 45 degrees and above 135 degrees, an end face formed by press is highly likely to be comprised of an m-plane. At angles above 80 degrees and below 100 degrees, the desired flatness and verticality could not be achieved. More preferably, the angle ALPHA can be in the range of not less than 63 degrees and not more than 80 degrees and in the range of not less than 100 degrees and not more than 117 degrees. At angles below 63 degrees and above 117 degrees, an m-plane could be formed in part of an end face formed by press. At angles above 80 degrees and below 100 degrees, the desired flatness and verticality could not be achieved. The semipolar primary surface 51 a can be any one of a {20-21} plane, a {10-11} plane, a {20-2-1} plane, and a {10-1-1} plane; or, when the c-axis is inclined toward the direction of the a-axis, the semipolar primary surface 51 a can be any one of a {11-22} plane, a {11-21} plane, a {11-2-1} plane, and a {11-2-2} plane. Furthermore, a plane slightly inclined with respect to the above planes in the range of not less than −4 degrees and not more than +4 degrees is also suitably applicable to the foregoing primary surface. With these typical semipolar planes, it is feasible to provide the end faces for the laser cavity with flatness and verticality enough to constitute the laser cavity of the III-nitride semiconductor laser device.
  • The substrate 51 can be composed of any one of GaN, AlGaN, InGaN, and InAlGaN. When the substrate used is one comprised of any one of these GaN-based semiconductors, it is feasible to obtain the end faces applicable to the laser cavity. The substrate 51 is preferably made of GaN.
  • In the step S106 in which the substrate product SP is formed, the semiconductor substrate used in the crystal growth is subjected to processing such as slicing or grinding so that the substrate thickness becomes not more than 400 μm, and the second surface 63 b can include a processed surface formed by polishing. In this substrate thickness, the use of fracture permits the flatness and verticality, with a good yield, enough to constitute the laser optical cavity of the III-nitride semiconductor laser device. The use of fracture allows formation of the end faces 67 a and 67 b that are not subjected to any ion damages. More preferably, the second surface 63 b is a polished surface made by polishing, and the thickness of the polished substrate is not more than 100 μm. For easier handling of the substrate product SP, the substrate thickness is preferably not less than 50 μm. If the fracture is not used, then the end faces can be, for example, etched faces made by etching and this light emitting layer has end faces exposed at the etched faces.
  • In the production method of the laser end faces according to the present embodiment, the angle BETA, which was described with reference to FIG. 2, can be also defined in the laser bar LB1. In the laser bar LB1, the component (BETA)1 of the angle BETA is preferably in the range of not less than (ALPHA-4) degrees and not more than (ALPHA+4) degrees on a first plane (plane corresponding to the first plane S1 shown with reference to FIG. 2) defined by the c-axis and m-axis of the III-nitride semiconductor. The end faces 67 a and 67 b of the laser bar LB1 satisfy the aforementioned verticality as to the angle component of the angle BETA taken from one of the c-axis and the m-axis to the other. The component (BETA)2 of the angle BETA is preferably in the range of not less than −4 degrees and not more than +4 degrees on a second plane (plane corresponding to the second plane S2 shown in FIG. 2). In this case, the end faces 67 a and 67 b of the laser bar LB1 satisfy the aforementioned verticality as to the angle component of the angle BETA defined on the plane normal to the axis NX normal to the semipolar plane 51 a.
  • The end faces 67 a and 67 b are formed by the breaking process by press onto the plurality of GaN-based semiconductor layers that are epitaxially grown on the semipolar plane 51 a. Since the semiconductor layers are made of the epitaxial films on the semipolar plane 51 a, the end faces 67 a and 67 b are not cleaved facets with a low plane index such as c-plane, m-plane, or a-plane having been used heretofore as optical cavity mirrors. In breaking the laminate of the epitaxial films on the semipolar plane 51 a, however, the end faces 67 a and 67 b have the flatness and verticality applicable to the optical cavity mirrors.
  • Example 1
  • A laser diode is grown by organometallic vapor phase epitaxy as described below. Raw materials used are as follows: trimethyl gallium (TMGa); trimethyl aluminum (TMA1); trimethyl indium (TMIn); ammonia (NH3); silane (SiH4); and bis(cyclopentadienyl) magnesium (Cp2Mg). A substrate 71 is prepared, which is a {20-21} GaN substrate. This GaN substrate is fabricated by cutting a (0001) GaN ingot, grown thick by HVPE, with a wafer slicing apparatus at an angle of 75 degrees with respect to the m-axis direction.
  • This substrate is loaded into a susceptor in a growth reactor, and thereafter epitaxial layers for the laser structure shown in FIG. 7 are grown through the following growth procedure. After the substrate 71 is set in the growth reactor, an n-type GaN layer (thickness: 1000 nm) 72 is first grown on the substrate 71. Next, an n-type InAlGaN cladding layer (thickness: 1200 nm) 73 is grown on the n-type GaN layer 72. Subsequently, the light emitting layer is formed. First, an n-type GaN guiding layer (thickness: 200 nm) 74 a and an undoped InGaN guiding layer (thickness: 65 nm) 74 b are grown on the n-type InAlGaN cladding layer 73. Next, an active layer 75 is grown. This active layer 75 has a multiple quantum well structure (MQW) of two cycles of GaN (thickness: 15 nm)/InGaN (thickness: 3 nm). Thereafter, an undoped InGaN guiding layer (thickness: 65 nm) 76 a, a p-type AlGaN block layer (thickness: 20 nm) 76 d, a p-type InGaN guiding layer (thickness: 50 nm) 76 b, and a p-type GaN guiding layer (thickness: 200 nm) 76 c are grown on the active layer 75. Next, a p-type InAlGaN cladding layer (thickness: 400 nm) 77 is grown on the light emitting layer. Finally, a p-type GaN contact layer (thickness: 50 nm) 78 is grown on the p-type InAlGaN cladding layer 77.
  • Using this epitaxial substrate, an index guiding type laser is fabricated by photolithography and etching. First, a stripe mask is formed by photolithography, and the mask extends in a direction of the projected c-axis onto the primary surface. Using this mask, a striped ridge structure in the width of 2 μm is formed by dry etching. The dry etching is carried out, for example, using chlorine gas (Cl2). An insulating film 79 with a striped aperture is formed on the surface of the ridge structure. The insulating film 79 used is, for example, SiO2 formed by vacuum evaporation. After the formation of the insulating film 79, a p-side electrode 80 a and an n-side electrode 80 b are made to obtain a substrate product. The p-side electrode 80 a is produced by vacuum evaporation. The p-side electrode 80 a is, for example, Ni/Au. A backside of this epitaxial substrate is polished down to 100 μm. The polishing of the backside is carried out using diamond slurry. The n-side electrode 80 b is formed on the polished surface by evaporation. The n-side electrode 80 b is constituted of Ti/Al/Ti/Au.
  • A laser bar is produced by scribing along the surface of this substrate product, using a laser scriber capable of applying a YAG laser beam at the wavelength of 355 nm. The conditions for formation of scribed grooves were as follows:
  • Laser beam output 100 mW;
    Scanning speed 5 mm/sec.
    The scribed grooves formed have, for example, the length of 30 μm, the width of 10 μm, and the depth of 40 μm. The scribed grooves are arranged at the pitch of 800 μm by applying the laser beam directly onto the epitaxial surface through apertures of insulating film on the substrate. The optical cavity length is 600 μm. Optical cavity mirrors are made by fracture using a blade. A laser bar is produced by breaking the substrate product by press against the back surface thereof.
  • FIG. 6 is a drawing showing a {20-21} plane in a crystal lattice and showing a scanning electron microscopical image of an end face for an optical cavity. More specifically, parts (b) and (c) of FIG. 6 show relations between crystal orientations and fractured faces in a {20-21}-plane GaN substrate. Part (b) of FIG. 6 shows plane orientations of end faces of the device in which the laser stripe extends in the <11-20> direction, and shows cleaved facets indicated, as end face 81 d or c-plane 81, by the m-plane or c-plane having been used as optical cavity end faces of the conventional nitride semiconductor lasers. Part (c) of FIG. 6 shows plane orientations of end faces of the device in which the laser stripe is provided in the direction of the projected c-axis onto the primary surface (which will be referred to hereinafter as M-direction), and shows the end faces 81 a and 81 b for the optical cavity together with the semipolar plane 71 a. The end faces 81 a and 81 b are approximately perpendicular to the semipolar plane 71 a, but are different from the conventional cleaved facets such as c-plane, m-plane, or a-plane used heretofore.
  • In the laser diode on the {20-21}-plane GaN substrate according to the present example, since the end faces for the optical cavity are inclined with respect to the direction of polarity (e.g., the direction of the c+ axis vector), chemical properties of crystal planes of these end faces are not equivalent to each other. In the subsequent description, the end face 81 b close to the +c plane will be referred to as {−1017} end face, and the end face 81 a close to the −c plane as {10-1-7} end face. For descriptive purposes, the <−1014> and <10-1-4> directions, which are approximate normal vectors, are used as normal vectors to these end faces.
  • The end faces of the laser bar are coated with respective dielectric multilayer films 82 a and 82 b by vacuum evaporation. The dielectric multilayer films are made by alternately depositing two types of layers with mutually different refractive indices, e.g., SiO2 and TiO2. Each of the thicknesses of the films is adjusted in the range of 50 to 100 nm so that the center wavelength of reflectance is designed to fall within the range of 500 to 530 nm. The single wafer is divided into three in advance to produce three types of samples below.
  • Device A: A reflecting film (four cycles, reflectance 60%) is formed on the {10-1-7} end face. The {10-1-7} end face is defined as a light exit face (front).
  • A reflecting film (ten cycles, reflectance 95%) is formed on the {−1017} end face. The {−1017} end face is defined as a reflecting face (rear).
  • Device B: A reflecting film (ten cycles, reflectance 95%) is formed on the {10-1-7} end face. The {10-1-7} end face is defined as a reflecting face (rear).
  • A reflecting film (four cycles, reflectance 60%) is formed on the {−1017} end face. The {−1017} end face is defined as a light exit face (front).
  • Device C: The optical emitting face (front) and reflecting face (rear) are formed without consideration to crystal planes (in a mixed state among bars). The thicknesses of the reflecting films are the same as above.
  • These laser devices are mounted on a TO header and each mounted devices are energized to evaluate the device lifetime. A DC power supply is used as the power supply. Among the laser diodes thus produced, those with the lasing wavelength of 520 to 530 nm are evaluated as to the device lifetime. On the occasion of measurement of optical output, emission from the end face of each laser device is detected with a photodiode. During the measurement the ambient temperature is set at 27 degrees Celsius. The optical output is monitored under the condition of constant current to measure the lifetime of each laser diode. An electric current value is adjusted so that the initial value of optical output became 10 mW. Electric current values in the initial setting are different among the laser diodes, and distribute approximately in the electric current range of 80 to 150 mA. An elapsed time to half of the initial value of optical output is defined as a device lifetime. The measurement is continued for at most 500 hours.
  • The device lifetimes of the devices A to C are provided below (unit: hour).
  • Device type, Device A, Device B, Device C
    SUB1: >500, 362, 346;
    SUB2: >500, 366, 368;
    SUB3: >500, 242, >500; 
    SUB4: >500, 340, >500; 
    SUB5: >500, 348, 346;
    SUB6: >500, 312, 274;
    SUB7: >500, 198, >500; 
    SUB8: >500, 326, >500; 
    SUB9: >500, 256, 172;
    SUB10: >500, 242, 500.
  • An average of device lifetimes of each device type is calculated from the above results and the following results are obtained.
  • Device A: >500 h (over the lifetime of 500 hours).
    Device B: 299 h (the average lifetime of 299 hours).
    Device C: >400 h (over the lifetime of 400 hours).
  • The above results show that the excellent device lifetimes are achieved by taking account of the relation between the crystal planes and the total numbers of reflecting films in the laser diode chips fabricated from the same epitaxial substrate. Considering that since membrane stress increases with increase in the number of reflecting film layers, the device degradation tends to proceed with deterioration of crystal quality when the total number of films is large on the {10-1-7} plane side with weaker chemical properties like Device B. The degree of degradation is greater with increase in operating current and with increase in operating voltage. From the above tendency, the more heat is generated in the device and the less heat is dissipated from the device, the greater the degree of degradation is.
  • The polarity (plane orientation indicating the direction of the c-axis) in the end faces of the laser bar can be determined, for example, as follows: the laser bar is processed by the focused ion beam (FIB) method to form a plane parallel to the waveguide, and this plane is observed by the transmission electron microscopic (TEM) method through the estimation using convergent beam electron diffraction (CBED) method. The total number of films can be checked by observing the portions of the dielectric multilayer films using a transmission electron microscope. It is presumed that the cause of the device degradation is deterioration of crystal quality of the well layers, having a high In composition, in contact with the reflecting film. In order to suppress this deterioration to obtain a long-lifetime device, it is preferable to decrease the thickness of the reflecting film on the end face close to the −c plane and to increase the thickness of the reflecting film on the end face close to the +c plane.
  • For evaluating the fundamental characteristics of the fabricated lasers, evaluation by energization is carried out at room temperature. A pulsed power supply is used as the power supply to generate the pulse width of 500 ns and the duty ratio of 0.1%. In measurement of optical output, emission from the laser end face is detected with a photodiode, and the current-optical output characteristic (I-L characteristic) is measured. In measurement of emission wavelength, the emission from the laser end face is made to pass through an optical fiber and a spectrum thereof is measured using a spectrum analyzer as a detector. In estimating the polarization, the emission from the laser is observed through a polarizer, and the polarizer is rotated to estimate the polarization state of the laser beam. In observing LED-mode light, an optical fiber is provided to receive light emitted from the top surface of the laser to measure light emitted from the top surface of the laser device.
  • The polarization state in the lasing state is estimated for all the lasers, which shows that the emission is polarized in the a-axis direction. The lasing wavelength is in the range of 500 to 530 nm.
  • The polarization state of the LED-mode light (spontaneous emission) is measured with all the lasers. The degree of polarization ρ is defined as (I1−I2)/(I1+I2), where I1 indicates a polarization component in the direction of the a-axis, and I2 indicates a polarization component in the direction of the projected m-axis onto the primary surface. A relationship of determined polarization degree ρ versus minimum threshold current density is estimated in this way, and the result obtained is shown in FIG. 9. It is seen from FIG. 9 that when the polarization degree is positive, the threshold current density significantly decreases in the lasers with the laser stripe along the M-direction. Namely, it is seen that the threshold current density is largely decreased, when the polarization degree is positive (I1>I2) and when the waveguide is provided in the off direction. The data shown in FIG. 9 is as follows.
  • Degree of Threshold current, Threshold current.
    polarization, (M-direction stripe), (<11-20> stripe)
    0.08, 64, 20.
    0.05, 18, 42.
    0.15, 9, 48.
    0.276, 7, 52.
    0.4 6.
  • A relationship of inclination angle of the c-axis toward the m-axis direction of the GaN substrate versus lasing yield is estimated, and the result obtained is shown in FIG. 10. In the present example, the lasing yield is defined as the following expression: (number of oscillating chips)/(number of measured chips). FIG. 10 is a plot of measured values in the lasers including the M-direction laser stripe and the substrate with the stacking fault density of not more than 1×104 (cm−1). It is seen from FIG. 10 that the lasing yield is extremely low when the off angle is not more than 45 degrees. The end face state is observed with an optical microscope, and the observation shows that at angles smaller than 45 degrees, the m-plane appeared in almost all chips and the desired verticality is not achieved. It is also seen that in the range of the off angle of not less than 63 degrees and not more than 80 degrees, the verticality is improved and the lasing yield is also increased to 50% or more. From these results, the optimum range of the off angle of the GaN substrate is not less than 63 degrees and not more than 80 degrees. The same result is obtained in the range of not less than 100 degrees and not more than 117 degrees, which is the angular range where the end faces are crystallographically equivalent.
  • The data shown in FIG. 10 is as follows.
  • Angle of inclination, Yield.
    10,   0.1.
    43,   0.2.
    58, 50.
    63, 65.
    66, 80.
    71, 85.
    75, 80.
    79, 75.
    85, 45.
    90, 35.
  • Example 2
  • The below provides plane indices of primary surfaces of GaN substrates and plane indices perpendicular to the primary surfaces of substrates and nearly perpendicular to the direction of the projected c-axis onto the primary surface. The unit of angle is “degree.”
  • Plane index of primary surface: Angle to (0001), Plane index of first end face perpendicular to primary surface, Angle to primary surface.
    (0001): 0.00, (−1010), 90.00; part (a) of FIG. 11.
    (10-17): 15.01, (−2021), 90.10; part (b) of FIG. 11.
    (10-12): 43.19, (−4047), 90.20; part (a) of FIG. 12.
    (10-11): 61.96, (−2027), 90.17; part (b) of FIG. 12.
    (20-21): 75.09, (−1017), 90.10; part (a) of FIG. 13.
    (10-10): 90.00, (0001), 90.00; part (b) of FIG. 13.
    (20-2-1): 104.91, (10-17), 89.90; part (a) of FIG. 14.
    (10-1-1): 118.04, (20-27), 89.83; part (b) of FIG. 14.
    (10-1-2): 136.81, (40-47), 89.80; part (a) of FIG. 15.
    (10-1-7): 164.99, (20-21), 89.90; part (b) of FIG. 15.
  • (000-1): 180.00, (10-10), 90.00; FIG. 16.
  • FIGS. 11 to 16 are drawings schematically showing atomic arrangements in crystal surfaces of plane indices available for the end faces for the optical cavity perpendicular to the primary surface. With reference to part (a) of FIG. 11, atomic arrangements in the (−1010) plane and (10-10) plane perpendicular to the (0001)-plane primary surface are schematically shown. With reference to part (b) of FIG. 11, atomic arrangements in the (−2021) plane and (20-2-1) plane perpendicular to the (10-17)-plane primary surface are schematically shown. With reference to part (a) of FIG. 12, atomic arrangements in the (−4047) plane and (40-4-7) plane perpendicular to the (10-12)-plane primary surface are schematically shown. With reference to part (b) of FIG. 12, atomic arrangements in the (−2027) plane and (20-2-7) plane perpendicular to the (10-11)-plane primary surface are shown. With reference to part (a) of FIG. 13, atomic arrangements in the (−1017) plane and (10-1-7) plane perpendicular to the (20-21)-plane primary surface are schematically shown. With reference to part (b) of FIG. 13, atomic arrangements in the (0001) plane and (000-1) plane perpendicular to the (10-10)-plane primary surface are schematically shown. With reference to part (a) of FIG. 14, atomic arrangements in the (10-17) plane and (−101-7) plane perpendicular to the (20-2-1)-plane primary surface are shown. With reference to part (b) of FIG. 14, atomic arrangements in the (20-27) plane and (−202-7) plane perpendicular to the (10-1-1)-plane primary surface are shown. With reference to part (a) of FIG. 15, atomic arrangements in the (40-47) plane and (−404-7) plane perpendicular to the (10-1-2)-plane primary surface are schematically shown. With reference to part (b) of FIG. 15, arrangements in the (20-21) plane and (−202-1) plane perpendicular to the (10-1-7)-plane primary surface are shown. With reference to FIG. 16, atomic arrangements in the (10-10) plane and (−1010) plane perpendicular to the (000-1)-plane primary surface are schematically shown. In these drawings, black dots indicate nitrogen atoms and white dots indicate Group III atoms.
  • It is understood with reference to FIGS. 11 to 16 that the surface arrangements of constituent atoms vary even in planes with a relatively small off angle from the c-plane, to significantly change the surface morphology. For example, part (b) of FIG. 11 shows the case where the primary surface of the substrate is (10-17) and the angle to the (0001) plane is about 15 degrees. In this case, the first end face is (−2021) and the second end face is (20-2-1); these two crystal planes are considerably different in kinds of constituent elements in the outermost surface and in the number and angles of bonds bound to the crystal, and thus have significantly different chemical properties. In the conventional case where the primary surface of the substrate is the (0001) plane commonly used for the nitride semiconductor lasers, as shown in part (a) of FIG. 11, the end faces for the optical cavity are the (10-10) plane and (−1010) plane; these two crystal planes have the same types of constituent elements in the outermost surface and the same number and angles of bonds bound to the crystal, and thus have the same chemical properties. It is shown that the types of constituent elements in the surfaces of the end faces and the number and angles of bonds bound to the crystal significantly vary with increase in the angle of inclination of the substrate primary surface from the (0001) plane. This reveals that if the laser diode has the substrate primary surface of the (0001) plane, the good laser device can be fabricated without special attention to characteristics of the end face coatings, whereas if the laser diode has a substrate with a primary surface of a semipolar plane, device characteristics can be improved by certainly unifying the plane orientations of the end faces in formation of the end face coats.
  • According to Inventors' knowledge, it is presumed that reaction of nitrogen atoms at the surface with the end face coating films is promoted with increase in a rate of nitrogen atoms bound each through three bonds to the crystal and arranged at two or more continuous locations. For example, part (a) of FIG. 13 is the case where the substrate primary surface is the (20-21) plane and the angle to the (0001) plane is about 75 degrees. In this case, the first end face is the (−1017) plane, the second end face is the (10-1-7) plane, and in the (10-1-7) plane there are three continuous locations where each nitrogen atom is bound through three bonds to the crystal. Therefore, reaction with the end face coat film is likely to be promoted. At this time, the c+ axis vector indicating the direction of the <0001> axis of the GaN substrate is inclined at an angle in the range of approximately not less than 45 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 135 degrees toward the direction of any one crystal axis of the m-axis and the a-axis of the GaN substrate with respect to the normal vector indicating the direction of the normal axis to the primary surface of the GaN substrate.
  • In this laser diode, when the waveguide vector WV making the acute angle with the c+ axis vector is directed in the direction from the second end face (e.g., the end face 28 in FIG. 1) to the first end face (e.g., the end face 26 in FIG. 1), the thickness of the second dielectric multilayer film on the second end face (C− side) is smaller than the thickness of the first dielectric multilayer film on the first end face (C+ side); therefore, the second dielectric multilayer film is the front side and the laser beam is emitted from this front side. The first dielectric multilayer film is the rear side, and the laser beam is reflected by this rear side. When the thickness of the second dielectric multilayer film (C− film) on the front side is smaller than the thickness of the first dielectric multilayer film (C+ film) on the rear side, it is feasible to reduce the device degradation with deterioration of crystal quality proceeding from the second end face due to the dielectric multilayer film on the end face, and thereby avoiding the reduction in device lifetime.
  • According to various experiments including the above examples, the angle ALPHA can be in the range of not less than 45 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 135 degrees. In order to improve the lasing chip yield and device lifetime, the angle ALPHA can be in the range of not less than 63 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 117 degrees. In the case of the inclination of the <0001> axis toward the m-axis direction, the primary surface can be any one of typical semipolar planes, e.g., the {20-21} plane, {10-11} plane, {20-2-1} plane, and {10-1-1} plane. Furthermore, the primary surface can be a slightly inclined plane from these semipolar planes. The semipolar principal plane can be a slightly inclined plane off in the range of not less than −4 degrees and not more than +4 degrees toward the m-plane direction, for example, from any one of the {20-21} plane, {10-11} plane, {20-2-1} plane, and {10-1-1} plane. In the case of the inclination of the <0001> axis toward the a-axis direction, the primary surface can be any one of typical semipolar planes, e.g., the {11-22} plane, {11-21} plane, {11-2-1} plane, and {11-2-2} plane. Furthermore, the primary surface can be a slightly inclined surface from these semipolar planes. The semipolar principal plane can be a slightly inclined plane in the range of not less than −4 degrees and not more than +4 degrees toward the a-plane direction, for example, from any one of the {11-22} plane, {11-21} plane, {11-2-1} plane, and {11-2-2} plane.
  • As described above, the above embodiments provide the III-nitride semiconductor laser device with the long device lifetime. Furthermore, the above embodiment provides the method for fabricating the III-nitride semiconductor laser device with the long device lifetime.
  • Having been described and illustrated the principle of the present invention in the preferred embodiments, but it is recognized by those skilled in the art that the present invention can be modified in arrangement and in detail without departing from the principle. The present invention is by no means intended to be limited to the specific configurations disclosed in the embodiments. Therefore, the applicant claims all modifications and changes falling within the scope of claims and resulting from the scope of spirit thereof.

Claims (21)

1. A III-nitride semiconductor laser device comprising:
a laser structure comprising a support base and a semiconductor region, the support base having a semipolar primary surface of a III-nitride semiconductor, and the semiconductor region being provided on the semipolar primary surface of the support base; and
first and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device, the first and second dielectric multilayer films being provided on first and second end faces of the semiconductor region, respectively,
the semiconductor region including a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer, and the an active layer being provided between the first cladding layer and the second cladding layer,
the first cladding layer, the second cladding layer, and the active layer being arranged in a normal axis to the semipolar primary surface,
the active layer comprising a gallium nitride-based semiconductor layer,
a c+ axis vector being inclined at an angle in a range of not less than 45 degrees and not more than 80 degrees and of not less than 100 degrees and not more than 135 degrees toward a direction of any one crystal axis of m- and a-axes of the III-nitride semiconductor with respect to a normal vector, the c+ axis vector indicating a direction of a <0001> axis of the III-nitride semiconductor of the support base, and the normal vector indicating a direction of the normal axis,
the first and second end faces intersecting with a reference plane, the reference plane being defined by the normal axis and the one crystal axis of the hexagonal III-nitride semiconductor,
the c+ axis vector making an acute angle with a waveguide vector, and the waveguide vector indicating a direction from the second end face to the first end face, and
a thickness of the second dielectric multilayer film being smaller than a thickness of the first dielectric multilayer film.
2. The III-nitride semiconductor laser device according to claim 1, wherein the laser structure comprises first and second surfaces, and the first surface is opposite to the second surface,
wherein the semiconductor region is located between the first surface and the support base, and
wherein each of the first and second end faces is included in a fractured face, and the fractured face extends from an edge of the first surface to an edge of the second surface.
3. The III-nitride semiconductor laser device according to claim 1, wherein the c-axis of the III-nitride semiconductor is inclined toward the direction of the m-axis of the nitride semiconductor.
4. The III-nitride semiconductor laser device according to claim 1, wherein the primary surface of the support base is inclined in the range of not less than −4 degrees and not more than +4 degrees with respect to any one of {10-11}, {20-21}, {20-2-1}, and {10-1-1} planes.
5. The III-nitride semiconductor laser device according to claim 1, wherein the c-axis of the III-nitride semiconductor is inclined toward the direction of the a-axis of the nitride semiconductor.
6. The III-nitride semiconductor laser device according to claim 1, wherein the primary surface of the support base is inclined in the range of not less than −4 degrees and not more than +4 degrees from any one of {11-22}, {11-21}, {11-2-1}, and {11-2-2} planes.
7. The III-nitride semiconductor laser device according to claim 1, wherein the active layer comprises a well layer of a strained gallium nitride-based semiconductor, and the strained gallium nitride-based semiconductor containing indium as a constituent element.
8. The III-nitride semiconductor laser device according to claim 1, wherein the active layer is provided to generate a laser beam having a wavelength in a range of 430 nm to 550 nm.
9. The III-nitride semiconductor laser device according to claim 1, wherein the III-nitride semiconductor comprises GaN.
10. The III-nitride semiconductor laser device according to claim 1, wherein the first dielectric multilayer film has a dielectric layer, and the dielectric layer in the first dielectric multilayer film is comprised of at least one of silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and gadolinium oxide, and
wherein the second dielectric multilayer film has a dielectric layer, and the dielectric layer in the second dielectric multilayer film is comprised of at least one of silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and gadolinium oxide.
11. A method of fabricating a III-nitride semiconductor laser device, comprising the steps of:
preparing a substrate with a semipolar primary surface, the semipolar primary surface comprising a hexagonal III-nitride semiconductor;
forming a substrate product having a laser structure, an anode electrode, and a cathode electrode, the laser structure comprising a substrate and a semiconductor region, and the semiconductor region being formed on the semipolar primary surface;
after forming the substrate product, forming first and second end faces; and
forming first and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device on the first and second end faces, respectively,
the first and second end faces intersecting with a reference plane, the reference plane being defined by a normal axis to the semipolar primary surface and any one crystal axis of a- and m-axes of the hexagonal III-nitride semiconductor,
the semiconductor region comprising a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer, and the active layer being provided between the first cladding layer and the second cladding layer,
the first cladding layer, the second cladding layer, and the active layer being arranged in a direction of the normal axis,
the active layer comprising a gallium nitride-based semiconductor layer,
the semipolar primary surface of the substrate being inclined at an angle in a range of not less than 45 degrees and not more than 80 degrees and of not less than 100 degrees and not more than 135 degrees with respect to a plane perpendicular to a c+ axis vector, and the c+ axis vector indicating a direction of the <0001> axis of the nitride semiconductor,
the c+ axis vector making an acute angle with a waveguide vector, and the waveguide vector indicating a direction from the second end face to the first end face, and
a thickness of the second dielectric multilayer film being smaller than a thickness of the first dielectric multilayer film.
12. The method according to claim 11, further comprising a step of, prior to forming the first and second dielectric multilayer films, determining plane orientations of the first and second end faces.
13. The method according to claim 11, wherein the step of forming the first and second end faces comprises the steps of:
scribing a first surface of the substrate product; and
breaking the substrate product by press against a second surface of the substrate product to form a laser bar having the first and second end faces,
the first and second end faces of the laser bar being formed by the breaking,
the first surface being opposite to the second surface,
the semiconductor region being provided between the first surface and the substrate, and
each of the first and second end faces of the laser bar being included in a fractured face, and the fractured face extending from the first surface to the second surface and being formed by the breaking.
14. The method according to claim 11, wherein a c-axis of the III-nitride semiconductor is inclined toward a direction of the m-axis of the nitride semiconductor.
15. The method according to claim 11, wherein the primary surface of the substrate is inclined in a range of not less than −4 degrees and not more than +4 degrees with respect to any one of {10-11}, {20-21}, {20-2-1}, and {10-1-1} planes.
16. The method according to claim 11, wherein a c-axis of the III-nitride semiconductor is inclined toward a direction of an a-axis of the nitride semiconductor.
17. The method according to claim 11, wherein the primary surface of the substrate is inclined in the range of not less than −4 degrees and not more than +4 degrees from any one of {11-22}, {11-21}, {11-2-1}, and {11-2-2} planes.
18. The method according to claim 11, wherein formation of the active layer comprises a step of growing a well layer of a strained gallium nitride-based semiconductor, and the strained gallium nitride-based semiconductor contains indium as a constituent element.
19. The method according to claim 11, wherein the active layer is provided to generate light at a wavelength of 430-550 nm.
20. The method according to claim 11, wherein the III-nitride semiconductor comprises GaN.
21. The method according to claim 11, wherein the first dielectric multilayer film has a dielectric layer, and the a dielectric layer in the first dielectric multilayer film is formed using at least one of silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and gadolinium oxide, and
wherein the second dielectric multilayer film has a dielectric layer, and the dielectric layer in the second dielectric multilayer film is formed using at least one selected from silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, titanium nitride, titanium oxynitride, zirconium oxide, zirconium nitride, zirconium oxynitride, zirconium fluoride, tantalum oxide, tantalum nitride, tantalum oxynitride, hafnium oxide, hafnium nitride, hafnium oxynitride, hafnium fluoride, aluminum oxide, aluminum nitride, aluminum oxynitride, magnesium fluoride, magnesium oxide, magnesium nitride, magnesium oxynitride, calcium fluoride, barium fluoride, cerium fluoride, antimony oxide, bismuth oxide, and gadolinium oxide.
US12/831,566 2009-09-30 2010-07-07 III-Nitride semiconductor laser device, and method of fabricating the III-Nitride semiconductor laser device Abandoned US20110075694A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/416,844 US8541253B2 (en) 2009-09-30 2012-03-09 III-nitride semiconductor laser device, and method of fabricating the III-nitride semiconductor laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPP2009-228747 2009-09-30
JP2009228747A JP5387302B2 (en) 2009-09-30 2009-09-30 Group III nitride semiconductor laser device and method of manufacturing group III nitride semiconductor laser device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/416,844 Division US8541253B2 (en) 2009-09-30 2012-03-09 III-nitride semiconductor laser device, and method of fabricating the III-nitride semiconductor laser device

Publications (1)

Publication Number Publication Date
US20110075694A1 true US20110075694A1 (en) 2011-03-31

Family

ID=43780347

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/831,566 Abandoned US20110075694A1 (en) 2009-09-30 2010-07-07 III-Nitride semiconductor laser device, and method of fabricating the III-Nitride semiconductor laser device
US13/416,844 Expired - Fee Related US8541253B2 (en) 2009-09-30 2012-03-09 III-nitride semiconductor laser device, and method of fabricating the III-nitride semiconductor laser device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/416,844 Expired - Fee Related US8541253B2 (en) 2009-09-30 2012-03-09 III-nitride semiconductor laser device, and method of fabricating the III-nitride semiconductor laser device

Country Status (7)

Country Link
US (2) US20110075694A1 (en)
EP (1) EP2487764A1 (en)
JP (1) JP5387302B2 (en)
KR (1) KR20120075474A (en)
CN (1) CN102549859B (en)
TW (1) TW201134038A (en)
WO (1) WO2011040486A1 (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090309127A1 (en) * 2008-06-13 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure
US20090309110A1 (en) * 2008-06-16 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure for multi-colored devices
US20100302464A1 (en) * 2009-05-29 2010-12-02 Soraa, Inc. Laser Based Display Method and System
US20110056429A1 (en) * 2009-08-21 2011-03-10 Soraa, Inc. Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices
US20110064101A1 (en) * 2009-09-17 2011-03-17 Kaai, Inc. Low Voltage Laser Diodes on Gallium and Nitrogen Containing Substrates
US20110164637A1 (en) * 2009-06-17 2011-07-07 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110180781A1 (en) * 2008-06-05 2011-07-28 Soraa, Inc Highly Polarized White Light Source By Combining Blue LED on Semipolar or Nonpolar GaN with Yellow LED on Semipolar or Nonpolar GaN
US20110182056A1 (en) * 2010-06-23 2011-07-28 Soraa, Inc. Quantum Dot Wavelength Conversion for Optical Devices Using Nonpolar or Semipolar Gallium Containing Materials
US20110186874A1 (en) * 2010-02-03 2011-08-04 Soraa, Inc. White Light Apparatus and Method
US20110228804A1 (en) * 2010-01-18 2011-09-22 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20120100654A1 (en) * 2009-12-25 2012-04-26 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US20120189029A1 (en) * 2010-12-07 2012-07-26 Rohm Co., Ltd. Semiconductor laser device
US20120202304A1 (en) * 2009-09-30 2012-08-09 Sumitomo Electric Industries, Ltd. Iii-nitride semiconductor laser device, and method of fabricating the iii- nitride semiconductor laser device
US20120273796A1 (en) * 2011-04-29 2012-11-01 The Regents Of The University Of California High indium uptake and high polarization ratio for group-iii nitride optoelectronic devices fabricated on a semipolar (20-2-1) plane of a gallium nitride substrate
US8422525B1 (en) 2009-03-28 2013-04-16 Soraa, Inc. Optical device structure using miscut GaN substrates for laser applications
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US8494017B2 (en) 2008-08-04 2013-07-23 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US20130208749A1 (en) * 2012-02-13 2013-08-15 Canon Kabushiki Kaisha Superluminescent diode and optical coherence tomography apparatus including the superluminescent diode
US8524578B1 (en) 2009-05-29 2013-09-03 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US20130234108A1 (en) * 2012-03-06 2013-09-12 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
US8558265B2 (en) 2008-08-04 2013-10-15 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
WO2014048687A1 (en) * 2012-09-27 2014-04-03 Osram Opto Semiconductors Gmbh Algalnn semiconductor laser with a mesa and with improved current conduction
US8728842B2 (en) 2008-07-14 2014-05-20 Soraa Laser Diode, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US8767787B1 (en) 2008-07-14 2014-07-01 Soraa Laser Diode, Inc. Integrated laser diodes with quality facets on GaN substrates
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US8791499B1 (en) 2009-05-27 2014-07-29 Soraa, Inc. GaN containing optical devices and method with ESD stability
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8802471B1 (en) 2012-12-21 2014-08-12 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9000466B1 (en) 2010-08-23 2015-04-07 Soraa, Inc. Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US9046227B2 (en) 2009-09-18 2015-06-02 Soraa, Inc. LED lamps with improved quality of light
US9071039B2 (en) 2009-04-13 2015-06-30 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9088135B1 (en) 2012-06-29 2015-07-21 Soraa Laser Diode, Inc. Narrow sized laser diode
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9105806B2 (en) 2009-03-09 2015-08-11 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US9166372B1 (en) 2013-06-28 2015-10-20 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US9184563B1 (en) 2012-08-30 2015-11-10 Soraa Laser Diode, Inc. Laser diodes with an etched facet and surface treatment
US9209596B1 (en) 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9318875B1 (en) 2011-01-24 2016-04-19 Soraa Laser Diode, Inc. Color converting element for laser diode
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9362715B2 (en) 2014-02-10 2016-06-07 Soraa Laser Diode, Inc Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US9379525B2 (en) 2014-02-10 2016-06-28 Soraa Laser Diode, Inc. Manufacturable laser diode
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US9520697B2 (en) 2014-02-10 2016-12-13 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US9520695B2 (en) 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US9531164B2 (en) 2009-04-13 2016-12-27 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9564736B1 (en) 2014-06-26 2017-02-07 Soraa Laser Diode, Inc. Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US9666677B1 (en) 2014-12-23 2017-05-30 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9871350B2 (en) 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US9927611B2 (en) 2010-03-29 2018-03-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US10903623B2 (en) 2019-05-14 2021-01-26 Soraa Laser Diode, Inc. Method and structure for manufacturable large area gallium and nitrogen containing substrate
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US11107954B2 (en) * 2017-06-12 2021-08-31 Osram Oled Gmbh Light-emitting diode chip, and method for manufacturing a light-emitting diode chip
US11228158B2 (en) 2019-05-14 2022-01-18 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US11973308B2 (en) 2020-11-24 2024-04-30 Kyocera Sld Laser, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397136B2 (en) * 2009-09-30 2014-01-22 住友電気工業株式会社 Group III nitride semiconductor laser device and method of manufacturing group III nitride semiconductor laser device
JP2012175571A (en) * 2011-02-23 2012-09-10 Sumitomo Electric Ind Ltd Method of manufacturing polarization rotation element and polarization rotation element
JP5255106B2 (en) * 2011-10-24 2013-08-07 住友電気工業株式会社 Nitride semiconductor light emitting device
JP2013243217A (en) 2012-05-18 2013-12-05 Sumitomo Electric Ind Ltd Group iii nitride semiconductor laser element
KR101836514B1 (en) 2012-07-11 2018-04-19 현대자동차주식회사 Air conditioner apparatus for vehicle
JP2019091801A (en) * 2017-11-14 2019-06-13 シャープ株式会社 Nitride semiconductor laser element

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191223A1 (en) * 2007-02-12 2008-08-14 The Regents Of The University Of California CLEAVED FACET (Ga,Al,In)N EDGE-EMITTING LASER DIODES GROWN ON SEMIPOLAR BULK GALLIUM NITRIDE SUBSTRATES
US20090086778A1 (en) * 2007-09-28 2009-04-02 Sanyo Electric Co., Ltd Nitride based semiconductor laser device
US20090101927A1 (en) * 2007-09-03 2009-04-23 Rohm Co.,Ltd. Method of manufacturing light emitting device
US20090200573A1 (en) * 2007-12-06 2009-08-13 Toshiyuki Kawakami Light emitting element and manufacturing method thereof
US20090252191A1 (en) * 2008-04-03 2009-10-08 Rohm Co., Ltd. Semiconductor laser device
US20100309943A1 (en) * 2009-06-05 2010-12-09 The Regents Of The University Of California LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES
US20100322276A1 (en) * 2009-06-17 2010-12-23 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110058585A1 (en) * 2009-09-10 2011-03-10 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US20110064100A1 (en) * 2009-09-17 2011-03-17 Kaai, Inc. Growth Structures and Method for Forming Laser Diodes on or Off Cut Gallium and Nitrogen Containing Substrates
US20110075695A1 (en) * 2009-09-30 2011-03-31 Sumitomo Electric Industries, Ltd. Iii-intride semiconductor laser device, and method of fabricating the iii-nitride semiconductor laser device
US20110128983A1 (en) * 2009-12-01 2011-06-02 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110158276A1 (en) * 2009-12-25 2011-06-30 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US20110158277A1 (en) * 2009-12-25 2011-06-30 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, method of fabricating group-iii nitride semiconductor laser device, and epitaxial substrate
US20110158275A1 (en) * 2009-12-25 2011-06-30 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US20110164638A1 (en) * 2010-01-07 2011-07-07 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, method of fabricating group-iii nitride semiconductor laser device, and method of estimating damage from formation of scribe groove
US20110176569A1 (en) * 2010-01-18 2011-07-21 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110182311A1 (en) * 2008-10-07 2011-07-28 Sumitomo Electric Industries, Ltd. Gallium nitride based semiconductor light-emitting device and method for fabricating the same, gallium nitride based light-emitting diode, epitaxial wafer, and method for fabricating gallium nitride light-emitting diode
US20110228804A1 (en) * 2010-01-18 2011-09-22 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110228864A1 (en) * 2008-12-03 2011-09-22 Farshid Aryanfar Resonance mitigation for high-speed signaling
US20110299560A1 (en) * 2010-06-08 2011-12-08 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110300653A1 (en) * 2010-06-08 2011-12-08 Sumitomo Electric Industries, Ltd. Method of fabricating group-iii nitride semiconductor laser device
US20120112203A1 (en) * 2010-11-05 2012-05-10 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor device, method for fabricating group-iii nitride semiconductor device, and epitaxial substrate
US20120202304A1 (en) * 2009-09-30 2012-08-09 Sumitomo Electric Industries, Ltd. Iii-nitride semiconductor laser device, and method of fabricating the iii- nitride semiconductor laser device
US20120269220A1 (en) * 2011-01-21 2012-10-25 Sony Corporation Iii-nitride semiconductor laser device and method for fabricating iii-nitride semiconductor laser device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187044A (en) * 2007-01-30 2008-08-14 Rohm Co Ltd Semiconductor laser
WO2009041462A1 (en) * 2007-09-28 2009-04-02 Sanyo Electric Co., Ltd. Nitride-group semiconductor light-emitting element, nitride-group semiconductor laser element, nitride-group semiconductor light emitting diode, their manufacturing method, and nitride-group semiconductor layer forming method

Patent Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191223A1 (en) * 2007-02-12 2008-08-14 The Regents Of The University Of California CLEAVED FACET (Ga,Al,In)N EDGE-EMITTING LASER DIODES GROWN ON SEMIPOLAR BULK GALLIUM NITRIDE SUBSTRATES
US20090101927A1 (en) * 2007-09-03 2009-04-23 Rohm Co.,Ltd. Method of manufacturing light emitting device
US20090086778A1 (en) * 2007-09-28 2009-04-02 Sanyo Electric Co., Ltd Nitride based semiconductor laser device
US20090200573A1 (en) * 2007-12-06 2009-08-13 Toshiyuki Kawakami Light emitting element and manufacturing method thereof
US20090252191A1 (en) * 2008-04-03 2009-10-08 Rohm Co., Ltd. Semiconductor laser device
US20110182311A1 (en) * 2008-10-07 2011-07-28 Sumitomo Electric Industries, Ltd. Gallium nitride based semiconductor light-emitting device and method for fabricating the same, gallium nitride based light-emitting diode, epitaxial wafer, and method for fabricating gallium nitride light-emitting diode
US20110228864A1 (en) * 2008-12-03 2011-09-22 Farshid Aryanfar Resonance mitigation for high-speed signaling
US20100309943A1 (en) * 2009-06-05 2010-12-09 The Regents Of The University Of California LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES
US20100322276A1 (en) * 2009-06-17 2010-12-23 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US7933303B2 (en) * 2009-06-17 2011-04-26 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US20120058583A1 (en) * 2009-06-17 2012-03-08 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20120142130A1 (en) * 2009-06-17 2012-06-07 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110164637A1 (en) * 2009-06-17 2011-07-07 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110058585A1 (en) * 2009-09-10 2011-03-10 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US8306082B2 (en) * 2009-09-10 2012-11-06 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method of fabricating group-III nitride semiconductor laser device
US20120088326A1 (en) * 2009-09-10 2012-04-12 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US8227277B2 (en) * 2009-09-10 2012-07-24 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method of fabricating group-III nitride semiconductor laser device
US20110064100A1 (en) * 2009-09-17 2011-03-17 Kaai, Inc. Growth Structures and Method for Forming Laser Diodes on or Off Cut Gallium and Nitrogen Containing Substrates
US20120202304A1 (en) * 2009-09-30 2012-08-09 Sumitomo Electric Industries, Ltd. Iii-nitride semiconductor laser device, and method of fabricating the iii- nitride semiconductor laser device
US20110075695A1 (en) * 2009-09-30 2011-03-31 Sumitomo Electric Industries, Ltd. Iii-intride semiconductor laser device, and method of fabricating the iii-nitride semiconductor laser device
US20120184057A1 (en) * 2009-09-30 2012-07-19 Sumitomo Electric Industries, Ltd. Iii-nitride semiconductor laser device, and method of fabricating the iii-nitride semiconductor laser device
US20110292956A1 (en) * 2009-12-01 2011-12-01 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US8076167B2 (en) * 2009-12-01 2011-12-13 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US20110128983A1 (en) * 2009-12-01 2011-06-02 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US8139619B2 (en) * 2009-12-01 2012-03-20 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US8401048B2 (en) * 2009-12-25 2013-03-19 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method of fabricating group-III nitride semiconductor laser device
US20110158277A1 (en) * 2009-12-25 2011-06-30 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, method of fabricating group-iii nitride semiconductor laser device, and epitaxial substrate
US20110158275A1 (en) * 2009-12-25 2011-06-30 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US20110158276A1 (en) * 2009-12-25 2011-06-30 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US20120135554A1 (en) * 2009-12-25 2012-05-31 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US8265113B2 (en) * 2009-12-25 2012-09-11 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method of fabricating group-III nitride semiconductor laser device
US20120100654A1 (en) * 2009-12-25 2012-04-26 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US8175129B2 (en) * 2010-01-07 2012-05-08 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, method of fabricating group-III nitride semiconductor laser device, and method of estimating damage from formation of scribe groove
US20110164638A1 (en) * 2010-01-07 2011-07-07 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, method of fabricating group-iii nitride semiconductor laser device, and method of estimating damage from formation of scribe groove
US20120107968A1 (en) * 2010-01-07 2012-05-03 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, method of fabricating group-iii nitride semiconductor laser device, and method of estimating damage from formation of scribe groove
US8071405B2 (en) * 2010-01-18 2011-12-06 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US20120027039A1 (en) * 2010-01-18 2012-02-02 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US8213475B2 (en) * 2010-01-18 2012-07-03 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US20110176569A1 (en) * 2010-01-18 2011-07-21 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110228804A1 (en) * 2010-01-18 2011-09-22 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US8105857B2 (en) * 2010-06-08 2012-01-31 Sumitomo Electric Industries, Ltd. Method of fabricating group-III nitride semiconductor laser device
US20120214268A1 (en) * 2010-06-08 2012-08-23 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110299560A1 (en) * 2010-06-08 2011-12-08 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110300653A1 (en) * 2010-06-08 2011-12-08 Sumitomo Electric Industries, Ltd. Method of fabricating group-iii nitride semiconductor laser device
US20120112203A1 (en) * 2010-11-05 2012-05-10 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor device, method for fabricating group-iii nitride semiconductor device, and epitaxial substrate
US20120269220A1 (en) * 2011-01-21 2012-10-25 Sony Corporation Iii-nitride semiconductor laser device and method for fabricating iii-nitride semiconductor laser device

Cited By (284)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110180781A1 (en) * 2008-06-05 2011-07-28 Soraa, Inc Highly Polarized White Light Source By Combining Blue LED on Semipolar or Nonpolar GaN with Yellow LED on Semipolar or Nonpolar GaN
US20090309127A1 (en) * 2008-06-13 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure
US20090309110A1 (en) * 2008-06-16 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure for multi-colored devices
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US8728842B2 (en) 2008-07-14 2014-05-20 Soraa Laser Diode, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US9239427B1 (en) 2008-07-14 2016-01-19 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8767787B1 (en) 2008-07-14 2014-07-01 Soraa Laser Diode, Inc. Integrated laser diodes with quality facets on GaN substrates
US9711941B1 (en) 2008-07-14 2017-07-18 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8956894B2 (en) 2008-08-04 2015-02-17 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US8558265B2 (en) 2008-08-04 2013-10-15 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US8494017B2 (en) 2008-08-04 2013-07-23 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
USRE47711E1 (en) 2008-08-04 2019-11-05 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US9105806B2 (en) 2009-03-09 2015-08-11 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8422525B1 (en) 2009-03-28 2013-04-16 Soraa, Inc. Optical device structure using miscut GaN substrates for laser applications
US10862274B1 (en) 2009-04-13 2020-12-08 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9071039B2 (en) 2009-04-13 2015-06-30 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US10374392B1 (en) 2009-04-13 2019-08-06 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9722398B2 (en) 2009-04-13 2017-08-01 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9735547B1 (en) 2009-04-13 2017-08-15 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8969113B2 (en) 2009-04-13 2015-03-03 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9553426B1 (en) 2009-04-13 2017-01-24 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US10862273B1 (en) 2009-04-13 2020-12-08 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9099844B2 (en) 2009-04-13 2015-08-04 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US11862937B1 (en) 2009-04-13 2024-01-02 Kyocera Sld Laser, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9941665B1 (en) 2009-04-13 2018-04-10 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9531164B2 (en) 2009-04-13 2016-12-27 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9356430B2 (en) 2009-04-13 2016-05-31 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8791499B1 (en) 2009-05-27 2014-07-29 Soraa, Inc. GaN containing optical devices and method with ESD stability
US9829778B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source
US11101618B1 (en) 2009-05-29 2021-08-24 Kyocera Sld Laser, Inc. Laser device for dynamic white light
US8575728B1 (en) 2009-05-29 2013-11-05 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10904506B1 (en) 2009-05-29 2021-01-26 Soraa Laser Diode, Inc. Laser device for white light
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US10297977B1 (en) 2009-05-29 2019-05-21 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US8773598B2 (en) 2009-05-29 2014-07-08 Soraa Laser Diode, Inc. Laser based display method and system
US11016378B2 (en) 2009-05-29 2021-05-25 Kyocera Sld Laser, Inc. Laser light source
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9013638B2 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Laser based display method and system
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US11088507B1 (en) 2009-05-29 2021-08-10 Kyocera Sld Laser, Inc. Laser source apparatus
US11796903B2 (en) 2009-05-29 2023-10-24 Kyocera Sld Laser, Inc. Laser based display system
US8837546B1 (en) 2009-05-29 2014-09-16 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US11817675B1 (en) 2009-05-29 2023-11-14 Kyocera Sld Laser, Inc. Laser device for white light
US10084281B1 (en) 2009-05-29 2018-09-25 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US8524578B1 (en) 2009-05-29 2013-09-03 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US9100590B2 (en) 2009-05-29 2015-08-04 Soraa Laser Diode, Inc. Laser based display method and system
US8908731B1 (en) 2009-05-29 2014-12-09 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US10205300B1 (en) 2009-05-29 2019-02-12 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US20100302464A1 (en) * 2009-05-29 2010-12-02 Soraa, Inc. Laser Based Display Method and System
US8427590B2 (en) 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US9071772B2 (en) 2009-05-29 2015-06-30 Soraa Laser Diode, Inc. Laser based display method and system
US11619871B2 (en) 2009-05-29 2023-04-04 Kyocera Sld Laser, Inc. Laser based display system
US9019437B2 (en) 2009-05-29 2015-04-28 Soraa Laser Diode, Inc. Laser based display method and system
US9014229B1 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling method
US8741674B2 (en) * 2009-06-17 2014-06-03 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US20120142130A1 (en) * 2009-06-17 2012-06-07 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US8693515B2 (en) * 2009-06-17 2014-04-08 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US8546163B2 (en) 2009-06-17 2013-10-01 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US20110164637A1 (en) * 2009-06-17 2011-07-07 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110056429A1 (en) * 2009-08-21 2011-03-10 Soraa, Inc. Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices
US9142935B2 (en) 2009-09-17 2015-09-22 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US9543738B2 (en) 2009-09-17 2017-01-10 Soraa Laser Diode, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing substrates
US20110064101A1 (en) * 2009-09-17 2011-03-17 Kaai, Inc. Low Voltage Laser Diodes on Gallium and Nitrogen Containing Substrates
US20110064100A1 (en) * 2009-09-17 2011-03-17 Kaai, Inc. Growth Structures and Method for Forming Laser Diodes on or Off Cut Gallium and Nitrogen Containing Substrates
US8351478B2 (en) 2009-09-17 2013-01-08 Soraa, Inc. Growth structures and method for forming laser diodes on {30-31} or off cut gallium and nitrogen containing substrates
US10424900B2 (en) 2009-09-17 2019-09-24 Soraa Laser Diode, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing substrates
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US11070031B2 (en) 2009-09-17 2021-07-20 Kyocera Sld Laser, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing surfaces
US10090644B2 (en) 2009-09-17 2018-10-02 Soraa Laser Diode, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing substrates
US9853420B2 (en) 2009-09-17 2017-12-26 Soraa Laser Diode, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing substrates
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US11105473B2 (en) 2009-09-18 2021-08-31 EcoSense Lighting, Inc. LED lamps with improved quality of light
US9046227B2 (en) 2009-09-18 2015-06-02 Soraa, Inc. LED lamps with improved quality of light
US10557595B2 (en) 2009-09-18 2020-02-11 Soraa, Inc. LED lamps with improved quality of light
US10693041B2 (en) 2009-09-18 2020-06-23 Soraa, Inc. High-performance LED fabrication
US10553754B2 (en) 2009-09-18 2020-02-04 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US11662067B2 (en) 2009-09-18 2023-05-30 Korrus, Inc. LED lamps with improved quality of light
US8541253B2 (en) * 2009-09-30 2013-09-24 Sumitomo Electric Industries, Ltd. III-nitride semiconductor laser device, and method of fabricating the III-nitride semiconductor laser device
US20120202304A1 (en) * 2009-09-30 2012-08-09 Sumitomo Electric Industries, Ltd. Iii-nitride semiconductor laser device, and method of fabricating the iii- nitride semiconductor laser device
US20120100654A1 (en) * 2009-12-25 2012-04-26 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US8772064B2 (en) * 2009-12-25 2014-07-08 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method of fabricating group-III nitride semiconductor laser device
US20110228804A1 (en) * 2010-01-18 2011-09-22 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method for fabricating group-iii nitride semiconductor laser device
US20110186874A1 (en) * 2010-02-03 2011-08-04 Soraa, Inc. White Light Apparatus and Method
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US9927611B2 (en) 2010-03-29 2018-03-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US8848755B1 (en) 2010-05-17 2014-09-30 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10923878B1 (en) 2010-05-17 2021-02-16 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9106049B1 (en) 2010-05-17 2015-08-11 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9362720B1 (en) 2010-05-17 2016-06-07 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10816801B2 (en) 2010-05-17 2020-10-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US9837790B1 (en) 2010-05-17 2017-12-05 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US11630307B2 (en) 2010-05-17 2023-04-18 Kyocera Sld Laser, Inc. Wearable laser based display method and system
US11791606B1 (en) 2010-05-17 2023-10-17 Kyocera Sld Laser, Inc. Method and system for providing directional light sources with broad spectrum
US10505344B1 (en) 2010-05-17 2019-12-10 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10122148B1 (en) 2010-05-17 2018-11-06 Soraa Laser Diodide, Inc. Method and system for providing directional light sources with broad spectrum
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US20110182056A1 (en) * 2010-06-23 2011-07-28 Soraa, Inc. Quantum Dot Wavelength Conversion for Optical Devices Using Nonpolar or Semipolar Gallium Containing Materials
US9000466B1 (en) 2010-08-23 2015-04-07 Soraa, Inc. Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening
US9379522B1 (en) 2010-11-05 2016-06-28 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US9570888B1 (en) 2010-11-05 2017-02-14 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US11152765B1 (en) 2010-11-05 2021-10-19 Kyocera Sld Laser, Inc. Strained and strain control regions in optical devices
US11715931B1 (en) 2010-11-05 2023-08-01 Kyocera Sld Laser, Inc. Strained and strain control regions in optical devices
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US10283938B1 (en) 2010-11-05 2019-05-07 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US10637210B1 (en) 2010-11-05 2020-04-28 Soraa Laser Diode, Inc. Strained and strain control regions in optical devices
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US9786810B2 (en) 2010-11-09 2017-10-10 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US20120189029A1 (en) * 2010-12-07 2012-07-26 Rohm Co., Ltd. Semiconductor laser device
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9810383B2 (en) 2011-01-24 2017-11-07 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US8946865B2 (en) 2011-01-24 2015-02-03 Soraa, Inc. Gallium—nitride-on-handle substrate materials and devices and method of manufacture
US10247366B2 (en) 2011-01-24 2019-04-02 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US10655800B2 (en) 2011-01-24 2020-05-19 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9371970B2 (en) 2011-01-24 2016-06-21 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US11573374B2 (en) 2011-01-24 2023-02-07 Kyocera Sld Laser, Inc. Gallium and nitrogen containing laser module configured for phosphor pumping
US9318875B1 (en) 2011-01-24 2016-04-19 Soraa Laser Diode, Inc. Color converting element for laser diode
US11543590B2 (en) 2011-01-24 2023-01-03 Kyocera Sld Laser, Inc. Optical module having multiple laser diode devices and a support member
US9835296B2 (en) 2011-01-24 2017-12-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US9716369B1 (en) 2011-04-04 2017-07-25 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US11742634B1 (en) 2011-04-04 2023-08-29 Kyocera Sld Laser, Inc. Laser bar device having multiple emitters
US10050415B1 (en) 2011-04-04 2018-08-14 Soraa Laser Diode, Inc. Laser device having multiple emitters
US10587097B1 (en) 2011-04-04 2020-03-10 Soraa Laser Diode, Inc. Laser bar device having multiple emitters
US11005234B1 (en) 2011-04-04 2021-05-11 Kyocera Sld Laser, Inc. Laser bar device having multiple emitters
US20120273796A1 (en) * 2011-04-29 2012-11-01 The Regents Of The University Of California High indium uptake and high polarization ratio for group-iii nitride optoelectronic devices fabricated on a semipolar (20-2-1) plane of a gallium nitride substrate
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US10069282B1 (en) 2011-10-13 2018-09-04 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US9166374B1 (en) 2011-10-13 2015-10-20 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US10879674B1 (en) 2011-10-13 2020-12-29 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US11387630B1 (en) 2011-10-13 2022-07-12 Kyocera Sld Laser, Inc. Laser devices using a semipolar plane
US9590392B1 (en) 2011-10-13 2017-03-07 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US11749969B1 (en) 2011-10-13 2023-09-05 Kyocera Sld Laser, Inc. Laser devices using a semipolar plane
US10522976B1 (en) 2011-10-13 2019-12-31 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
US9124070B2 (en) * 2012-02-13 2015-09-01 Canon Kabushiki Kaisha Superluminescent diode and optical coherence tomography apparatus including the superluminescent diode
US20130208749A1 (en) * 2012-02-13 2013-08-15 Canon Kabushiki Kaisha Superluminescent diode and optical coherence tomography apparatus including the superluminescent diode
US10090638B1 (en) 2012-02-17 2018-10-02 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US11677213B1 (en) 2012-02-17 2023-06-13 Kyocera Sld Laser, Inc. Systems for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US11201452B1 (en) 2012-02-17 2021-12-14 Kyocera Sld Laser, Inc. Systems for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US10630050B1 (en) 2012-02-17 2020-04-21 Soraa Laser Diode, Inc. Methods for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US10096755B2 (en) * 2012-03-06 2018-10-09 Soraa, Inc. Light emitting diode with low refractive index material layers to reduce light guiding effects
US20190140150A1 (en) * 2012-03-06 2019-05-09 Soraa, Inc. Light emitting diode with low refractive index material layers to reduce light guiding effects
US20160172556A1 (en) * 2012-03-06 2016-06-16 Soraa, Inc. Light emitting diode with low refractive index material layers to reduce light guiding effects
US9269876B2 (en) * 2012-03-06 2016-02-23 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
US20130234108A1 (en) * 2012-03-06 2013-09-12 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US11742631B1 (en) 2012-04-05 2023-08-29 Kyocera Sld Laser, Inc. Facet on a gallium and nitrogen containing laser diode
US11121522B1 (en) 2012-04-05 2021-09-14 Kyocera Sld Laser, Inc. Facet on a gallium and nitrogen containing laser diode
US11139634B1 (en) 2012-04-05 2021-10-05 Kyocera Sld Laser, Inc. Facet on a gallium and nitrogen containing laser diode
US9088135B1 (en) 2012-06-29 2015-07-21 Soraa Laser Diode, Inc. Narrow sized laser diode
US11217966B1 (en) 2012-06-29 2022-01-04 Kyocera Sld Laser, Inc. Narrow sized laser diode
US11664643B1 (en) 2012-06-29 2023-05-30 Kyocera Sld Laser, Inc. Narrow sized laser diode
US9640949B1 (en) 2012-06-29 2017-05-02 Soraa Laser Diode, Inc. Narrow sized laser diode
US10490980B1 (en) 2012-06-29 2019-11-26 Soraa Laser Diode, Inc. Narrow sized laser diode
US9985417B1 (en) 2012-06-29 2018-05-29 Soraa Laser Diode, Inc. Narrow sized laser diode
US10862272B1 (en) 2012-08-30 2020-12-08 Soraa Laser Diode, Inc. Laser diodes with a surface treatment
US11626708B1 (en) 2012-08-30 2023-04-11 Kyocera Sld Laser, Inc. Laser diodes with an etched facet and surface treatment
US10096973B1 (en) 2012-08-30 2018-10-09 Soraa Laser Diode, Inc. Laser diodes with an etched facet and surface treatment
US9184563B1 (en) 2012-08-30 2015-11-10 Soraa Laser Diode, Inc. Laser diodes with an etched facet and surface treatment
US9608407B1 (en) 2012-08-30 2017-03-28 Soraa Laser Diode, Inc. Laser diodes with an etched facet and surface treatment
US10511149B1 (en) 2012-08-30 2019-12-17 Soraa Laser Diode, Inc. Laser diodes with an etched facet and surface treatment
WO2014048687A1 (en) * 2012-09-27 2014-04-03 Osram Opto Semiconductors Gmbh Algalnn semiconductor laser with a mesa and with improved current conduction
US9373937B2 (en) 2012-09-27 2016-06-21 Osram Opto Semiconductors Gmbh Semiconductor laser with improved current conduction
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US8802471B1 (en) 2012-12-21 2014-08-12 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US10186841B1 (en) 2013-06-28 2019-01-22 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US9166372B1 (en) 2013-06-28 2015-10-20 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US9887517B1 (en) 2013-06-28 2018-02-06 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US11177634B1 (en) 2013-06-28 2021-11-16 Kyocera Sld Laser, Inc. Gallium and nitrogen containing laser device configured on a patterned substrate
US9466949B1 (en) 2013-06-28 2016-10-11 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US10651629B1 (en) 2013-06-28 2020-05-12 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US10903625B2 (en) 2013-10-18 2021-01-26 Soraa Laser Diode, Inc. Manufacturable laser diode formed on c-plane gallium and nitrogen material
US10439364B2 (en) 2013-10-18 2019-10-08 Soraa Laser Diode, Inc. Manufacturable laser diode formed on c-plane gallium and nitrogen material
US9520695B2 (en) 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US9882353B2 (en) 2013-10-18 2018-01-30 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US11569637B2 (en) 2013-10-18 2023-01-31 Kyocera Sld Laser, Inc. Manufacturable laser diode formed on c-plane gallium and nitrogen material
US9774170B2 (en) 2013-10-18 2017-09-26 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US10274139B1 (en) 2013-12-18 2019-04-30 Soraa Laser Diode, Inc. Patterned color converting element for laser diode
US10627055B1 (en) 2013-12-18 2020-04-21 Soraa Laser Diode, Inc. Color converting device
US9869433B1 (en) 2013-12-18 2018-01-16 Soraa Laser Diode, Inc. Color converting element for laser diode
US11649936B1 (en) 2013-12-18 2023-05-16 Kyocera Sld Laser, Inc. Color converting element for laser device
US9209596B1 (en) 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
US9762032B1 (en) 2014-02-07 2017-09-12 Soraa Laser Diode, Inc. Semiconductor laser diode on tiled gallium containing material
US11342727B1 (en) 2014-02-07 2022-05-24 Kyocera Sld Laser, Inc. Semiconductor laser diode on tiled gallium containing material
US10693279B1 (en) 2014-02-07 2020-06-23 Soraa Laser Diode, Inc. Semiconductor laser diode on tiled gallium containing material
US9401584B1 (en) 2014-02-07 2016-07-26 Soraa Laser Diode, Inc. Laser diode device with a plurality of gallium and nitrogen containing substrates
US10431958B1 (en) 2014-02-07 2019-10-01 Soraa Laser Diode, Inc. Semiconductor laser diode on tiled gallium containing material
US10044170B1 (en) 2014-02-07 2018-08-07 Soraa Laser Diode, Inc. Semiconductor laser diode on tiled gallium containing material
US9362715B2 (en) 2014-02-10 2016-06-07 Soraa Laser Diode, Inc Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US10566767B2 (en) 2014-02-10 2020-02-18 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US9871350B2 (en) 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US10141714B2 (en) 2014-02-10 2018-11-27 Soraa Laser Diode, Inc. Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9755398B2 (en) 2014-02-10 2017-09-05 Soraa Laser Diode, Inc. Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9379525B2 (en) 2014-02-10 2016-06-28 Soraa Laser Diode, Inc. Manufacturable laser diode
US11710944B2 (en) 2014-02-10 2023-07-25 Kyocera Sld Laser, Inc. Manufacturable RGB laser diode source and system
US10749315B2 (en) 2014-02-10 2020-08-18 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US11658456B2 (en) 2014-02-10 2023-05-23 Kyocera Sld Laser, Inc. Manufacturable multi-emitter laser diode
US10367334B2 (en) 2014-02-10 2019-07-30 Soraa Laser Diode, Inc. Manufacturable laser diode
US11011889B2 (en) 2014-02-10 2021-05-18 Kyocera Sld Laser, Inc. Manufacturable multi-emitter laser diode
US10658810B2 (en) 2014-02-10 2020-05-19 Soraa Laser Diode, Inc. Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US11139637B2 (en) 2014-02-10 2021-10-05 Kyocera Sld Laser, Inc. Manufacturable RGB laser diode source and system
US11088505B2 (en) 2014-02-10 2021-08-10 Kyocera Sld Laser, Inc. Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9520697B2 (en) 2014-02-10 2016-12-13 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US11705689B2 (en) 2014-02-10 2023-07-18 Kyocera Sld Laser, Inc. Gallium and nitrogen bearing dies with improved usage of substrate material
US9564736B1 (en) 2014-06-26 2017-02-07 Soraa Laser Diode, Inc. Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode
US10439365B1 (en) * 2014-06-26 2019-10-08 Soraa Laser Diode, Inc. Epitaxial growth of cladding regions for a gallium and nitrogen containing laser diode
US9972974B1 (en) 2014-06-26 2018-05-15 Soraa Laser Diode, Inc. Methods for fabricating light emitting devices
US10297979B1 (en) 2014-06-26 2019-05-21 Soraa Laser Diode, Inc. Epitaxial growth of cladding regions for a gallium and nitrogen containing laser diode
US11862939B1 (en) 2014-11-06 2024-01-02 Kyocera Sld Laser, Inc. Ultraviolet laser diode device
US11387629B1 (en) 2014-11-06 2022-07-12 Kyocera Sld Laser, Inc. Intermediate ultraviolet laser diode device
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US10720757B1 (en) 2014-11-06 2020-07-21 Soraa Lase Diode, Inc. Method of manufacture for an ultraviolet laser diode
US9711949B1 (en) 2014-11-06 2017-07-18 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US10193309B1 (en) 2014-11-06 2019-01-29 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US10854776B1 (en) 2014-12-23 2020-12-01 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices integrated with silicon electronic devices
US10629689B1 (en) 2014-12-23 2020-04-21 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US10854778B1 (en) 2014-12-23 2020-12-01 Soraa Laser Diode, Inc. Manufacturable display based on thin film gallium and nitrogen containing light emitting diodes
US10854777B1 (en) 2014-12-23 2020-12-01 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing semiconductor devices
US11955521B1 (en) 2014-12-23 2024-04-09 Kyocera Sld Laser, Inc. Manufacturable thin film gallium and nitrogen containing devices
US9666677B1 (en) 2014-12-23 2017-05-30 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US10002928B1 (en) 2014-12-23 2018-06-19 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US10506210B2 (en) 2015-10-08 2019-12-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US10075688B2 (en) 2015-10-08 2018-09-11 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US11800077B2 (en) 2015-10-08 2023-10-24 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
US11172182B2 (en) 2015-10-08 2021-11-09 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
US11107954B2 (en) * 2017-06-12 2021-08-31 Osram Oled Gmbh Light-emitting diode chip, and method for manufacturing a light-emitting diode chip
US10784960B2 (en) 2017-09-28 2020-09-22 Soraa Laser Diode, Inc. Fiber delivered laser based white light source configured for communication
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10873395B2 (en) 2017-09-28 2020-12-22 Soraa Laser Diode, Inc. Smart laser light for communication
US11677468B2 (en) 2017-09-28 2023-06-13 Kyocera Sld Laser, Inc. Laser based white light source configured for communication
US11153011B2 (en) 2017-09-28 2021-10-19 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11121772B2 (en) 2017-09-28 2021-09-14 Kyocera Sld Laser, Inc. Smart laser light for a vehicle
US11502753B2 (en) 2017-09-28 2022-11-15 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11277204B2 (en) 2017-09-28 2022-03-15 Kyocera Sld Laser, Inc. Laser based white light source configured for communication
US11870495B2 (en) 2017-09-28 2024-01-09 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10880005B2 (en) 2017-09-28 2020-12-29 Soraa Laser Diode, Inc. Laser based white light source configured for communication
US11199628B2 (en) 2017-12-13 2021-12-14 Kyocera Sld Laser, Inc. Distance detecting systems including gallium and nitrogen containing laser diodes
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US11287527B2 (en) 2017-12-13 2022-03-29 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US11249189B2 (en) 2017-12-13 2022-02-15 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US11867813B2 (en) 2017-12-13 2024-01-09 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US11841429B2 (en) 2017-12-13 2023-12-12 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machine applications
US10338220B1 (en) 2017-12-13 2019-07-02 Soraa Laser Diode, Inc. Integrated lighting and LIDAR system
US10649086B2 (en) 2017-12-13 2020-05-12 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10345446B2 (en) 2017-12-13 2019-07-09 Soraa Laser Diode, Inc. Integrated laser lighting and LIDAR system
US11231499B2 (en) 2017-12-13 2022-01-25 Kyocera Sld Laser, Inc. Distance detecting systems for use in automotive applications including gallium and nitrogen containing laser diodes
US10809606B1 (en) 2018-04-10 2020-10-20 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11811189B1 (en) 2018-04-10 2023-11-07 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11294267B1 (en) 2018-04-10 2022-04-05 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US11788699B2 (en) 2018-12-21 2023-10-17 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11594862B2 (en) 2018-12-21 2023-02-28 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US11228158B2 (en) 2019-05-14 2022-01-18 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
US10903623B2 (en) 2019-05-14 2021-01-26 Soraa Laser Diode, Inc. Method and structure for manufacturable large area gallium and nitrogen containing substrate
US11949212B2 (en) 2019-05-14 2024-04-02 Kyocera Sld Laser, Inc. Method for manufacturable large area gallium and nitrogen containing substrate
US11715927B2 (en) 2019-05-14 2023-08-01 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
US11973308B2 (en) 2020-11-24 2024-04-30 Kyocera Sld Laser, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package

Also Published As

Publication number Publication date
TW201134038A (en) 2011-10-01
JP5387302B2 (en) 2014-01-15
EP2487764A1 (en) 2012-08-15
US20120202304A1 (en) 2012-08-09
WO2011040486A1 (en) 2011-04-07
KR20120075474A (en) 2012-07-06
US8541253B2 (en) 2013-09-24
CN102549859B (en) 2014-08-06
JP2011077393A (en) 2011-04-14
CN102549859A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
US8541253B2 (en) III-nitride semiconductor laser device, and method of fabricating the III-nitride semiconductor laser device
US7933303B2 (en) Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US20120184057A1 (en) Iii-nitride semiconductor laser device, and method of fabricating the iii-nitride semiconductor laser device
US8076167B2 (en) Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US8401048B2 (en) Group-III nitride semiconductor laser device, and method of fabricating group-III nitride semiconductor laser device
US8071405B2 (en) Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US8741674B2 (en) Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
US8227277B2 (en) Group-III nitride semiconductor laser device, and method of fabricating group-III nitride semiconductor laser device
JP5348217B2 (en) Group III nitride semiconductor laser device and method of manufacturing group III nitride semiconductor laser device
JP5348216B2 (en) Group III nitride semiconductor laser device and method of manufacturing group III nitride semiconductor laser device
JP5387650B2 (en) Group III nitride semiconductor laser device and method of manufacturing group III nitride semiconductor laser device
JP5387649B2 (en) Group III nitride semiconductor laser device and method of manufacturing group III nitride semiconductor laser device
JP2012015564A (en) Iii-nitride semiconductor laser element and iii-nitride semiconductor laser element manufacturing method
JP2012019243A (en) Group iii nitride semiconductor laser element, and method of manufacturing group iii nitride semiconductor laser element

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSHIZUMI, YUSUKE;ENYA, YOHEI;KYONO, TAKASHI;AND OTHERS;SIGNING DATES FROM 20100913 TO 20100917;REEL/FRAME:025086/0400

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION