Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20100243895 A1
Publication typeApplication
Application numberUS 12/814,912
Publication date30 Sep 2010
Filing date14 Jun 2010
Priority date1 Jun 2007
Also published asUS7737424, US20080296518
Publication number12814912, 814912, US 2010/0243895 A1, US 2010/243895 A1, US 20100243895 A1, US 20100243895A1, US 2010243895 A1, US 2010243895A1, US-A1-20100243895, US-A1-2010243895, US2010/0243895A1, US2010/243895A1, US20100243895 A1, US20100243895A1, US2010243895 A1, US2010243895A1
InventorsDegao Xu, Eric C. Anderson, Keith W. Decker, Raymond T. Perkins
Original AssigneeMoxtek, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
X-ray window with grid structure
US 20100243895 A1
Abstract
A window for a radiation detection system includes a plurality of intersecting ribs oriented non-perpendicularly with respect to each other. The plurality of intersecting ribs defines non-rectangular openings therebetween. A support frame is disposed around a perimeter of the plurality of intersecting ribs. A film is disposed over and spans the openings to pass radiation therethrough. The film and the plurality of intersecting ribs are integrally formed from a same material including a polymer.
Images(3)
Previous page
Next page
Claims(20)
1. A window for a radiation detection system, the window comprising:
a) a plurality of intersecting ribs oriented non-perpendicularly with respect to each other;
b) the plurality of intersecting ribs defining non-rectangular openings therebetween;
c) a support frame disposed around a perimeter of the plurality of intersecting ribs;
d) a film disposed over and spanning the openings to pass radiation therethrough; and
e) the film and the plurality of intersecting ribs being integrally formed from a same material including a polymer.
2. A window as in claim 1, wherein the non-rectangular openings have a substantially parallelogram shape.
3. A window as in claim 1, wherein at least one corner of each opening is partially filled with a same material as the plurality of ribs.
4. A window as in claim 1, wherein the openings are hexagonal.
5. A window as in claim 1, wherein at least one corner of the openings includes a fillet with a width greater than a width of the ribs.
6. A window as in claim 1, wherein the plurality of intersecting ribs, the support frame and the film are integrally formed of the same material.
7. A window as in claim 1, wherein the plurality of intersecting ribs comprise silicon, and wherein the film comprises a polymeric film.
8. A window as in claim 1, wherein each rib comprising the plurality of intersecting ribs is about less than 100 μm wide.
9. A window as in claim 1, wherein the plurality of ribs includes a first set of parallel ribs oriented non-orthogonal with respect to and intersecting a second set of parallel ribs.
10. A window as in claim 1, further comprising a gas barrier film layer disposed over the film.
11. A window for a radiation detection system, the window comprising:
a) a plurality of intersecting ribs oriented non-perpendicularly with respect to each other;
b) the plurality of intersecting ribs defining non-rectangular openings therebetween;
c) the plurality of ribs including at least a first set of parallel ribs oriented non-perpendicularly with respect to and intersecting a second set of parallel ribs;
d) a support frame disposed around a perimeter of the plurality of intersecting ribs with ends of the plurality of intersecting ribs joined to the support frame;
e) a film disposed over and spanning the plurality of intersecting ribs and openings to pass radiation therethrough;
f) the film and the plurality of intersecting ribs being formed from a same material including a polymer;
g) the film having a thickness less than or equal to 1 μm;
h) each rib of the plurality of ribs having a width less than 100 μm; and
i) the openings forming between 75 and 90% of a total area within a perimeter of the support frame.
12. A window as in claim 11, wherein the non-rectangular openings have a substantially parallelogram shape.
13. A window as in claim 11, wherein at least one corner of each opening is partially filled with a same material as the plurality of ribs.
14. A window as in claim 11, wherein the openings are hexagonal.
15. A window as in claim 11, wherein at least one corner of the openings includes a fillet with a width greater than a width of the ribs.
16. A window as in claim 11, wherein the plurality of intersecting ribs, the support frame and the film are integrally formed of the same material.
17. A window as in claim 11, wherein the plurality of intersecting ribs comprise silicon, and wherein the film comprises a polymeric film.
18. A radiation detection system comprising:
a) a window to pass radiation therethrough, the window comprising:
i) a plurality of intersecting ribs oriented non-perpendicularly with respect to each other;
ii) the plurality of intersecting ribs defining non-rectangular openings therebetween;
iii) a support frame disposed around a perimeter of the plurality of intersecting ribs;
iv) a film disposed over and spanning the plurality of intersecting ribs and openings to pass radiation therethrough; and
v) the film and the plurality of intersecting ribs being integrally formed from a same material including a polymer; and
b) a sensor disposed behind the window configured to detect radiation passing through the window.
19. A radiation detection system as in claim 18, wherein at least one corner of each opening is partially filled with a same material as the ribs.
20. A radiation detection system as in claim 18, wherein the plurality of ribs includes a first set of parallel ribs oriented non-orthogonal with respect to and intersecting a second set of parallel ribs.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS AND CLAIM OF PRIORITY
  • [0001]
    This is a continuation of U.S. patent application Ser. No. 11/756,946, filed Jun. 1, 2007, now U.S. Pat. No. 7,737,424, which is herein incorporated by reference.
  • [0002]
    This is related to U.S. patent application Ser. No. 12/124,917, filed May 21, 2008, now U.S. Pat. No. 7,709,820, which is herein incorporated by reference.
  • [0003]
    This is related to U.S. patent application Ser. No. 12/783,707, filed May 20, 2010, which is herein incorporated by reference.
  • FIELD OF THE INVENTION
  • [0004]
    The present invention relates generally to radiation detection systems and associated high strength radiation detection windows.
  • BACKGROUND
  • [0005]
    Radiation detection systems are used in connection with detecting and sensing emitted radiation. Such systems can be used in connection with electron microscopy, X-ray telescopy, and X-ray spectroscopy. Radiation detection systems typically include in their structure a radiation detection window, which can pass radiation emitted from the radiation source to a radiation detector or sensor, and can also filter or block undesired radiation.
  • [0006]
    Standard radiation detection windows typically comprise a sheet of material, which is placed over an opening or entrance to the detector. As a general rule, the thickness of the sheet of material corresponds directly to the ability of the material to pass radiation. Accordingly, it is desirable to provide a sheet of material that is as thin as possible, yet capable of withstanding pressure resulting from gravity, normal wear and tear, and differential pressure.
  • [0007]
    Since it is desirable to minimize thickness in the sheets of material used to pass radiation, it is often necessary to support the thin sheet of material with a support structure. Known support structures include frames, screens, meshes, ribs, and grids. While useful for providing support to an often thin and fragile sheet of material, many support structures can interfere with the passage of radiation through the sheet of material due to the structure's geometry, thickness and/or composition. The interference can be the result of the composition of the material itself and/or the geometry of the support structure. In addition, many known support structures have drawbacks. For example, screens and meshes can be rough and coarse, and thus the overlaid thin film can stretch, weaken and burst at locations where it contacts the screen or mesh. A drawback associated with unidirectional ribs is that the ribs can twist when pressure is applied. This twisting can also cause the overlaid film to stretch weaken and burst. Unidirectional ribs are set forth U.S. Pat. No. 4,933,557, which is incorporated herein by reference. Additionally, there can be substantial difficulty in manufacturing many known support structures, thus resulting in increased expense of the support structures and associated windows.
  • SUMMARY OF THE INVENTION
  • [0008]
    Accordingly, it has been recognized that it would be advantageous to develop a radiation detection system having a high strength, yet thin radiation detection window that is economical to manufacture, and further has the desirable characteristics of being minimally absorptive and minimizing interference with the passage of radiation therethrough. It is also desirable to provide a radiation window having a support structure that will maintain intact thin films that overlay the support structure.
  • [0009]
    Accordingly, the invention provides a window for a radiation detection system. The window includes a plurality of intersecting ribs oriented non-perpendicularly with respect to each other. The plurality of intersecting ribs defines non-rectangular openings therebetween. A support frame is disposed around a perimeter of the plurality of intersecting ribs. A film is disposed over and spans the openings to pass radiation therethrough. The film and the plurality of intersecting ribs are integrally formed from a same material including a polymer.
  • [0010]
    In addition, the invention provides a window for a radiation detection system. The window includes a plurality of intersecting ribs oriented non-perpendicularly with respect to each other. The plurality of intersecting ribs defines non-rectangular openings therebetween. The plurality of ribs includes at least a first set of parallel ribs oriented non-perpendicularly with respect to and intersecting a second set of parallel ribs. A support frame is disposed around a perimeter of the plurality of intersecting ribs, with ends of the plurality of intersecting ribs joined to the support frame. A film spans the plurality of intersecting ribs and openings to pass radiation therethrough. The film and the plurality of intersecting ribs are formed from a same material including a polymer. The film has a thickness less than or equal to 1 μm. Each rib of the plurality of ribs has a width less than 100 μm. The openings form between 75 and 90% of a total area within a perimeter of the support frame.
  • [0011]
    An associated radiation detection system includes a high strength window as described above and a sensor. The sensor is configured to detect radiation passing through the high strength window.
  • [0012]
    There has thus been outlined, rather broadly, various features of the invention so that the detailed description thereof that follows may be better understood, and so that the present contribution to the art may be better appreciated. Other features of the present invention will become clearer from the following detailed description of the invention, taken together with the accompanying claims, or may be learned by the practice of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0013]
    FIG. 1 is a cross-sectional view of a window in accordance with an embodiment of the present invention;
  • [0014]
    FIG. 2 a is a top view of a support grid of the high strength window of FIG. 1;
  • [0015]
    FIG. 2 b is a photograph of the support grid of FIG. 2 a; and
  • [0016]
    FIG. 3 is a cross-sectional schematic view of an x-ray detector system in accordance with the present invention with the window of FIG. 1.
  • DETAILED DESCRIPTION
  • [0017]
    Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
  • [0018]
    The present invention provides embodiments pertinent to a high strength window for a radiation detection system, an associated radiation detection system, and an associated method of manufacturing a high strength grid for a window in a radiation detection system. In accordance with these embodiments, various details are provided herein which are applicable to all three of the window, system and method.
  • [0019]
    As illustrated in FIGS. 1-2 b, a high strength window, indicated generally at 10, is shown in accordance with an exemplary embodiment of the present invention. Specifically, the window 10 is configured for use in connection with a radiation detection system 30 (FIG. 3). The window and associated radiation detection system can be useful for a variety of applications including those associated with electron microscopy, X-ray telescopy, and X-ray spectroscopy. In use, radiation in the form of high energy electrons and high energy photons (indicated by line 42 in FIG. 3) can be directed toward the window of the radiation detection system. The window receives and passes radiation therethrough. Radiation that is passed through the window reaches a sensor 44 (FIG. 3), which generates a signal based on the type and/or amount of radiation it receives. The window can be oval, as shown in FIG. 2 b.
  • [0020]
    As described above, the window 10 can be subjected to a variety of operating and environmental conditions, including for example, reduced or elevated pressures, a substantial vacuum, contamination, etc. Such conditions tend to motivate thicker, more robust windows. Such radiation detection systems, however, can potentially be utilized to sense or detect limited or weak sources. In addition, certain applications require or demand precise measurements. Such systems or applications tend to motivate thinner windows. Support ribs can span the window to provide support to thinner windows. These supports, however, can introduce stress concentrations into the window due to their structure (such as wire meshes), have different thermal conductivity than the window and introduce thermal stress, and can itself interfere with the radiation directly or even irradiate and introduce noise or errors. In addition, difficulty can arise in the manufacture of these supports, thus making these support structures costly and expensive. Therefore, it has been recognized that it would be advantageous to develop an economical window that is thin as possible and as strong as possible and resist introducing noise or interfering with the radiation.
  • [0021]
    The window 10 of the present invention has a plurality of intersecting ribs 12 defining a grid 18 having openings 20 therein, and a support frame 14 around a perimeter of the plurality of intersecting ribs. The support frame carries and supports the ribs. The window also has a thin film 16 disposed over and spanning the plurality of intersecting ribs and openings. This film is configured to pass radiation therethrough.
  • [0022]
    The support frame 14 can be made of the same material as the plurality of ribs 12 defining the grid 18. Accordingly, both the ribs and support frame can be or include a silicon material, although this is not required. According to one aspect, the support frame can be integral with the grid. In this case, both the support frame and grid can be formed from a single piece of material by removing or etching the openings 20 in the grid to leave the ribs joined at their ends to the support frame. Alternatively, the support frame can form a separate piece that can be coupled to the grid by an adhesive for example. In another embodiment, the support frame can be made of a material that is different from the material comprising the ribs. In addition to providing support for the grid and the layer of thin polymer film 16, the support frame can be configured to secure the window 10 to the appropriate location on a radiation detection system. Each rib comprising the plurality of intersecting ribs can be less than 100 μm wide.
  • [0023]
    The thin film 16 is disposed over and spans the plurality of ribs 12 and openings 20. The film can be selected to be highly transmissive of X-rays, for example, and of X-rays having energies greater than 100 electron volts, while blocking visible light energy and other unwanted radiation. In addition, the film can be selected to withstand fluid pressures of up to one atmosphere (caused by fluids into which the structure may be immersed) without breaking so that fluid may not penetrate the window.
  • [0024]
    The thin film can include a layer of polymer material, such as poly-vinyl formal (FORMVAR), butvar, parylene, kevlar, polypropylene, lexan or polyimide. Nonpolymer materials such as boron, carbon (including cubic amorphous and forms containing hydrogen), silicon, silicon nitride, silicon carbide, boron nitride, aluminum and beryllium could also be used. In one aspect, the film can include doped silicon. Desirably, the film should be configured to avoid punctures, uneven stretching and localized weakening. To further reduce the chance of these undesirable characteristics, the tops of the ribs 12 can be rounded and/or polished to eliminate sharp corners and rough surfaces.
  • [0025]
    The thin film should be thick enough to withstand pressures to which it will be exposed, such as gravity, normal wear and tear and the like. However, as thickness of the layer increases so does undesirable absorption of radiation. If radiation is absorbed by the layer of thin material, it will not reach the sensor or detector. This is particularly true with respect to soft X-rays, which are likely to be absorbed by a thicker film. Therefore, it is desirable to provide a thin film that is as thin as possible but sufficiently thick to withstand the pressures explained above. In one aspect, the film will be able to withstand at least one atmosphere of pressure, and thus the film can have a thickness substantially equal to or less than about 1 μm (1000 nm).
  • [0026]
    In addition, a gas barrier film layer can be disposed over the thin film.
  • [0027]
    The material comprising the thin film 16 can be different than the material comprising the intersecting ribs 12 and/or support frame 14. Alternatively, all three of the thin film material, ribs and support frame can be or include the same material. According to one embodiment, the thin film, the support frame and the intersecting ribs can be integrally formed of the same material. By way of example, and not by way of limitation, silicon may be used for this purpose. In another embodiment, the plurality of intersecting ribs can comprise silicon and the thin film material can comprise a polymeric film.
  • [0028]
    To reduce the chance of damage that can result to the thin film 16 overlaying the grid 18, the top edges of the intersecting ribs 12 can be rounded and/or polished to eliminate sharp corners and rough surfaces which might otherwise cause damage. In one aspect, forming the ribs from a single crystal of silicon by etching results in the rounding and polishing action desired. Alternatively, if other materials and method of construction are used, the tops of the ribs may require rounding and/or polishing via known mechanical and/or chemical processes.
  • [0029]
    As indicated, the ribs define a grid 18 having openings 20 therein. The ribs terminate substantially in a common plane. The ribs 12 can include or can be formed entirely of a silicon material in order to provide a high strength support for the thin film while being as thin as possible. For example, the height of the ribs can range from about 100 μm to about 385 μm, and the width of each rib can be about 60 μm. The ribs are oriented non-perpendicularly with respect to each other and define non-rectangular openings. Non-rectangular openings can assume a variety of different shapes so long as the ribs defining the openings intersect one another at other than 90 degree angles. The ribs can include a first set of parallel ribs that intersect and are oriented non-orthogonally to a second set of parallel ribs.
  • [0030]
    According to one embodiment, the openings 20 can be shaped substantially like a hexagon. The openings can also be shaped in the form of a trapezoid, such as a parallelogram. This shape can prevent twisting problems that are commonly associated with unidirectional line ribs, which experience maximum stress at the two opposing ends of the longest rib when the window receives a pressure load. When a window incorporating the unidirectional line ribs fails it is usually due to breakage at one or both ends of the longest rib. Mechanical analysis also indicates that many structures incorporating support ribs will twist when a load is applied to the window. This twisting action weakens the rib support structure and the window in general.
  • [0031]
    The arrangement of ribs 12 and openings 20 in the grid 18 of the present invention can minimize or even prevent the twisting problems experienced in prior teachings. According to one embodiment, at least one corner of each opening includes a fillet that is partially filled with a material, such as the same material as the ribs. By filling the corners, twisting action of the ribs can be further minimized or eliminated altogether. Filling the corners also results in an overall increase in strength of the support grid.
  • [0032]
    The material used to fill the corners of the openings 20 and the material used to form the ribs 12 can be the same. In one embodiment, this material can be or can include silicon, although the present invention is not limited to the use of silicon. The intersecting ribs can be integrally formed from a single piece of material. Silicon can also be incorporated into this embodiment. Likewise, the ribs and the filled corners can be formed from a single piece of silicon material by removing or etching the openings or cavities to form the interwoven grid 18. The manufacture of the ribs and filling of corners can occur substantially simultaneously. Alternatively, the ribs can be formed first and the corners filled thereafter. In this case, the ribs may comprise a material that is not the same as the material used to fill the corners of the openings.
  • [0033]
    The result of the geometry of the intersecting ribs 12 in combination with the filled corners of the openings 20 is that the tolerant strength of the window 10 is increased. By increasing the tolerant strength, it is possible to also increase the percentage of open area within the support frame 14 and/or reduce the overall height of the ribs, both of which are desirable characteristics since this they increase the ability of the window to pass radiation.
  • [0034]
    Specifically, in accordance with the present invention, the openings 20 preferably occupy more area within the perimeter of the support frame 14 than the plurality of ribs 12 or grid. This is due to the fact that the openings will typically absorb less radiation than the surrounding ribs and radiation can more freely pass through the openings than through the ribs. In one aspect, the openings take up between about 75% to about 90% of the total area within the perimeter of the support frame. For example, in one embodiment the openings in the grid comprise at least about 75% of the total area within the perimeter of the support frame and the plurality of ribs comprise no more than about 25% of the total area within the perimeter support frame. Alternatively, the openings can comprise at least about 90% of the total area within the support frame, and the plurality of ribs can comprise no more than about 10% of the total area within the frame.
  • [0035]
    In addition to increasing the open area within the support frame 14, the arrangement of ribs 12 and openings 20 makes it possible to reduce the height and/or thickness of the ribs, and thus the collimation required for passing radiation through the window 10 can be reduced to some degree. By reducing the amount of collimation required it is possible to increase the amount of radiation that can pass though the window since the amount of collimation required is proportional to the amount of radiation that is absorbed, and therefore not passed through the window.
  • [0036]
    Referring to FIG. 3, the window 10 can be part of a radiation detection system 30. The radiation detection system can include a high strength window for passing radiation 42 therethrough, which is described in detail in the embodiments set forth above. The radiation detection system 30 also can include a sensor 44 disposed behind the window. The sensor can be configured to detect radiation that passes through the window, and can further be configured to generate a signal based on the amount and/or type of radiation detected. The sensor 44 can be operatively coupled to various signal processing electronics.
  • [0037]
    A method of manufacturing a high strength grid for a window in a radiation detection system includes growing a first oxide layer on a bare silicon wafer by thermal oxidation. The oxide layer can then be patterned by traditional lithography techniques. The plurality of intersecting ribs can be formed by anisotropic etching of a silicon wafer. Since the silicon etching rate along some particular planes of single silicon is much faster than other directions, those silicon beams have super flat side walls. As a result of the etching, the corners near the ends of those ribs and the edges between the top and bottom surfaces and side walls of the ribs can be very sharp and rough. The corners can be rounded and smoothed.
  • [0038]
    It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention. While the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth herein.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1276706 *30 Apr 191827 Aug 1918Gurdy L AydelotteLand-torpedo.
US1946288 *12 May 19326 Feb 1934Gen ElectricElectron discharge device
US2291948 *27 Jun 19404 Aug 1942Westinghouse Electric & Mfg CoHigh voltage chi-ray tube shield
US2316214 *10 Sep 194013 Apr 1943Gen Electric X Ray CorpControl of electron flow
US2329318 *8 Sep 194114 Sep 1943Gen Electric X Ray CorpX-ray generator
US2340363 *3 Mar 19421 Feb 1944Gen Electric X Ray CorpControl for focal spot in chi-ray generators
US2502070 *19 Jan 194928 Mar 1950Dunlee CorpGetter for induction flashing
US2683223 *24 Jul 19526 Jul 1954Licentia GmbhChi-ray tube
US2952790 *15 Jul 195713 Sep 1960Raytheon CoX-ray tubes
US3397337 *14 Jan 196613 Aug 1968Ion Physics CorpFlash chi-ray dielectric wall structure
US3665236 *9 Dec 197023 May 1972Atomic Energy CommissionElectrode structure for controlling electron flow with high transmission efficiency
US3679927 *17 Aug 197025 Jul 1972Machlett Lab IncHigh power x-ray tube
US3691417 *2 Sep 196912 Sep 1972Watkins Johnson CoX-ray generating assembly and system
US3741797 *30 Apr 197026 Jun 1973Gen Technology CorpLow density high-strength boron on beryllium reinforcement filaments
US3751701 *8 Mar 19717 Aug 1973Watkins Johnson CoConvergent flow hollow beam x-ray gun with high average power
US3801847 *6 Oct 19722 Apr 1974Siemens AgX-ray tube
US3828190 *23 Sep 19716 Aug 1974Measurex CorpDetector assembly
US3882339 *17 Jun 19746 May 1975Gen ElectricGridded X-ray tube gun
US3962583 *30 Dec 19748 Jun 1976The Machlett Laboratories, IncorporatedX-ray tube focusing means
US3970884 *29 Nov 197420 Jul 1976Golden John PPortable X-ray device
US4075526 *5 Nov 197621 Feb 1978Compagnie Generale De RadiologieHot-cathode x-ray tube having an end-mounted anode
US4160311 *3 Apr 197810 Jul 1979U.S. Philips CorporationMethod of manufacturing a cathode ray tube for displaying colored pictures
US4184097 *9 Jun 197815 Jan 1980Magnaflux CorporationInternally shielded X-ray tube
US4368538 *11 Apr 198011 Jan 1983International Business Machines CorporationSpot focus flash X-ray source
US4393127 *17 Jul 198112 Jul 1983International Business Machines CorporationStructure with a silicon body having through openings
US4443293 *19 Jul 198217 Apr 1984Kulite Semiconductor Products, Inc.Method of fabricating transducer structure employing vertically walled diaphragms with quasi rectangular active areas
US4463338 *7 Aug 198131 Jul 1984Siemens AktiengesellschaftElectrical network and method for producing the same
US4521902 *5 Jul 19834 Jun 1985Ridge, Inc.Microfocus X-ray system
US4532150 *22 Dec 198330 Jul 1985Shin-Etsu Chemical Co., Ltd.Method for providing a coating layer of silicon carbide on the surface of a substrate
US4573186 *16 Jun 198325 Feb 1986Feinfocus Rontgensysteme GmbhFine focus X-ray tube and method of forming a microfocus of the electron emission of an X-ray tube hot cathode
US4576679 *5 Nov 198418 Mar 1986Honeywell Inc.Method of fabricating a cold shield
US4584056 *13 Nov 198422 Apr 1986Centre Electronique Horloger S.A.Method of manufacturing a device with micro-shutters and application of such a method to obtain a light modulating device
US4591756 *25 Feb 198527 May 1986Energy Sciences, Inc.High power window and support structure for electron beam processors
US4608326 *4 Dec 198526 Aug 1986Hewlett-Packard CompanySilicon carbide film for X-ray masks and vacuum windows
US4645977 *29 Nov 198524 Feb 1987Matsushita Electric Industrial Co., Ltd.Plasma CVD apparatus and method for forming a diamond like carbon film
US4675525 *21 Jan 198623 Jun 1987Commissariat A L'energie AtomiqueMatrix device for the detection of light radiation with individual cold screens integrated into a substrate and its production process
US4679219 *12 Jun 19857 Jul 1987Kabushiki Kaisha ToshibaX-ray tube
US4688241 *26 Mar 198418 Aug 1987Ridge, Inc.Microfocus X-ray system
US4797907 *7 Aug 198710 Jan 1989Diasonics Inc.Battery enhanced power generation for mobile X-ray machine
US4819260 *12 Aug 19884 Apr 1989Siemens AktiengesellschaftX-radiator with non-migrating focal spot
US4862490 *29 Feb 198829 Aug 1989Hewlett-Packard CompanyVacuum windows for soft x-ray machines
US4933557 *6 Jun 198812 Jun 1990Brigham Young UniversityRadiation detector window structure and method of manufacturing thereof
US4939763 *3 Oct 19883 Jul 1990CrystallumeMethod for preparing diamond X-ray transmissive elements
US4957773 *13 Feb 198918 Sep 1990Syracuse UniversityDeposition of boron-containing films from decaborane
US5010562 *31 Aug 198923 Apr 1991Siemens Medical Laboratories, Inc.Apparatus and method for inhibiting the generation of excessive radiation
US5105456 *1 Feb 199114 Apr 1992Imatron, Inc.High duty-cycle x-ray tube
US5117829 *31 Mar 19892 Jun 1992Loma Linda University Medical CenterPatient alignment system and procedure for radiation treatment
US5217817 *11 Jun 19928 Jun 1993U.S. Philips CorporationSteel tool provided with a boron layer
US5226067 *6 Mar 19926 Jul 1993Brigham Young UniversityCoating for preventing corrosion to beryllium x-ray windows and method of preparing
US5391958 *12 Apr 199321 Feb 1995Charged Injection CorporationElectron beam window devices and methods of making same
US5400385 *2 Sep 199321 Mar 1995General Electric CompanyHigh voltage power supply for an X-ray tube
US5428658 *21 Jan 199427 Jun 1995Photoelectron CorporationX-ray source with flexible probe
US5432003 *21 Aug 199111 Jul 1995CrystallumeContinuous thin diamond film and method for making same
US5532003 *18 Jan 19942 Jul 1996Alza CorporationPentoxifylline therapy
US5607723 *5 May 19944 Mar 1997CrystallumeMethod for making continuous thin diamond film
US5621780 *27 Jul 199515 Apr 1997Photoelectron CorporationX-ray apparatus for applying a predetermined flux to an interior surface of a body cavity
US5627871 *31 Jul 19956 May 1997Nanodynamics, Inc.X-ray tube and microelectronics alignment process
US5631943 *19 Dec 199520 May 1997Miles; Dale A.Portable X-ray device
US5729583 *29 Sep 199517 Mar 1998The United States Of America As Represented By The Secretary Of CommerceMiniature x-ray source
US5812632 *29 Sep 199722 Sep 1998Siemens AktiengesellschaftX-ray tube with variable focus
US5898754 *13 Jun 199727 Apr 1999X-Ray And Specialty Instruments, Inc.Method and apparatus for making a demountable x-ray tube
US5907595 *18 Aug 199725 May 1999General Electric CompanyEmitter-cup cathode for high-emission x-ray tube
US6044130 *10 Jul 199828 Mar 2000Hamamatsu Photonics K.K.Transmission type X-ray tube
US6069278 *23 Nov 199930 May 2000The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationAromatic diamines and polyimides based on 4,4'-bis-(4-aminophenoxy)-2,2' or 2,2',6,6'-substituted biphenyl
US6075839 *2 Sep 199713 Jun 2000Varian Medical Systems, Inc.Air cooled end-window metal-ceramic X-ray tube for lower power XRF applications
US6097790 *25 Feb 19981 Aug 2000Canon Kabushiki KaishaPressure partition for X-ray exposure apparatus
US6187333 *20 Sep 199913 Feb 2001Diabex, Inc.Method for treating, controlling, and preventing diabetes mellitus
US6205200 *28 Oct 199620 Mar 2001The United States Of America As Represented By The Secretary Of The NavyMobile X-ray unit
US6282263 *23 Sep 199728 Aug 2001Bede Scientific Instruments LimitedX-ray generator
US6288209 *21 Sep 200011 Sep 2001The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod to prepare processable polyimides with reactive endogroups using 1,3-bis(3-aminophenoxy)benzene
US6351520 *4 Dec 199826 Feb 2002Hamamatsu Photonics K.K.X-ray tube
US6385294 *30 Jan 20017 May 2002Hamamatsu Photonics K.K.X-ray tube
US6438207 *14 Sep 199920 Aug 2002Varian Medical Systems, Inc.X-ray tube having improved focal spot control
US6546077 *17 Jan 20018 Apr 2003Medtronic Ave, Inc.Miniature X-ray device and method of its manufacture
US6740874 *25 Apr 200225 May 2004Bruker Saxonia Analytik GmbhIon mobility spectrometer with mechanically stabilized vacuum-tight x-ray window
US6778633 *27 Mar 200017 Aug 2004Bede Scientific Instruments LimitedMethod and apparatus for prolonging the life of an X-ray target
US6799075 *22 Aug 199628 Sep 2004Medtronic Ave, Inc.X-ray catheter
US6852365 *12 Jun 20038 Feb 2005Kumetrix, Inc.Silicon penetration device with increased fracture toughness and method of fabrication
US6987835 *26 Mar 200317 Jan 2006Xoft Microtube, Inc.Miniature x-ray tube with micro cathode
US7035379 *12 Sep 200325 Apr 2006Moxtek, Inc.Radiation window and method of manufacture
US7046767 *30 May 200216 May 2006Hamamatsu Photonics K.K.X-ray generator
US7085354 *3 Sep 20041 Aug 2006Toshiba Electron Tube & Devices Co., Ltd.X-ray tube apparatus
US7224769 *21 Mar 200529 May 2007Aribex, Inc.Digital x-ray camera
US7233647 *25 Apr 200619 Jun 2007Moxtek, Inc.Radiation window and method of manufacture
US7382862 *28 Sep 20063 Jun 2008Moxtek, Inc.X-ray tube cathode with reduced unintended electrical field emission
US7529345 *18 Jul 20075 May 2009Moxtek, Inc.Cathode header optic for x-ray tube
US7649980 *4 Dec 200719 Jan 2010The University Of TokyoX-ray source
US7693265 *2 May 20076 Apr 2010Koninklijke Philips Electronics N.V.Emitter design including emergency operation mode in case of emitter-damage for medical X-ray application
US7709820 *21 May 20084 May 2010Moxtek, Inc.Radiation window with coated silicon support structure
US7737424 *1 Jun 200715 Jun 2010Moxtek, Inc.X-ray window with grid structure
US20030152700 *11 Feb 200214 Aug 2003Board Of Trustees Operating Michigan State UniversityProcess for synthesizing uniform nanocrystalline films
US20040076260 *30 Jan 200322 Apr 2004Charles Jr Harry K.X-ray source and method for more efficiently producing selectable x-ray frequencies
US20050018817 *22 Jan 200427 Jan 2005Oettinger Peter E.Integrated X-ray source module
US20050141669 *9 Jan 200430 Jun 2005Toshiba Electron Tube & Devices Co., LtdX-ray equipment
US20050207537 *17 Jul 200322 Sep 2005Masaaki UkitaX-ray generating equipment
US20060098778 *20 Feb 200311 May 2006Oettinger Peter EIntegrated X-ray source module
US20070025516 *30 Mar 20061 Feb 2007Bard Erik CMagnetic head for X-ray source
US20070111617 *17 Nov 200517 May 2007Oxford Instruments Analytical OyWindow membrane for detector and analyser devices, and a method for manufacturing a window membrane
US20070183576 *31 Jan 20069 Aug 2007Burke James ECathode head having filament protection features
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US798339417 Dec 200919 Jul 2011Moxtek, Inc.Multiple wavelength X-ray source
US824797115 Aug 201121 Aug 2012Moxtek, Inc.Resistively heated small planar filament
US84983817 Oct 201030 Jul 2013Moxtek, Inc.Polymer layer on X-ray window
US873613826 Sep 200827 May 2014Brigham Young UniversityCarbon nanotube MEMS assembly
US875045830 Nov 201110 Jun 2014Moxtek, Inc.Cold electron number amplifier
US876134429 Dec 201124 Jun 2014Moxtek, Inc.Small x-ray tube with electron beam control optics
US879261923 Mar 201229 Jul 2014Moxtek, Inc.X-ray tube with semiconductor coating
US880491030 Nov 201112 Aug 2014Moxtek, Inc.Reduced power consumption X-ray source
US881795011 Jun 201226 Aug 2014Moxtek, Inc.X-ray tube to power supply connector
US89295156 Dec 20116 Jan 2015Moxtek, Inc.Multiple-size support for X-ray window
US894834517 Jan 20133 Feb 2015Moxtek, Inc.X-ray tube high voltage sensing resistor
US89649435 Dec 201224 Feb 2015Moxtek, Inc.Polymer layer on X-ray window
US898935423 Apr 201224 Mar 2015Brigham Young UniversityCarbon composite support structure
US899562115 Jul 201131 Mar 2015Moxtek, Inc.Compact X-ray source
US90766287 Nov 20127 Jul 2015Brigham Young UniversityVariable radius taper x-ray window support structure
US91736239 Apr 20143 Nov 2015Samuel Soonho LeeX-ray tube and receiver inside mouth
US91744122 Nov 20123 Nov 2015Brigham Young UniversityHigh strength carbon fiber composite wafers for microfabrication
US93057351 Feb 20115 Apr 2016Brigham Young UniversityReinforced polymer x-ray window
US9640358 *22 Aug 20122 May 2017Hs Foils OyReinforced radiation window, and method for manufacturing the same
US20150357150 *22 Aug 201210 Dec 2015Hs Foils OyReinforced radiation window, and method for manufacturing the same
CN104793235A *25 Mar 201522 Jul 2015上海交通大学Detector dead time automatic regulating device for radioactive waste detection system
DE102014103546A114 Mar 201413 Aug 2015Ketek GmbhRöntgenstrahlungsdurchtrittsfenster und Verfahren zur Herstellung desselben
Classifications
U.S. Classification250/336.1, 250/505.1
International ClassificationG01T7/00, G21K1/00
Cooperative ClassificationH01J5/18, H01J47/004
European ClassificationH01J5/18, H01J47/00A2C