US20110040294A1 - Method and device for the representation of an operation area during laser operations - Google Patents

Method and device for the representation of an operation area during laser operations Download PDF

Info

Publication number
US20110040294A1
US20110040294A1 US12/857,631 US85763110A US2011040294A1 US 20110040294 A1 US20110040294 A1 US 20110040294A1 US 85763110 A US85763110 A US 85763110A US 2011040294 A1 US2011040294 A1 US 2011040294A1
Authority
US
United States
Prior art keywords
lens
eye
dimensional image
recited
display unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/857,631
Inventor
Manfred Dick
Juergen Kuehnert
Holger Maeusezahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Meditec AG
Original Assignee
Carl Zeiss Meditec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Meditec AG filed Critical Carl Zeiss Meditec AG
Priority to US12/857,631 priority Critical patent/US20110040294A1/en
Assigned to CARL ZEISS MEDITEC AG reassignment CARL ZEISS MEDITEC AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DICK, MANFRED, KUEHNERT, JUERGEN, MAEUSEZAHL, HOLGER
Publication of US20110040294A1 publication Critical patent/US20110040294A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/13Ophthalmic microscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00804Refractive treatments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00848Feedback systems based on wavefront
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00897Scanning mechanisms or algorithms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00812Inlays; Onlays; Intraocular lenses [IOL]

Definitions

  • the present invention relates to a method and a device for the representation of an operation area during laser operations.
  • PRK photorefractive keratectomy
  • LASIK laser-assisted in situ keratomileusis
  • Lasers of suitable wavelength are used for ablation.
  • the excimer laser with a wavelength of 193 nm is particularly suitable for this purpose.
  • other lasers such as Er:YAG solid-state lasers are also already used for this.
  • the data for the extent of the defective vision are established by sight tests, by means of refractometers and recently also by the evaluation of measurements of the wavefront. Other methods and devices are also known, which can be used to calculate firing coordinates for the actual operative procedure from these measurement values.
  • a laser operation is monitored by the surgeon or doctor usually by observing the operation area by means of a microscope.
  • the doctor thus obtains a spatial impression of the operation area.
  • the view through the microscope allows only one person a spatial impression.
  • the ablation process is no longer easy to understand due to various factors. Firstly, the firing frequency of the lasers is increasing all the time and lies well above the perceptive capability of the surgeon. The ablation process is also patient-dependent and the steering and placement of the spot in the ablation area is subject to complex algorithms which attempt to solve the most varied tasks and problems of the ablation process (thermal load, smoke). An ablation algorithm for example breaks down the necessary firings for a complete correction into many small individual corrections, with the aim that the operation can be aborted at any time and it can be guaranteed that an optically satisfactory result is achieved (cf. the valuable contribution to the state of the art in the patent specification DE 197 27 573). Therefore, in the case of more modern spot scanners, it is no longer possible for a surgeon to monitor the complex ablation process—by checking the correct positioning of the laser beam on the area to be operated on—by “looking through the microscope”.
  • the field of vision is also seriously limited when “looking through the microscope” because of the design.
  • the doctor In order to use operation equipment, to ascertain status information or progress information for equipment, the doctor must stop looking through the operation microscope and therefore take his eyes off the operation area.
  • the operation area can be represented by means of a camera and a monitor. Because of the principle involved, however, the spatial impression is lost in this case. However, this is of decisive importance during such microsurgical procedures.
  • the object is achieved by a device for the three-dimensional representation of an operation area, in particular an eye, during laser operations, comprising a spatial recording system ( 10 ), an image-processing system ( 15 ) and a spatial display unit ( 20 ).
  • This device makes it possible to three-dimensionally represent the operation area and to clearly monitor the progress of the operation, even when not looking through the microscope. In particular, in this way several observers can observe the operation area simultaneously, without losing the three-dimensional impression.
  • the spatial recording system is preferably a camera system, with which image information or data of an object can be obtained typically from several observation angles. These data then allow the reconstruction of a three-dimensional representation of this object, i.e. the operation area.
  • the image-processing system evaluates the obtained data and processes them so that they are suitable for the following spatial display unit for the representation of a three-dimensional or spatial image.
  • the image-processing system can be a chip, a computer, software or a microprocessor.
  • the spatial display unit is preferably a 3-D display, a hologram or a three-dimensional representation unit generated by laser. Particularly preferably, it is an arrangement for three-dimensional representation according to DE 198 25 950.
  • the spatial extent of the starting position i.e. the position before the operative procedure, and also the spatial extent of the position after an operation can be advantageously represented by means of such a display.
  • the device according to the invention also comprises a control module ( 30 ); at least one item of medical equipment ( 40 ) and a bus system which connects the spatial display unit ( 20 ) and the control module ( 30 ), so that data and information can be displayed on the display unit ( 20 ). It is hereby possible that additional information relating to the operation or the operation laser etc. can be displayed by the three-dimensional or spatial representation of the operation area which is to be observed. The surgeon and other observers can thus record valuable additional information without having to take their eyes off the spatially represented operation area.
  • the control module is preferably a computer, a calculator, a microcontroller.
  • the item of medical equipment preferably comprises an operation laser for refractive surgery.
  • further devices such as eye trackers, online topography sensors, online wavefront sensors, illumination units and also eye identification systems (including rotation control and identification according to the application DE 10052201 of 20.10.2000) can be used.
  • This equipment sends data regarding its own status via the bus system to the control unit and also receives instructions from the control device via the bus system.
  • the algorithm for the processing of the operation program and the data of the planned operation are also on the control unit or are fed into this or made available to this.
  • Data and information are particularly preferably data relating to the operation area, preferably a laser for refractive corneal surgery (such as firing rate, energy, pulse shape, etc.) or data regarding the operation (such as patient data, temperature of the tissue or operation area, operation time already elapsed, remaining time of the operation, operation laser settings, etc.) or status information (limits of the area of the eye tracker, limits of the operating range of the laser, progress of the operation, energy status, etc.).
  • a laser for refractive corneal surgery such as firing rate, energy, pulse shape, etc.
  • data regarding the operation such as patient data, temperature of the tissue or operation area, operation time already elapsed, remaining time of the operation, operation laser settings, etc.
  • status information limits of the area of the eye tracker, limits of the operating range of the laser, progress of the operation, energy status, etc.
  • the device according to the invention also comprises a touch-sensitive display overlay. It is thereby possible for the surgeon to input control commands or equipment control functions via the touch-sensitive display overlay. These can be passed on to the control unit and from there be used to control the medical equipment.
  • image data relating to the operation area, additional data and information and also control panels can be represented on the display unit ( 20 ).
  • This representation of all relevant and interesting data for the operation makes it possible for the surgeon to keep his eye on all parameters and circumstances of the operation, without having to take his eye off the spatially represented operation area.
  • These various data can be represented as a PIP (picture in a picture) or overlaid.
  • the images and data can also be displayed in a multi-window technique.
  • control panels and symbols which can be activated by touching the touch-sensitive display overlay, are provided as control panels. These are preferably symbols for controlling a magnification of the image, in particular for infinitely variable magnification (digital zoom). Camera guiding symbols for selecting the perspective and the observation angle are also preferably provided, and symbols for selecting from the individual windows, etc.
  • a device is quite particularly preferred in which reference data of an ideal operation area after the operation, in particular of an ideal cornea shape, can be spatially represented on the spatial display unit ( 20 ) via an image of the current operation area, in particular of the current cornea. It is thereby possible to represent the data of the ideal cornea via the image of the current, curved cornea and thereby to illustrate the difference.
  • the manner in which the cornea operated on ever more closely resembles the ideal shape represented, and is finally made congruent with it can be monitored live. Additionally, current deviations of the cornea that are established online can be compared with the initial correction values presently during the operation on the basis of a wavefront analysis and thus an even more precise correction can be illustrated during the actual course of the operation.
  • the starting position and desired final position can thus be represented such that the layer thickness to be ablated within the framework of the operative procedure (ablation volume) can be seen.
  • the device according to the invention also preferably has a simulation unit ( 50 ) which, upon every single laser firing, realizes on the display an ablation which, in terms of location and volume ablation, precisely simulates the ablation that takes place during the ablation on the cornea.
  • the device according to the invention is designed such that, during an operation, upon each laser firing on the display, a volume unit that is sufficient for the volume ablation on the eye is removed from the display. With the device according to the invention, the course of the ablation of the cornea can therefore be monitored by the surgeon.
  • the coordinates for the volume removal are measured directly from the scanner on the display.
  • the ablation takes place on the display at precisely the point which corresponds to the respective position of the scanners at this point. Should the scanners not assume the precise position, an ablation with correspondingly modified coordinates also takes place on the display.
  • a greatly improved online control of the course of the operation by the surgeon is therefore possible by means of the device according to the invention. At the end of the operation, he can also record in a simple manner the final position that has been realized.
  • Coordinates for a post-correction are preferably established automatically, so that the post-correction can be carried out immediately after the original program. This correction is also monitored on the display according to the idea of the invention. An online topography of the cornea surface can thus be represented on the spatial display unit.
  • the simulation unit is preferably also connected to the unit for controlling the laser energy. Should the laser energy differ from the proposed value, the simulated volume ablation can also be modified accordingly.
  • the simulation unit (monitoring unit) can be connected to an online wavefront sensor ( 40 . x ).
  • the current wavefront of the eye is spatially represented.
  • the surgeon can directly monitor the progress and success of the operation on the patient.
  • Due to the invention a wavefront which has been modified and differs from the ideal wavefront can also be displayed directly. This can arise due to unforeseeable factors during the operation.
  • the spatial representation therefore makes it possible for the surgeon to make a sound decision to decide in favour of a further correction under other parameters (in order to also lead the new wavefront aberrations to an ideal wavefront) or to end the operation.
  • the object of the invention is also achieved by a method according to the invention for the three-dimensional representation of an operation area ( 1 ), in particular an eye, during laser operations, comprising the steps: recording of the operation area ( 1 ) by means of a spatial recording system ( 10 ), transfer of the information obtained from the preceding step to an image-processing system ( 15 ), processing of the information in the image-processing system ( 15 ) and representation of this processed information on a spatial display unit ( 20 ).
  • the method according to the invention preferably also comprises the step: representation of additional data on the spatial display unit ( 20 ).
  • data can, as stated above, be data and information concerning the patient, the progress of the operation or the medical equipment, in particular the operation laser.
  • the method according to the invention also comprises the steps: registration of control commands, in particular by touching a touch-sensitive display ( 25 ), steering medical equipment ( 40 ) in accordance with the registered control commands.
  • control commands can, as stated above, be camera-position and clip-selection commands and also control commands which directly relate to the operation laser (emergency stop, repetition of special sequences, re-calculation, etc.).
  • the device according to the invention and also the method according to the invention can be used in particular in the field of ophthalmology.
  • the material processing in the case of contact lenses or intraocular lenses (IOLs) can be monitored with the device according to the invention or the method according to the invention.
  • the processing does not take place on or in the eye.
  • the observation of the processing procedure during series production of contact lenses or intraocular lenses is also conceivable.
  • the control of the final position of the respective lenses is conceivable in particular here as an area of use of the device according to the invention and the method according to the invention.
  • a lens for example an intraocular lens or a contact lens.
  • a lens for example an intraocular lens or a contact lens.
  • Monitoring the processing procedure of the individual lenses gives the patient confidence for the ensuing operation.
  • the processed lens is preferably reflected in an intermediate image plane of an optical system.
  • a further possible use of the device according to the invention and the method according to the invention is the monitoring of the material processing on a contact lens located on the eye.
  • the entire eye/contact lens system can be measured together.
  • the processing takes place only on the contact lens.
  • the eye itself is not operated on.
  • the device according to the invention and the method according to the invention can also be used for non-medical applications. In principle, it is possible to use them in any type of processing of a surface by means of a laser.
  • FIG. 1 a schematic representation of a device according to the invention
  • FIG. 2 a schematic representation of a device according to the invention for observation for more than one person
  • FIG. 3 a basic representation of the components of an embodiment of a device according to the present invention.
  • FIG. 1 shows a schematic representation of a device according to the invention.
  • a surgeon 0 observes a spatial image 23 of a patient's eye which is represented by a display for spatial representation 20 .
  • the eye of the patient 1 is then operated on by means of a laser 45 .
  • FIG. 2 shows a schematic representation of a device according to the invention for observation for more than one person.
  • Several observers 0 . 1 , 0 . 2 and 0 . 3 simultaneously observe, by means of only one spatial display unit 20 , the spatial image of the eye 23 to be treated.
  • FIG. 3 shows a basic representation of the components of an embodiment of a device according to the present invention.
  • a spatial recording system 10 is connected to an image-processing system 15 . This is connected to a control module 30 .
  • the control module 30 connects medical equipment 40 . 1 to 40 . n to the spatial display unit 20 .
  • a touch-sensitive display overlay 25 is connected to the spatial display unit 20 .
  • This structure according to the invention makes it possible to record three-dimensionally an operation area by the spatial recording system 10 , to process these data via an image-processing system 15 and to transfer this information to the control unit 30 .
  • the information of the medical equipment 40 . n also meets here. These data are then represented together or alone via the spatial display unit 20 . Both the three-dimensional operation area and status data of the medical equipment 40 . n can be displayed here.
  • the touch-sensitive display overlay 25 makes it possible for the surgeon to input control commands and thus either to select views of the operation area (multi-window technique, PIP, etc.), to call up status data or their progress or also to control the medical equipment.
  • the invention relates to a visual device for the spatial representation of the operation area during medical operations—preferably during operations on the eye using lasers in order to correct vision defects.
  • the operation area visible on a display and to represent it spatially.
  • the invention makes it possible to represent the operation area independently of an operation microscope for a large number of observers.
  • the operation area can be represented much larger, any areas can be magnified or represented simultaneously as a PIP (picture in picture).
  • the present invention therefore represents a solution which makes it possible, during an operation, to represent the operation area spatially on a display for several persons, to fade in any information into the operation area and to control the item of operation equipment—preferably a laser for refractive corneal surgery.

Abstract

A method for monitoring the processing of a lens includes recording the lens using a spatial recording system so as to generate image information for the lens; generating an actual three-dimensional image of the lens from the image information on a spatial display unit; and displaying the actual three-dimensional image of the lens together with a predetermined three-dimensional image of at least a portion of an eye on the spatial display unit.

Description

  • This is a divisional application of U.S. application Ser. No. 11/423,003, filed Jun. 8, 2006, which is a continuation of U.S. application Ser. No. 10/481,988, filed Dec. 24, 2003, now U.S. Pat. No. 7,066,928, which is a U.S. National Stage entry of International Application No. PCT/EP02/07073, filed Jun. 26, 2002, which claims benefit to German Application No. DE 101 30 278.9, filed Jun. 26, 2001. The entire disclosure of each of the applications is incorporated by reference herein.
  • The present invention relates to a method and a device for the representation of an operation area during laser operations.
  • In ophthalmology, it is known in the case of poor eyesight to shape the cornea by the ablation of tissue. As methods, the so-called PRK (photorefractive keratectomy) and LASIK (laser-assisted in situ keratomileusis) methods have established themselves, in which initially a small flap of epithelium, Bowman membrane and stroma is cut and unfolded and then the PRK is carried out in the stroma bed.
  • Lasers of suitable wavelength are used for ablation. The excimer laser with a wavelength of 193 nm is particularly suitable for this purpose. However, other lasers such as Er:YAG solid-state lasers are also already used for this.
  • The data for the extent of the defective vision are established by sight tests, by means of refractometers and recently also by the evaluation of measurements of the wavefront. Other methods and devices are also known, which can be used to calculate firing coordinates for the actual operative procedure from these measurement values.
  • A laser operation is monitored by the surgeon or doctor usually by observing the operation area by means of a microscope. The doctor thus obtains a spatial impression of the operation area. However, the view through the microscope allows only one person a spatial impression.
  • Representation on a monitor etc. by means of a camera is also known. However, in this case the spatial impression of the operation area is lost. In the case of an operation using a slit scanner, the progress of the operation and the sequence of the ablation steps can be very well perceived and monitored by the doctor. The doctor can thus detect abnormalities in the ablation process early and counteract these, for example stop the operation, etc.
  • With today's modern spot scanners, the ablation process is no longer easy to understand due to various factors. Firstly, the firing frequency of the lasers is increasing all the time and lies well above the perceptive capability of the surgeon. The ablation process is also patient-dependent and the steering and placement of the spot in the ablation area is subject to complex algorithms which attempt to solve the most varied tasks and problems of the ablation process (thermal load, smoke). An ablation algorithm for example breaks down the necessary firings for a complete correction into many small individual corrections, with the aim that the operation can be aborted at any time and it can be guaranteed that an optically satisfactory result is achieved (cf. the valuable contribution to the state of the art in the patent specification DE 197 27 573). Therefore, in the case of more modern spot scanners, it is no longer possible for a surgeon to monitor the complex ablation process—by checking the correct positioning of the laser beam on the area to be operated on—by “looking through the microscope”.
  • The field of vision is also seriously limited when “looking through the microscope” because of the design. In order to use operation equipment, to ascertain status information or progress information for equipment, the doctor must stop looking through the operation microscope and therefore take his eyes off the operation area.
  • When representing the operation area for several observers (teaching purposes, monitoring etc.), the operation area can be represented by means of a camera and a monitor. Because of the principle involved, however, the spatial impression is lost in this case. However, this is of decisive importance during such microsurgical procedures.
  • The ablation processes in PRK using a spot scanner are so complex that the doctor is scarcely in a position to tell whether the operation is progressing correctly or to detect, early, problems which arise, so as to act to correct them. In order to control equipment etc., the doctor must take his eyes off the operation area, in order to use the equipment or to record status information.
  • It is therefore the aim and object of the invention to make available devices and methods which allow the doctor to be able to clearly monitor the progress of the operation and thus to consciously control the operation.
  • This object is achieved by a device according to the independent device claim and also by a method according to the independent method claim. Advantageous further developments are defined in the dependent claims.
  • In particular, the object is achieved by a device for the three-dimensional representation of an operation area, in particular an eye, during laser operations, comprising a spatial recording system (10), an image-processing system (15) and a spatial display unit (20). This device makes it possible to three-dimensionally represent the operation area and to clearly monitor the progress of the operation, even when not looking through the microscope. In particular, in this way several observers can observe the operation area simultaneously, without losing the three-dimensional impression.
  • The spatial recording system is preferably a camera system, with which image information or data of an object can be obtained typically from several observation angles. These data then allow the reconstruction of a three-dimensional representation of this object, i.e. the operation area.
  • The image-processing system evaluates the obtained data and processes them so that they are suitable for the following spatial display unit for the representation of a three-dimensional or spatial image. The image-processing system can be a chip, a computer, software or a microprocessor.
  • The spatial display unit is preferably a 3-D display, a hologram or a three-dimensional representation unit generated by laser. Particularly preferably, it is an arrangement for three-dimensional representation according to DE 198 25 950. The spatial extent of the starting position, i.e. the position before the operative procedure, and also the spatial extent of the position after an operation can be advantageously represented by means of such a display.
  • In a preferred embodiment of the present invention, the device according to the invention also comprises a control module (30); at least one item of medical equipment (40) and a bus system which connects the spatial display unit (20) and the control module (30), so that data and information can be displayed on the display unit (20). It is hereby possible that additional information relating to the operation or the operation laser etc. can be displayed by the three-dimensional or spatial representation of the operation area which is to be observed. The surgeon and other observers can thus record valuable additional information without having to take their eyes off the spatially represented operation area.
  • The control module is preferably a computer, a calculator, a microcontroller.
  • The item of medical equipment preferably comprises an operation laser for refractive surgery. In addition, further devices such as eye trackers, online topography sensors, online wavefront sensors, illumination units and also eye identification systems (including rotation control and identification according to the application DE 10052201 of 20.10.2000) can be used. This equipment sends data regarding its own status via the bus system to the control unit and also receives instructions from the control device via the bus system. Particularly preferably, the algorithm for the processing of the operation program and the data of the planned operation are also on the control unit or are fed into this or made available to this.
  • Data and information are particularly preferably data relating to the operation area, preferably a laser for refractive corneal surgery (such as firing rate, energy, pulse shape, etc.) or data regarding the operation (such as patient data, temperature of the tissue or operation area, operation time already elapsed, remaining time of the operation, operation laser settings, etc.) or status information (limits of the area of the eye tracker, limits of the operating range of the laser, progress of the operation, energy status, etc.).
  • In another preferred embodiment of the present invention, the device according to the invention also comprises a touch-sensitive display overlay. It is thereby possible for the surgeon to input control commands or equipment control functions via the touch-sensitive display overlay. These can be passed on to the control unit and from there be used to control the medical equipment.
  • In another preferred embodiment of the present invention, image data relating to the operation area, additional data and information and also control panels can be represented on the display unit (20). This representation of all relevant and interesting data for the operation makes it possible for the surgeon to keep his eye on all parameters and circumstances of the operation, without having to take his eye off the spatially represented operation area. These various data can be represented as a PIP (picture in a picture) or overlaid. The images and data can also be displayed in a multi-window technique.
  • In addition, it is possible to display several different views of the operation area simultaneously. These can be different observation angles, different perspectives, clips or magnification scales. It is also possible to represent images of different time domains next to each other, which is preferable in particular if the chronology of an operation is to be displayed. This is particularly interesting for teaching events in which the data and the course of previous operations is to be presented, without foregoing the spatial impression.
  • In particular panels and symbols, which can be activated by touching the touch-sensitive display overlay, are provided as control panels. These are preferably symbols for controlling a magnification of the image, in particular for infinitely variable magnification (digital zoom). Camera guiding symbols for selecting the perspective and the observation angle are also preferably provided, and symbols for selecting from the individual windows, etc.
  • A device is quite particularly preferred in which reference data of an ideal operation area after the operation, in particular of an ideal cornea shape, can be spatially represented on the spatial display unit (20) via an image of the current operation area, in particular of the current cornea. It is thereby possible to represent the data of the ideal cornea via the image of the current, curved cornea and thereby to illustrate the difference. During the operation, the manner in which the cornea operated on ever more closely resembles the ideal shape represented, and is finally made congruent with it, can be monitored live. Additionally, current deviations of the cornea that are established online can be compared with the initial correction values presently during the operation on the basis of a wavefront analysis and thus an even more precise correction can be illustrated during the actual course of the operation.
  • The starting position and desired final position can thus be represented such that the layer thickness to be ablated within the framework of the operative procedure (ablation volume) can be seen.
  • The device according to the invention also preferably has a simulation unit (50) which, upon every single laser firing, realizes on the display an ablation which, in terms of location and volume ablation, precisely simulates the ablation that takes place during the ablation on the cornea. The device according to the invention is designed such that, during an operation, upon each laser firing on the display, a volume unit that is sufficient for the volume ablation on the eye is removed from the display. With the device according to the invention, the course of the ablation of the cornea can therefore be monitored by the surgeon.
  • In a preferred version, for every single firing, the coordinates for the volume removal are measured directly from the scanner on the display. In this way, the ablation takes place on the display at precisely the point which corresponds to the respective position of the scanners at this point. Should the scanners not assume the precise position, an ablation with correspondingly modified coordinates also takes place on the display. A greatly improved online control of the course of the operation by the surgeon is therefore possible by means of the device according to the invention. At the end of the operation, he can also record in a simple manner the final position that has been realized.
  • Should the realized final position not wholly correspond to the desired correction, the surgeon can decide whether he will immediately carry out a post-correction. Further coordinates for the ablation can thus be calculated from the realized final position and from the originally desired position, so that a post-correction can take place immediately afterwards.
  • Coordinates for a post-correction are preferably established automatically, so that the post-correction can be carried out immediately after the original program. This correction is also monitored on the display according to the idea of the invention. An online topography of the cornea surface can thus be represented on the spatial display unit.
  • The simulation unit is preferably also connected to the unit for controlling the laser energy. Should the laser energy differ from the proposed value, the simulated volume ablation can also be modified accordingly.
  • Furthermore, the simulation unit (monitoring unit) can be connected to an online wavefront sensor (40.x). The current wavefront of the eye is spatially represented. Through the spatial representation of the present wavefront of the eye during the operation, the surgeon can directly monitor the progress and success of the operation on the patient. Due to the invention, a wavefront which has been modified and differs from the ideal wavefront can also be displayed directly. This can arise due to unforeseeable factors during the operation. The spatial representation therefore makes it possible for the surgeon to make a sound decision to decide in favour of a further correction under other parameters (in order to also lead the new wavefront aberrations to an ideal wavefront) or to end the operation.
  • The object of the invention is also achieved by a method according to the invention for the three-dimensional representation of an operation area (1), in particular an eye, during laser operations, comprising the steps: recording of the operation area (1) by means of a spatial recording system (10), transfer of the information obtained from the preceding step to an image-processing system (15), processing of the information in the image-processing system (15) and representation of this processed information on a spatial display unit (20).
  • The method according to the invention preferably also comprises the step: representation of additional data on the spatial display unit (20). These data can, as stated above, be data and information concerning the patient, the progress of the operation or the medical equipment, in particular the operation laser.
  • Particularly preferably, the method according to the invention also comprises the steps: registration of control commands, in particular by touching a touch-sensitive display (25), steering medical equipment (40) in accordance with the registered control commands. These control commands can, as stated above, be camera-position and clip-selection commands and also control commands which directly relate to the operation laser (emergency stop, repetition of special sequences, re-calculation, etc.).
  • The device according to the invention and also the method according to the invention can be used in particular in the field of ophthalmology. For example, the material processing in the case of contact lenses or intraocular lenses (IOLs) can be monitored with the device according to the invention or the method according to the invention. As a rule, the processing does not take place on or in the eye. The observation of the processing procedure during series production of contact lenses or intraocular lenses is also conceivable. The control of the final position of the respective lenses is conceivable in particular here as an area of use of the device according to the invention and the method according to the invention.
  • It is also possible for the patient himself to monitor the production of a lens, for example an intraocular lens or a contact lens. In this way, he can form an impression beforehand of the chances of success. Monitoring the processing procedure of the individual lenses gives the patient confidence for the ensuing operation. The processed lens is preferably reflected in an intermediate image plane of an optical system.
  • A further possible use of the device according to the invention and the method according to the invention is the monitoring of the material processing on a contact lens located on the eye. Here, the entire eye/contact lens system can be measured together. The processing takes place only on the contact lens. The eye itself is not operated on.
  • The device according to the invention and the method according to the invention can also be used for non-medical applications. In principle, it is possible to use them in any type of processing of a surface by means of a laser.
  • The invention will be explained further in the following with reference to drawings. Further advantageous features are described here. There are shown in:
  • FIG. 1: a schematic representation of a device according to the invention;
  • FIG. 2: a schematic representation of a device according to the invention for observation for more than one person; and
  • FIG. 3: a basic representation of the components of an embodiment of a device according to the present invention.
  • FIG. 1 shows a schematic representation of a device according to the invention. A surgeon 0 observes a spatial image 23 of a patient's eye which is represented by a display for spatial representation 20. The eye of the patient 1 is then operated on by means of a laser 45.
  • FIG. 2 shows a schematic representation of a device according to the invention for observation for more than one person. Several observers 0.1, 0.2 and 0.3 simultaneously observe, by means of only one spatial display unit 20, the spatial image of the eye 23 to be treated.
  • FIG. 3 shows a basic representation of the components of an embodiment of a device according to the present invention. A spatial recording system 10 is connected to an image-processing system 15. This is connected to a control module 30. The control module 30 connects medical equipment 40.1 to 40.n to the spatial display unit 20. A touch-sensitive display overlay 25 is connected to the spatial display unit 20.
  • This structure according to the invention makes it possible to record three-dimensionally an operation area by the spatial recording system 10, to process these data via an image-processing system 15 and to transfer this information to the control unit 30. The information of the medical equipment 40.n also meets here. These data are then represented together or alone via the spatial display unit 20. Both the three-dimensional operation area and status data of the medical equipment 40.n can be displayed here. The touch-sensitive display overlay 25 makes it possible for the surgeon to input control commands and thus either to select views of the operation area (multi-window technique, PIP, etc.), to call up status data or their progress or also to control the medical equipment.
  • The invention relates to a visual device for the spatial representation of the operation area during medical operations—preferably during operations on the eye using lasers in order to correct vision defects.
  • With the invention described here, it is possible to make the operation area visible on a display and to represent it spatially. The invention makes it possible to represent the operation area independently of an operation microscope for a large number of observers. The operation area can be represented much larger, any areas can be magnified or represented simultaneously as a PIP (picture in picture).
  • In addition to the more natural representation of the operation area, at the same time as the operation, information can be faded in or represented which is important to the doctor and the process of the operation and thus allows complete control of the item of equipment without losing sight of the operation area.
  • The additional integration of a touch-sensitive display therefore allows complete process control, control of the item of equipment etc. to take place simultaneously.
  • The present invention therefore represents a solution which makes it possible, during an operation, to represent the operation area spatially on a display for several persons, to fade in any information into the operation area and to control the item of operation equipment—preferably a laser for refractive corneal surgery.
  • LIST OF REFERENCE NUMBERS
    0 Observer
    1 Operation area
    10 Spatial recording system
    15 Image-processing system
    20 Spatial display unit
    23 Spatial representation of the operation area
    25 Touch-sensitive display overlay
    30 Control module
    40 Item of medical equipment
    45 Operation laser

Claims (15)

1. A method for monitoring the processing of a lens comprising:
recording the lens using a spatial recording system so as to generate image information for the lens;
generating an actual three-dimensional image of the lens from the image information on a spatial display unit; and
displaying the actual three-dimensional image of the lens together with a predetermined three-dimensional image of at least a portion of an eye on the spatial display unit.
2. The method as recited in claim 1, further comprising the step of:
adjusting the shape of the lens until the actual three-dimensional image of the lens is substantially aligned with the predetermined three-dimensional image on the spatial display unit.
3. The method as recited in claim 1, wherein the displaying of the actual three-dimensional image of the lens is performed at a location of the predetermined three-dimensional image of at least a portion of an eye corresponding to a lens position.
4. The method as recited in claim 3, wherein the lens is a contact lens and the lens position is an outer surface of a cornea.
5. The method as recited in claim 3, wherein the lens is an intraocular lens and the lens position is a crystalline lens of the eye.
6. A method for representing an eye during a laser operation of the eye in three dimensions comprising:
recording the eye using a spatial recording system so as to generate image information for the eye;
generating an actual three-dimensional image of the eye from the image information; and
displaying the actual three-dimensional image on a 3-D display unit.
7. The method as recited in claim 6, further comprising performing corrections on the eye after the displaying step.
8. The method as recited in claim 7, wherein the performing corrections step is performed using a laser.
9. The method as recited in claim 7, further comprising observing the corrections on the 3-D display unit.
10. The method as recited in claim 6, further comprising the step of:
generating a predetermined three-dimensional image of the eye; and
displaying the predetermined three-dimensional image together with the actual three-dimensional image on the 3-D display unit.
11. The method as recited in claim 10, wherein the predetermined three-dimensional image represents an ideal shape for the eye, and further comprising performing corrections at corresponding locations of the eye for which the actual three-dimensional image differs from the predetermined three-dimensional image.
12. The method as recited in claim 6, further comprising altering the image using a touch-sensitive display overlay on the 3-D display unit.
13. The method as recited in claim 6, further comprising the steps of:
registering a control command; and
controlling a medical equipment device in accordance with the registered control command.
14. The method as recited in claim 13, wherein the registering is performed using touch-sensitive display on the 3-D display unit.
15. The method as recited in claim 6, further comprising the step of:
displaying additional data on the 3-D display unit.
US12/857,631 2001-06-26 2010-08-17 Method and device for the representation of an operation area during laser operations Abandoned US20110040294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/857,631 US20110040294A1 (en) 2001-06-26 2010-08-17 Method and device for the representation of an operation area during laser operations

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10130278A DE10130278B4 (en) 2001-06-26 2001-06-26 Method and device for representing an operating area during laser operations
DE10130278.9 2001-06-26
US10/481,988 US7066928B2 (en) 2001-06-26 2002-06-26 Method and device for representing an operative field during laser operations
PCT/EP2002/007073 WO2003002047A2 (en) 2001-06-26 2002-06-26 Method and device for representing an operative field during laser operations
US11/423,003 US20060217689A1 (en) 2001-06-26 2006-06-08 Method and device for the representation of an operation area during laser operations
US12/857,631 US20110040294A1 (en) 2001-06-26 2010-08-17 Method and device for the representation of an operation area during laser operations

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/423,003 Division US20060217689A1 (en) 2001-06-26 2006-06-08 Method and device for the representation of an operation area during laser operations

Publications (1)

Publication Number Publication Date
US20110040294A1 true US20110040294A1 (en) 2011-02-17

Family

ID=7689163

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/481,988 Expired - Lifetime US7066928B2 (en) 2001-06-26 2002-06-26 Method and device for representing an operative field during laser operations
US11/423,003 Abandoned US20060217689A1 (en) 2001-06-26 2006-06-08 Method and device for the representation of an operation area during laser operations
US12/857,631 Abandoned US20110040294A1 (en) 2001-06-26 2010-08-17 Method and device for the representation of an operation area during laser operations

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/481,988 Expired - Lifetime US7066928B2 (en) 2001-06-26 2002-06-26 Method and device for representing an operative field during laser operations
US11/423,003 Abandoned US20060217689A1 (en) 2001-06-26 2006-06-08 Method and device for the representation of an operation area during laser operations

Country Status (7)

Country Link
US (3) US7066928B2 (en)
EP (1) EP1404265B9 (en)
JP (1) JP4508637B2 (en)
AT (1) ATE446068T1 (en)
AU (1) AU2002321118A1 (en)
DE (2) DE10130278B4 (en)
WO (1) WO2003002047A2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7836892B2 (en) 2002-05-31 2010-11-23 Carl Zeiss Meditec Ag Method for controlling a device for treating the human eye
JP2005535370A (en) 2002-06-19 2005-11-24 パロマー・メディカル・テクノロジーズ・インコーポレイテッド Method and apparatus for treating skin and subcutaneous conditions
US7556378B1 (en) 2003-04-10 2009-07-07 Tsontcho Ianchulev Intraoperative estimation of intraocular lens power
AU2005234778B2 (en) 2004-04-20 2011-04-21 Alcon Inc. Integrated surgical microscope and wavefront sensor
US20050277913A1 (en) * 2004-06-09 2005-12-15 Mccary Brian D Heads-up display for displaying surgical parameters in a surgical microscope
DE102004046430A1 (en) * 2004-09-24 2006-04-06 Siemens Ag System for visual situation-based real-time based surgeon support and real-time documentation and archiving of the surgeon's visually perceived support-based impressions during surgery
US7856985B2 (en) 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
US8820929B2 (en) * 2006-01-20 2014-09-02 Clarity Medical Systems, Inc. Real-time measurement/display/record/playback of wavefront data for use in vision correction procedures
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
JP4956176B2 (en) * 2006-12-21 2012-06-20 キヤノン株式会社 Monitoring host device, image forming apparatus, control method therefor, and program
US20090012511A1 (en) * 2007-06-08 2009-01-08 Cynosure, Inc. Surgical waveguide
US7594729B2 (en) 2007-10-31 2009-09-29 Wf Systems, Llc Wavefront sensor
US10368838B2 (en) 2008-03-31 2019-08-06 Intuitive Surgical Operations, Inc. Surgical tools for laser marking and laser cutting
US9168173B2 (en) 2008-04-04 2015-10-27 Truevision Systems, Inc. Apparatus and methods for performing enhanced visually directed procedures under low ambient light conditions
US10117721B2 (en) 2008-10-10 2018-11-06 Truevision Systems, Inc. Real-time surgical reference guides and methods for surgical applications
US9226798B2 (en) 2008-10-10 2016-01-05 Truevision Systems, Inc. Real-time surgical reference indicium apparatus and methods for surgical applications
US8550624B2 (en) 2008-11-06 2013-10-08 Wavetec Vision Systems, Inc. Optical angular measurement system for ophthalmic applications and method for positioning of a toric intraocular lens with increased accuracy
US9173717B2 (en) * 2009-02-20 2015-11-03 Truevision Systems, Inc. Real-time surgical reference indicium apparatus and methods for intraocular lens implantation
US8876290B2 (en) 2009-07-06 2014-11-04 Wavetec Vision Systems, Inc. Objective quality metric for ocular wavefront measurements
EP2453823B1 (en) 2009-07-14 2015-05-13 WaveTec Vision Systems, Inc. Ophthalmic surgery measurement system
ES2524618T3 (en) 2009-07-14 2014-12-10 Wavetec Vision Systems, Inc. Determination of the effective position of the lens of an intraocular lens using afractive refractive power
DE102010014114B4 (en) * 2010-04-07 2024-03-07 Carl Zeiss Meditec Ag Ophthalmological device with imaging modes for adjustment and measuring tasks
US10631712B2 (en) * 2011-02-10 2020-04-28 Karl Storz Imaging, Inc. Surgeon's aid for medical display
US10674968B2 (en) * 2011-02-10 2020-06-09 Karl Storz Imaging, Inc. Adjustable overlay patterns for medical display
US11412998B2 (en) 2011-02-10 2022-08-16 Karl Storz Imaging, Inc. Multi-source medical display
BR112014009129A2 (en) * 2011-10-20 2017-04-18 Koninklijke Philips Nv system and method for interactive holographic display
KR102183581B1 (en) 2012-04-18 2020-11-27 싸이노슈어, 엘엘씨 Picosecond laser apparatus and methods for treating target tissues with same
ES2529321T3 (en) * 2012-07-06 2015-02-19 Neoptics Ag System for the insertion of an intracorneal lens
WO2014036499A1 (en) 2012-08-30 2014-03-06 Truevision Systems, Inc. Imaging system and methods displaying a fused multidimensional reconstructed image
US9072462B2 (en) 2012-09-27 2015-07-07 Wavetec Vision Systems, Inc. Geometric optical power measurement device
EP3751684A1 (en) 2013-03-15 2020-12-16 Cynosure, Inc. Picosecond optical radiation systems and methods of use
WO2014153396A1 (en) 2013-03-20 2014-09-25 Covidien Lp System and method for enhancing picture-in-picture display for imaging devices used for surgical procedures
EP3544668B1 (en) * 2016-11-23 2024-01-17 Fisher&Paykel Healthcare Limited High flow luer connector
US11083537B2 (en) 2017-04-24 2021-08-10 Alcon Inc. Stereoscopic camera with fluorescence visualization
US10299880B2 (en) 2017-04-24 2019-05-28 Truevision Systems, Inc. Stereoscopic visualization camera and platform
US10917543B2 (en) 2017-04-24 2021-02-09 Alcon Inc. Stereoscopic visualization camera and integrated robotics platform
WO2019165426A1 (en) 2018-02-26 2019-08-29 Cynosure, Inc. Q-switched cavity dumped sub-nanosecond laser
US20240033035A1 (en) * 2021-01-29 2024-02-01 Sony Group Corporation Image processing device, image processing method, and surgical microscope system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669466A (en) * 1985-01-16 1987-06-02 Lri L.P. Method and apparatus for analysis and correction of abnormal refractive errors of the eye
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5677207A (en) * 1995-10-17 1997-10-14 Lg Electronics Inc. Method for fabricating a thin film transistor using silicide layer
US5677707A (en) * 1992-05-20 1997-10-14 Fujitsu Limited Method and apparatus for displaying a plurality of images on one display image by carrying out filtering operation
US5699810A (en) * 1994-11-10 1997-12-23 Pallikaris; Ioannis G. Procedure for removal of soft eye tissue
US5715836A (en) * 1993-02-16 1998-02-10 Kliegis; Ulrich Method and apparatus for planning and monitoring a surgical operation
US6413251B1 (en) * 2000-03-13 2002-07-02 Memphis Eye & Cataract Associates Ambulatory Surgery Center Method and system for controlling a digital mircomirror device for laser refractive eye surgery
US20020159621A1 (en) * 2001-04-26 2002-10-31 Memphis Eye & Cataract Associates Ambulatory Surgery Center (Dba Meca Laser And Surgery Center) System for automatically detecting eye corneal striae using projected and reflected shapes
US6598974B2 (en) * 2001-05-08 2003-07-29 Johnson & Johnson Vision Care, Inc. Method and apparatus for measuring wavefront aberrations

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307944A (en) * 1979-10-01 1981-12-29 Schirmer Kurt E Microscope
US4715703A (en) * 1982-10-12 1987-12-29 Rodenstock Instrument Corporation Ocular-fundus analyzer
US6099522A (en) * 1989-02-06 2000-08-08 Visx Inc. Automated laser workstation for high precision surgical and industrial interventions
IL89874A0 (en) * 1989-04-06 1989-12-15 Nissim Nejat Danon Apparatus for computerized laser surgery
US5029220A (en) * 1990-07-31 1991-07-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical joint correlator for real-time image tracking and retinal surgery
CA2150349C (en) * 1992-11-27 2000-05-09 Stephen J. Hart Methods and apparatus for making holograms
US5350374A (en) * 1993-03-18 1994-09-27 Smith Robert F Topography feedback control system for photoablation
US5870167A (en) * 1993-07-14 1999-02-09 Knopp; Carl F. Apparatus and method for imaging anterior structures of the eye
US6454761B1 (en) * 1995-01-30 2002-09-24 Philip D. Freedman Laser surgery device and method
US5782822A (en) * 1995-10-27 1998-07-21 Ir Vision, Inc. Method and apparatus for removing corneal tissue with infrared laser radiation
DE19727573C1 (en) * 1996-10-26 1998-05-20 Aesculap Meditec Gmbh Device and method for shaping surfaces, in particular lenses
EP0951260B1 (en) * 1996-10-26 2002-09-18 Asclepion-Meditec AG Process and device for shaping surfaces
US6210169B1 (en) * 1997-01-31 2001-04-03 Lasersight Technologies, Inc. Device and method for simulating ophthalmic surgery
JP3778326B2 (en) * 1997-05-22 2006-05-24 日本電信電話株式会社 Computer generated hologram display method, apparatus, and recording medium on which computer generated hologram display program is recorded
EP0880110B1 (en) * 1997-05-22 2006-11-08 Nippon Telegraph And Telephone Corporation Method and apparatus for displaying computer generated holograms
US6302876B1 (en) * 1997-05-27 2001-10-16 Visx Corporation Systems and methods for imaging corneal profiles
DE19825950C1 (en) * 1998-06-12 2000-02-17 Armin Grasnick Arrangement for three-dimensional representation
US6004313A (en) * 1998-06-26 1999-12-21 Visx, Inc. Patient fixation system and method for laser eye surgery
JP3848492B2 (en) * 1998-09-04 2006-11-22 株式会社ニデック Cornea surgery device
JP2000105350A (en) * 1998-09-30 2000-04-11 Sony Corp Three-dimensional stereoscopic image display method and three-dimensional stereoscopic image display device and three-dimensional stereoscopic image display system as well as three-dimensional image display method and three-dimensional image display device
JP2002058695A (en) * 1999-09-03 2002-02-26 Carl Zeiss Jena Gmbh Method and device for irradiation of eye
CA2356295C (en) * 1999-10-21 2009-01-06 Nidek Co., Ltd. Apparatus for determining an amount of corneal ablation and surgical apparatus for a cornea
DE19954900C2 (en) * 1999-11-11 2003-01-09 4D Vision Gmbh Method and arrangement for three-dimensional representation
DE10052201B8 (en) * 2000-10-20 2005-06-30 Carl Zeiss Meditec Ag Method and device for identifying a patient and an operating area

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669466A (en) * 1985-01-16 1987-06-02 Lri L.P. Method and apparatus for analysis and correction of abnormal refractive errors of the eye
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5677707A (en) * 1992-05-20 1997-10-14 Fujitsu Limited Method and apparatus for displaying a plurality of images on one display image by carrying out filtering operation
US5715836A (en) * 1993-02-16 1998-02-10 Kliegis; Ulrich Method and apparatus for planning and monitoring a surgical operation
US5699810A (en) * 1994-11-10 1997-12-23 Pallikaris; Ioannis G. Procedure for removal of soft eye tissue
US5677207A (en) * 1995-10-17 1997-10-14 Lg Electronics Inc. Method for fabricating a thin film transistor using silicide layer
US6413251B1 (en) * 2000-03-13 2002-07-02 Memphis Eye & Cataract Associates Ambulatory Surgery Center Method and system for controlling a digital mircomirror device for laser refractive eye surgery
US20020159621A1 (en) * 2001-04-26 2002-10-31 Memphis Eye & Cataract Associates Ambulatory Surgery Center (Dba Meca Laser And Surgery Center) System for automatically detecting eye corneal striae using projected and reflected shapes
US6598974B2 (en) * 2001-05-08 2003-07-29 Johnson & Johnson Vision Care, Inc. Method and apparatus for measuring wavefront aberrations

Also Published As

Publication number Publication date
US20040176753A1 (en) 2004-09-09
DE10130278B4 (en) 2005-11-03
AU2002321118A1 (en) 2003-03-03
JP4508637B2 (en) 2010-07-21
EP1404265B1 (en) 2009-10-21
DE10130278A1 (en) 2003-01-16
US7066928B2 (en) 2006-06-27
ATE446068T1 (en) 2009-11-15
EP1404265B9 (en) 2010-09-15
US20060217689A1 (en) 2006-09-28
JP2004532092A (en) 2004-10-21
WO2003002047A2 (en) 2003-01-09
DE50213945D1 (en) 2009-12-03
EP1404265A2 (en) 2004-04-07
WO2003002047A3 (en) 2003-11-20
WO2003002047A8 (en) 2003-09-25

Similar Documents

Publication Publication Date Title
US7066928B2 (en) Method and device for representing an operative field during laser operations
JP2004532092A5 (en)
US6099522A (en) Automated laser workstation for high precision surgical and industrial interventions
RU2500374C2 (en) System for performing ophthalmologic refractive operation
JP5852237B2 (en) Apparatus and method for laser assisted ocular surgical treatment system
WO1993016631A9 (en) Automated laser workstation for high precision surgical and industrial interventions
WO1993016631A1 (en) Automated laser workstation for high precision surgical and industrial interventions
JP7454058B2 (en) System and method for locating the surface of ocular tissue for glaucoma surgery based on dual aiming beams
KR20120140637A (en) Toric lenses alignment using pre-operative images
JP2008516727A (en) Digital ophthalmic workstation
KR20180021692A (en) Ophthalmic Laser Surgery Equipment for Orthopedic Corneal Correction
CN109069292A (en) Automatic intraocular pressure filling
CN109843233B (en) System and method for femtosecond laser ophthalmic surgical docking
TWI635839B (en) System for performing eye surgery with simultaneous display of graphical information for flap and ablation
Rathi et al. Understanding the
Abdelhalim et al. A Low-Cost and Easy-to-Use Laser Corneal Reshaping Device for Educational, Research and Training Purposes

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARL ZEISS MEDITEC AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DICK, MANFRED;KUEHNERT, JUERGEN;MAEUSEZAHL, HOLGER;SIGNING DATES FROM 20101001 TO 20101004;REEL/FRAME:025224/0708

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION