Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20100222829 A1
Publication typeApplication
Application numberUS 12/719,290
Publication date2 Sep 2010
Filing date8 Mar 2010
Priority date22 Nov 2004
Also published asCA2586352A1, CN101083958A, EP1814497A2, EP1814497A4, US7708761, US20060111779, US20060111782, WO2006057943A2, WO2006057943A3
Publication number12719290, 719290, US 2010/0222829 A1, US 2010/222829 A1, US 20100222829 A1, US 20100222829A1, US 2010222829 A1, US 2010222829A1, US-A1-20100222829, US-A1-2010222829, US2010/0222829A1, US2010/222829A1, US20100222829 A1, US20100222829A1, US2010222829 A1, US2010222829A1
InventorsDavid A. Petersen
Original AssigneePetersen David A
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Spinal plug for a minimally invasive joint fusion system
US 20100222829 A1
Abstract
A frustum shaped body has an aperture in a top surface and a pair of first and second opposed apertures in a side surface, first and second horizontal internal channels connect both the first and second opposed apertures. A vertical channel from the top aperture connects with the first and second channels. After the body is inserted into a hole in a facet joint, compatible synthetic or biologic material is inserted into the vertical channel until the material exits from the first and second apertures in the side surface. At least one pair of flanges on a portion of an exterior side surface of the body acts as a detent to hold the body in place within the facet joint hole.
Images(12)
Previous page
Next page
Claims(14)
1-21. (canceled)
22. An arthroscopic type portal facet surgical method comprising:
placing an arthroscopic type portal into a human patient through a minimally invasive incision in the tissue of said human patient;
accessing a facet joint through said portal, wherein said facet joint comprises a first facet joint bone and a second facet joint bone, and wherein said first facet joint bone comprises a first articulated surface and said second facet joint bone comprises a second articulated surface, and wherein said first articulated surface and said second articulated surface face each other at said facet joint;
removing a first portion of the first facet joint bone at the first articulated surface and a second portion of the second facet joint bone at the second articulated surface to create a space between the first and second facet joint bones;
inserting a facet joint fusion plug into said space through said portal; and
pushing said facet joint fusion plug into said space.
23. The method of claim 22, wherein said facet joint fusion plug comprises a material selected from one or more of the group consisting of a synthetic bone substitute, a metal bone substitute, a harvested compacted iliac crest graft, an autologous autograft and a cadaveric allograft.
24. The method of claim 22, wherein after said removal said remaining portions of said bones define said space as conically shaped and
said space has a shape allowing said facet joint fusion plug to be tamped into said hole.
25. The method of claim 22, wherein said step of placing said arthroscopic type portal into said human patient comprises placing a drill guide into said human patient, wherein said drill guide comprises said arthroscopic type portal.
26. The method of claim 25, wherein said drill guide comprises teeth for maintaining the drill guide proximate to said facet joint.
27. The method of claim 22, wherein said facet joint fusion plug comprises a cadaveric allograft.
28. The method of claim 22, wherein said pushing compresses said facet joint fusion plug in said space.
29. The method of claim 22, wherein said facet joint fusion plug comprises a material that can be integrated into said facet joint through bone ingrowth.
30. The method of claim 22, wherein said facet joint fusion plug comprises a material selected from the group consisting of synthetic cortical bone graft and synthetic nonmetallic bone substitute.
31. The method of claim 22, wherein after removal of said first portion and second portion, a diameter of a posterior cross-section of the space is greater than a diameter of a cross-section of the facet joint fusion plug.
32. The method of claim 31, wherein said facet joint fusion plug is fixed in said space by compression of said facet joint fusion plug after said step of pushing said facet joint plug into said space.
33. The method of claim 22, wherein said facet joint fusion plug comprises a flange.
34. The method of claim 32, wherein said facet joint fusion plug further comprises a substantially frustum shaped region, and said flange is disposed on a surface of said substantially frustum shaped region.
Description
    PRIOR APPLICATIONS
  • [0001]
    This application is continuation of application Ser. No. 11/232,519, filed Sep. 22, 2005, which is a continuation-in-part from application Ser. No. 10/992,720, filed Nov. 22, 2004, now abandoned which is expressly incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates generally to minimally invasive spine surgery and, more particularly, to using an arthroscopic type portal or open facet joint fusion surgical instrumentation for insertion of either pre-made, pre-shaped synthetic cortical bone or harvested and compacted iliac crest grafts, autologous or cadaveric allografts. The graft and fusion system is limited to the forty-eight facet joints located on the spine, C1-C2 through L5-S1.
  • [0004]
    2. Description of the Prior Art
  • [0005]
    In the United States alone, about 10% of the entire population will suffer from back pain sometime in the next twelve months. More people will contract back pain in the next year than any other injury or disease except the common cold and flu. About one-third will not recover and have to live with persistent, disabling symptoms. The number is cumulative year after year.
  • [0006]
    One of the root causes of back pain, particularly the persistent and disabling kind, are facet joints, small joints located behind adjacent vertebrae in the spine that allow for spinal motion.
  • [0007]
    Present surgical solutions available for the millions of people with facet joint dysfunctions are complex, invasive, pedicle screw based high-risk operations with prolonged recovery times, from 6 to 24 months, and uncertain outcomes. High risk equates to frequent litigation, which forces non-surgical symptomatic treatment while the disease or consequences of injury progressively worsen. Some of these efforts provide intervertebral fusion described in U.S. Pat. No. 6,485,518 and U.S. Patent Application Serial Number 2003/0032960. Numerous patents have been granted for general fusion of the spine that may or may not involve the facet joint by proximity or design.
  • [0008]
    With the advent of new, safer and less invasive surgical techniques and technology, the growth of spine surgery now outpaces every other orthopedic surgery segment. Its growth is further fueled by an enormous demand.
  • SUMMARY OF THE INVENTION
  • [0009]
    The use of pre-shaped, harvested or synthetic bone as a structural fixation for facet joint fusion offers three distinct advantages over pedicle or compression screws, which are presently used in facet fusion procedures; i.e., (1) using bone instead of metal allowing for natural bone ingrowth and a stronger, permanent fusion; and (2) the natural or synthetic graft cannot work its way loose over time, a concern with screw type fixation.
  • [0010]
    The grafts and system are specifically designed for use in a minimum invasive or an arthroscopic type portal for stand-alone procedures and provide a stronger, unique and superior fusion when used as an adjunct to instrumented vertebral fusion by greatly reducing risk of facet joint pain resulting from persistent facet joint motion.
  • [0011]
    The minimally invasive facet joint fusion for the treatment of a diseased or painful facet joint that is not appropriate for resurfacing or replacement, involves the use of instrumentation and autograft, cadaveric allograft or FDA approved pre-made, pre-shaped synthetic cortical bone graft for use in minimally invasive, outpatient, arthroscopic spine surgery or classic open surgery and, more specifically, to fuse spinal facet joints from C1-C2 through L5-S1. This system serves as a primary or a revision surgery.
  • [0012]
    The present invention accomplishes a superior spinal facet joint fusion by providing a grafting alternative to facilitate fusion using arthroscopic portal or open surgical techniques of the C1-C2 through L5-S1 spinal facet joints.
  • [0013]
    According to one broad aspect of the present invention, the arthroscopic facet joint fusion system comprises a punch or drill that creates a hole through both sides of the facet joint in a conical pattern. The hole is filled with either the patient's own harvested and compacted bone plug using iliac crest autograft, pre-made, pre-shaped cortical cadaveric allograft (the autograft or allograft formed by bone plug press or machining) or FDA approved pre-made, pre-shaped synthetic grafts.
  • [0014]
    The punch or drill includes any number of components capable of performing the creation of a hole through both sides of the spinal facet joint using an arthroscope or similar portal to access the joint or during classic open surgery. By way of example only, the punch/drill includes a hand actuator that will create sufficient pressure to create a specific sized hole through both sides of the spinal facet joint using a mechanical arrangement similar to that of common pliers resized to work through an arthroscopic opening. Additionally, a drill guide can be placed and a specifically sized and shaped drill bit can be used to create the opening, either in a horizontal or vertical direction through the facet joint.
  • [0015]
    The bone plug press (graft forming or compression instrument) includes any number of components capable of using harvested autograft, cadaveric allograft cortical bone or a synthetic alternative to match the bone tunnel made by the punch or drill. By way of example only, the bone plug press includes a mechanism similar to common pliers or a more standard hand press that will transfer sufficient force to form bone plugs by squeezing the handles together to form the bone plug and compress the bone or synthetic alternative to the proper density and shape.
  • [0016]
    The impactor or tamp includes any number of components capable of pushing and compressing the bone plug into the bone tunnels. A suture or metallic overlay also can be applied to provide additional structural stability to the joint during graft incorporation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0017]
    Many advantages of the present invention will be apparent to those skilled in the art with a reading of this specification in conjunction with the attached drawings, wherein like reference numerals are applied to like elements and wherein:
  • [0018]
    FIG. 1 shows a frustum shaped bone plug of this invention for employment in a facet joint fusion;
  • [0019]
    FIG. 2 shows a tapered drill used to prepare for the bone plug;
  • [0020]
    FIG. 3 shows a hole prepared for the bone plug;
  • [0021]
    FIG. 4 shows a bone plug inserted in the hole of FIG. 3 and with an application tube for inserting synthetic or biologic material;
  • [0022]
    FIG. 5, is a cross-section along line 5-5 of FIG. 4;
  • [0023]
    FIG. 6 is a cross-section along line 6-6 of FIG. 4;
  • [0024]
    FIG. 7 is a cross-section according to FIG. 6 showing synthetic or biologic material cementing the bone plug in place;
  • [0025]
    FIG. 8 shows a first alternative frustum shaped bone plug;
  • [0026]
    FIG. 9 shows a cross-section of the frustum shaped bone plug of FIG. 8 along lines 9-9; and
  • [0027]
    FIG. 10 shows a second alternative frustum shaped bone plug.
  • [0028]
    FIG. 11 shows an instrument and arthroscopic portal according to an embodiment of the invention.
  • [0029]
    FIG. 12 shows an instrument and arthroscopic portal according to an embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0030]
    Referring to FIG. 1, the bone plug of this invention is an inverted frustum shaped device 10 having a vertical central channel 12 for insertion of a synthetic or biologic material to assist in fusing the bone plug 10 in place in a spinal joint 15. The bone plug 10 has multiple side parts 14 and 16 for excretion of the synthetic or biologic material from the central channel 12. A pair of opposed flanges 18 and 20 on the same plane partially circumvent the bone plug 10 near bottom end 22 having a smaller diameter than the top end 24.
  • [0031]
    In order to fuse a spinal facet joint, a tapered drill 26, shown in FIG. 2, is employed to prepare a hole 28 shown in FIG. 3 between two bones 30 and 32. A drill guide 31 may be used to guide the tapered drill 26 to prepare the hole 28 in the correct location. Drill guide 31 may be secured to the facet joint by teeth 33 to prevent displacement during hole preparation. As seen in FIG. 4, an application tube 34 is inserted in channel 12 to permit insertion of a synthetic or biologic material 36 into bone plug 10. The biologic material 36 flows down channel 12 as shown in FIG. 5, and excess biologic material flows out of side parts 14 and 16 through channels 42 and 44, respectively, into a space 38 between the bones 30 and 32, and an exterior side wall 40 of the bone plug 10. The flanges 18 and 20 act as detents to hold the bone plug 10 in place within hole 28. As seen further in FIG. 7, the biologic material 36 flows outwardly from openings 14 and 16 into a space 38 to cement the plug 10 in place.
  • [0032]
    An alternative plug 10 a is shown in FIGS. 8 and 9. A central channel 12 a feeds biologic material to side channels 46, 42 and 44 a. In like manner, biologic material 36 flows out through openings 52, 14 a and 16 a and promotes bonding to the bone. A second parallel pair of flanges 48 and 50 are added to flanges 18 a and 20 a to increase the strength of the plug 10 a in the hole 28. Side wall 40 a in like manner to plug 10 is narrower in diameter at a bottom end 22 a than its top end 24 a.
  • [0033]
    If the joint is determined to be too badly damaged or diseased for present replacement methods or prospective methods such as facet joint hemi-arthroplasty, minimally invasive facet joint fusion is prospectively a superior alternative for three primary reasons:
  • [0034]
    1. It is minimally invasive surgery that can be performed in an outpatient setting as opposed to major surgery performed in a hospital. This procedure can also be performed during open surgery if the facet joints need to be fused as determined by a physician particularly in conjunction with instrumented vertebral fusion;
  • [0035]
    2. Recovery times are estimated to be a few weeks as opposed to 6 to 12 months; and
  • [0036]
    3. It takes full advantage of advances in biomaterials and synthetic alternatives.
  • [0037]
    The present invention is directed at overcoming, or at least improving upon, the disadvantages of the prior art by achieving the following:
  • [0038]
    Reversal of the cost/benefit ratio of present procedures versus the invention;
  • [0039]
    A minimally invasive procedure versus major open surgery;
  • [0040]
    Outpatient versus inpatient surgery (about 20 minutes per joint versus hours). Note: this procedure may also be performed during open surgery at the discretion of the physician;
  • [0041]
    Can be used to augment present open fusion techniques to lessen the need for bone stimulation especially in high risk groups such as smokers and multi-level cases;
  • [0042]
    Reduced morbidity;
  • [0043]
    Reduced blood loss;
  • [0044]
    Reduced time under anesthesia;
  • [0045]
    Reduced risk;
  • [0046]
    Recovery time dramatically reduced;
  • [0047]
    Minimal scarring that decreases the risk of failed back syndrome and improves revision surgery outcome;
  • [0048]
    Reduced risk of post operative infection by significantly reducing operating room time and soft tissue destruction;
  • [0049]
    No preclusion of other surgical or non-invasive treatment options; and,
  • [0050]
    Projected high success rate by utilizing accepted arthroscopic procedures employing a new technique and taking advantage of either existing cortical bone harvesting procedures in combination with unique instrumentation to shape and prepare the bone or new pre-shaped, pre-made synthetic cortical bone alternatives as they are made generally available by FDA approval.
  • [0051]
    It is anticipated that the availability of this system and graft alternatives will dramatically increase the number of surgeries performed because they offer the first safe outpatient surgical solution to the predominant cause of spinal joint pain. It is expected that virtually all patients receiving this procedure will be able to walk out the same day and be fully functional within a few weeks. Present surgical solutions require hospitalization of about three days and six to twenty-four months recovery.
  • [0052]
    Aside from the obvious positive clinical outcome, the significant favorable financial impact on disability, worker's compensation and health care insurers is considerable.
  • [0053]
    Spinal facet implant units are calculated per joint. Each patient has two joints per spinal segment and twenty-four segments, C1-C2 through L5-S1 for a total of forty-eight facet joints. Each surgery is likely to involve multiple joints.
  • [0054]
    The present invention is directed at overcoming, or at least improving upon, the disadvantages of the prior art.
  • [0055]
    In inserting the plug 10, the tapered drill is specifically used through an arthroscopic type portal allowing access to the joint through a small incision and progressive dilation of the intervening soft tissue. The instrument design does not preclude its use in a classic open surgery or by access to the facet joint through an otherwise limited incision. The opening 28 is marginally smaller than the bone plug 10 to create proper fixation of the plug 10 and the joint.
  • [0056]
    Referring again to FIGS. 1 and 8, a fused facet joint plug 10, 10 a or 10 b is shown with one shaped autograft, cadaveric allograft or FDA approved synthetic pre-made, pre-shaped cortical bone plug. The anterior end 22 or 22 a of the plug 10 or 10 a is 3-8 mm and the posterior end 24 or 24 a of the plug 10, 10 a or 10 b is 4-12 mm in diameter in a frustum shape with the wider portion located in the posterior portion to facilitate fixation during bone graft incorporation. The procedure is envisioned to require only one bone plug per facet joint and two per level. Permanent fixation occurs when bone in-growth occurs into the joint itself and into the plug over time.
  • [0057]
    The frustum shaped bone graft 10 b, as shown in FIG. 10, can be employed when no additional biologic material is required.
  • [0058]
    FIG. 11 illustrates a bone punch instrument as an embodiment of the invention shown without representation of a press accessory, which can be attached to the punch tips 4 and used to press a bone plug into place. The instrument is specifically invented to be used through an arthroscopic type portal 1 allowing access to the joint through a small incision and progressive dilation of the intervening soft tissue. In this embodiment, arthroscopic type portal 1 comprises a cylindrical tube configured to provide access to a facet joint during surgery. The arthroscopic type portal 1 has an outer surface that prevents the encroachment of surrounding biological material into the surgical site at the facet joint and has an inner surface that forms a substantially cylindrical space that provides access to the facet joint for the surgical tools. The instrument design does not preclude its use in a classic open surgery or by access to the facet joint through an otherwise limited incision. A separating handle 2 is specifically designed to provide sufficient mechanical advantage to the punch tips 4. Punch tips of different sizes to create an appropriate opening to receive the sized bone plug selected by a physician. The opening is marginally smaller than the bone plug to create proper fixation of the plug and the joint. Mechanical advantage created by pressure on the handle is transferred to the punch tips using an “X” type joint 3.
  • [0059]
    FIG. 12 illustrates a specially designed osteotome as an embodiment of the invention, which accesses the facet joint through an arthroscopic type portal 5 and is used to make a thin slice into the bone on each of the inner surfaces of the joint to prepare the surface to heal together in a permanent fusion. The osteotome is equipped with a specifically sized single use blade 6 shown in situ in the correct aspect into a facet joint 7. The osteotome is impacted with a slap-hammer 8 to make the cuts and is properly positioned using a loop 9 on the osteotome shaft. A protective stop 10 is provided to ensure that the osteotome blade does not penetrate to an unsafe depth.
  • [0060]
    Other equivalent elements can be substituted for the elements disclosed herein to produce substantially the same results in substantially the same way.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4501269 *21 Feb 198426 Feb 1985Washington State University Research Foundation, Inc.Process for fusing bone joints
US4654314 *6 Jul 198431 Mar 1987Sumitomo Cement Co., Ltd.Porous ceramic material and processes for preparing same
US4737411 *25 Nov 198612 Apr 1988University Of DaytonControlled pore size ceramics particularly for orthopaedic and dental applications
US4834757 *28 Mar 198830 May 1989Brantigan John WProsthetic implant
US4990161 *6 Sep 19845 Feb 1991Kampner Stanley LImplant with resorbable stem
US5009666 *21 Dec 198923 Apr 1991Syckle Peter B VanPlug and method of use
US5015247 *13 Jun 198814 May 1991Michelson Gary KThreaded spinal implant
US5026373 *6 Nov 198925 Jun 1991Surgical Dynamics, Inc.Surgical method and apparatus for fusing adjacent bone structures
US5298254 *17 Dec 199129 Mar 1994Osteotech, Inc.Shaped, swollen demineralized bone and its use in bone repair
US5425772 *20 Sep 199320 Jun 1995Brantigan; John W.Prosthetic implant for intervertebral spinal fusion
US5489307 *1 Sep 19946 Feb 1996Spine-Tech, Inc.Spinal stabilization surgical method
US5505732 *7 Jun 19959 Apr 1996Michelson; Gary K.Apparatus and method of inserting spinal implants
US5527312 *19 Aug 199418 Jun 1996Salut, Ltd.Facet screw anchor
US5593409 *17 Feb 199514 Jan 1997Sofamor Danek Group, Inc.Interbody spinal fusion implants
US5709683 *19 Dec 199520 Jan 1998Spine-Tech, Inc.Interbody bone implant having conjoining stabilization features for bony fusion
US5720748 *7 Jun 199524 Feb 1998Spine-Tech, Inc.Spinal stabilization surgical apparatus
US5769897 *28 Feb 199423 Jun 1998Haerle; AntonSynthetic bone
US5772661 *27 Feb 199530 Jun 1998Michelson; Gary KarlinMethods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5865847 *29 Jul 19972 Feb 1999Sulzer Spine-Tech Inc.Lordotic spinal implant
US6033419 *15 May 19987 Mar 2000Sulzer Carbomedics Inc.Apparatus and method for cutting a heart valve annulus
US6039762 *11 Jun 199721 Mar 2000Sdgi Holdings, Inc.Reinforced bone graft substitutes
US6042582 *20 May 199828 Mar 2000Ray; Charles D.Instrumentation and method for facilitating insertion of spinal implant
US6045580 *9 Oct 19984 Apr 2000Osteotech, Inc.Fusion implant device and method of use
US6048580 *3 Dec 199711 Apr 2000Excelda Manufacturing CompanyFouling release coating for marine vessels and method of application
US6063088 *24 Mar 199716 May 2000United States Surgical CorporationMethod and instrumentation for implant insertion
US6080155 *27 Feb 199527 Jun 2000Michelson; Gary KarlinMethod of inserting and preloading spinal implants
US6200322 *13 Aug 199913 Mar 2001Sdgi Holdings, Inc.Minimal exposure posterior spinal interbody instrumentation and technique
US6210412 *7 Jun 19953 Apr 2001Gary Karlin MichelsonMethod for inserting frusto-conical interbody spinal fusion implants
US6224630 *29 May 19981 May 2001Advanced Bio Surfaces, Inc.Implantable tissue repair device
US6228111 *27 Sep 19968 May 2001Bionx Implants OyBiodegradable implant manufactured of polymer-based material and a method for manufacturing the same
US6241770 *5 Mar 19995 Jun 2001Gary K. MichelsonInterbody spinal fusion implant having an anatomically conformed trailing end
US6241771 *10 Aug 19985 Jun 2001Cambridge Scientific, Inc.Resorbable interbody spinal fusion devices
US6346123 *14 Mar 200012 Feb 2002Sdgi Holdings, Inc.Ceramic fusion implants and compositions
US6371986 *27 Oct 199816 Apr 2002George W. BagbySpinal fusion device, bone joining implant, and vertebral fusion implant
US6371988 *18 Jan 200016 Apr 2002Sdgi Holdings, Inc.Bone grafts
US6371989 *5 Jun 200016 Apr 2002Jean-Luc ChauvinMethod of providing proper vertebral spacing
US6375655 *21 Jan 200023 Apr 2002Sdgi Holdings, Inc.Interbody fusion device and method for restoration of normal spinal anatomy
US6383221 *8 Aug 20017 May 2002Osteotech, Inc.Method for forming an intervertebral implant
US6395035 *11 Apr 200128 May 2002Synthes (U.S.A.)Strain regulating fusion cage for spinal fusion surgery
US6398811 *1 Jun 20014 Jun 2002Sdgi Holdings, Inc.Composited intervertebral bone spacers
US6409765 *3 Dec 199925 Jun 2002Sdgi Holdings, Inc.Open intervertebral spacer
US6511509 *7 May 199828 Jan 2003LifenetTextured bone allograft, method of making and using same
US6520907 *30 Nov 199918 Feb 2003Sdgi Holdings, Inc.Methods for accessing the spinal column
US6537320 *29 Oct 199925 Mar 2003Gary K. MichelsonSelf-broaching, rotatable, push-in interbody spinal fusion implant and method for deployment thereof
US6544289 *22 Jun 20018 Apr 2003LifenetPlasticized bone grafts, and methods of making and using same
US6548569 *24 Mar 200015 Apr 2003Metabolix, Inc.Medical devices and applications of polyhydroxyalkanoate polymers
US6551995 *4 Sep 199822 Apr 2003Stryker CorporationOsteogenic devices
US6554863 *6 Jul 200129 Apr 2003SynthesIntervertebral allograft spacer
US6565574 *23 Jan 200120 May 2003Gary K. MichelsonDistractor for use in spinal surgery
US6582431 *5 Nov 199924 Jun 2003Howmedica Osteonics Corp.Expandable non-threaded spinal fusion device
US6689167 *31 Dec 200110 Feb 2004George W. BagbyMethod of using spinal fusion device, bone joining implant, and vertebral fusion implant
US6695851 *7 Aug 200224 Feb 2004Sdgi Holdings, Inc.Methods and instruments for interbody fusion
US6695882 *28 Dec 200124 Feb 2004Sdgi Holdings, Inc.Open intervertebral spacer
US6696073 *27 Aug 200224 Feb 2004Osteotech, Inc.Shaped load-bearing osteoimplant and methods of making same
US6702856 *11 Dec 20019 Mar 2004The Bonutti 2003 Trust AMethod of using Tissue
US6709458 *29 Jan 200123 Mar 2004Gary Karlin MichelsonExpandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
US6719795 *25 Apr 200213 Apr 2004Macropore Biosurgery, Inc.Resorbable posterior spinal fusion system
US6743255 *15 May 20021 Jun 2004Bret FerreeSpinal fusion cage with lordosis correction
US6747121 *5 Sep 20018 Jun 2004Synthes (Usa)Poly(L-lactide-co-glycolide) copolymers, methods for making and using same, and devices containing same
US6838493 *26 Feb 20024 Jan 2005Metabolix, Inc.Medical devices and applications of polyhydroxyalkanoate polymers
US6840961 *21 Dec 200111 Jan 2005Etex CorporationMachinable preformed calcium phosphate bone substitute material implants
US6843807 *5 Apr 200018 Jan 2005Osteotech Inc.Osteoimplant
US6852125 *28 Aug 20038 Feb 2005Chondrosite, Inc.Cartilage repair plug
US6867247 *1 May 200215 Mar 2005Metabolix, Inc.Medical devices and applications of polyhydroxyalkanoate polymers
US6893462 *29 Aug 200117 May 2005Regeneration Technologies, Inc.Soft and calcified tissue implants
US6902578 *27 Oct 20007 Jun 2005LifenetComposite bone graft, method of making and using same
US6905517 *24 Oct 200214 Jun 2005Bonutti Ip, LlpTissue grafting material
US6986788 *9 Apr 200117 Jan 2006Synthes (U.S.A.)Intervertebral allograft spacer
US6989029 *21 Feb 200324 Jan 2006Bonutti Ip, LlcTissue cage
US7001385 *13 Jan 200421 Feb 2006Bonutti Ip, LlcJoint spacer with compartment for orthobiologic material
US7008453 *7 Jul 20007 Mar 2006Sdgi Holdings, Inc.Expandable push-in arcuate interbody spinal fusion implant with cylindrical configuration during insertion
US7012034 *31 Aug 200414 Mar 2006Curasan AgResorbable bone replacement and bone formation material
US7018414 *29 Jul 200328 Mar 2006Brau Salvador ASupport device for vertebral fusion
US7033392 *2 Aug 200125 Apr 2006Zimmer Spine, Inc.Posterior oblique lumbar arthrodesis
US7044968 *14 Feb 200016 May 2006Musculoskeletal Transplant FoundationCompound bone structure of allograft tissue with threaded fasteners
US7048762 *27 Aug 199823 May 2006Regeneration Technologies, Inc.Elongated cortical bone implant
US7056342 *7 Mar 20036 Jun 2006Sdgi Holdings, Inc.Self-broaching, rotatable, push-in interbody spinal fusion implant and method for deployment thereof
US7060096 *30 Oct 200013 Jun 2006Tutogen Medical GmbhImplant consisting of bone material
US7063703 *26 Aug 200220 Jun 2006Kyphon Inc.Slip-fit handle for hand-held instruments that access interior body regions
US7223269 *2 Dec 200329 May 2007Chappuis James LFacet fusion system
US7320688 *5 Jun 200322 Jan 2008Warsaw Orthopedic, Inc.Methods and instruments for endoscopic interbody surgical techniques
US7371238 *15 Feb 200213 May 2008Queen's University At KingstonMethod and device for treating scoliosis
US7491205 *7 Jun 199517 Feb 2009Warsaw Orthopedic, Inc.Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US7517358 *8 Jul 200514 Apr 2009Orthopedic Development CorporationImplant device used in minimally invasive facet joint hemi-arthroplasty
US7678149 *31 Oct 200316 Mar 2010Warsaw Orthopedic, Inc.Open intervertebral spacer
US7708761 *22 Sep 20054 May 2010Minsurg International, Inc.Spinal plug for a minimally invasive facet joint fusion system
US7744630 *15 Nov 200529 Jun 2010Zimmer Spine, Inc.Facet repair and stabilization
US20060036243 *13 Aug 200416 Feb 2006Ricardo SassoReplacement facet joint and method
US20060041311 *18 Aug 200523 Feb 2006Mcleer Thomas JDevices and methods for treating facet joints
US20060111780 *22 Nov 200425 May 2006Orthopedic Development CorporationMinimally invasive facet joint hemi-arthroplasty
US20060111781 *8 Jul 200525 May 2006Orthopedic Development CorporationImplant device used in minimally invasive facet joint hemi-arthroplasty
US20060111782 *22 Sep 200525 May 2006Orthopedic Development CorporationSpinal plug for a minimally invasive facet joint fusion system
US20090076551 *25 Sep 200819 Mar 2009Petersen David AMethods and surgical kits for minimally-invasive facet joint fusion
US20110004247 *5 Mar 20096 Jan 2011Beat LechmannFacet interference screw
USD424421 *25 Jan 19999 May 2000Yugen Kaisha Ion SeikoNut
USD484785 *25 Jan 20026 Jan 2004Mark J. PlumerVehicle wheel lug-nut having frontal indicia
USD521858 *17 Sep 200330 May 2006Roy Donald JStud support
USD566277 *25 Sep 20078 Apr 2008Richard BarrySpinal fusion implant
USRE36758 *30 Jan 199827 Jun 2000Fitz; William R.Artificial facet joint
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US852960930 Nov 201010 Sep 2013Osteomed LlcPolyaxial facet fixation screw system
US887685115 Mar 20134 Nov 2014Nuvasive, Inc.Systems and methods for performing spinal fusion surgery
US899896622 Jun 20117 Apr 2015Osteomed, LlcPolyaxial facet fixation screw system with fixation augmentation
US907870717 Aug 201114 Jul 2015Osteomed LlcPolyaxial facet fixation screw system with cannula inserter
US96040404 Nov 201428 Mar 2017Nuvasive, Inc.System and methods for performing spinal fusion surgery
US977572323 Dec 20153 Oct 2017Spine Wave, Inc.Instrument and system for placing graft, implant and graft material for minimally invasive posterolateral fusion
Classifications
U.S. Classification606/86.00A
International ClassificationA61B17/56
Cooperative ClassificationA61B2090/034, A61B17/1604, A61L2430/02, A61B17/1671, A61F2002/30785, A61F2002/30881, A61F2/4455, A61F2/4405, A61F2/28, A61L27/3608, A61B17/7064, A61F2310/00359
European ClassificationA61B17/70P2, A61B17/16C, A61B17/16S4