US20110053479A1 - Hydrophobic cutting tool and method for manufacturing the same - Google Patents

Hydrophobic cutting tool and method for manufacturing the same Download PDF

Info

Publication number
US20110053479A1
US20110053479A1 US12/811,037 US81103708A US2011053479A1 US 20110053479 A1 US20110053479 A1 US 20110053479A1 US 81103708 A US81103708 A US 81103708A US 2011053479 A1 US2011053479 A1 US 2011053479A1
Authority
US
United States
Prior art keywords
cmp
abrasive layer
hydrophobic material
material film
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/811,037
Inventor
Shin Kyung Kim
Kee Jung Cheong
Brian Song
Tae Jin Kim
Mun Seak Park
Byung Ju Min
Jeong Bin Jeon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinhan Diamond Ind Co Ltd
Original Assignee
Shinhan Diamond Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinhan Diamond Ind Co Ltd filed Critical Shinhan Diamond Ind Co Ltd
Assigned to SHINHAN DIAMOND IND. CO., LTD. reassignment SHINHAN DIAMOND IND. CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, SHIN KYUNG, CHEONG, KEE JUNG, SONG, BRIAN, JEON, JEONG BIN, KIM, TAE JIN, MIN, BYUNG JU, PARK, MUN SEAK
Publication of US20110053479A1 publication Critical patent/US20110053479A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0018Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for by electrolytic deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/06Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/12Dressing tools; Holders therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the presently disclosed subject matter relates to a cutting tool, and more specifically, to a hydrophobic cutting tool having high hydrophobicity maintaining performance of a surface thereof and a method for manufacturing the same.
  • the disclosed subject matter relates to a CMP (Chemical Mechanical Polishing) conditioner, i.e., cutting tool used in a CMP pad conditioning process and suitable for reducing accumulation of slurry thereon.
  • CMP Chemical Mechanical Polishing
  • a cutting tool is a tool that cuts a work piece using abrasives, i.e., cutting particles.
  • Cutting may include grinding such as a cylinder grinding, an inner surface grinding, or a plane grinding to grind a part of a work piece.
  • grinding may include all kinds of machining works capable of being performed using abrasives such as diamond particles.
  • a cutting tool comprises a substrate and an abrasive layer formed on a surface of the substrate, and has a structure wherein a plurality of abrasives is bonded to the surface of the abrasive layer.
  • the bonding of the abrasives is performed by various methods including electrodeposition, sintering, and brazing.
  • the abrasives include diamond, CBN (cubic boron nitride), alumina, and silicon carbide particles.
  • a phenomenon that a surface of an abrasive holding layer is contaminated occurs, and the surface is more and more contaminated as the working time increases.
  • that phenomenon occurs particularly in machining with cutting solutions including abrasive particles.
  • slurry particles and residues are accumulated on the surface of the CMP conditioner, thus causing a serious contamination problem on that surface.
  • a CMP pad is used in global planarization of a semiconductor wafer, and a CMP conditioner is a type of cutting tool for improving performance and life span of the CMP pad by removing clogging of micro pores formed in a surface of the CMP pad.
  • FIG. 1 shows optical microscope images illustrating changes in the magnitude of surface contamination as a function of CMP conditioning time at several test conditions.
  • the images in FIG. 1 show the changes in the surface contamination before CMP conditioning (i.e., the reference point), and 30, 60, 90, 120, and 150 minutes after the CMP conditioning, respectively.
  • CMP conditioning i.e., the reference point
  • FIG. 1 it can be confirmed that a considerable amount of slurry contaminants appears 30 minutes after the CMP conditioning, and such contaminants increase while they are continuously agglomerated as the conditioning time increases.
  • the surface contamination of an abrasive layer of a CMP conditioner due to slurry deteriorates the efficiency of the CMP conditioning process.
  • the deteriorated efficiency of the CMP conditioning process causes a wafer to be scratched during polishing of the wafer using a CMP pad, and lowers the production efficiency by increasing the number of particles on the wafer after the polishing.
  • CMP conditioner One reason for contaminating a CMP conditioner is that a surface of an abrasive layer changes to hydrophilic as CMP pad conditioning time increases. More specifically, the CMP conditioner is easily contaminated as CMP pad conditioning time increases since the surface of the abrasive layer of the CMP conditioner changes to hydrophilic. A hydrophilic surface on the abrasive layer of the CMP conditioner cannot reject water containing slurry as the CMP pad conditioning process proceeds. Such a problem is not limited to the CMP conditioner alone but may occur in cutting tools of wide meaning comprising abrasives which are used in cutting including cutting, grinding or polishing.
  • the disclosed subject matter solves the aforementioned problems by providing a cutting tool, wherein deterioration of cutting performance due to agglomeration of an abrasive layer surface and contamination of the abrasive layer surface is greatly suppressed by improving hydrophobicity maintaining performance of an abrasive layer, and a manufacturing method of the cutting tool.
  • a method of manufacturing a cutting tool which comprises the steps of forming an abrasive layer on a substrate, the abrasive layer having abrasives bonded to a surface thereof; and coating the surface of the abrasive layer with a hydrophobic material film.
  • the hydrophobic material film may be a self assembled molecular monolayer in which a tail group of molecules is hydrophobic.
  • the coating step with the hydrophobic material film is preferably performed using a deposition process.
  • a precursor used in the deposition process has molecules of which a tail group may be hydrophobic, preferably, a CF (fluorocarbon) group or CHF (fluorohydrocarbon) group.
  • FOTS fluorooctyltrichlorosilane
  • DDMS diichlorodimethylsilane
  • FDA perfluorodecanoic acid
  • FDTS perfluorodecyltrichlorosilane
  • OTS octadecyltrichlorosilane
  • V-SAM vapor-SAM
  • L-SAM liquid-SAM
  • the step of forming an abrasive layer may be performed using an Ni electrodeposition process or a brazing process.
  • the cutting tool is preferably a CMP conditioner.
  • the cutting tool is not limited thereto, but may be a cutting tool having a hydrophobic material film formed on a surface of the abrasive layer.
  • a cutting tool which comprises a substrate; an abrasive layer formed on the substrate, the abrasive layer having abrasives bonded to a surface thereof; and a hydrophobic material film formed on the surface of the abrasive layer.
  • the hydrophobic material film is a self assembled molecular monolayer in which a tail group of molecules is hydrophobic. More preferably, the self assembled molecular monolayer is formed by using a CF (fluorocarbon) group or CHF (fluorohydrocarbon) group as a precursor.
  • CF fluorocarbon
  • CHF fluorohydrocarbon
  • accumulation of contaminants generated on an abrasive layer and performance deterioration of a cutting tool due to the accumulation of the contaminants are suppressed by a hydrophobic material film formed on a surface of the abrasive layer of the cutting tool.
  • contaminants on a CMP conditioner that is a cutting tool used together with slurry in conditioning a CMP pad, may be effectively suppressed.
  • FIG. 1 shows optical microscope images illustrating a process in which a contamination level of a conventional cutting tool varies according to cutting time of the cutting tool.
  • FIG. 2 shows a CMP conditioner illustrated as an embodiment of a cutting tool according to the disclosed subject matter.
  • FIGS. 3 and 4 show optical microscope images illustrating a surface of a CMP conditioner after CMP pad conditioning process for 30 minutes and 60 minutes respectively, wherein the surface is coated with a hydrophobic material film.
  • FIG. 5 shows optical microscope images illustrating a surface of a CMP conditioner not coated with hydrophobic material film after CMP pad conditioning process for 30 minutes.
  • FIG. 6 is an optical microscope image showing a hydrophobicity (or hydrophilicity) test result of a CMP conditioner coated with a hydrophobic material film before a cutting process.
  • FIG. 7 is an optical microscope image showing a hydrophobicity (or hydrophilicity) test result of a CMP conditioner not coated with a hydrophobic material film before a cutting process.
  • FIG. 8 is an optical microscope image showing a hydrophobicity test result of a CMP conditioner coated with a hydrophobic material film after a cutting process.
  • FIG. 9 is an optical microscope image showing a hydrophobicity test result of a CMP conditioner not coated with a hydrophobic material film after a cutting process.
  • FIGS. 10 to 13 show optical microscope images illustrating a surface of CMP conditioner coated with a hydrophobic material film after CMP pad conditioning process for 20 hours under the same condition as in an actual working environment.
  • FIGS. 14 to 17 show optical microscope illustrating a surface of CMP conditioner not coated with a hydrophobic material film after CMP pad conditioning process for 20 hours under the same condition as in an actual working environment.
  • FIG. 2 shows a CMP conditioner illustrated as an embodiment of a cutting tool according to the disclosed subject matter.
  • a CMP conditioner 1 comprises a substrate 10 and an abrasive layer 20 .
  • the substrate 10 is made of a metallic material and has a generally disc-shaped structure.
  • the abrasive layer 20 is formed on the substrate 10 and has a plurality of abrasives 21 .
  • the abrasive layer 20 is an Ni electrodeposition layer formed by being plated with Ni to hold the abrasives 21 , and the abrasives 21 protrude from a surface of the abrasive layer 20 .
  • a hydrophobic material layer 30 is formed on the surface of the abrasive layer 20 .
  • the hydrophobic material layer 30 is a film having a hydrophobic surface of which a surface contact angle to water is large, and the hydrophobic material layer 30 serves to prevent the surface of the abrasive layer 20 from tending to be hydrophilic according to an increase in use time of the CMP conditioner 1 .
  • the hydrophobic material layer 30 is a coating film, which may be formed by a deposition process or other processes, and covers both the electrodeposition material and abrasives 21 . At this time, since the hydrophobic material layer 30 is a thin film with a thickness smaller than a protruding height of the abrasives 21 , the performance of the CMP conditioner 1 is not deteriorated although the hydrophobic material layer 30 is formed on the abrasives 21 .
  • the hydrophobic material layer 30 formed on the abrasives 21 may be eliminated if using the CMP conditioner 1 in conditioning of a CMP pad, another large portion of the surface of the abrasive layer 20 , such as a surface of an electrodeposition material holding the abrasives 21 , can be always maintained at its position unless the abrasives 21 are removed or worn out.
  • the hydrophobic material layer 30 is preferably formed as a self assembled molecular monolayer in which a tail group of molecules is hydrophobic.
  • a hydrophobic self assembled molecular monolayer is formed on the surface of the abrasive layer, will be described.
  • a technique of forming a self assembled molecular monolayer (also referred to as self assembled monolayer), which is included in a nano technology, is a technique for changing surface properties of an arbitrary material by a nano-based micro thin film.
  • the self assembled molecular monolayer comprises a head group reacting with a surface of an arbitrary material, a body for determining a length of the arbitrary material, and a tail group for determining the surface properties of the arbitrary material. When the tail group is hydrophobic, the surface properties of the self assembled molecular monolayer become hydrophobic.
  • a process for vaporizing a material and depositing the vaporized material on a surface of an abrasive layer 20 of a CMP conditioner 1 is used in the present embodiment, and one exemplification of the process will be described in the following Embodiment 1.
  • a hydrophobic material film including a self assembled molecular monolayer is deposited on a surface of an abrasive layer of the CMP conditioner by charging a CMP conditioner, on which a hydrophobic material film was not formed, into a process chamber.
  • trichlorosilane with formula C 8 H 4 Cl 3 F 13 Si is used as a precursor for the hydrophobic material film.
  • the deposition conditions were, preferably: a vacuum degree of 10 to 21 torr; a process temperature of 150° C.; and a reaction time of 10 minutes.
  • Determining whether the hydrophobic material film is formed or not is confirmed through a contamination degree varying test and a hydrophobic (or hydrophilic) test during processing of the CMP conditioner.
  • a process for conditioning an actual CMP pad is performed using the CMP conditioner that was subjected to the process of Embodiment 1, and the contamination degree of the CMP conditioner is inspected at time intervals of 30 minutes during the process.
  • the CMP conditioning process is performed using distilled water at a slurry flow rate of preferably 200 ml/min, a rotational speed of 50 rpm of the CMP pad and conditioner and an applied pressure of 8.5 psi thereof.
  • the foregoing conditions are conditions in which the applied pressure and the slurry flow rate was increased as compared with the actual CMP conditioning process in order to confirm the change in a contamination degree of the CMP pad for a short time.
  • a contamination degree varying test performed under the same conditions as the CMP conditions at the actual working field is also described in Embodiment 5, which is described later.
  • FIGS. 3 and 4 are optical microscopic images in which a surface of an abrasive layer of the CMP conditioner is photographed at magnifying powers of ⁇ 100, ⁇ 200, ⁇ 500, and ⁇ 1000 after performing the CMP conditioning process using a CMP conditioner for 30 and 60 minutes, respectively.
  • a CMP pad conditioning process is performed using a CMP conditioner that is not subjected to the process described in Embodiment 1, i.e., a CMP conditioner on which a hydrophobic material film was not formed.
  • the contamination degree of the CMP conditioner according to Embodiment 3 is inspected at time intervals of 30 minutes during the process. Test conditions, except the CMP conditioner used in the test, are identical to those of Embodiment 2.
  • the CMP conditioning process performed, as in Example 2, using distilled water at a preferred slurry flow rate of 200 ml/min, rotational speed of 50 rpm of the CMP pad and conditioner and applied pressure of 8.5 psi thereof.
  • FIG. 5 shows optical microscopic images in which a surface of the CMP conditioner is photographed at magnifying powers of ⁇ 100, ⁇ 200, ⁇ 500, and ⁇ 1000 after performing the CMP conditioning process for 30 minutes.
  • a surface of an abrasive layer is contaminated by slurry.
  • accumulation of contamination by the slurry is greater as time goes by. It can be seen from the test results that contaminants are more accumulated from the slurry on the CMP conditioner not coated with a hydrophobic material film than on the CMP conditioner coated with a hydrophobic material film, as described with respect to Embodiment 4.
  • FIG. 6 shows an optical microscope image showing a hydrophobicity test result of a CMP conditioner coated with a hydrophobic material film
  • the CMP conditioner of FIG. 6 has a contact angle of preferably 110° or more.
  • FIG. 7 shows an optical microscope image showing a hydrophobicity test result of a CMP conditioner not coated with a hydrophobic material film.
  • the CMP conditioner of FIG. 7 has a contact angle approximately of 70°.
  • FIGS. 6 and 7 show hydrophobicity test results of the CMP conditioners before the CMP conditioning process is performed.
  • the CMP conditioner coated with the hydrophobic material film has a better hydrophobicity than the CMP conditioner not coated with the hydrophobic material film. Since the CMP conditioner coated with the hydrophobic material film has a larger contact angle than the CMP conditioner not coated with the hydrophobic material film, it is determined that the CMP conditioner coated with the hydrophobic material film has a better hydrophobicity than the CMP conditioner not coated with the hydrophobic material film.
  • FIG. 8 shows an optical microscope image showing a hydrophobicity test result of the CMP conditioner after performing a CMP conditioning process using a CMP conditioner coated with a hydrophobic material film.
  • the hydrophobicity test includes placing a water drop on the surface of the CMP conditioner to determine the hydrophobicity of the CMP conditioner. It can be seen in FIG. 8 , there is not a large difference from FIG. 6 , i.e., the image showing a hydrophobicity test result of the CMP conditioner before the CMP conditioning process is substantially similar to the image showing the CMP conditioner after the CMP conditioning process. This shows that hydrophobicity of a surface of the hydrophobic material film is substantially maintained even after the CMP conditioning process.
  • a CMP pad conditioning process is performed for 20 hours under the same conditions as the actual labor site using a CMP conditioner according to Embodiment 1.
  • the contamination degree of the CMP conditioner is inspected while performing the process.
  • the CMP conditioning process is performed at greatly reduced slurry flow rate and pressure applied to the CMP pad.
  • the CMP conditioning process is performed using preferably distilled water at a slurry flow rate of 60 ml/min, a rotational speed of 65 rpm of the CMP pad and conditioner, and an applied pressure of 0.63 psi thereof.
  • the foregoing conditions are conditions in which the applied pressure was increased as compared with the actual CMP conditioning process in order to confirm the change in a contamination degree of the CMP pad for a short time.
  • FIGS. 10 to 13 show optical microscopic images in which a surface of the CMP conditioner is photographed at magnifying powers of ⁇ 100, ⁇ 200, ⁇ 500, and ⁇ 1000, respectively, after performing the CMP conditioning process for 20 hours according to the foregoing conditions.
  • a process for conditioning an actual CMP pad is performed for 20 hours using a CMP conditioner that was not subjected to the process described in Embodiment 1, i.e., a CMP conditioner on which a hydrophobic material film is not formed. Test conditions are similar to those described in Embodiment 5.
  • FIGS. 14 to 17 show optical microscopic images in which a surface of a CMP conditioner is photographed at magnifying powers of ⁇ 100, ⁇ 200, ⁇ 500, and ⁇ 1000, respectively, after performing the CMP conditioning process for 20 hours according to the foregoing conditions using a CMP conditioner without a hydrophobic material film.
  • FIGS. 14 to 17 show optical microscopic images in which a surface of a CMP conditioner is photographed at magnifying powers of ⁇ 100, ⁇ 200, ⁇ 500, and ⁇ 1000, respectively, after performing the CMP conditioning process for 20 hours according to the foregoing conditions using a CMP conditioner without a hydrophobic material film.
  • FIGS. 14 to 17 show optical microscopic images in which a surface of a CMP conditioner is photographed at magnifying powers of ⁇ 100, ⁇ 200, ⁇ 500, and ⁇ 1000, respectively, after performing the CMP conditioning process for 20 hours according to the foregoing conditions using a CMP conditioner without a hydrophobic material film.
  • DDMS dichlorodimethylsilane
  • FDA perfluorodecanoic acid
  • FDTS perfluorodecyltrichlorosilane
  • OTS octadecyltrichlorosilane
  • the deposition process using the precursor may include a V-SAM (vapor-SAM) process, an L-SAM (liquid-SAM) process, and a bulk polymerization process using plasma.

Abstract

A method of manufacturing a cutting tool is disclosed. An object of the manufacturing method of a cutting tool is to reduce contamination of an abrasive layer surface, particularly, agglomeration contamination due to slurry by improving hydrophobicity maintaining performance of an abrasive layer. A cutting tool according to the method of manufacturing comprises an abrasive layer on a base member, the abrasive layer having abrasives bonded to a surface thereof; and a coating on the surface of the abrasive layer that is a hydrophobic material film.

Description

    BACKGROUND
  • 1. Technical Field
  • The presently disclosed subject matter relates to a cutting tool, and more specifically, to a hydrophobic cutting tool having high hydrophobicity maintaining performance of a surface thereof and a method for manufacturing the same. In particular, the disclosed subject matter relates to a CMP (Chemical Mechanical Polishing) conditioner, i.e., cutting tool used in a CMP pad conditioning process and suitable for reducing accumulation of slurry thereon.
  • 2. Description of Related Art
  • A cutting tool is a tool that cuts a work piece using abrasives, i.e., cutting particles. Cutting may include grinding such as a cylinder grinding, an inner surface grinding, or a plane grinding to grind a part of a work piece. For instance, grinding may include all kinds of machining works capable of being performed using abrasives such as diamond particles.
  • In general, a cutting tool comprises a substrate and an abrasive layer formed on a surface of the substrate, and has a structure wherein a plurality of abrasives is bonded to the surface of the abrasive layer. The bonding of the abrasives is performed by various methods including electrodeposition, sintering, and brazing. The abrasives include diamond, CBN (cubic boron nitride), alumina, and silicon carbide particles.
  • In a machining work using a cutting tool, a phenomenon that a surface of an abrasive holding layer is contaminated occurs, and the surface is more and more contaminated as the working time increases. Generally, that phenomenon occurs particularly in machining with cutting solutions including abrasive particles. During conditioning the CMP pad with CMP conditioner, slurry particles and residues are accumulated on the surface of the CMP conditioner, thus causing a serious contamination problem on that surface.
  • As well known, a CMP pad is used in global planarization of a semiconductor wafer, and a CMP conditioner is a type of cutting tool for improving performance and life span of the CMP pad by removing clogging of micro pores formed in a surface of the CMP pad.
  • FIG. 1 shows optical microscope images illustrating changes in the magnitude of surface contamination as a function of CMP conditioning time at several test conditions. The images in FIG. 1 show the changes in the surface contamination before CMP conditioning (i.e., the reference point), and 30, 60, 90, 120, and 150 minutes after the CMP conditioning, respectively. Referring to FIG. 1, it can be confirmed that a considerable amount of slurry contaminants appears 30 minutes after the CMP conditioning, and such contaminants increase while they are continuously agglomerated as the conditioning time increases.
  • The surface contamination of an abrasive layer of a CMP conditioner due to slurry deteriorates the efficiency of the CMP conditioning process. The deteriorated efficiency of the CMP conditioning process causes a wafer to be scratched during polishing of the wafer using a CMP pad, and lowers the production efficiency by increasing the number of particles on the wafer after the polishing.
  • BRIEF SUMMARY
  • One reason for contaminating a CMP conditioner is that a surface of an abrasive layer changes to hydrophilic as CMP pad conditioning time increases. More specifically, the CMP conditioner is easily contaminated as CMP pad conditioning time increases since the surface of the abrasive layer of the CMP conditioner changes to hydrophilic. A hydrophilic surface on the abrasive layer of the CMP conditioner cannot reject water containing slurry as the CMP pad conditioning process proceeds. Such a problem is not limited to the CMP conditioner alone but may occur in cutting tools of wide meaning comprising abrasives which are used in cutting including cutting, grinding or polishing.
  • The disclosed subject matter solves the aforementioned problems by providing a cutting tool, wherein deterioration of cutting performance due to agglomeration of an abrasive layer surface and contamination of the abrasive layer surface is greatly suppressed by improving hydrophobicity maintaining performance of an abrasive layer, and a manufacturing method of the cutting tool.
  • According to one embodiment of the disclosed subject matter, there is provided a method of manufacturing a cutting tool, which comprises the steps of forming an abrasive layer on a substrate, the abrasive layer having abrasives bonded to a surface thereof; and coating the surface of the abrasive layer with a hydrophobic material film.
  • In a preferred embodiment, the hydrophobic material film may be a self assembled molecular monolayer in which a tail group of molecules is hydrophobic. The coating step with the hydrophobic material film is preferably performed using a deposition process. At this time, a precursor used in the deposition process has molecules of which a tail group may be hydrophobic, preferably, a CF (fluorocarbon) group or CHF (fluorohydrocarbon) group. As the precursor, FOTS (fluorooctyltrichlorosilane), DDMS (dichlorodimethylsilane), FDA (perfluorodecanoic acid), FDTS (perfluorodecyltrichlorosilane), and OTS (octadecyltrichlorosilane) may be used. In addition, the deposition process using the precursor may include a V-SAM (vapor-SAM) process, an L-SAM (liquid-SAM) process, and a bulk polymerization process using plasma.
  • The step of forming an abrasive layer may be performed using an Ni electrodeposition process or a brazing process. The cutting tool is preferably a CMP conditioner. However, the cutting tool is not limited thereto, but may be a cutting tool having a hydrophobic material film formed on a surface of the abrasive layer.
  • According to another embodiment, there is provided a cutting tool, which comprises a substrate; an abrasive layer formed on the substrate, the abrasive layer having abrasives bonded to a surface thereof; and a hydrophobic material film formed on the surface of the abrasive layer.
  • Preferably, the hydrophobic material film is a self assembled molecular monolayer in which a tail group of molecules is hydrophobic. More preferably, the self assembled molecular monolayer is formed by using a CF (fluorocarbon) group or CHF (fluorohydrocarbon) group as a precursor.
  • According to the disclosed subject matter, accumulation of contaminants generated on an abrasive layer and performance deterioration of a cutting tool due to the accumulation of the contaminants are suppressed by a hydrophobic material film formed on a surface of the abrasive layer of the cutting tool. Particularly, contaminants on a CMP conditioner, that is a cutting tool used together with slurry in conditioning a CMP pad, may be effectively suppressed. Thus, it is possible to reduce defects such as scratches or particles generated on a processing surface of the wafer in a wafer polishing process using a CMP pad that is subjected to the CMP conditioning process.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows optical microscope images illustrating a process in which a contamination level of a conventional cutting tool varies according to cutting time of the cutting tool.
  • FIG. 2 shows a CMP conditioner illustrated as an embodiment of a cutting tool according to the disclosed subject matter.
  • FIGS. 3 and 4 show optical microscope images illustrating a surface of a CMP conditioner after CMP pad conditioning process for 30 minutes and 60 minutes respectively, wherein the surface is coated with a hydrophobic material film.
  • FIG. 5 shows optical microscope images illustrating a surface of a CMP conditioner not coated with hydrophobic material film after CMP pad conditioning process for 30 minutes.
  • FIG. 6 is an optical microscope image showing a hydrophobicity (or hydrophilicity) test result of a CMP conditioner coated with a hydrophobic material film before a cutting process.
  • FIG. 7 is an optical microscope image showing a hydrophobicity (or hydrophilicity) test result of a CMP conditioner not coated with a hydrophobic material film before a cutting process.
  • FIG. 8 is an optical microscope image showing a hydrophobicity test result of a CMP conditioner coated with a hydrophobic material film after a cutting process.
  • FIG. 9 is an optical microscope image showing a hydrophobicity test result of a CMP conditioner not coated with a hydrophobic material film after a cutting process.
  • FIGS. 10 to 13 show optical microscope images illustrating a surface of CMP conditioner coated with a hydrophobic material film after CMP pad conditioning process for 20 hours under the same condition as in an actual working environment.
  • FIGS. 14 to 17 show optical microscope illustrating a surface of CMP conditioner not coated with a hydrophobic material film after CMP pad conditioning process for 20 hours under the same condition as in an actual working environment.
  • DETAILED DESCRIPTION
  • Hereinafter, a CMP conditioner, as an example of a cutting tool according to the present invention, will be described. The following embodiments are provided only for illustrative purposes so that those skilled in the art can fully understand the spirit of the disclosed subject matter. Therefore, the disclosed subject matter is not limited to the following embodiments but may be implemented in other forms. In the drawings, the widths, lengths, thicknesses and the like of elements may be exaggerated for convenience of illustration. Like reference numerals indicate like elements throughout the specification and drawings.
  • FIG. 2 shows a CMP conditioner illustrated as an embodiment of a cutting tool according to the disclosed subject matter. Referring to FIG. 2, a CMP conditioner 1 comprises a substrate 10 and an abrasive layer 20. The substrate 10 is made of a metallic material and has a generally disc-shaped structure. The abrasive layer 20 is formed on the substrate 10 and has a plurality of abrasives 21. In this embodiment, the abrasive layer 20 is an Ni electrodeposition layer formed by being plated with Ni to hold the abrasives 21, and the abrasives 21 protrude from a surface of the abrasive layer 20.
  • As illustrated from an enlarged view of FIG. 2, a hydrophobic material layer 30 is formed on the surface of the abrasive layer 20. The hydrophobic material layer 30 is a film having a hydrophobic surface of which a surface contact angle to water is large, and the hydrophobic material layer 30 serves to prevent the surface of the abrasive layer 20 from tending to be hydrophilic according to an increase in use time of the CMP conditioner 1.
  • The hydrophobic material layer 30 is a coating film, which may be formed by a deposition process or other processes, and covers both the electrodeposition material and abrasives 21. At this time, since the hydrophobic material layer 30 is a thin film with a thickness smaller than a protruding height of the abrasives 21, the performance of the CMP conditioner 1 is not deteriorated although the hydrophobic material layer 30 is formed on the abrasives 21.
  • Although an extremely small portion of the hydrophobic material layer 30 formed on the abrasives 21 may be eliminated if using the CMP conditioner 1 in conditioning of a CMP pad, another large portion of the surface of the abrasive layer 20, such as a surface of an electrodeposition material holding the abrasives 21, can be always maintained at its position unless the abrasives 21 are removed or worn out.
  • The hydrophobic material layer 30 is preferably formed as a self assembled molecular monolayer in which a tail group of molecules is hydrophobic. Hereinafter, one embodiment of the disclosed subject matter, in which a hydrophobic self assembled molecular monolayer is formed on the surface of the abrasive layer, will be described.
  • A technique of forming a self assembled molecular monolayer (also referred to as self assembled monolayer), which is included in a nano technology, is a technique for changing surface properties of an arbitrary material by a nano-based micro thin film. The self assembled molecular monolayer comprises a head group reacting with a surface of an arbitrary material, a body for determining a length of the arbitrary material, and a tail group for determining the surface properties of the arbitrary material. When the tail group is hydrophobic, the surface properties of the self assembled molecular monolayer become hydrophobic.
  • A process for vaporizing a material and depositing the vaporized material on a surface of an abrasive layer 20 of a CMP conditioner 1 is used in the present embodiment, and one exemplification of the process will be described in the following Embodiment 1.
  • Embodiment 1 Process of Forming Hydrophobic Material Film
  • A hydrophobic material film including a self assembled molecular monolayer is deposited on a surface of an abrasive layer of the CMP conditioner by charging a CMP conditioner, on which a hydrophobic material film was not formed, into a process chamber. At this time, trichlorosilane with formula C8H4Cl3F13Si is used as a precursor for the hydrophobic material film. The deposition conditions were, preferably: a vacuum degree of 10 to 21 torr; a process temperature of 150° C.; and a reaction time of 10 minutes.
  • Determining whether the hydrophobic material film is formed or not is confirmed through a contamination degree varying test and a hydrophobic (or hydrophilic) test during processing of the CMP conditioner.
  • Embodiment 2 Contamination Degree Varying Test (Slurry Agglomeration Varying Test)
  • A process for conditioning an actual CMP pad is performed using the CMP conditioner that was subjected to the process of Embodiment 1, and the contamination degree of the CMP conditioner is inspected at time intervals of 30 minutes during the process.
  • The CMP conditioning process is performed using distilled water at a slurry flow rate of preferably 200 ml/min, a rotational speed of 50 rpm of the CMP pad and conditioner and an applied pressure of 8.5 psi thereof. The foregoing conditions are conditions in which the applied pressure and the slurry flow rate was increased as compared with the actual CMP conditioning process in order to confirm the change in a contamination degree of the CMP pad for a short time. For reference, a contamination degree varying test performed under the same conditions as the CMP conditions at the actual working field is also described in Embodiment 5, which is described later.
  • FIGS. 3 and 4 are optical microscopic images in which a surface of an abrasive layer of the CMP conditioner is photographed at magnifying powers of ×100, ×200, ×500, and ×1000 after performing the CMP conditioning process using a CMP conditioner for 30 and 60 minutes, respectively.
  • As illustrated in FIGS. 3 and 4, it can be confirmed that a CMP conditioner in which a hydrophobic material film is formed on the surface of the abrasive layer according to the process of Embodiment 1 was hardly contaminated by the slurry except that a contamination area of approximately 5% is found.
  • Embodiment 3 Contamination Degree Varying Test (Slurry Agglomeration Varying Test)
  • A CMP pad conditioning process is performed using a CMP conditioner that is not subjected to the process described in Embodiment 1, i.e., a CMP conditioner on which a hydrophobic material film was not formed. The contamination degree of the CMP conditioner according to Embodiment 3 is inspected at time intervals of 30 minutes during the process. Test conditions, except the CMP conditioner used in the test, are identical to those of Embodiment 2. The CMP conditioning process performed, as in Example 2, using distilled water at a preferred slurry flow rate of 200 ml/min, rotational speed of 50 rpm of the CMP pad and conditioner and applied pressure of 8.5 psi thereof.
  • FIG. 5 shows optical microscopic images in which a surface of the CMP conditioner is photographed at magnifying powers of ×100, ×200, ×500, and ×1000 after performing the CMP conditioning process for 30 minutes. As illustrated in FIG. 5, it can be confirmed that a surface of an abrasive layer is contaminated by slurry. It can also be confirmed that accumulation of contamination by the slurry is greater as time goes by. It can be seen from the test results that contaminants are more accumulated from the slurry on the CMP conditioner not coated with a hydrophobic material film than on the CMP conditioner coated with a hydrophobic material film, as described with respect to Embodiment 4.
  • Embodiment 4 Hydrophobic Test (Hydrophilic Test)
  • FIG. 6 shows an optical microscope image showing a hydrophobicity test result of a CMP conditioner coated with a hydrophobic material film The CMP conditioner of FIG. 6 has a contact angle of preferably 110° or more. FIG. 7 shows an optical microscope image showing a hydrophobicity test result of a CMP conditioner not coated with a hydrophobic material film. The CMP conditioner of FIG. 7 has a contact angle approximately of 70°. FIGS. 6 and 7 show hydrophobicity test results of the CMP conditioners before the CMP conditioning process is performed.
  • Comparing FIGS. 6 and 7 with each other, it can be seen that the CMP conditioner coated with the hydrophobic material film has a better hydrophobicity than the CMP conditioner not coated with the hydrophobic material film. Since the CMP conditioner coated with the hydrophobic material film has a larger contact angle than the CMP conditioner not coated with the hydrophobic material film, it is determined that the CMP conditioner coated with the hydrophobic material film has a better hydrophobicity than the CMP conditioner not coated with the hydrophobic material film.
  • FIG. 8 shows an optical microscope image showing a hydrophobicity test result of the CMP conditioner after performing a CMP conditioning process using a CMP conditioner coated with a hydrophobic material film. The hydrophobicity test includes placing a water drop on the surface of the CMP conditioner to determine the hydrophobicity of the CMP conditioner. It can be seen in FIG. 8, there is not a large difference from FIG. 6, i.e., the image showing a hydrophobicity test result of the CMP conditioner before the CMP conditioning process is substantially similar to the image showing the CMP conditioner after the CMP conditioning process. This shows that hydrophobicity of a surface of the hydrophobic material film is substantially maintained even after the CMP conditioning process.
  • On the contrary, it can be seen that a water drop cannot be found on the CMP conditioner not coated with the hydrophobic material film as shown in FIG. 9. This shows that the hydrophobicity of the CMP conditioner is lost while a CMP conditioning process is performed using the CMP conditioner. The result is that the CMP conditioner becomes hydrophilic. As a result, a measured contact angle of the CMP conditioner was less than 5°.
  • Embodiment 5 Contamination Degree Varying Test (Slurry Agglomeration Varying Test)
  • A CMP pad conditioning process is performed for 20 hours under the same conditions as the actual labor site using a CMP conditioner according to Embodiment 1. The contamination degree of the CMP conditioner is inspected while performing the process. As compared with Embodiment 2, the CMP conditioning process is performed at greatly reduced slurry flow rate and pressure applied to the CMP pad.
  • The CMP conditioning process is performed using preferably distilled water at a slurry flow rate of 60 ml/min, a rotational speed of 65 rpm of the CMP pad and conditioner, and an applied pressure of 0.63 psi thereof. The foregoing conditions are conditions in which the applied pressure was increased as compared with the actual CMP conditioning process in order to confirm the change in a contamination degree of the CMP pad for a short time.
  • FIGS. 10 to 13 show optical microscopic images in which a surface of the CMP conditioner is photographed at magnifying powers of ×100, ×200, ×500, and ×1000, respectively, after performing the CMP conditioning process for 20 hours according to the foregoing conditions.
  • It can be seen from the images in FIGS. 10 to 13, that the CMP conditioner is hardly contaminated by slurry. Therefore, under the test conditions of the present embodiment, a CMP conditioner coated with a hydrophobic material film is hardly contaminated, thus it can be assumed that in the actual process, the CMP conditioner coated with a hydrophobic material is also hardly contaminated, and such an effect is sustained for a long time.
  • Embodiment 6 Contamination Degree Varying Test (Slurry Agglomeration Varying Test)
  • A process for conditioning an actual CMP pad is performed for 20 hours using a CMP conditioner that was not subjected to the process described in Embodiment 1, i.e., a CMP conditioner on which a hydrophobic material film is not formed. Test conditions are similar to those described in Embodiment 5.
  • FIGS. 14 to 17 show optical microscopic images in which a surface of a CMP conditioner is photographed at magnifying powers of ×100, ×200, ×500, and ×1000, respectively, after performing the CMP conditioning process for 20 hours according to the foregoing conditions using a CMP conditioner without a hydrophobic material film. As can be seen from the images shown in FIGS. 14 to 17, it can be confirmed that the entire area on a surface of an abrasive layer was greatly contaminated by slurry. Therefore, it can be confirmed again that accumulation of contaminants by the slurry is more increased in the CMP conditioner not coated with a hydrophobic material film as compared with the CMP conditioner coated with a hydrophobic material film.
  • Although a coating method of a hydrophobic material film using FOTS (fluorooctyltrichlorosilane) as a precursor has been described above, DDMS (dichlorodimethylsilane), FDA (perfluorodecanoic acid), FDTS (perfluorodecyltrichlorosilane), and OTS (octadecyltrichlorosilane) may be used as the precursor. Furthermore, the deposition process using the precursor may include a V-SAM (vapor-SAM) process, an L-SAM (liquid-SAM) process, and a bulk polymerization process using plasma.
  • The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent application, foreign patents, foreign patent application and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, application and publications to provide yet further embodiments.
  • These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims (11)

1. A method of manufacturing a cutting tool, comprising the steps of:
forming an abrasive layer on a base member, the abrasive layer having a plurality of abrasives bonded to a top surface of the abrasive layer; and
coating the top surface of the abrasive layer and the plurality of abrasives with a hydrophobic material film, the hydrophobic material film having a thickness smaller than a height of the plurality of abrasives.
2. The method as claimed in claim 1, wherein in the coating step with the hydrophobic material film, the hydrophobic material film is a self assembled molecular monolayer in which a tail group of molecules is hydrophobic.
3. The method as claimed in claim 1, wherein the coating step with the hydrophobic material film is performed using a deposition process.
4. The method as claimed in claim 1, wherein the coating step with the hydrophobic material film is performed by forming a self assembled molecular monolayer on the surface of the abrasive layer using a deposition process, the self assembled molecular monolayer having a tail group of molecules that is hydrophobic.
5. The method as claimed in claim 4, wherein a precursor used in the deposition process has molecules of which a tail group is one of a CF (fluorocarbon) group and a CHF (fluorohydrocarbon) group.
6. The method as claimed in claim 1, wherein the step of forming the abrasive layer is performed using an Ni electrodeposition process.
7. A cutting tool, comprising:
a base member;
an abrasive layer formed on the base member, the abrasive layer having a plurality of abrasives bonded to a top surface of the abrasive layer; and
a hydrophobic material film formed on the top surface of the abrasive layer and the plurality of abrasives, the hydrophobic material film having a thickness smaller than a height of the plurality of abrasives.
8. The cutting tool as claimed in claim 7, wherein the hydrophobic material film is a self assembled molecular monolayer in which a tail group of molecules is hydrophobic.
9. The cutting tool as claimed in claim 8, wherein the self assembled molecular monolayer is formed by using trichlorosilane as a precursor.
10. The cutting tool as claimed in claim 7, wherein the abrasive layer is an Ni electrodeposition layer to which the plurality of abrasives are bonded.
11. The cutting tool as claimed in claim 7, wherein the cutting tool is a CMP conditioner.
US12/811,037 2007-12-28 2008-05-19 Hydrophobic cutting tool and method for manufacturing the same Abandoned US20110053479A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2007-0140889 2007-12-28
KR1020070140889A KR101024674B1 (en) 2007-12-28 2007-12-28 Hydrophobic cutting tool and method for manufacturing the same
PCT/KR2008/002794 WO2009084776A1 (en) 2007-12-28 2008-05-19 Hydrophobic cutting tool and method for manufacturing the same

Publications (1)

Publication Number Publication Date
US20110053479A1 true US20110053479A1 (en) 2011-03-03

Family

ID=40824470

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/811,037 Abandoned US20110053479A1 (en) 2007-12-28 2008-05-19 Hydrophobic cutting tool and method for manufacturing the same

Country Status (6)

Country Link
US (1) US20110053479A1 (en)
JP (1) JP2011507716A (en)
KR (1) KR101024674B1 (en)
CN (1) CN101918179B (en)
SG (1) SG187409A1 (en)
WO (1) WO2009084776A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100043304A1 (en) * 2007-01-26 2010-02-25 Shinhan Diamond Ind. Co., Ltd. Diamond tool and method of manufacturing the same
US20140235144A1 (en) * 2013-02-19 2014-08-21 Samsung Electronics Co., Ltd. Chemical mechanical polishing machine and polishing head assembly
US20150165586A1 (en) * 2013-12-17 2015-06-18 Fujibo Holdings, Inc. Resin Lapping Plate and Lapping Method Using the Same
US9245542B1 (en) 2015-07-28 2016-01-26 Seagate Technology Llc Media cleaning with self-assembled monolayer material
US20160176016A1 (en) * 2014-12-19 2016-06-23 Applied Materials, Inc. Components for a chemical mechanical polishing tool
US9486896B2 (en) 2012-06-28 2016-11-08 Saint-Gobain Abrasives, Inc. Abrasive article and coating
WO2017065861A1 (en) * 2015-10-16 2017-04-20 Applied Materials, Inc. External clamp ring for a chemical mechanical polishing carrier head
US9844853B2 (en) 2014-12-30 2017-12-19 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive tools and methods for forming same
US10189145B2 (en) 2015-12-30 2019-01-29 Saint-Gobain Abrasives, Inc. Abrasive tools and methods for forming same
TWI772171B (en) * 2021-09-08 2022-07-21 明志科技大學 Protective film and protective film stack for chemical mechanical polishing pad dressers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579076B (en) * 2014-08-20 2017-04-21 國立臺灣大學 Cutting tool
KR102276437B1 (en) * 2018-11-30 2021-07-12 에스다이아몬드공업 주식회사 Manufacturing method of pad for dry polishing

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2194546A (en) * 1937-11-04 1940-03-26 American Optical Corp Diamond lap
US3127715A (en) * 1960-04-27 1964-04-07 Christensen Diamond Prod Co Diamond cutting devices
US4484560A (en) * 1982-07-13 1984-11-27 Asahi Diamond Industrial Co., Ltd. Diamond segmented saw blade
US4505251A (en) * 1982-02-08 1985-03-19 Martin Stoll Cutting segment with porous center section
US4925457A (en) * 1989-01-30 1990-05-15 Dekok Peter T Abrasive tool and method for making
US5049165A (en) * 1989-01-30 1991-09-17 Tselesin Naum N Composite material
US5443418A (en) * 1993-03-29 1995-08-22 Norton Company Superabrasive tool
US5518443A (en) * 1994-05-13 1996-05-21 Norton Company Superabrasive tool
US5916011A (en) * 1996-12-26 1999-06-29 Motorola, Inc. Process for polishing a semiconductor device substrate
US6364749B1 (en) * 1999-09-02 2002-04-02 Micron Technology, Inc. CMP polishing pad with hydrophilic surfaces for enhanced wetting
US6932076B2 (en) * 2003-10-17 2005-08-23 Chien-Cheng Liao Diamond circular saw blade
US20060160481A1 (en) * 2002-12-19 2006-07-20 Kabushiki Kaisha Miyanaga Diamond disk
US7124753B2 (en) * 1997-04-04 2006-10-24 Chien-Min Sung Brazed diamond tools and methods for making the same
US20070015448A1 (en) * 2003-08-07 2007-01-18 Ppg Industries Ohio, Inc. Polishing pad having edge surface treatment
US7204742B2 (en) * 2004-03-25 2007-04-17 Cabot Microelectronics Corporation Polishing pad comprising hydrophobic region and endpoint detection port
US7258708B2 (en) * 2004-12-30 2007-08-21 Chien-Min Sung Chemical mechanical polishing pad dresser
US20100048112A1 (en) * 2007-01-26 2010-02-25 Shinhan Diamond Ind. Co., Ltd. Diamond tool and method of manufacturing the same
US20100043304A1 (en) * 2007-01-26 2010-02-25 Shinhan Diamond Ind. Co., Ltd. Diamond tool and method of manufacturing the same
US20100291845A1 (en) * 2006-11-16 2010-11-18 Shinhan Diamond Ind. Co., Ltd. Diamond tool
US20100294256A1 (en) * 2006-11-16 2010-11-25 Shinhan Diamond Ind. Co., Ltd. Diamond tool and method for manufacturing segment thereof
US20100307473A1 (en) * 2006-11-16 2010-12-09 Shinhan Diamond Ind Co., Ltd. Diamond tool
US20110244769A1 (en) * 2007-12-20 2011-10-06 David Moses M Abrasive article having a plurality of precisely-shaped abrasive composites
US20130303056A1 (en) * 2005-05-16 2013-11-14 Chien-Min Sung Cmp pad dressers with hybridized abrasive surface and related methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299751A (en) * 1994-04-25 1995-11-14 Osaka Diamond Ind Co Ltd Grinding wheel with superabrasive grain
KR100223386B1 (en) * 1995-10-24 1999-10-15 하라 아키오 Grinding stone
EP0770457B1 (en) * 1995-10-25 2001-01-03 Osaka Diamond Industrial Co. Grinding wheel
JP2000127046A (en) * 1998-10-27 2000-05-09 Noritake Diamond Ind Co Ltd Electrodeposition dresser for polishing by polisher
US7201645B2 (en) * 1999-11-22 2007-04-10 Chien-Min Sung Contoured CMP pad dresser and associated methods
JP2003179021A (en) * 2001-12-11 2003-06-27 Sony Corp Chemical/mechanical polisher
JP2005109129A (en) * 2003-09-30 2005-04-21 Dainippon Ink & Chem Inc Abrasive grain for polishing, aqueous dispersion for polishing, and polishing agent
JP4892912B2 (en) * 2004-12-02 2012-03-07 大日本印刷株式会社 Water-repellent separator for polymer electrolyte fuel cells
JP2006292801A (en) * 2005-04-06 2006-10-26 Seiko Epson Corp Liquid crystal device and electronic equipment
JP4728091B2 (en) * 2005-10-26 2011-07-20 国立大学法人名古屋大学 Retroreflective material and manufacturing apparatus thereof
KR20070084683A (en) * 2006-02-21 2007-08-27 국민대학교산학협력단 Molecular layer deposition
KR100686780B1 (en) * 2006-03-30 2007-02-26 엘에스전선 주식회사 Structure of hydrophobic organic thin layer and producing method of themself

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2194546A (en) * 1937-11-04 1940-03-26 American Optical Corp Diamond lap
US3127715A (en) * 1960-04-27 1964-04-07 Christensen Diamond Prod Co Diamond cutting devices
US4505251A (en) * 1982-02-08 1985-03-19 Martin Stoll Cutting segment with porous center section
US4484560A (en) * 1982-07-13 1984-11-27 Asahi Diamond Industrial Co., Ltd. Diamond segmented saw blade
US4925457A (en) * 1989-01-30 1990-05-15 Dekok Peter T Abrasive tool and method for making
US5049165A (en) * 1989-01-30 1991-09-17 Tselesin Naum N Composite material
US5092910A (en) * 1989-01-30 1992-03-03 Dekok Peter T Abrasive tool and method for making
US5092910B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Abrasive tool
US4925457B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Method for making an abrasive tool
US5049165B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Composite material
US5443418A (en) * 1993-03-29 1995-08-22 Norton Company Superabrasive tool
US5518443A (en) * 1994-05-13 1996-05-21 Norton Company Superabrasive tool
US5916011A (en) * 1996-12-26 1999-06-29 Motorola, Inc. Process for polishing a semiconductor device substrate
US7124753B2 (en) * 1997-04-04 2006-10-24 Chien-Min Sung Brazed diamond tools and methods for making the same
US6364749B1 (en) * 1999-09-02 2002-04-02 Micron Technology, Inc. CMP polishing pad with hydrophilic surfaces for enhanced wetting
US20060160481A1 (en) * 2002-12-19 2006-07-20 Kabushiki Kaisha Miyanaga Diamond disk
US20070015448A1 (en) * 2003-08-07 2007-01-18 Ppg Industries Ohio, Inc. Polishing pad having edge surface treatment
US6932076B2 (en) * 2003-10-17 2005-08-23 Chien-Cheng Liao Diamond circular saw blade
US7204742B2 (en) * 2004-03-25 2007-04-17 Cabot Microelectronics Corporation Polishing pad comprising hydrophobic region and endpoint detection port
US7258708B2 (en) * 2004-12-30 2007-08-21 Chien-Min Sung Chemical mechanical polishing pad dresser
US20130303056A1 (en) * 2005-05-16 2013-11-14 Chien-Min Sung Cmp pad dressers with hybridized abrasive surface and related methods
US20100291845A1 (en) * 2006-11-16 2010-11-18 Shinhan Diamond Ind. Co., Ltd. Diamond tool
US20100294256A1 (en) * 2006-11-16 2010-11-25 Shinhan Diamond Ind. Co., Ltd. Diamond tool and method for manufacturing segment thereof
US20100307473A1 (en) * 2006-11-16 2010-12-09 Shinhan Diamond Ind Co., Ltd. Diamond tool
US20100048112A1 (en) * 2007-01-26 2010-02-25 Shinhan Diamond Ind. Co., Ltd. Diamond tool and method of manufacturing the same
US20100043304A1 (en) * 2007-01-26 2010-02-25 Shinhan Diamond Ind. Co., Ltd. Diamond tool and method of manufacturing the same
US20110244769A1 (en) * 2007-12-20 2011-10-06 David Moses M Abrasive article having a plurality of precisely-shaped abrasive composites

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100043304A1 (en) * 2007-01-26 2010-02-25 Shinhan Diamond Ind. Co., Ltd. Diamond tool and method of manufacturing the same
US9486896B2 (en) 2012-06-28 2016-11-08 Saint-Gobain Abrasives, Inc. Abrasive article and coating
US9254546B2 (en) * 2013-02-19 2016-02-09 Samsung Electronics Co., Ltd. Chemical mechanical polishing machine and polishing head assembly
US10195715B2 (en) 2013-02-19 2019-02-05 Samsung Electronics Co., Ltd. Chemical mechanical polishing machine and polishing head assembly
US20140235144A1 (en) * 2013-02-19 2014-08-21 Samsung Electronics Co., Ltd. Chemical mechanical polishing machine and polishing head assembly
US20150165586A1 (en) * 2013-12-17 2015-06-18 Fujibo Holdings, Inc. Resin Lapping Plate and Lapping Method Using the Same
US9370853B2 (en) * 2013-12-17 2016-06-21 Fujibo Holdings, Inc. Resin lapping plate and lapping method using the same
US20160176016A1 (en) * 2014-12-19 2016-06-23 Applied Materials, Inc. Components for a chemical mechanical polishing tool
US11376709B2 (en) 2014-12-19 2022-07-05 Applied Materials, Inc. Components for a chemical mechanical polishing tool
US10434627B2 (en) * 2014-12-19 2019-10-08 Applied Materials, Inc. Components for a chemical mechanical polishing tool
US9844853B2 (en) 2014-12-30 2017-12-19 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive tools and methods for forming same
US10189146B2 (en) 2014-12-30 2019-01-29 Saint-Gobain Abrasives, Inc. Abrasive tools and methods for forming same
US9484062B1 (en) 2015-07-28 2016-11-01 Seagate Technology Llc Media cleaning with self-assembled monolayer material
US9245542B1 (en) 2015-07-28 2016-01-26 Seagate Technology Llc Media cleaning with self-assembled monolayer material
WO2017065861A1 (en) * 2015-10-16 2017-04-20 Applied Materials, Inc. External clamp ring for a chemical mechanical polishing carrier head
US10029346B2 (en) 2015-10-16 2018-07-24 Applied Materials, Inc. External clamp ring for a chemical mechanical polishing carrier head
US10189145B2 (en) 2015-12-30 2019-01-29 Saint-Gobain Abrasives, Inc. Abrasive tools and methods for forming same
TWI772171B (en) * 2021-09-08 2022-07-21 明志科技大學 Protective film and protective film stack for chemical mechanical polishing pad dressers

Also Published As

Publication number Publication date
KR101024674B1 (en) 2011-03-25
WO2009084776A1 (en) 2009-07-09
KR20090072696A (en) 2009-07-02
JP2011507716A (en) 2011-03-10
CN101918179A (en) 2010-12-15
SG187409A1 (en) 2013-02-28
CN101918179B (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US20110053479A1 (en) Hydrophobic cutting tool and method for manufacturing the same
RU2414550C1 (en) Sapphire substrate (versions)
US6699106B2 (en) Conditioner for polishing pad and method for manufacturing the same
RU2412037C1 (en) Lot of sapphire substrates and method of its production
JP5745108B2 (en) Preparation and use of corrosion resistant CMP conditioning tools
RU2422259C2 (en) Method of machining sapphire substrate
US11781244B2 (en) Seed crystal for single crystal 4H—SiC growth and method for processing the same
TWI573193B (en) Method for manufacturing silicon carbide substrate
CN112223133B (en) Chemical mechanical polishing pad conditioner and method of manufacturing the same
KR101211138B1 (en) Conditioner for soft pad and method for producing the same
JP2010069612A (en) Conditioner for semiconductor polishing cloth, method for manufacturing conditioner for semiconductor polishing cloth, and semiconductor polishing apparatus
US20130149941A1 (en) Method Of Machining Semiconductor Substrate And Apparatus For Machining Semiconductor Substrate
JP7079332B2 (en) CMP polishing pad conditioner
JP4825490B2 (en) Method for producing diamond film-coated member
JP3538306B2 (en) Thin film magnetic head and method of manufacturing the same
JP3482313B2 (en) Dresser for polishing cloth for semiconductor substrate and method of manufacturing the same
JP4202703B2 (en) Polishing equipment
US20210187696A1 (en) Hybrid cmp conditioning head
JP2023114215A (en) SiC EPITAXIAL SUBSTRATE AND MANUFACTURING METHOD OF THE SAME
JPH10202506A (en) Dresser for semiconductor substrate polishing cloth and its manufacture
JP2010202957A (en) Carbon film, production method of carbon film, and cmp pad conditioner

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHINHAN DIAMOND IND. CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, SHIN KYUNG;CHEONG, KEE JUNG;SONG, BRIAN;AND OTHERS;SIGNING DATES FROM 20100726 TO 20100730;REEL/FRAME:025196/0783

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION