US20100076504A1 - Method and Device for Stabilizing Joints With Limited Axial Movement - Google Patents

Method and Device for Stabilizing Joints With Limited Axial Movement Download PDF

Info

Publication number
US20100076504A1
US20100076504A1 US12/569,271 US56927109A US2010076504A1 US 20100076504 A1 US20100076504 A1 US 20100076504A1 US 56927109 A US56927109 A US 56927109A US 2010076504 A1 US2010076504 A1 US 2010076504A1
Authority
US
United States
Prior art keywords
bone
fastener
bone member
press
suture anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/569,271
Inventor
Michael G. McNamara
Avery B. Munoz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALASKA HAND RESEARCH LLC
ALASKA HAND Res LLC
Original Assignee
ALASKA HAND Res LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALASKA HAND Res LLC filed Critical ALASKA HAND Res LLC
Priority to US12/569,271 priority Critical patent/US20100076504A1/en
Assigned to ALASKA HAND RESEARCH, LLC reassignment ALASKA HAND RESEARCH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCNAMARA, MICHAEL G., M.D., MUNOZ, AVERY B.
Publication of US20100076504A1 publication Critical patent/US20100076504A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1615Drill bits, i.e. rotating tools extending from a handpiece to contact the worked material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1686Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hand or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1637Hollow drills or saws producing a curved cut, e.g. cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1682Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the foot or ankle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8875Screwdrivers, spanners or wrenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0409Instruments for applying suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0817Structure of the anchor
    • A61F2002/0823Modular anchors comprising a plurality of separate parts
    • A61F2002/0835Modular anchors comprising a plurality of separate parts with deformation of anchor parts, e.g. expansion of dowel by set screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0847Mode of fixation of anchor to tendon or ligament
    • A61F2002/0852Fixation of a loop or U-turn, e.g. eyelets, anchor having multiple holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0876Position of anchor in respect to the bone
    • A61F2002/0882Anchor in or on top of a bone tunnel, i.e. a hole running through the entire bone

Definitions

  • the invention generally relates to joint surgery. More specifically, the invention relates to a method and device for stabilizing a joint with low relative axial motion.
  • Scapho-lunate dissociation is the most common carpal instability. Scapho-lunate dissociation can be characterized by diastases between the scaphoid and lunate bones and rotatory subluxation of the scaphoid. Scapho-lunate dissociation typically causes wrist pain, swelling, clicking, progressive radiocarpal arthritis, and decreased motion and grip strength.
  • dorsal capsulodesis One method used to treat scapho-lunate dissociation is dorsal capsulodesis.
  • Dorsal capsulodesis can be performed with or without repair of the scapholunate interosseous ligament (SLIL).
  • SLIL scapholunate interosseous ligament
  • a physician temporarily pins Kirschner wires across the scapholunate and scaphocapitate intervals to restore proper carpal alignment during healing.
  • SLIL scapholunate interosseous ligament
  • Bone-tissue-bone grafts are another treatment option for scapho-lunate dissociation.
  • the physician utilizes an autologous bone-tissue-bone graft to replace the scapholunate interval.
  • Complications associated with bone-tissue-bone grafts include the problems associated with a second surgical site and selecting a graft that operates similarly to the SLIL being replaced. As stated above, the results of these treatments are variable and long term outcomes are unknown.
  • RASL Reduction and Association of the Scaphoid and Lunate
  • intercarpal fusion During the intercarpal fusion procedure, a physician fuses two or more carpal bones (e.g., scapholunate, scaphoid-trapezium-trapezoid, scaphoid-capitate-lunate, and lunate-capitate-triquetrum-hamate) together. As one would expect, fusion of the bones greatly reduces the patient's range of motion. Additionally, there are high complication and failure rates associated with the intercarpal fusion procedure.
  • carpal bones e.g., scapholunate, scaphoid-trapezium-trapezoid, scaphoid-capitate-lunate, and lunate-capitate-triquetrum-hamate
  • Suture anchors are well-known in the prior art and are commonly used by physicians to secure soft tissue to bone.
  • a suture anchor typically includes a body portion and at least one suture secured to the body portion. The body portion is driven into the bone, and a securing means secures the body portion within the bone.
  • many suture anchors have threads, screws, hooks, or deployable members located on the body portion.
  • a physician typically drills a hole into a bone. The physician then inserts (e.g., screws, threads, etc.) the body portion of a suture anchor into the bone tunnel. The suture(s) is then secured to the soft tissue (e.g. ligament) using any of a number of methods (e.g., knotting, tying, looping, etc.), depending on the design of the suture anchor being used. Because a suture anchor includes a suture attached to the body portion, the suture anchor secures the ligament to the bone.
  • the soft tissue e.g. ligament
  • an apparatus for stabilizing a joint with low relative axial motion during orthopedic surgery includes a fastener body and a coupler.
  • the fastener body has a proximal end and a distal end and is configured to be press-fit into a tunnel in a first bone member.
  • the fastener body may also be cannulated.
  • the coupler may be located on or may be part of the fastener body.
  • the coupler can receive at least one flexible element trailing from at least one suture anchor. At least a portion of the suture anchor may be located within a second bone member.
  • the first bone member is a scaphoid bone and the second bone member is a lunate bone.
  • the first bone member is a lunate bone and the second bone member is a scaphoid bone.
  • the bone members do not need to be the scaphoid and the lunate bones, and various embodiments of the present invention may cross any low axial motion joint.
  • the fastener body may be tapered from the proximal end to the distal end such that the width of the distal end is approximately equal to a major diameter of the suture anchor.
  • the fastener body may also be non-tapered.
  • the proximal end of the fastener body may include a proximal indentation.
  • the flexible element(s) may be secured to the fastener body at the proximal indentation.
  • the coupler can be a channel extending along an outer surface of the fastener body from the proximal end to the distal end.
  • the coupler may be an eyelet.
  • the apparatus can be made from a variety of materials including, but not limited to, polymeric material, titanium, or bone, or a bioabsorbable material.
  • the fastener body may include a receptacle configured to receive a hexagonal driver.
  • a method of securing a suture anchor includes inserting a suture anchor into a first bone member, securing a flexible element attached at one end to a fastener, inserting the fastener into a hole in a second bone member, and adjusting the flexible member to a desired tension.
  • the flexible element can have a first end and a second end and may be attached to the suture anchor at the first end.
  • the flexible element can be threaded over or through the fastener.
  • the fastener may have a hole through the body. The physician can thread the flexible element through the hole, or the fastener may be supplied to the physician “pre-loaded” (e.g. the flexible element may already be coupled to the fastener).
  • the flexible element may span a space between the first bone member and a second bone member and pass through the tunnel in the second bone member so that it may be secured to the fastener.
  • the fastener may be configured to be press-fit into the tunnel in the second bone member. As the physician adjusts the flexible member to a desired tension, the first bone member is secured to the second bone member. Inserting the fastener into the tunnel in the second bone member may create the press-fit.
  • the fastener may include at least one thread configured to facilitate the removal of the apparatus from, or adjustment of the apparatus within the second bone member.
  • An example of the thread located on the fastener is a screw thread (e.g., a raised helical rib).
  • the method may include drilling a hole through at least the first bone member and the second bone member.
  • the first bone member can be a lunate bone and the second bone member can be a scaphoid bone.
  • the first and second bone members can be bone fragments or any other bone material.
  • the suture anchor can be inserted such that the suture anchor is beneath the surface of the first bone member.
  • the fastener can be inserted such that it is beneath the surface of the second bone member.
  • the steps of the method can occur in a variety of orders. For example, securing the flexible element may occur before inserting the fastener and adjusting the flexible member. Alternatively, inserting the fastener can occur before securing the flexible element and adjusting the flexible member. Additionally, adjusting the flexible member may occur before securing the flexible element and inserting the fastener.
  • the suture anchor and fastener may also be supplied such that they are both already coupled to the flexible element. The anchor and fastener may be cannulated for placement over a guide wire.
  • a kit for use during orthopedic surgery to couple bone members includes at least one suture anchor, a fastener, and at least one flexible element.
  • the suture anchor can be for insertion into a first bone member.
  • the fastener can have a fastener body, and a coupler located on or as a part of the fastener body.
  • the fastener may be configured to be press fit into a hole in a second bone member and the fastener may be threaded as described above.
  • the at least one flexible element may have a first end and a second end. The first end may be attached to the suture anchor and the second end may be configured to be secured to the fastener body, thereby placing the flexible element in tension and coupling the first and second bone members.
  • more than one suture anchor may be attached to a single fastener.
  • the first bone member can be a scaphoid bone and the second bone member can be a lunate bone.
  • the first bone member can be a lunate bone and the second bone member can be a scaphoid bone.
  • the bone members do not need to be the scaphoid and the lunate bones, and various embodiments of the present invention may cross any low axial motion joint.
  • the fastener body can be tapered from a proximal end to a distal end such that the width of the distal end is approximately equal to the major diameter of the suture anchor.
  • the proximal end of the fastener body can include a proximal indentation, at which the at least one flexible element may be secured to the fastener body.
  • the coupler can be a channel extending along an outer surface of the fastener body from a proximal end to a distal end. Alternatively, the coupler can be an eyelet.
  • the flexible element may be any suture material available on the market, and may be coupled with soft tissue implants or similar.
  • the suture anchor and fastener can be made from a variety of materials including, but not limited to a polymeric material, titanium, bone, or a bioabsorbable material. Non-metallic versions of this device may be manufactured with a small “chip” or dust of biocompatible metal to serve as a radio-opaque marker to be viewable on x-ray.
  • the fastener body may include a receptacle configured to receive a hexagonal driver or other shaped driver.
  • a method of stabilizing joints with limited axial movement may include inserting at least one suture anchor into a first bone member.
  • the first end of a flexible element(s) may be attached to the suture anchor(s).
  • the flexible element may span a space between the first bone member and a second bone member.
  • the flexible element may also pass through a tunnel in the second bone member and an intermediate bone member.
  • the intermediate bone member e.g., the lunate bone or a bone fragment
  • the intermediate bone member may be located between the first (e.g., the scaphoid bone or a bone fragment) and second bone members (e.g., the triquetrum bone or a bone fragment).
  • the method may also include securing the second end of the flexible element to a fastener configured to be press-fit into the tunnel in the second bone member, and inserting the fastener into the tunnel in the second bone member.
  • the method may then adjust the flexible member to a desired tension, for example, to secure the first bone member to the second bone member.
  • the method may also include drilling a hole through at least the first bone member, the second bone member, and the intermediate bone member. Additionally, inserting the fastener into the hole in the second bone member may create a press-fit.
  • the suture anchor and the fastener may be inserted such that they are beneath the surface of the first and second bone members in order to avoid abrasion of soft tissue and/or abrasion injury to cartilage.
  • the flexible element may be secured to the fastener before inserting the fastener and adjusting the tension. Alternatively, the fastener may be inserted before securing and adjusting the flexible element. Moreover, in other embodiments, the flexible member may be adjusted before the flexible element is secured and the fastener is inserted.
  • a method for stabilizing a joint with limited axial movement may include first making an incision on a first site of the joint. The incision may be proximal to a first bone member. The method may then drill a guidewire through the first bone member, a second bone member, and into a third bone member. The second bone member may be located between the first and third bone members. Once the guidewire is drilled through the bones, the method may prepare a bone tunnel through the first and second bone members and into the third bone member, and secure a suture anchor within the third bone member.
  • the suture anchor may have a flexible member extending through the bone tunnel and the second bone member, and spanning a space between the first and third bone members.
  • the flexible member may have a first end that is secured to the suture anchor and a second end.
  • the method may then insert a press-fit fastener into the first bone member (e.g., before or after removing the guidewire), and secure the second end of the suture anchor to the press-fit fastener.
  • the press-fit fastener may create a press-fit between the press-fit fastener and the bone tunnel.
  • the method may also include dissecting soft-tissue from the joint to expose the first bone member, placing the suture anchor over the guide wire, and advancing the suture anchor along the guidewire until the suture anchor is secured within a portion of the bone tunnel within the third bone member.
  • the suture anchor may be secured beneath a proximal cortex of the third bone member.
  • the flexible member may also be adjusted to a desired tension to secure the first bone member to the third bone member.
  • a method for stabilizing a joint with limited axial movement may include making an incision on a first incision site (e.g., proximate to a first bone member), drilling a guidewire through the first bone member, a second bone member, and a third bone member, and making a second incision on a second incision site (e.g., proximate to the third bone member).
  • the method may create a bone tunnel through the first, second, and third bone members, and pass a flexible element through the bone tunnel (e.g., by affixing the flexible element to an eyelet located on the guidewire, and drawing the flexible element through the bone tunnel using the guidewire).
  • the flexible element may extend from the first incision to the second incision and pass through the first, second, and third bone members.
  • the method may then insert a first fastener into the third bone member through the second incision, and secure a first end of the flexible element to the first fastener.
  • the first fastener may create a press-fit within the third bone member.
  • the method may also insert a second fastener into the first bone member through the first incision, and secure the second end of the flexible element to the second fastener.
  • the second fastener may create a press-fit within the first bone member.
  • the first and second fasteners may be tapered and they may be inserted into the bone members such that the direction of the tapers oppose each other.
  • the guidewire may extend through the joint and the second incision site may be located at the exit site of the guidewire.
  • the flexible element may be a soft tissue graft implant that may or may not be reinforced with a suture.
  • the first and/or second fasteners may include surface features that improve fixation within the bone members.
  • the fasteners may include threads, ribs, back cutting threads, and/or grooves. If the surface features are threads, the fastener(s) may be inserted by rotating the fasteners. If the surface features are ribs, the fasteners may be inserted by tapping with a hammer.
  • the method may also include dissecting any soft-tissue from the joint to expose the first and third bone members.
  • the guide wire may be removed prior to inserting the first and second press-fit fasteners.
  • the first and second ends of the flexible element may be secured to the first and second fasteners by positioning the first and second ends within the press-fit areas created between the first and second fasteners and the bone tunnel.
  • This invention greatly broadens applications of suture anchors in orthopedics, extending the focus to fixture of bone to bone, rather than just soft tissue to bone.
  • FIG. 1 schematically shows a side view of the device for coupling two or more bones in accordance with embodiments of the present invention.
  • FIG. 2 schematically shows a proximal view of the device shown in FIG. 1 .
  • FIG. 3 schematically shows a distal view of an alternative embodiment of the device shown in FIG. 1 .
  • FIG. 4 schematically shows an isometric view of an alternative embodiment of the device for securing suture anchors in tension.
  • FIG. 5A schematically shows an isometric view of another alternative embodiment of the device for securing suture anchors in tension.
  • FIG. 5B schematically shows an isometric view of an alternative embodiment of the device for securing suture anchors in tension, wherein the device includes threads.
  • the threads have a reverse-cutting edge for removal of the device from bone.
  • FIG. 5C schematically shows an proximal isometric view of the alternative embodiment of FIG. 5B .
  • FIG. 6 schematically shows the device of FIG. 1 securing a scaphoid bone and lunate bone within a patient's hand.
  • FIG. 7 schematically shows an alternative embodiment of a system to secure bone members.
  • FIG. 8 schematically shows another alternative embodiment of a system to secure bone members, including a stepped driver.
  • FIG. 9 is a flowchart showing the steps for using the device shown in FIG. 1 .
  • FIG. 10A schematically shows a pre-loaded kit containing the device shown in FIG. 1 and additional components, in accordance with some embodiments of the present invention.
  • FIG. 10B schematically shows a close-up of the suture anchor and flexible element within the kit shown in FIG. 10A , in accordance with some embodiments of the present invention.
  • FIGS. 11A and 11B schematically show alternative embodiments of a system utilizing a cannulated suture anchor and fastener, in accordance with some embodiments of the present invention.
  • FIGS. 12A to 12D schematically show alternative embodiments of the press-fit fastener with radio-opaque markers, in accordance with some embodiments of the present invention.
  • FIG. 13 schematically shows an alternative embodiment of a system with a soft-tissue implant, in accordance with some embodiments of the present invention.
  • FIG. 14 schematically shows embodiments of the present invention in situ within the hand and stabilizing at least two non-adjacent bones, in accordance with some embodiments of the present invention.
  • FIG. 15 schematically shows embodiments of the present invention in situ within the hand and stabilizing at least two non-adjacent bones in an alternative manner to that shown in FIG. 14 , in accordance with some embodiments of the present invention.
  • FIG. 16 schematically shows embodiments of the present invention in situ within the hand and stabilizing at least two non-adjacent bones in an alternative manner to that shown in FIGS. 14 and 15 , in accordance with some embodiments of the present invention.
  • a press-fit fastener 100 for coupling two or more bones in tension greatly simplifies and improves upon the currently used methods for controlling relative motion between bones or inter-fragmentary stabilization.
  • the device when used in conjunction with a suture anchor 190 ( FIG. 6 ), creates a system for adjustably securing a suture anchor 190 in tension.
  • the system gives a physician the ability to manipulate movement between at least two bone members in a joint with low relative axial motion.
  • the system also allows a physician to secure inter-fragmentary stabilization of a bone fracture.
  • the system is used in conjunction with a suture anchor 190 to offer adjustable tension, thereby controlling the position (e.g., alignment), amount of rotation, and resistance to shear. The amount of desired rotation and shear depend on the application.
  • suture anchors currently affix soft tissue to bone.
  • Embodiments of this invention allow a physician to secure bone to bone.
  • proper use of embodiments of this device offers temporary or permanent fixation, restoration of carpal alignment, and normal range of motion between the scaphoid and lunate bones. For acute ligament tears, the tears and bones may be valuated, aligned, and debrided using a scope.
  • the procedure may be preceded by excision of part of the scapho-lunate joint using the RASL (Reduction and Association of the Scaphoid and Lunate) technique.
  • RASL Reduction and Association of the Scaphoid and Lunate
  • the RASL procedure can be performed percutaneously or through a limited incision and arthroscopic assist.
  • the articular surfaces of the scapho-lunate joint are excoriated to expose cancellous bone.
  • the scaphoid and the lunate are then reduced using “K-Wire Joysticks” (typically 0.062′′).
  • a cannulated screw is passed over a K-wire, through the scaphoid, across the joint, and into the lunate.
  • the methods in accordance with embodiments of the present invention may utilize techniques defined by the RASL procedure to excoriate the articular surfaces and properly align the scaphoid and lunate prior to inserting the suture anchor 190 and press-fit fastener 100 .
  • suture anchor 190 and press-fit fastener 100 does not suffer from the problems associated with the RASL procedure described above.
  • the flexible element 180 extending between the scaphoid and lunate more closely mimics the characteristics of the scapholunate ligament.
  • the device may be implanted with autograft, allograft, or xenograft tissue, allowing early range of motion coupled with stabilization of the joint during healing. Therefore, mobility is not impaired and the patient can mobilize the hand and wrist immediately.
  • the invention may be used to position and secure other bones.
  • a physician may use embodiments of this invention to treat injuries at other articular surfaces throughout the body that experience limited relative motion.
  • Such articular surfaces may include the acromioclavicular joint, scapho lunate joint, coraco clavicular joint, and any other low axial motion joint, as well as joints between the tarsals, metatarsals, other carpal bones and metacarpals.
  • Some embodiments may also be used to stabilize bone fragments while healing occurs.
  • the physician may insert and secure a suture anchor 190 (see FIG. 6 ) in one fragment, and the fastener in at least one other. The physician may then tie off a flexible element 180 , attached to the suture anchor 190 , onto the fastener at the desired tension.
  • the purpose of the device in this application is to maintain good contact and alignment between bone fragments while healing occurs.
  • the press-fit fastener 100 can have a main body 110 that is shaped and sized such that it may achieve an interference fit (e.g., a press fit) with the tunnels/drill holes created by the physician, as discussed in greater detail below.
  • An interference fit sometimes called press fit, is a method of fastening two parts by creating friction between the parts as they are pushed together.
  • a physician can push the press-fit fastener 100 into a tunnel in the bone, and the resulting compression and tensile forces between the press-fit fastener 100 and bone hold the press-fit fastener 100 in the bone.
  • the main body 110 of the press-fit fastener 100 can be tapered such that it has a generally decreasing cross section from the proximal end 120 to the distal end 130 .
  • the width at the distal end 120 is approximately equal to the major diameter of the suture anchor 190 . This helps to form the interference fit between the implantable press-fit fastener 100 and the bone and secure the location of the device in bone.
  • the embodiment of the press-fit fastener 100 shown in FIG. 1 does not include a head at the proximal end 120 .
  • the press-fit fastener 100 may include a head (not shown) that can sit deep to or on top of the articular surface.
  • the press-fit fastener 100 may include a receptacle for a hexagonal driver 240 ( FIG. 8 ). In such embodiments, the physician can use the hexagonal driver 240 to insert and/or remove the press-fit fastener 100 from the bone member.
  • the physician can use the press-fit fastener 100 in conjunction with a suture anchor 190 to secure the suture anchor 190 and flexible element 180 in tension.
  • the press-fit fastener 100 can be used in conjunction with any number of types of suture anchors.
  • the suture anchor 190 can have deployable members (rather than threads) that secure the suture anchor 190 within the hole in the bone member.
  • the flexible elements 180 can be separate elements that need to be attached to the suture anchor 190 or they may come pre-attached or integral to the suture anchor 190 . Additionally, the flexible elements 180 can be threaded over or through the anchor 190 .
  • the anchor 190 may have a central bore similar to one embodiment of the coupler described below.
  • the flexible elements 180 can be threaded through the central bore and tied off at the opposing end of the suture anchor 190 .
  • the suture anchor 190 can also have a cap 230 ( FIG. 8 ) to which the flexible element 180 can be tied or otherwise attached.
  • the press-fit fastener 100 may include a coupler that facilitates the coupling of the flexible element 180 to the press-fit fastener 100 .
  • the coupler can be a separate element located on or integral with the press-fit fastener 100 (e.g., an eyelet) or it can be integral to the fastener body 100 (e.g., the channels 140 discussed below).
  • the coupler can be channels 140 extending from the proximal end 120 to the distal end 130 of the main body 110 .
  • the channels 140 provide an indentation in which the flexible element 180 can sit without interference or abrasion from surrounding bone and tissue.
  • the coupler can also include a concavity 150 located at the proximal end 120 of the main body 110 and a concavity 170 located at the distal end 130 of the main body 110 .
  • the flexible element 180 can be secured to the press-fit fastener 100 at the concavity 150 .
  • the flexible element 180 can be secured to the press-fit fastener 100 at the concavity 150 by tying the flexible element 180 into a knot, capping, crimping, brazing, welding or any other suitable means.
  • the coupler can be a central bore 160 ( FIG. 3 ) through which the flexible element 180 is passed. Once the flexible element 180 is passed through the central bore 160 , it can be secured using any of the embodiments discussed above. In a similar manner as the channel embodiment discussed above, embodiments having a central bore 160 can also have a concavity 150 at which the flexible element can be secured.
  • the press-fit fastener 100 can also have an eyelet or a “T” (not shown) around which the flexible member(s) 180 can be secured.
  • the eyelet may be a hole within either the suture anchor 190 , the fastener 100 , or the coupler. Additionally or alternatively, the eyelet may be a ring attached to or integral with the suture anchor 190 , the fastener 100 , or the coupler.
  • the press-fit fastener 100 need not have either the channels 140 or the central bore 160 .
  • the interference fit e.g., the press-fit
  • the press-fit fastener 100 and the tunnel in the bone act to secure the flexible element 180 to the press-fit fastener 100 .
  • the press-fit fastener 100 is inserted into the tunnel within the scaphoid bone 610 ( FIG. 6 )
  • the flexible element 180 is “pinched” between the main body 110 and the wall of the tunnel, securing the flexible element 180 in place.
  • embodiments of the present invention that utilize the combination of the suture anchor 190 and the press-fit fastener 100 are beneficial because they provide physicians with highly adjustable systems for securing and tensioning bones and suture anchors.
  • the physician can adjust and secure the flexible element 180 without interference from the other system components (e.g., the suture anchor 190 and press-fit fastener 100 ) or the bones in which the system components are inserted.
  • the flexible element 180 does not become twisted, entwined, or entangled.
  • some embodiments of the press-fit fastener 100 can include one or more threads on the exterior of the tapered main body 110 .
  • the threads can be a raised helical rib, similar to a screw thread.
  • the threads can be back cutting threads 510 that have the same outer dimension as the fastener (e.g., they are not raised above the surface of the fastener).
  • the press-fit fastener 100 can be fully or partially threaded ( FIGS. 5B and 5C show a partially threaded embodiment).
  • the back cutting threads 510 e.g., revision threads
  • the cutting edge 520 of the back cutting threads 510 may be located toward the proximal end 120 so that the threads only engage during removal and revision of the press-fit fastener 100 .
  • the design of the threads 510 allows the press-fit fastener 100 to be easily removed and adjusted after it is inserted into the tunnel.
  • the back cutting threads 510 are for revision and removal purposes and are not intended to engage the bone member when the press-fit fastener 100 is inserted. Further, because the back cutting threads 510 are not raised above the surface of the press-fit fastener 100 , they do not interfere with the press-fit between the press-fit fastener 100 and the tunnel.
  • the press-fit fastener 100 may also have a driver slot 530 to allow a physician to remove or adjust the press-fit fastener 100 .
  • a driver slot 530 to allow a physician to remove or adjust the press-fit fastener 100 .
  • the physician can use a driver to either further insert or back-out the press-fit fastener 100 .
  • the physician can use the driver to remove the press-fit fastener 100 once the bone and/or ligaments have healed.
  • FIG. 5C shows a hexagonal recess, however other recess shapes (including a simple slot) are within the scope of this invention.
  • the channels 140 can include a sharp cutting edge that acts in a similar manner to the revision threads 510 described above. Like the revision threads 510 , the sharp cutting edge can be used to remove the press-fit fastener 100 from the bone.
  • the channels 140 may also be formed in a cork-screw fashion wrapping around the surface of the press-fit fastener 100 (as opposed to the substantially linear orientation shown in FIGS. 5B and 5C ). In either embodiment, the press-fit fastener 100 may include a driver slot located on the proximal end, similar to that shown in FIG. 5C .
  • FIGS. 7 and 8 show alternative embodiments of the present invention.
  • the press-fit fastener 100 may be replaced with a second suture anchor 185 . Therefore, in this embodiment, the first suture anchor 190 is located within the lunate bone 620 and the second suture anchor 185 is located in the scaphoid bone 610 .
  • the flexible member 180 connects the two suture anchors and secures and stabilizes the scaphoid 610 and lunate 620 .
  • a sleeve 220 can cover the flexible element between the suture anchors 200 and 210 (or the suture anchor 190 and press-fit fastener 100 ).
  • the sleeve protects the flexible element from abrasion from the adjacent bone and soft tissue and protects the adjacent bone and soft tissue from abrasion by the flexible element.
  • the device can have a cap 230 for securing the flexible member at the proximal end of the second suture anchor 200 .
  • the suture anchors 200 and 210 can be inserted into and removed from the bone members using the stepped driver 240 .
  • FIG. 8 shows two suture anchors 200 and 210 , the stepped driver 240 and the cap 230 can be used in embodiments having a press-fit fastener 100 .
  • FIG. 9 provides a flow chart of one method of using the press-fit fastener 100 to secure a suture anchor 190 in tension.
  • the physician drills a hole (e.g., tunnel) through the bone members that need to be secured and/or stabilized. (step 910 ).
  • a hole e.g., tunnel
  • the physician would drill through the scaphoid bone 610 within the hand, FIG. 6 .
  • a physician may use a variety of drilling procedures and drill bit types to drill the required holes/tunnels within the bone members.
  • the physician may separately drill two distinct holes (e.g., one in the first bone and one in the second bone).
  • the physician may use a cannulated drill with a guide tip.
  • the physician may perform a first drill pass through one bone member (e.g., the scaphoid) and into the other (e.g., the lunate) using a drill bit with the diameter required to insert the anchor 190 .
  • the physician can then pass the flexible member 180 through the cannulated drill-bit and drill a larger hole/tunnel in the second bone member (e.g., over-drill the hole already in the scaphoid) such that it can receive the press-fit fastener 100 .
  • the guide tip will ensure that the holes are properly aligned.
  • the second (larger) hole may be drilled prior to insertion of the suture anchor.
  • a single drill bit may be sufficient for drilling through a first bone member.
  • the anchor may pass through the tunnel provided, and the fastener may create the press-fit in the same tunnel.
  • the physician may use a stepped drill bit.
  • the stepped drill bit may have two separate diameters.
  • the stepped drill bit may have a smaller diameter portion located near the tip of the drill bit (e.g., for drilling the hole required for the suture anchor 190 ) and a larger diameter located at the base (e.g., for drilling the tunnel/hole required for the press-fit fastener 100 ).
  • the stepped drill bit allows the physician to drill different size holes in the first bone member and the second bone member in a single pass.
  • the stepped drill bit may include a tapered transition from the smaller to the larger diameter. All drills may be cannulated, or the system may make use of a parallel drill guide.
  • the physician can insert the suture anchor 190 into the first bone member (e.g., the lunate 620 ) (step 920 ). All activities performed by the physician may take place through a single incision, and along axis A (see FIG. 6 ). Therefore, when inserting the suture anchor, the physician should insert the suture anchor 190 through the hole (e.g., transosseous tunnel) in the second bone member (e.g., the scaphoid 610 ).
  • the hole e.g., transosseous tunnel
  • the flexible member 180 will span the space between the first and second bone members (e.g., the scaphoid 610 and lunate 620 ) and pass through the hole in the second bone member (e.g., the scaphoid 610 ).
  • the physician can then secure the flexible member to the press-fit fastener 100 . (Step 930 ) using the coupler (e.g., channels 140 or central bore 160 ).
  • the flexible member 180 can be secured to the press-fit fastener 100 in a variety of ways.
  • the press-fit fastener 100 can then be inserted into the hole in the second bone member (e.g., the scaphoid 610 ) (step 940 ).
  • the press-fit fastener 100 is designed such that it can be press-fit into the hole. Therefore, no additional tapping is required to insert the press-fit fastener 100 .
  • the physician need only press the press-fit fastener 100 into the tunnel.
  • the physician can adjust the flexible member 180 to the desired tension (step 950 ). If the suture anchor 190 includes an internal locking mechanism (not shown), the physician can lock the flexible member 180 in tension using the internal locking mechanism. Otherwise the physician can tie or otherwise secure the flexible member to the anchor 190 .
  • the press-fit fastener 100 is secured in the second bone member and is prevented from backing out. Also, as the flexible member 180 is adjusted, the bone members will be secured and stabilized in the desired locations. For example, if the purpose of the suture anchor 190 and press-fit fastener 100 is to aid in healing between bone fragments, the suture anchor 190 and press-fit fastener 100 will cause the bone fragments to maintain contact and alignment during healing.
  • the suture anchor 190 and press-fit fastener 100 will permanently or temporarily fix and restore carpal alignment, while allowing substantially normal range of motion between the scaphoid bone 610 and lunate bone 620 while the ligaments heal.
  • the physician chooses the length of the flexible member 180 (e.g., the physician can adjust the length of the flexible member 180 ) such that it will allow a flexible rotational connection and proper alignment between the suture anchor 190 in the first bone member and the press-fit fastener 100 in the second bone member.
  • the physician should draw (e.g., adjust) the flexible element 180 trailing from the suture anchor 190 tight enough to hold the proximal surface 622 of the first bone fragment in good contact with the distal surface 612 of the second bone fragment, in which the press-fit fastener 100 is secured.
  • All of the embodiments may include placement of soft tissue (autograft, allograft, xenograft or similar) alongside the device. This allows for the device to provide stabilization and early range of motion to the bones while securing the soft tissue within the bone tunnel for incorporation into the joint.
  • soft tissue autograft, allograft, xenograft or similar
  • multiple suture anchors 190 can be secured to a single press-fit fastener 100 .
  • some applications may require that multiple suture anchors be placed within the first bone member.
  • the physician does not necessarily need to use multiple fasteners 100 . Rather, the physician can secure all of the suture anchors 190 and flexible elements 180 to a single press-fit fastener 100 , greatly simplifying the procedure and reducing the procedure time.
  • the inherent “play” within the joint and the larger drill hole in the scaphoid 610 allow a physician to adjust the location and angle of the suture anchors 190 at the lunate 620 .
  • the physician can move the suture anchors 190 to a new location (e.g., the physician can move them “north” or “south” because the width of the drill hole is larger than the width of the suture anchor and the inherent play in the joint) and insert them into the lunate.
  • the physician can then bring the flexible elements 180 from each of the suture anchors 190 through the scaphoid tunnel and couple them to a single press-fit fastener 100 using the methods described above.
  • the physician can insert the press-fit fastener 100 into the hole (step 940 ) prior to securing the flexible element 180 to the press-fit fastener 100 (step 930 ) and adjusting the flexible element 180 (step 950 ).
  • the flexible element can be adjusted (step 950 ) prior to securing it to the press-fit fastener 100 (step 930 ) and inserting the press-fit fastener 100 into the hole (step 940 ).
  • the press-fit fastener 100 and suture anchor 190 are shown in place and secured within a hand.
  • the press-fit fastener 100 is located within the hole in the scaphoid bone 610
  • the suture anchor is located in the hole in the lunate bone 620 .
  • the flexible element 180 extends between the press-fit fastener 100 and the suture anchor 190 and is secured within the channels 140 and the concavity 150 located at the proximal end 120 of the press-fit fastener 100 .
  • the suture anchor 190 , press-fit fastener 100 , and flexible element 180 work together to secure and stabilize the scaphoid 610 and lunate 620 during healing without limiting the patient's range of motion.
  • a flexible member 180 e.g., the loop
  • the physician can adjust the length of the flexible member 180 by manipulating an internal locking mechanism within a suture anchor 190 .
  • the flexible member 180 may be attached to the suture anchor 190 in such a way as to allow the physician to simply pull the end(s) of the flexible member (e.g., the ends of the loop) at the suture anchor 190 to adjust the length of the flexible member 180 extending towards the press-fit fastener 100 .
  • the flexible member 180 may also have a sliding knot (not shown).
  • the suture anchor 190 can be coupled to the press-fit fastener 100 by sliding the knot along the flexible member 180 until it is secured onto the press-fit fastener 100 with the desired tension.
  • the suture anchor 190 , flexible member 180 , and press-fit fastener 100 can be made from a variety of materials.
  • some or all of the components can be made from a bioabsorbable material.
  • some or all of the components can be made from a bio-compatible metal (e.g., titanium) or material (such as a polymer, or bone).
  • the suture anchor 190 and flexible member 180 can be titanium and the press-fit fastener 100 can be a bioabsorbable material. The desired application will determine the most appropriate material for each component.
  • the flexible member 180 can be a single strand of material or it can be made from multiple strands that are braided or otherwise formed as a single element.
  • the flexible element 180 can be fiber-wire, ultra-braid, or dura-braid, to name but a few.
  • kits 1000 may include a suture anchor 190 , a press-fit fastener 100 , a flexible member 180 , and a handle 1010 . Both the handle 1010 and the suture anchor 190 may be cannulated. In some embodiments, the handle may be disposable.
  • kit components may be pre-attached (e.g., “pre-loaded”) such that much of the prep work is completed for the user.
  • the flexible element 180 may extend from the handle 1010 , through the suture anchor 190 , and the distal end of the flexible element 180 may be secured (e.g., coupled) to the press-fit fastener 100 .
  • the distal end of the flexible element 180 may be looped over the press-fit fastener 100 (e.g., similar to a noose) or, if the press-fit fastener 100 has a central bore 160 , the flexible element may be passed through the central bore 160 and tied off at the back of the press-fit fastener 100 .
  • the user/physician may use the handle 1010 to insert the suture anchor 190 into the drilled hole and secure the suture anchor 190 within first bone.
  • the suture anchor 190 may be threaded, tapped or otherwise engaged/secured within the drilled hole (e.g., using the handle 1010 ) to ensure a secure fit.
  • the flexible element 180 supplied within the kit 1000 may be long enough to allow for a certain amount of “slack” between the suture anchor 190 and the press-fit fastener 100 so that the fastener 100 is able to be positioned outside of the surgical site and out of the way of the user until needed.
  • the slack also allows the physician to introduce, engage, secure, and adjust the suture anchor 190 and the fastener 100 independently.
  • the physician can disengage the handle with the drill tunnel. For example, the physician may pull the handle 1010 proximally, allowing the handle 1010 to slide along the flexible element 180 without interfering with the length of the flexible element 180 . The physician may then place the press-fit fastener 100 into the hole in the second bone and engage the fastener 100 with the second bone. The physician may then pull the flexible element 180 (e.g., at the handle 1010 ) towards the physician. As the physician pulls the flexible element 180 , the fastener 100 is drawn distally towards the suture anchor 180 , further enforcing the press-fit and thereby adjusting the tension of the flexible element 180 . The flexible element 180 may then be secured such that the length is fixed. The locking method used to secure the flexible element 180 is dependant on the type of suture anchor being used and included in the kit 1000 .
  • the kit 1000 is described above as including the suture anchor 190 , the fastener 100 , the handle 1010 and the flexible element 180 , the kit can be packaged with any number of the components.
  • the kit 1000 may include only a suture anchor 190 and a fastener 100 (e.g., not the handle 1010 and flexible element 180 ).
  • the kit 1000 may include the suture anchor 190 , the fastener 100 , and the flexible element 180 (e.g., not the handle 1010 ).
  • the fastener 100 can be used in conjunction with a cannulated and/or self-tapping suture anchor 1110 .
  • the physician may properly align the joint in question (e.g., using the K-wire joysticks described above) and then drill a guide wire 1120 through the bones (e.g., the scaphoid 610 and the lunate 620 ). Once the guidewire 1120 is in place, the physician can align the joint further and define exactly where the implants should be placed.
  • the physician may drill out the scaphoid 610 , as described above with respect to FIG. 9 .
  • the physician may use a single drill to drill out only the scaphoid or may used a stepped drill to drill out both the scaphoid and the lunate. If the suture anchor is self-tapping, then the physician does not need to drill out the lunate 620 (e.g., only the scaphoid 610 needs to be drilled out).
  • the physician need only slide (e.g., using the handle/inserter described above) the suture anchor 1110 over the guide wire and secure the cannulated suture anchor 1110 into the lunate 620 by screwing the suture anchor into the lunate 620 .
  • the proximal end of the cannulated suture anchor 1110 should be below the cortex of the lunate 620 so that the suture anchor is not 1110 protruding into the joint.
  • the physician may then insert the press-fit fastener 100 . If the fastener 100 is cannulated as shown in FIGS. 11A and 11B , the physician may simply slide the fastener 100 over the guide wire and use the handle/inserter to push it into the scaphoid 610 . If the fastener is not cannulated, the physician must first remove the guide wire 1120 prior to inserting the fastener 100 . Once the fastener 100 is inserted into the scaphoid, the physician may then secure the flexible element 180 to the fastener 100 , as described above.
  • some embodiments of the press-fit fastener 100 can include radio-opaque markers 1210 A-D that allow a physician to easily locate the device when taking an x-ray of the joint in question. For example, if a patient with the above described devices returns to the physician and complains of pain, the physician need not resort to surgery to view the location and status of the implants. Rather, the physician may simply take an x-ray of the joint in question. If the implant is made from a non-metallic material (e.g., PEEK, PLLA, etc.), the implant will not appear on the x-ray image.
  • a non-metallic material e.g., PEEK, PLLA, etc.
  • the radio-opaque markers 1210 A-D will allow the physician to easily locate the implant (e.g, the fastener 100 ).
  • the markers 1210 A-D can be any of a variety of materials and structures.
  • the markers can be rings 1210 A located at either end of the fastener ( FIG. 12A ), a single chip 1210 B located at a known or random location within the fastener 100 ( FIG. 12B ), metallic dust particulates 1210 C dispersed through the non-metallic material ( FIG. 12C ), or a rod 1210 D through the fastener 100 along the longitudinal axis ( FIG. 12D ).
  • embodiments of the present invention may also include a soft tissue implant 1310 (e.g., an autograft, allograft, xenograft, or similar material).
  • the soft tissue implant 1310 may be instead of or in addition to the flexible element 180 described above.
  • the soft tissue implant 1310 may be secured across the joint space 1320 between the fastener 100 and the suture anchor 190 .
  • the soft tissue implant 1310 may be held within each bone using an interference fit, may be attached to the suture anchor 190 via the flexible element 180 and secured to the fastener 100 using an interference fit, or may be secured to both the fastener 100 and the suture anchor 190 .
  • the soft tissue implant 1310 may be braided with high strength suture, such as Fiberwire.
  • embodiments of the present invention may be used to secure more than two bone members and/or bone members that are not adjacent to one another.
  • embodiments of the present invention may be used to secure and/or stabilize the scaphoid 610 and the triquetrum 1410 .
  • the suture anchor 190 may be located within the triquetrum 1410
  • the fastener 140 may be located within the scaphoid 610
  • the flexible element 180 may extend through the joint space and at least one intermediate bone member (e.g., the lunate 620 ).
  • the physician may make an incision 1420 and dissect the soft tissue to expose the scaphoid 610 (or other bone member).
  • the physician may then drill a guide wire 1430 from scaphoid 610 (e.g., the proximal bone member), across the lunate 620 (e.g., the intermediate bone member), and into the triquetrum 1410 (e.g., the distal bone member).
  • the physician may then use a cannulated drill (not shown) to create a tunnel through the scaphoid 610 , lunate 620 , and triquetrum 1410 .
  • the physician may place the suture anchor 190 (e.g.
  • a cannulated anchor over the guide wire 1430 and advance the suture anchor 190 along the guide wire 1430 until it is secured beneath the proximal cortex of triquetrum 1410 . It is important to note that, as mentioned above, when the suture anchor 190 (or the fastener 140 ) is positioned beneath the proximal cortex of the bone, the suture anchor 190 (or the fastener 140 ) will not to interfere with the joint space.
  • the flexible element 180 will extend from the suture anchor 190 to the incision site 1420 (e.g., it will extend through the joint space between the triquetrum 1410 and the lunate 620 , the tunnel through the lunate 620 , the joint space between the lunate 620 and the scaphoid 610 , the tunnel through the scaphoid 610 , and the space between the scaphoid 610 and the incision 1420 ).
  • the physician may then remove the guide wire 1430 and insert the fastener 140 into the tunnel within the scaphoid 610 to create a press-fit in the scaphoid 610 .
  • the physician may then secure the flexible member 180 onto the fastener 140 (e.g., by knotting, tying, looping, capping, crimping, brazing, welding or any other suitable means etc.) and adjust the tension (if needed), as described above.
  • the fastener 140 e.g., by knotting, tying, looping, capping, crimping, brazing, welding or any other suitable means etc.
  • FIG. 15 shows an alternate configuration and method for securing more than two bone members and/or non-adjacent bone members.
  • a fastener may be located within the scaphoid, and the flexible element 180 may extend through the joint space and at least one intermediate bone member (e.g., the lunate 620 ).
  • the configuration shown in FIG. 15 also has a press-fit fastener in the distal bone member (e.g., the triquetrum) and utilizes two incisions.
  • the first incision 1510 may be made, for example, proximate the lateral cortex of a proximal bone member 1520 (e.g., the scaphoid) and the physician may dissect the soft tissue down to bone member 1520 .
  • the physician may then drill the guide wire 1530 from proximal bone member 1520 , across/through an intermediate bone member 1540 (e.g., the lunate), and through distal bone member 1550 (e.g., the triquetrum).
  • the physician may then make the second incision 1560 proximate to the lateral cortex of the distal bone member 1550 at the exit site of guide wire 1530 and dissect the soft tissue down to bone member 1550 .
  • the physician may use a cannulated drill (not shown) to create a bone tunnel through proximal bone member 1520 , intermediate bone member 1540 , and distal bone member 1550 .
  • the physician may then pass a flexible element(s) 180 (e.g., a soft tissue graft implant, suture, etc.) through the first incision 1510 , into the bone tunnel, and advance the flexible element 180 through the bone members 1520 , 1540 , 1550 and out of the anatomy through second incision 1560 .
  • the flexible member 1570 may then extend from the first incision site 1510 to the second incision site 1560 .
  • the physician may then insert fastener 1590 through incision 1560 , advance the fastener 1590 into the bone tunnel to create a press-fit beneath the cortex of distal bone member 1550 (e.g., the triquetrum), and secure one end of the flexible element(s) 180 onto the fastener 1590 .
  • the physician may then pass fastener 1580 through incision 1510 , advanced the fastener 1580 into the bone tunnel to create a press-fit beneath the cortex of proximal bone member 1520 .
  • the physician may then secure the opposing end of the flexible element(s) 180 onto the fastener 1580 .
  • the flexible element 180 may be secured to the fasteners 1580 / 1590 by, for example, utilizing the interference fit between the fasteners 1580 / 1590 and the bone tunnel to hold the flexible element 180 between the wall of the tunnel and the fasteners 1580 / 1590 .
  • the fasteners 1580 and 1590 may be inserted in an opposing fashion.
  • the tapers of the fasteners 1580 / 1590 may be oriented in opposite directions such that the smaller diameter ends of the fasteners 1580 / 1590 face one another.
  • the flexible element 180 may be a soft tissue graft implant that may or may not be reinforced with a suture.
  • the flexible element 180 may be placed within the bone tunnel using a variety of methods. For example, the physician may affix the flexible element 180 to an eyelet at one end of the guide wire 1530 and draw the flexible element 180 into the bone tunnel.
  • additional embodiments of the present invention may use fasteners with surface features (e.g., threads, ribs, etc.) that strengthen the fixation within the bone members.
  • surface features e.g., threads, ribs, etc.
  • the procedure shown in FIG. 16 is similar to that described above with regard to FIG. 15 .
  • the fasteners 1680 / 1690 have surface features, they may need to be rotated (e.g., for threaded engagement) or tapped in using a hammer-like apparatus (not shown).
  • the physician In order to perform the procedure shown in FIG. 16 , the physician must first make an incision 1610 proximate to the lateral cortex of the first bone member 1620 (e.g., the scaphoid), and dissect the soft tissue down to bone member 1620 . The physician may then drill the guide wire 1630 from proximal bone member 1620 , across/through the intermediate bone member 1640 (e.g., the lunate) and through a distal bone member 1650 (e.g., the triquetrum).
  • the intermediate bone member 1640 e.g., the lunate
  • a distal bone member 1650 e.g., the triquetrum
  • the physician may then make a second incision 1660 proximate to the lateral cortex of a distal bone member 1650 (e.g., the triquetrum), for example at the exit site of guide wire 1630 , and dissect the soft tissue down to distal bone member 1650 .
  • a distal bone member 1650 e.g., the triquetrum
  • the physician may then create (e.g., using a cannulated drill) a bone tunnel through bone members 1620 , 1640 , 1650 , and pass the flexible element(s) 180 through the incision 1610 and into the bone tunnel.
  • the physician may advance the flexible element 180 through the bone members 1620 , 1640 , 1650 and out of the anatomy through the second incision 1660 such that the flexible element 180 extends between the incision sites 1610 and 1660 .
  • the physician may then insert fastener 1690 through incision 1660 , advance the fastener 1690 into the bone tunnel to create a press-fit beneath the cortex of the distal bone member 1650 (e.g., the triquetrum), and secure one end of the flexible element(s) 180 onto the fastener 1690 .
  • the physician may then pass the fastener 1680 through incision 1610 , advance the fastener 1680 into the bone tunnel to create a press-fit beneath the cortex of the proximal bone member 1620 , and secure the opposing end of the flexible element(s) 180 onto the fastener 1680 .
  • the physician may rotate the fastener or use a hammer like device to help insert the fastener and create the press-fit.
  • the flexible element 180 may be secured to the fasteners 1680 / 1690 by, for example, utilizing the interference fit between the fasteners 1680 / 1690 and the bone tunnel to hold the flexible element 180 between the wall of the tunnel and the fasteners 1680 / 1690 .
  • embodiments of the present invention are described above with respect to the scaphoid and lunate bones, embodiments of the present invention can be used in any scenario in which there is a limited amount of relative axial movement between the components.
  • embodiments of the present invention may be used to secure bones located within the foot and other non-fractured and fractured bones.

Abstract

An apparatus for stabilizing a joint with low relative motion during orthopedic surgery. The apparatus includes a press-fit fastener body and a coupler. The press-fit fastener body has a proximal end and a distal end and is configured to be press-fit into a tunnel in a first bone member. The coupler is located on or is part of the press-fit fastener body and is configured to receive at least one flexible element trailing from at least one suture anchor. At least a portion of the suture anchors are located within a second bone member.

Description

    PRIORITY
  • This patent application is a continuation in part of utility patent application Ser. No. 12/109,825 entitled “Method and Device for Stabilizing Joints With Limited Axial Movement” filed Apr. 25, 2008, assigned attorney docket number 2878/105, and naming Michael G. McNamara and Avery B. Munoz as inventors the disclosure of which is incorporated herein, in its entirety, by reference.
  • Utility patent application Ser. No. 12/109,825, in turn, claims priority from provisional United States patent applications:
  • Application No. 60/913,975, filed Apr. 25, 2007, entitled, “Method and Device for Securing Suture Anchors in Tension,” assigned attorney docket number 2878/103, and naming Michael G. McNamara and Avery B. Munoz as inventors, the disclosure of which is incorporated herein, in its entirety, by reference.
  • Application No. 60/984,895, filed Nov. 2, 2007, entitled, “Method and Device for Securing Suture Anchors in Tension,” assigned attorney docket number 2878/104, and naming Michael G. McNamara and Avery B. Munoz as inventors, the disclosure of which is incorporated herein, in its entirety, by reference.
  • FIELD OF THE INVENTION
  • The invention generally relates to joint surgery. More specifically, the invention relates to a method and device for stabilizing a joint with low relative axial motion.
  • BACKGROUND ART
  • Scapho-lunate dissociation is the most common carpal instability. Scapho-lunate dissociation can be characterized by diastases between the scaphoid and lunate bones and rotatory subluxation of the scaphoid. Scapho-lunate dissociation typically causes wrist pain, swelling, clicking, progressive radiocarpal arthritis, and decreased motion and grip strength. There are currently many surgical treatment options that may be indicated depending on a variety of factors, including healing potential of the ligament, time elapsed since injury, alignment/reducibility of the carpal row and presence/extent of degenerative changes in the wrist. However, all of these treatments have some undesirable results (e.g., loss of range of motion, long periods of immobilization and/or high rates of failure). With the exception of the bone-tissue-bone grafts, each of the treatment options mentioned below have been used for over 10 years. Additionally, the bone-tissue-bone grafts and the RASL procedure discussed below have only limited clinical results.
  • One method used to treat scapho-lunate dissociation is dorsal capsulodesis. Dorsal capsulodesis can be performed with or without repair of the scapholunate interosseous ligament (SLIL). During either method, a physician temporarily pins Kirschner wires across the scapholunate and scaphocapitate intervals to restore proper carpal alignment during healing. Currently available results indicate that dorsal capsulodesis is associated with long term weakening and provides only limited motion recovery.
  • Bone-tissue-bone grafts are another treatment option for scapho-lunate dissociation. During the bone-tissue-bone graft procedure, the physician utilizes an autologous bone-tissue-bone graft to replace the scapholunate interval. Complications associated with bone-tissue-bone grafts include the problems associated with a second surgical site and selecting a graft that operates similarly to the SLIL being replaced. As stated above, the results of these treatments are variable and long term outcomes are unknown.
  • One of the newer and less invasive methods for treating Scapho-lunate dissociation is known as the Reduction and Association of the Scaphoid and Lunate (RASL) procedure. Although long-term results are unavailable, the RASL procedure offers only limited motion recovery and relatively high potential for failure. During failure, screws inserted into the bone during the procedure may back out and protrude into the scapho-lunate interval. In addition, the screws wear and weaken the bone as the bone rotates about the screw during motion. Once a RASL procedure fails the patient is left with very limited treatment options because the damage to the bone can be very severe.
  • Chronic instances of scapholunate instability extending towards degenerative arthritis typically require more extreme surgical procedures with highly compromising results. One such option is intercarpal fusion. During the intercarpal fusion procedure, a physician fuses two or more carpal bones (e.g., scapholunate, scaphoid-trapezium-trapezoid, scaphoid-capitate-lunate, and lunate-capitate-triquetrum-hamate) together. As one would expect, fusion of the bones greatly reduces the patient's range of motion. Additionally, there are high complication and failure rates associated with the intercarpal fusion procedure.
  • Suture anchors are well-known in the prior art and are commonly used by physicians to secure soft tissue to bone. A suture anchor typically includes a body portion and at least one suture secured to the body portion. The body portion is driven into the bone, and a securing means secures the body portion within the bone. For example, many suture anchors have threads, screws, hooks, or deployable members located on the body portion.
  • In practice, a physician typically drills a hole into a bone. The physician then inserts (e.g., screws, threads, etc.) the body portion of a suture anchor into the bone tunnel. The suture(s) is then secured to the soft tissue (e.g. ligament) using any of a number of methods (e.g., knotting, tying, looping, etc.), depending on the design of the suture anchor being used. Because a suture anchor includes a suture attached to the body portion, the suture anchor secures the ligament to the bone.
  • SUMMARY OF THE INVENTION
  • In various embodiments of the present invention, an apparatus for stabilizing a joint with low relative axial motion during orthopedic surgery includes a fastener body and a coupler. The fastener body has a proximal end and a distal end and is configured to be press-fit into a tunnel in a first bone member. The fastener body may also be cannulated. The coupler may be located on or may be part of the fastener body. The coupler can receive at least one flexible element trailing from at least one suture anchor. At least a portion of the suture anchor may be located within a second bone member. In some embodiments, the first bone member is a scaphoid bone and the second bone member is a lunate bone. However, in alternative embodiments, the first bone member is a lunate bone and the second bone member is a scaphoid bone. In further embodiments, the bone members do not need to be the scaphoid and the lunate bones, and various embodiments of the present invention may cross any low axial motion joint.
  • The fastener body may be tapered from the proximal end to the distal end such that the width of the distal end is approximately equal to a major diameter of the suture anchor. The fastener body may also be non-tapered. The proximal end of the fastener body may include a proximal indentation. The flexible element(s) may be secured to the fastener body at the proximal indentation.
  • The coupler can be a channel extending along an outer surface of the fastener body from the proximal end to the distal end. Alternatively, the coupler may be an eyelet. The apparatus can be made from a variety of materials including, but not limited to, polymeric material, titanium, or bone, or a bioabsorbable material. The fastener body may include a receptacle configured to receive a hexagonal driver.
  • In other embodiments of the present invention, a method of securing a suture anchor includes inserting a suture anchor into a first bone member, securing a flexible element attached at one end to a fastener, inserting the fastener into a hole in a second bone member, and adjusting the flexible member to a desired tension. The flexible element can have a first end and a second end and may be attached to the suture anchor at the first end. Alternatively, the flexible element can be threaded over or through the fastener. For example, the fastener may have a hole through the body. The physician can thread the flexible element through the hole, or the fastener may be supplied to the physician “pre-loaded” (e.g. the flexible element may already be coupled to the fastener). The physician may then adjust the flexible element to the desired length. During installation of the suture anchor, the flexible element may span a space between the first bone member and a second bone member and pass through the tunnel in the second bone member so that it may be secured to the fastener. The fastener may be configured to be press-fit into the tunnel in the second bone member. As the physician adjusts the flexible member to a desired tension, the first bone member is secured to the second bone member. Inserting the fastener into the tunnel in the second bone member may create the press-fit. Additionally, the fastener may include at least one thread configured to facilitate the removal of the apparatus from, or adjustment of the apparatus within the second bone member. An example of the thread located on the fastener is a screw thread (e.g., a raised helical rib).
  • In still other embodiments, the method may include drilling a hole through at least the first bone member and the second bone member. The first bone member can be a lunate bone and the second bone member can be a scaphoid bone. The first and second bone members can be bone fragments or any other bone material.
  • The suture anchor can be inserted such that the suture anchor is beneath the surface of the first bone member. Likewise, the fastener can be inserted such that it is beneath the surface of the second bone member. By inserting the suture anchor and fastener in this manner, abrasion of and by adjacent bone and soft tissue is avoided.
  • The steps of the method can occur in a variety of orders. For example, securing the flexible element may occur before inserting the fastener and adjusting the flexible member. Alternatively, inserting the fastener can occur before securing the flexible element and adjusting the flexible member. Additionally, adjusting the flexible member may occur before securing the flexible element and inserting the fastener. The suture anchor and fastener may also be supplied such that they are both already coupled to the flexible element. The anchor and fastener may be cannulated for placement over a guide wire.
  • In still other embodiments, a kit for use during orthopedic surgery to couple bone members includes at least one suture anchor, a fastener, and at least one flexible element. The suture anchor can be for insertion into a first bone member. The fastener can have a fastener body, and a coupler located on or as a part of the fastener body. The fastener may be configured to be press fit into a hole in a second bone member and the fastener may be threaded as described above. The at least one flexible element may have a first end and a second end. The first end may be attached to the suture anchor and the second end may be configured to be secured to the fastener body, thereby placing the flexible element in tension and coupling the first and second bone members. In embodiments containing multiple suture anchors, more than one suture anchor may be attached to a single fastener.
  • The first bone member can be a scaphoid bone and the second bone member can be a lunate bone. Alternatively, the first bone member can be a lunate bone and the second bone member can be a scaphoid bone. In further embodiments, the bone members do not need to be the scaphoid and the lunate bones, and various embodiments of the present invention may cross any low axial motion joint.
  • The fastener body can be tapered from a proximal end to a distal end such that the width of the distal end is approximately equal to the major diameter of the suture anchor. The proximal end of the fastener body can include a proximal indentation, at which the at least one flexible element may be secured to the fastener body. The coupler can be a channel extending along an outer surface of the fastener body from a proximal end to a distal end. Alternatively, the coupler can be an eyelet. The flexible element may be any suture material available on the market, and may be coupled with soft tissue implants or similar.
  • The suture anchor and fastener can be made from a variety of materials including, but not limited to a polymeric material, titanium, bone, or a bioabsorbable material. Non-metallic versions of this device may be manufactured with a small “chip” or dust of biocompatible metal to serve as a radio-opaque marker to be viewable on x-ray. The fastener body may include a receptacle configured to receive a hexagonal driver or other shaped driver.
  • In accordance with additional embodiments, a method of stabilizing joints with limited axial movement may include inserting at least one suture anchor into a first bone member. The first end of a flexible element(s) may be attached to the suture anchor(s). The flexible element may span a space between the first bone member and a second bone member. The flexible element may also pass through a tunnel in the second bone member and an intermediate bone member. The intermediate bone member (e.g., the lunate bone or a bone fragment) may be located between the first (e.g., the scaphoid bone or a bone fragment) and second bone members (e.g., the triquetrum bone or a bone fragment). The method may also include securing the second end of the flexible element to a fastener configured to be press-fit into the tunnel in the second bone member, and inserting the fastener into the tunnel in the second bone member. The method may then adjust the flexible member to a desired tension, for example, to secure the first bone member to the second bone member.
  • The method may also include drilling a hole through at least the first bone member, the second bone member, and the intermediate bone member. Additionally, inserting the fastener into the hole in the second bone member may create a press-fit. The suture anchor and the fastener may be inserted such that they are beneath the surface of the first and second bone members in order to avoid abrasion of soft tissue and/or abrasion injury to cartilage. The flexible element may be secured to the fastener before inserting the fastener and adjusting the tension. Alternatively, the fastener may be inserted before securing and adjusting the flexible element. Moreover, in other embodiments, the flexible member may be adjusted before the flexible element is secured and the fastener is inserted.
  • In accordance with further embodiments a method for stabilizing a joint with limited axial movement may include first making an incision on a first site of the joint. The incision may be proximal to a first bone member. The method may then drill a guidewire through the first bone member, a second bone member, and into a third bone member. The second bone member may be located between the first and third bone members. Once the guidewire is drilled through the bones, the method may prepare a bone tunnel through the first and second bone members and into the third bone member, and secure a suture anchor within the third bone member. The suture anchor may have a flexible member extending through the bone tunnel and the second bone member, and spanning a space between the first and third bone members. The flexible member may have a first end that is secured to the suture anchor and a second end. The method may then insert a press-fit fastener into the first bone member (e.g., before or after removing the guidewire), and secure the second end of the suture anchor to the press-fit fastener. The press-fit fastener may create a press-fit between the press-fit fastener and the bone tunnel.
  • In accordance with additional embodiments, the method may also include dissecting soft-tissue from the joint to expose the first bone member, placing the suture anchor over the guide wire, and advancing the suture anchor along the guidewire until the suture anchor is secured within a portion of the bone tunnel within the third bone member. The suture anchor may be secured beneath a proximal cortex of the third bone member. The flexible member may also be adjusted to a desired tension to secure the first bone member to the third bone member.
  • In accordance with additional embodiments, a method for stabilizing a joint with limited axial movement may include making an incision on a first incision site (e.g., proximate to a first bone member), drilling a guidewire through the first bone member, a second bone member, and a third bone member, and making a second incision on a second incision site (e.g., proximate to the third bone member). Once the incisions are made, the method may create a bone tunnel through the first, second, and third bone members, and pass a flexible element through the bone tunnel (e.g., by affixing the flexible element to an eyelet located on the guidewire, and drawing the flexible element through the bone tunnel using the guidewire). The flexible element may extend from the first incision to the second incision and pass through the first, second, and third bone members.
  • The method may then insert a first fastener into the third bone member through the second incision, and secure a first end of the flexible element to the first fastener. The first fastener may create a press-fit within the third bone member. The method may also insert a second fastener into the first bone member through the first incision, and secure the second end of the flexible element to the second fastener. The second fastener may create a press-fit within the first bone member. In some embodiments the first and second fasteners may be tapered and they may be inserted into the bone members such that the direction of the tapers oppose each other.
  • In accordance with further embodiments, the guidewire may extend through the joint and the second incision site may be located at the exit site of the guidewire. Additionally, the flexible element may be a soft tissue graft implant that may or may not be reinforced with a suture. The first and/or second fasteners may include surface features that improve fixation within the bone members. For example, the fasteners may include threads, ribs, back cutting threads, and/or grooves. If the surface features are threads, the fastener(s) may be inserted by rotating the fasteners. If the surface features are ribs, the fasteners may be inserted by tapping with a hammer.
  • The method may also include dissecting any soft-tissue from the joint to expose the first and third bone members. The guide wire may be removed prior to inserting the first and second press-fit fasteners. The first and second ends of the flexible element may be secured to the first and second fasteners by positioning the first and second ends within the press-fit areas created between the first and second fasteners and the bone tunnel.
  • This invention greatly broadens applications of suture anchors in orthopedics, extending the focus to fixture of bone to bone, rather than just soft tissue to bone.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
  • FIG. 1 schematically shows a side view of the device for coupling two or more bones in accordance with embodiments of the present invention.
  • FIG. 2 schematically shows a proximal view of the device shown in FIG. 1.
  • FIG. 3 schematically shows a distal view of an alternative embodiment of the device shown in FIG. 1.
  • FIG. 4 schematically shows an isometric view of an alternative embodiment of the device for securing suture anchors in tension.
  • FIG. 5A schematically shows an isometric view of another alternative embodiment of the device for securing suture anchors in tension.
  • FIG. 5B schematically shows an isometric view of an alternative embodiment of the device for securing suture anchors in tension, wherein the device includes threads. The threads have a reverse-cutting edge for removal of the device from bone.
  • FIG. 5C schematically shows an proximal isometric view of the alternative embodiment of FIG. 5B.
  • FIG. 6 schematically shows the device of FIG. 1 securing a scaphoid bone and lunate bone within a patient's hand.
  • FIG. 7 schematically shows an alternative embodiment of a system to secure bone members.
  • FIG. 8 schematically shows another alternative embodiment of a system to secure bone members, including a stepped driver.
  • FIG. 9 is a flowchart showing the steps for using the device shown in FIG. 1.
  • FIG. 10A schematically shows a pre-loaded kit containing the device shown in FIG. 1 and additional components, in accordance with some embodiments of the present invention.
  • FIG. 10B schematically shows a close-up of the suture anchor and flexible element within the kit shown in FIG. 10A, in accordance with some embodiments of the present invention.
  • FIGS. 11A and 11B schematically show alternative embodiments of a system utilizing a cannulated suture anchor and fastener, in accordance with some embodiments of the present invention.
  • FIGS. 12A to 12D schematically show alternative embodiments of the press-fit fastener with radio-opaque markers, in accordance with some embodiments of the present invention.
  • FIG. 13 schematically shows an alternative embodiment of a system with a soft-tissue implant, in accordance with some embodiments of the present invention.
  • FIG. 14 schematically shows embodiments of the present invention in situ within the hand and stabilizing at least two non-adjacent bones, in accordance with some embodiments of the present invention.
  • FIG. 15 schematically shows embodiments of the present invention in situ within the hand and stabilizing at least two non-adjacent bones in an alternative manner to that shown in FIG. 14, in accordance with some embodiments of the present invention.
  • FIG. 16 schematically shows embodiments of the present invention in situ within the hand and stabilizing at least two non-adjacent bones in an alternative manner to that shown in FIGS. 14 and 15, in accordance with some embodiments of the present invention.
  • DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
  • Referring now to FIG. 1, a press-fit fastener 100 for coupling two or more bones in tension greatly simplifies and improves upon the currently used methods for controlling relative motion between bones or inter-fragmentary stabilization. The device (and method for using the same), when used in conjunction with a suture anchor 190 (FIG. 6), creates a system for adjustably securing a suture anchor 190 in tension. The system gives a physician the ability to manipulate movement between at least two bone members in a joint with low relative axial motion. The system also allows a physician to secure inter-fragmentary stabilization of a bone fracture. The system is used in conjunction with a suture anchor 190 to offer adjustable tension, thereby controlling the position (e.g., alignment), amount of rotation, and resistance to shear. The amount of desired rotation and shear depend on the application.
  • This system broadens the field of applications in which suture anchors can be used and allows physicians to address and solve current challenges in orthopedics. As mentioned above, suture anchors currently affix soft tissue to bone. Embodiments of this invention allow a physician to secure bone to bone. Further, proper use of embodiments of this device (involving connection of the device to a suture anchor) offers temporary or permanent fixation, restoration of carpal alignment, and normal range of motion between the scaphoid and lunate bones. For acute ligament tears, the tears and bones may be valuated, aligned, and debrided using a scope. Additionally, for chronic scapho-lunate tears, the procedure may be preceded by excision of part of the scapho-lunate joint using the RASL (Reduction and Association of the Scaphoid and Lunate) technique. As is known in the art, the RASL procedure can be performed percutaneously or through a limited incision and arthroscopic assist. In either RASL method, the articular surfaces of the scapho-lunate joint are excoriated to expose cancellous bone. The scaphoid and the lunate are then reduced using “K-Wire Joysticks” (typically 0.062″). A cannulated screw is passed over a K-wire, through the scaphoid, across the joint, and into the lunate. The methods in accordance with embodiments of the present invention may utilize techniques defined by the RASL procedure to excoriate the articular surfaces and properly align the scaphoid and lunate prior to inserting the suture anchor 190 and press-fit fastener 100.
  • The use of a suture anchor 190 and press-fit fastener 100, as described below, does not suffer from the problems associated with the RASL procedure described above. The flexible element 180 extending between the scaphoid and lunate more closely mimics the characteristics of the scapholunate ligament. Additionally or alternatively, as described in greater detail below, the device may be implanted with autograft, allograft, or xenograft tissue, allowing early range of motion coupled with stabilization of the joint during healing. Therefore, mobility is not impaired and the patient can mobilize the hand and wrist immediately.
  • Although the invention is described with respect to the scaphoid and lunate bones, the invention may be used to position and secure other bones. A physician may use embodiments of this invention to treat injuries at other articular surfaces throughout the body that experience limited relative motion. Such articular surfaces may include the acromioclavicular joint, scapho lunate joint, coraco clavicular joint, and any other low axial motion joint, as well as joints between the tarsals, metatarsals, other carpal bones and metacarpals. Some embodiments may also be used to stabilize bone fragments while healing occurs. In such embodiments, the physician may insert and secure a suture anchor 190 (see FIG. 6) in one fragment, and the fastener in at least one other. The physician may then tie off a flexible element 180, attached to the suture anchor 190, onto the fastener at the desired tension. The purpose of the device in this application is to maintain good contact and alignment between bone fragments while healing occurs.
  • As shown in FIG. 1, the press-fit fastener 100 can have a main body 110 that is shaped and sized such that it may achieve an interference fit (e.g., a press fit) with the tunnels/drill holes created by the physician, as discussed in greater detail below. An interference fit, sometimes called press fit, is a method of fastening two parts by creating friction between the parts as they are pushed together. In embodiments of this invention, a physician can push the press-fit fastener 100 into a tunnel in the bone, and the resulting compression and tensile forces between the press-fit fastener 100 and bone hold the press-fit fastener 100 in the bone. In some embodiments, the main body 110 of the press-fit fastener 100 can be tapered such that it has a generally decreasing cross section from the proximal end 120 to the distal end 130. In some embodiments, the width at the distal end 120 is approximately equal to the major diameter of the suture anchor 190. This helps to form the interference fit between the implantable press-fit fastener 100 and the bone and secure the location of the device in bone.
  • The embodiment of the press-fit fastener 100 shown in FIG. 1 does not include a head at the proximal end 120. However, the press-fit fastener 100 may include a head (not shown) that can sit deep to or on top of the articular surface. Additionally, the press-fit fastener 100 may include a receptacle for a hexagonal driver 240 (FIG. 8). In such embodiments, the physician can use the hexagonal driver 240 to insert and/or remove the press-fit fastener 100 from the bone member.
  • As mentioned above, the physician can use the press-fit fastener 100 in conjunction with a suture anchor 190 to secure the suture anchor 190 and flexible element 180 in tension. Although the below discussions refer to suture anchors 190 with threads 195 and a flexible element 180, the press-fit fastener 100 can be used in conjunction with any number of types of suture anchors. For example, the suture anchor 190 can have deployable members (rather than threads) that secure the suture anchor 190 within the hole in the bone member. Further, the flexible elements 180 can be separate elements that need to be attached to the suture anchor 190 or they may come pre-attached or integral to the suture anchor 190. Additionally, the flexible elements 180 can be threaded over or through the anchor 190. For example, the anchor 190 may have a central bore similar to one embodiment of the coupler described below. The flexible elements 180 can be threaded through the central bore and tied off at the opposing end of the suture anchor 190. In some embodiments, the suture anchor 190 can also have a cap 230 (FIG. 8) to which the flexible element 180 can be tied or otherwise attached.
  • To secure the suture anchor 190 in tension, the flexible element 180 extending from the suture anchor 190 can be coupled to the press-fit fastener 100. The press-fit fastener 100 may include a coupler that facilitates the coupling of the flexible element 180 to the press-fit fastener 100. The coupler can be a separate element located on or integral with the press-fit fastener 100 (e.g., an eyelet) or it can be integral to the fastener body 100 (e.g., the channels 140 discussed below).
  • In one embodiment of the present invention, the coupler can be channels 140 extending from the proximal end 120 to the distal end 130 of the main body 110. As discussed in greater detail below, the channels 140 provide an indentation in which the flexible element 180 can sit without interference or abrasion from surrounding bone and tissue. The coupler can also include a concavity 150 located at the proximal end 120 of the main body 110 and a concavity 170 located at the distal end 130 of the main body 110. The flexible element 180 can be secured to the press-fit fastener 100 at the concavity 150. The flexible element 180 can be secured to the press-fit fastener 100 at the concavity 150 by tying the flexible element 180 into a knot, capping, crimping, brazing, welding or any other suitable means.
  • In other embodiments of the present invention, the coupler can be a central bore 160 (FIG. 3) through which the flexible element 180 is passed. Once the flexible element 180 is passed through the central bore 160, it can be secured using any of the embodiments discussed above. In a similar manner as the channel embodiment discussed above, embodiments having a central bore 160 can also have a concavity 150 at which the flexible element can be secured. In some embodiments, the press-fit fastener 100 can also have an eyelet or a “T” (not shown) around which the flexible member(s) 180 can be secured. The eyelet may be a hole within either the suture anchor 190, the fastener 100, or the coupler. Additionally or alternatively, the eyelet may be a ring attached to or integral with the suture anchor 190, the fastener 100, or the coupler.
  • In further embodiments of the present invention, the press-fit fastener 100 need not have either the channels 140 or the central bore 160. In such embodiments, the interference fit (e.g., the press-fit) between the press-fit fastener 100 and the tunnel in the bone act to secure the flexible element 180 to the press-fit fastener 100. Specifically, as the press-fit fastener 100 is inserted into the tunnel within the scaphoid bone 610 (FIG. 6), the flexible element 180 is “pinched” between the main body 110 and the wall of the tunnel, securing the flexible element 180 in place.
  • Regardless of the type of coupler, embodiments of the present invention that utilize the combination of the suture anchor 190 and the press-fit fastener 100 are beneficial because they provide physicians with highly adjustable systems for securing and tensioning bones and suture anchors. The physician can adjust and secure the flexible element 180 without interference from the other system components (e.g., the suture anchor 190 and press-fit fastener 100) or the bones in which the system components are inserted. In addition, because certain embodiments of the present invention utilize an interference fit, the flexible element 180 does not become twisted, entwined, or entangled.
  • As shown in FIGS. 5B and 5C, some embodiments of the press-fit fastener 100 can include one or more threads on the exterior of the tapered main body 110. The threads can be a raised helical rib, similar to a screw thread. Alternatively, the threads can be back cutting threads 510 that have the same outer dimension as the fastener (e.g., they are not raised above the surface of the fastener). The press-fit fastener 100 can be fully or partially threaded (FIGS. 5B and 5C show a partially threaded embodiment). The back cutting threads 510 (e.g., revision threads) may be very steep angled threads that are cut into the surface of the press-fit fastener 100. The cutting edge 520 of the back cutting threads 510 may be located toward the proximal end 120 so that the threads only engage during removal and revision of the press-fit fastener 100. The design of the threads 510 allows the press-fit fastener 100 to be easily removed and adjusted after it is inserted into the tunnel.
  • The back cutting threads 510 are for revision and removal purposes and are not intended to engage the bone member when the press-fit fastener 100 is inserted. Further, because the back cutting threads 510 are not raised above the surface of the press-fit fastener 100, they do not interfere with the press-fit between the press-fit fastener 100 and the tunnel.
  • The press-fit fastener 100 may also have a driver slot 530 to allow a physician to remove or adjust the press-fit fastener 100. For example, if the physician feels that the tension on the suture anchor 190 needs to be adjusted, the physician can use a driver to either further insert or back-out the press-fit fastener 100. In addition, the physician can use the driver to remove the press-fit fastener 100 once the bone and/or ligaments have healed. FIG. 5C shows a hexagonal recess, however other recess shapes (including a simple slot) are within the scope of this invention.
  • In other embodiments, the channels 140 can include a sharp cutting edge that acts in a similar manner to the revision threads 510 described above. Like the revision threads 510, the sharp cutting edge can be used to remove the press-fit fastener 100 from the bone. The channels 140 may also be formed in a cork-screw fashion wrapping around the surface of the press-fit fastener 100 (as opposed to the substantially linear orientation shown in FIGS. 5B and 5C). In either embodiment, the press-fit fastener 100 may include a driver slot located on the proximal end, similar to that shown in FIG. 5C.
  • FIGS. 7 and 8 show alternative embodiments of the present invention. As shown in FIG. 7, the press-fit fastener 100 may be replaced with a second suture anchor 185. Therefore, in this embodiment, the first suture anchor 190 is located within the lunate bone 620 and the second suture anchor 185 is located in the scaphoid bone 610. The flexible member 180 connects the two suture anchors and secures and stabilizes the scaphoid 610 and lunate 620.
  • As shown in FIG. 8, a sleeve 220 can cover the flexible element between the suture anchors 200 and 210 (or the suture anchor 190 and press-fit fastener 100). The sleeve protects the flexible element from abrasion from the adjacent bone and soft tissue and protects the adjacent bone and soft tissue from abrasion by the flexible element. Additionally, the device can have a cap 230 for securing the flexible member at the proximal end of the second suture anchor 200. The suture anchors 200 and 210 can be inserted into and removed from the bone members using the stepped driver 240. Although FIG. 8 shows two suture anchors 200 and 210, the stepped driver 240 and the cap 230 can be used in embodiments having a press-fit fastener 100.
  • FIG. 9 provides a flow chart of one method of using the press-fit fastener 100 to secure a suture anchor 190 in tension. First, the physician drills a hole (e.g., tunnel) through the bone members that need to be secured and/or stabilized. (step 910). For example, in the case of scapho-lunate dissociation, the physician would drill through the scaphoid bone 610 within the hand, FIG. 6.
  • A physician may use a variety of drilling procedures and drill bit types to drill the required holes/tunnels within the bone members. For example, the physician may separately drill two distinct holes (e.g., one in the first bone and one in the second bone). Alternatively, the physician may use a cannulated drill with a guide tip. In such embodiments, the physician may perform a first drill pass through one bone member (e.g., the scaphoid) and into the other (e.g., the lunate) using a drill bit with the diameter required to insert the anchor 190. Once the suture anchor 190 is inserted, the physician can then pass the flexible member 180 through the cannulated drill-bit and drill a larger hole/tunnel in the second bone member (e.g., over-drill the hole already in the scaphoid) such that it can receive the press-fit fastener 100. The guide tip will ensure that the holes are properly aligned. Alternatively, the second (larger) hole may be drilled prior to insertion of the suture anchor. In certain applications (e.g. self-drilling, cannulated suture anchor), as described in greater detail below, a single drill bit may be sufficient for drilling through a first bone member. The anchor may pass through the tunnel provided, and the fastener may create the press-fit in the same tunnel.
  • In addition, the physician may use a stepped drill bit. The stepped drill bit may have two separate diameters. For example, the stepped drill bit may have a smaller diameter portion located near the tip of the drill bit (e.g., for drilling the hole required for the suture anchor 190) and a larger diameter located at the base (e.g., for drilling the tunnel/hole required for the press-fit fastener 100). The stepped drill bit allows the physician to drill different size holes in the first bone member and the second bone member in a single pass. The stepped drill bit may include a tapered transition from the smaller to the larger diameter. All drills may be cannulated, or the system may make use of a parallel drill guide.
  • Once the physician has drilled the hole/tunnel through appropriate bone and/or ligaments (e.g., the scaphoid 610), the physician can insert the suture anchor 190 into the first bone member (e.g., the lunate 620) (step 920). All activities performed by the physician may take place through a single incision, and along axis A (see FIG. 6). Therefore, when inserting the suture anchor, the physician should insert the suture anchor 190 through the hole (e.g., transosseous tunnel) in the second bone member (e.g., the scaphoid 610). Doing so will ensure that the flexible member 180 will span the space between the first and second bone members (e.g., the scaphoid 610 and lunate 620) and pass through the hole in the second bone member (e.g., the scaphoid 610).
  • The physician can then secure the flexible member to the press-fit fastener 100. (Step 930) using the coupler (e.g., channels 140 or central bore 160). As mentioned above, the flexible member 180 can be secured to the press-fit fastener 100 in a variety of ways. Once the flexible member 180 is secured to the press-fit fastener 100, the press-fit fastener 100 can then be inserted into the hole in the second bone member (e.g., the scaphoid 610) (step 940). As mentioned above, the press-fit fastener 100 is designed such that it can be press-fit into the hole. Therefore, no additional tapping is required to insert the press-fit fastener 100. The physician need only press the press-fit fastener 100 into the tunnel.
  • Next, the physician can adjust the flexible member 180 to the desired tension (step 950). If the suture anchor 190 includes an internal locking mechanism (not shown), the physician can lock the flexible member 180 in tension using the internal locking mechanism. Otherwise the physician can tie or otherwise secure the flexible member to the anchor 190. By adjusting the flexible member 180 to the desired tension, the press-fit fastener 100 is secured in the second bone member and is prevented from backing out. Also, as the flexible member 180 is adjusted, the bone members will be secured and stabilized in the desired locations. For example, if the purpose of the suture anchor 190 and press-fit fastener 100 is to aid in healing between bone fragments, the suture anchor 190 and press-fit fastener 100 will cause the bone fragments to maintain contact and alignment during healing. Similarly, if the purpose is treatment of scapho-lunate dissociation, the suture anchor 190 and press-fit fastener 100 will permanently or temporarily fix and restore carpal alignment, while allowing substantially normal range of motion between the scaphoid bone 610 and lunate bone 620 while the ligaments heal.
  • The physician chooses the length of the flexible member 180 (e.g., the physician can adjust the length of the flexible member 180) such that it will allow a flexible rotational connection and proper alignment between the suture anchor 190 in the first bone member and the press-fit fastener 100 in the second bone member. To achieve inter-fragmentary stabilization, the physician should draw (e.g., adjust) the flexible element 180 trailing from the suture anchor 190 tight enough to hold the proximal surface 622 of the first bone fragment in good contact with the distal surface 612 of the second bone fragment, in which the press-fit fastener 100 is secured.
  • All of the embodiments may include placement of soft tissue (autograft, allograft, xenograft or similar) alongside the device. This allows for the device to provide stabilization and early range of motion to the bones while securing the soft tissue within the bone tunnel for incorporation into the joint.
  • Although the above described method is described as securing a single suture anchor 190 to a press-fit fastener 100, multiple suture anchors 190 can be secured to a single press-fit fastener 100. For example, some applications may require that multiple suture anchors be placed within the first bone member. In such applications, the physician does not necessarily need to use multiple fasteners 100. Rather, the physician can secure all of the suture anchors 190 and flexible elements 180 to a single press-fit fastener 100, greatly simplifying the procedure and reducing the procedure time. Specifically, the inherent “play” within the joint and the larger drill hole in the scaphoid 610 allow a physician to adjust the location and angle of the suture anchors 190 at the lunate 620. Therefore, after the physician passes the suture anchor 190 through the scaphoid 610 and the suture anchor 190 is at the surface of the lunate 620, the physician can move the suture anchors 190 to a new location (e.g., the physician can move them “north” or “south” because the width of the drill hole is larger than the width of the suture anchor and the inherent play in the joint) and insert them into the lunate. The physician can then bring the flexible elements 180 from each of the suture anchors 190 through the scaphoid tunnel and couple them to a single press-fit fastener 100 using the methods described above.
  • It is important to note that, although the method is described as being performed in a specified order, the order of the method steps can be rearranged and still accomplish substantially similar results. For example, the physician can insert the press-fit fastener 100 into the hole (step 940) prior to securing the flexible element 180 to the press-fit fastener 100 (step 930) and adjusting the flexible element 180 (step 950). Alternatively, the flexible element can be adjusted (step 950) prior to securing it to the press-fit fastener 100 (step 930) and inserting the press-fit fastener 100 into the hole (step 940).
  • Returning to FIG. 6, the press-fit fastener 100 and suture anchor 190 are shown in place and secured within a hand. The press-fit fastener 100 is located within the hole in the scaphoid bone 610, and the suture anchor is located in the hole in the lunate bone 620. The flexible element 180 extends between the press-fit fastener 100 and the suture anchor 190 and is secured within the channels 140 and the concavity 150 located at the proximal end 120 of the press-fit fastener 100. The suture anchor 190, press-fit fastener 100, and flexible element 180 work together to secure and stabilize the scaphoid 610 and lunate 620 during healing without limiting the patient's range of motion.
  • It is important to note that, although the above described embodiments are securing at least one flexible element from a suture anchor in tension, other embodiments within the scope of this invention can have a flexible member 180 (e.g., the loop) that extends from the suture anchor 190 in the form of a loop (not shown). In such embodiments, the physician can adjust the length of the flexible member 180 by manipulating an internal locking mechanism within a suture anchor 190. Alternatively, the flexible member 180 may be attached to the suture anchor 190 in such a way as to allow the physician to simply pull the end(s) of the flexible member (e.g., the ends of the loop) at the suture anchor 190 to adjust the length of the flexible member 180 extending towards the press-fit fastener 100. The flexible member 180 may also have a sliding knot (not shown). In such embodiments, the suture anchor 190 can be coupled to the press-fit fastener 100 by sliding the knot along the flexible member 180 until it is secured onto the press-fit fastener 100 with the desired tension.
  • It is important to note that the suture anchor 190, flexible member 180, and press-fit fastener 100 can be made from a variety of materials. For example, some or all of the components can be made from a bioabsorbable material. Alternatively, some or all of the components can be made from a bio-compatible metal (e.g., titanium) or material (such as a polymer, or bone). For example, the suture anchor 190 and flexible member 180 can be titanium and the press-fit fastener 100 can be a bioabsorbable material. The desired application will determine the most appropriate material for each component.
  • Additionally, the flexible member 180 can be a single strand of material or it can be made from multiple strands that are braided or otherwise formed as a single element. For example, the flexible element 180 can be fiber-wire, ultra-braid, or dura-braid, to name but a few.
  • In accordance with other embodiments of the present invention, some or all of the above described components can be pre-packaged in a kit 1000. For example, as shown in FIGS. 10A and 10B, the kit 1000 may include a suture anchor 190, a press-fit fastener 100, a flexible member 180, and a handle 1010. Both the handle 1010 and the suture anchor 190 may be cannulated. In some embodiments, the handle may be disposable.
  • Additionally, some or all of the kit components may be pre-attached (e.g., “pre-loaded”) such that much of the prep work is completed for the user. In particular, the flexible element 180 may extend from the handle 1010, through the suture anchor 190, and the distal end of the flexible element 180 may be secured (e.g., coupled) to the press-fit fastener 100. For example, the distal end of the flexible element 180 may be looped over the press-fit fastener 100 (e.g., similar to a noose) or, if the press-fit fastener 100 has a central bore 160, the flexible element may be passed through the central bore 160 and tied off at the back of the press-fit fastener 100.
  • When using the kit 1000, the user/physician may use the handle 1010 to insert the suture anchor 190 into the drilled hole and secure the suture anchor 190 within first bone. In some embodiments, the suture anchor 190 may be threaded, tapped or otherwise engaged/secured within the drilled hole (e.g., using the handle 1010) to ensure a secure fit. The flexible element 180 supplied within the kit 1000 may be long enough to allow for a certain amount of “slack” between the suture anchor 190 and the press-fit fastener 100 so that the fastener 100 is able to be positioned outside of the surgical site and out of the way of the user until needed. The slack also allows the physician to introduce, engage, secure, and adjust the suture anchor 190 and the fastener 100 independently.
  • Once the suture anchor 190 is secure within the first bone member, the physician can disengage the handle with the drill tunnel. For example, the physician may pull the handle 1010 proximally, allowing the handle 1010 to slide along the flexible element 180 without interfering with the length of the flexible element 180. The physician may then place the press-fit fastener 100 into the hole in the second bone and engage the fastener 100 with the second bone. The physician may then pull the flexible element 180 (e.g., at the handle 1010) towards the physician. As the physician pulls the flexible element 180, the fastener 100 is drawn distally towards the suture anchor 180, further enforcing the press-fit and thereby adjusting the tension of the flexible element 180. The flexible element 180 may then be secured such that the length is fixed. The locking method used to secure the flexible element 180 is dependant on the type of suture anchor being used and included in the kit 1000.
  • Although the kit 1000 is described above as including the suture anchor 190, the fastener 100, the handle 1010 and the flexible element 180, the kit can be packaged with any number of the components. For example, the kit 1000 may include only a suture anchor 190 and a fastener 100 (e.g., not the handle 1010 and flexible element 180). Alternatively, the kit 1000 may include the suture anchor 190, the fastener 100, and the flexible element 180 (e.g., not the handle 1010).
  • As shown in FIGS. 11A-11B, to further simplify the use of the present invention, the fastener 100 can be used in conjunction with a cannulated and/or self-tapping suture anchor 1110. During the medical procedure, the physician may properly align the joint in question (e.g., using the K-wire joysticks described above) and then drill a guide wire 1120 through the bones (e.g., the scaphoid 610 and the lunate 620). Once the guidewire 1120 is in place, the physician can align the joint further and define exactly where the implants should be placed.
  • Once the locations are determined, the physician may drill out the scaphoid 610, as described above with respect to FIG. 9. For example, the physician may use a single drill to drill out only the scaphoid or may used a stepped drill to drill out both the scaphoid and the lunate. If the suture anchor is self-tapping, then the physician does not need to drill out the lunate 620 (e.g., only the scaphoid 610 needs to be drilled out). Next, because the suture anchor 1110 is cannulated, the physician need only slide (e.g., using the handle/inserter described above) the suture anchor 1110 over the guide wire and secure the cannulated suture anchor 1110 into the lunate 620 by screwing the suture anchor into the lunate 620. It is important to note that the proximal end of the cannulated suture anchor 1110 should be below the cortex of the lunate 620 so that the suture anchor is not 1110 protruding into the joint.
  • Once the cannulated suture anchor is in place and secured, the physician may then insert the press-fit fastener 100. If the fastener 100 is cannulated as shown in FIGS. 11A and 11B, the physician may simply slide the fastener 100 over the guide wire and use the handle/inserter to push it into the scaphoid 610. If the fastener is not cannulated, the physician must first remove the guide wire 1120 prior to inserting the fastener 100. Once the fastener 100 is inserted into the scaphoid, the physician may then secure the flexible element 180 to the fastener 100, as described above.
  • As shown in FIGS. 12A-12D, some embodiments of the press-fit fastener 100 can include radio-opaque markers 1210A-D that allow a physician to easily locate the device when taking an x-ray of the joint in question. For example, if a patient with the above described devices returns to the physician and complains of pain, the physician need not resort to surgery to view the location and status of the implants. Rather, the physician may simply take an x-ray of the joint in question. If the implant is made from a non-metallic material (e.g., PEEK, PLLA, etc.), the implant will not appear on the x-ray image. However, the radio-opaque markers 1210A-D will allow the physician to easily locate the implant (e.g, the fastener 100). The markers 1210A-D can be any of a variety of materials and structures. For example, the markers can be rings 1210A located at either end of the fastener (FIG. 12A), a single chip 1210B located at a known or random location within the fastener 100 (FIG. 12B), metallic dust particulates 1210C dispersed through the non-metallic material (FIG. 12C), or a rod 1210D through the fastener 100 along the longitudinal axis (FIG. 12D).
  • As mentioned above and as shown in FIG. 13, embodiments of the present invention may also include a soft tissue implant 1310 (e.g., an autograft, allograft, xenograft, or similar material). The soft tissue implant 1310 may be instead of or in addition to the flexible element 180 described above. The soft tissue implant 1310 may be secured across the joint space 1320 between the fastener 100 and the suture anchor 190. The soft tissue implant 1310 may be held within each bone using an interference fit, may be attached to the suture anchor 190 via the flexible element 180 and secured to the fastener 100 using an interference fit, or may be secured to both the fastener 100 and the suture anchor 190. To prevent damage from the threads of the suture anchor 190, the soft tissue implant 1310 may be braided with high strength suture, such as Fiberwire.
  • As shown in FIG. 14, embodiments of the present invention may be used to secure more than two bone members and/or bone members that are not adjacent to one another. For example, embodiments of the present invention may be used to secure and/or stabilize the scaphoid 610 and the triquetrum 1410. To that end, the suture anchor 190 may be located within the triquetrum 1410, the fastener 140 may be located within the scaphoid 610, and the flexible element 180 may extend through the joint space and at least one intermediate bone member (e.g., the lunate 620).
  • During the medical procedure, the physician may make an incision 1420 and dissect the soft tissue to expose the scaphoid 610 (or other bone member). The physician may then drill a guide wire 1430 from scaphoid 610 (e.g., the proximal bone member), across the lunate 620 (e.g., the intermediate bone member), and into the triquetrum 1410 (e.g., the distal bone member). The physician may then use a cannulated drill (not shown) to create a tunnel through the scaphoid 610, lunate 620, and triquetrum 1410. One the tunnel is created, the physician may place the suture anchor 190 (e.g. a cannulated anchor) over the guide wire 1430 and advance the suture anchor 190 along the guide wire 1430 until it is secured beneath the proximal cortex of triquetrum 1410. It is important to note that, as mentioned above, when the suture anchor 190 (or the fastener 140) is positioned beneath the proximal cortex of the bone, the suture anchor 190 (or the fastener 140) will not to interfere with the joint space.
  • In a manner similar to that described above, the flexible element 180 will extend from the suture anchor 190 to the incision site 1420 (e.g., it will extend through the joint space between the triquetrum 1410 and the lunate 620, the tunnel through the lunate 620, the joint space between the lunate 620 and the scaphoid 610, the tunnel through the scaphoid 610, and the space between the scaphoid 610 and the incision 1420). The physician may then remove the guide wire 1430 and insert the fastener 140 into the tunnel within the scaphoid 610 to create a press-fit in the scaphoid 610. The physician may then secure the flexible member 180 onto the fastener 140 (e.g., by knotting, tying, looping, capping, crimping, brazing, welding or any other suitable means etc.) and adjust the tension (if needed), as described above.
  • FIG. 15 shows an alternate configuration and method for securing more than two bone members and/or non-adjacent bone members. In particular, like the configuration shown in FIG. 14, a fastener may be located within the scaphoid, and the flexible element 180 may extend through the joint space and at least one intermediate bone member (e.g., the lunate 620). However, unlike FIG. 14, the configuration shown in FIG. 15 also has a press-fit fastener in the distal bone member (e.g., the triquetrum) and utilizes two incisions.
  • The first incision 1510 may be made, for example, proximate the lateral cortex of a proximal bone member 1520 (e.g., the scaphoid) and the physician may dissect the soft tissue down to bone member 1520. The physician may then drill the guide wire 1530 from proximal bone member 1520, across/through an intermediate bone member 1540 (e.g., the lunate), and through distal bone member 1550 (e.g., the triquetrum). The physician may then make the second incision 1560 proximate to the lateral cortex of the distal bone member 1550 at the exit site of guide wire 1530 and dissect the soft tissue down to bone member 1550.
  • Once the incisions 1510/1560 are made, the physician may use a cannulated drill (not shown) to create a bone tunnel through proximal bone member 1520, intermediate bone member 1540, and distal bone member 1550. The physician may then pass a flexible element(s) 180 (e.g., a soft tissue graft implant, suture, etc.) through the first incision 1510, into the bone tunnel, and advance the flexible element 180 through the bone members 1520, 1540, 1550 and out of the anatomy through second incision 1560. The flexible member 1570 may then extend from the first incision site 1510 to the second incision site 1560.
  • The physician may then insert fastener 1590 through incision 1560, advance the fastener 1590 into the bone tunnel to create a press-fit beneath the cortex of distal bone member 1550 (e.g., the triquetrum), and secure one end of the flexible element(s) 180 onto the fastener 1590. The physician may then pass fastener 1580 through incision 1510, advanced the fastener 1580 into the bone tunnel to create a press-fit beneath the cortex of proximal bone member 1520. The physician may then secure the opposing end of the flexible element(s) 180 onto the fastener 1580. The flexible element 180 may be secured to the fasteners 1580/1590 by, for example, utilizing the interference fit between the fasteners 1580/1590 and the bone tunnel to hold the flexible element 180 between the wall of the tunnel and the fasteners 1580/1590.
  • It is important to note that, in the configuration shown in FIG. 15, the fasteners 1580 and 1590 may be inserted in an opposing fashion. In other words, the tapers of the fasteners 1580/1590 may be oriented in opposite directions such that the smaller diameter ends of the fasteners 1580/1590 face one another. Additionally, the flexible element 180 may be a soft tissue graft implant that may or may not be reinforced with a suture. The flexible element 180 may be placed within the bone tunnel using a variety of methods. For example, the physician may affix the flexible element 180 to an eyelet at one end of the guide wire 1530 and draw the flexible element 180 into the bone tunnel.
  • As shown in FIG. 16, additional embodiments of the present invention may use fasteners with surface features (e.g., threads, ribs, etc.) that strengthen the fixation within the bone members. As discussed in greater detail below, the procedure shown in FIG. 16 is similar to that described above with regard to FIG. 15. However, because the fasteners 1680/1690 have surface features, they may need to be rotated (e.g., for threaded engagement) or tapped in using a hammer-like apparatus (not shown).
  • In order to perform the procedure shown in FIG. 16, the physician must first make an incision 1610 proximate to the lateral cortex of the first bone member 1620 (e.g., the scaphoid), and dissect the soft tissue down to bone member 1620. The physician may then drill the guide wire 1630 from proximal bone member 1620, across/through the intermediate bone member 1640 (e.g., the lunate) and through a distal bone member 1650 (e.g., the triquetrum). The physician may then make a second incision 1660 proximate to the lateral cortex of a distal bone member 1650 (e.g., the triquetrum), for example at the exit site of guide wire 1630, and dissect the soft tissue down to distal bone member 1650.
  • The physician may then create (e.g., using a cannulated drill) a bone tunnel through bone members 1620, 1640, 1650, and pass the flexible element(s) 180 through the incision 1610 and into the bone tunnel. The physician may advance the flexible element 180 through the bone members 1620, 1640, 1650 and out of the anatomy through the second incision 1660 such that the flexible element 180 extends between the incision sites 1610 and 1660.
  • The physician may then insert fastener 1690 through incision 1660, advance the fastener 1690 into the bone tunnel to create a press-fit beneath the cortex of the distal bone member 1650 (e.g., the triquetrum), and secure one end of the flexible element(s) 180 onto the fastener 1690. The physician may then pass the fastener 1680 through incision 1610, advance the fastener 1680 into the bone tunnel to create a press-fit beneath the cortex of the proximal bone member 1620, and secure the opposing end of the flexible element(s) 180 onto the fastener 1680. If the fasteners 1680/1690 have surface features (e.g., threads, ribs, etc.), the physician may rotate the fastener or use a hammer like device to help insert the fastener and create the press-fit. The flexible element 180 may be secured to the fasteners 1680/1690 by, for example, utilizing the interference fit between the fasteners 1680/1690 and the bone tunnel to hold the flexible element 180 between the wall of the tunnel and the fasteners 1680/1690.
  • Although embodiments of the present invention are described above with respect to the scaphoid and lunate bones, embodiments of the present invention can be used in any scenario in which there is a limited amount of relative axial movement between the components. For example, embodiments of the present invention may be used to secure bones located within the foot and other non-fractured and fractured bones.
  • Although various exemplary embodiments of the invention have been disclosed, it should be apparent to those skilled in the art that various changes and modifications can be made that will achieve some of the advantages of the invention without departing from the true scope of the invention. These and other obvious modifications are intended to be covered by the appended claims.

Claims (30)

1. A method of stabilizing joints with limited axial movement comprising:
inserting at least one suture anchor into a first bone member, wherein an at least one flexible element having a first end and a second end is attached to the at least one suture anchor at the first end of each of the at least one flexible element, the at least one flexible element spanning a space between the first bone member and a second bone member and passing through a tunnel in the second bone member and an intermediate bone member, the intermediate bone member being located between the first and second bone member;
securing the at least one flexible element to a fastener configured to be press-fit into the tunnel in the second bone member;
inserting the fastener into the tunnel in the second bone member; and
adjusting the at least one flexible member to a desired tension, thereby securing the first bone member to the second bone member.
2. A method according to claim 1 further comprising drilling a hole through at least the first bone member, the second bone member, and the intermediate bone member.
3. A method according to claim 1, wherein the first bone member is a scaphoid bone, the second bone member is triquetrum bone, and the intermediate bone is a lunate bone.
4. A method according to claim 1, wherein the first, second, and intermediate bone members are bone fragments.
5. A method according to claim 1, wherein inserting the fastener into the tunnel in the second bone member creates a press-fit.
6. A method according to claim 1, wherein inserting the at least one suture anchor includes inserting the at least one suture anchor such that the at least one suture anchor is beneath the surface of the first bone member, thereby avoiding abrasion of soft tissue and cartilage.
7. A method according to claim 1, wherein inserting the fastener includes inserting the fastener such that the fastener is beneath the surface of the second bone member, thereby avoiding abrasion of soft tissue and cartilage.
8. A method according to claim 1, wherein securing the at least one flexible element occurs before inserting the fastener and adjusting the at least one flexible member.
9. A method according to claim 1, wherein inserting the fastener occurs before securing the at least one flexible element and adjusting the at least one flexible member.
10. A method according to claim 1, wherein adjusting the at least one flexible member occurs before securing the at least one flexible element and inserting the fastener.
11. A method for stabilizing joint with limited axial movement comprising:
making an incision on a first site of the joint, the incision being proximal to a first bone member;
drilling a guidewire through the first bone member, a second bone member, and into a third bone member, the second bone member being located between the first and third bone members;
preparing a bone tunnel through the first and second bone members and into the third bone member;
securing a suture anchor within the third bone member, the suture anchor having a flexible member extending through the bone tunnel and the second bone member and spanning a space between the first and third bone members, the flexible member having a first end and a second end, the first end being secured to the suture anchor;
inserting a press-fit fastener into the first bone member, the press-fit fastener creating a press-fit between the press-fit fastener and the bone tunnel; and
securing the second end of the suture anchor to the press-fit fastener.
12. A method according to claim 11, further comprising dissecting soft-tissue from the joint, thereby exposing the first bone member.
13. A method according to claim 11, wherein securing the suture anchor within the third bone member includes:
placing the suture anchor over the guide wire; and
advancing the suture anchor along the guidewire until the suture anchor is secured within a portion of the bone tunnel within the third bone member and beneath a proximal cortex of the third bone member.
14. A method according to claim 11, further comprising removing the guide wire prior to inserting the press-fit fastener.
15. A method according to claim 11, further comprising adjusting the at least one flexible member to a desired tension, thereby securing the first bone member to the third bone member.
16. A method according to claim 11, wherein the first bone member is a scaphoid bone, the second bone member is a lunate bone, and the third bone member is a triquetrum bone.
17. A method for stabilizing joint with limited axial movement comprising:
making an incision on a first incision site of the joint, the first site being proximate to a first bone member;
drilling a guidewire through the first bone member, a second bone member, and a third bone member, the second bone member being located between the first and third bone members;
making a second incision on a second incision site of the joint, the second site being proximate to the third bone member;
creating a bone tunnel through the first, second, and third bone members;
passing a flexible element through the bone tunnel such that the flexible element extends from the first incision to the second incision and passes through the first, second, and third bone members;
inserting a first fastener into the third bone member through the second incision, the first fastener creating a press-fit within the third bone member;
securing a first end of the flexible element to the first fastener;
inserting a second fastener into the first bone member through the first incision, the second fastener creating a press-fit within the first bone member; and
securing a second end of the flexible element to the second fastener.
18. A method according to claim 17, wherein the first and second fasteners are tapered and the first and second fasteners are inserted into the first and third bone members such that a direction of the first fastener's taper opposes a direction of the second fastener's taper.
19. A method according to claim 17, wherein passing the flexible element through the bone tunnel includes:
affixing the flexible element to an eyelet located on the guidewire; and
drawing the flexible element through the bone tunnel using the guidewire.
20. A method according to claim 17, wherein the guidewire extends through the joint and the second incision site is located at an exit site of the guidewire.
21. A method according to claim 18, wherein the flexible element is a soft tissue graft implant.
22. A method according to claim 21, wherein the soft tissue graft implant is reinforced with a suture.
23. A method according to claim 17, further comprising:
dissecting soft-tissue from the joint at the first incision, thereby exposing the first bone member; and
dissecting soft-tissue from the joint at the second incision, thereby exposing the third bone member.
24. A method according to claim 17, further comprising removing the guide wire prior to inserting the first and second press-fit fasteners.
25. A method according to claim 17, wherein the first and second ends of the flexible element are secured to the first and second fasteners by positioning the first and second ends within the press-fit areas created between the first and second fasteners and the bone tunnel.
26. A method according to claim 17, wherein the first bone member is a scaphoid bone, the second bone member is a lunate bone, and the third bone member is a triquetrum bone.
27. A method according to claim 17, wherein at least one of the first and second fasteners include surface features that improve fixation within the first and third bone members.
28. A method according to claim 27, wherein the surface features include at least one selected from the group consisting of threads, ribs, back cutting threads, and grooves.
29. A method according to claim 28, wherein the surface features include threads and the at least one of the first and second fasteners are inserted into the bone members by rotating.
30. A method according to claim 28, wherein the surface features include ribs and the at least one of the first and second fasteners are inserted into the bone members by tapping the at least one of the first and second fasteners with a hammer.
US12/569,271 2007-04-25 2009-09-29 Method and Device for Stabilizing Joints With Limited Axial Movement Abandoned US20100076504A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/569,271 US20100076504A1 (en) 2007-04-25 2009-09-29 Method and Device for Stabilizing Joints With Limited Axial Movement

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US91397507P 2007-04-25 2007-04-25
US98489507P 2007-11-02 2007-11-02
US12/109,825 US8715348B2 (en) 2007-04-25 2008-04-25 Method and device for stabilizing joints with limited axial movement
US12/569,271 US20100076504A1 (en) 2007-04-25 2009-09-29 Method and Device for Stabilizing Joints With Limited Axial Movement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/109,825 Continuation-In-Part US8715348B2 (en) 2007-04-25 2008-04-25 Method and device for stabilizing joints with limited axial movement

Publications (1)

Publication Number Publication Date
US20100076504A1 true US20100076504A1 (en) 2010-03-25

Family

ID=42038440

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/109,825 Active 2031-10-27 US8715348B2 (en) 2007-04-25 2008-04-25 Method and device for stabilizing joints with limited axial movement
US12/569,271 Abandoned US20100076504A1 (en) 2007-04-25 2009-09-29 Method and Device for Stabilizing Joints With Limited Axial Movement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/109,825 Active 2031-10-27 US8715348B2 (en) 2007-04-25 2008-04-25 Method and device for stabilizing joints with limited axial movement

Country Status (2)

Country Link
US (2) US8715348B2 (en)
WO (1) WO2008134504A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080208252A1 (en) * 2007-01-17 2008-08-28 Arthrex, Inc. Bunion repair using suture-button construct
US20090036893A1 (en) * 2007-08-02 2009-02-05 Proactive Orthopedic, Llc Fixation and alignment device and method used in orthopaedic surgery
US20110224729A1 (en) * 2010-03-15 2011-09-15 Baker Christian M Hallux valgus repairs using suture-button construct
WO2012029008A1 (en) * 2010-08-29 2012-03-08 Bonfix Ltd. Orthopedic implant for treatment of bone deformities
US20130030480A1 (en) * 2011-06-14 2013-01-31 University Of South Florida Systems and methods for ankle syndesmosis fixation
WO2013049656A1 (en) * 2011-09-30 2013-04-04 The Trustees Of Columbia University In The City Of New York Systems and devices for the reduction and association of bones
US20140114365A1 (en) * 2005-05-10 2014-04-24 Acumed Llc Bone connector with pivotable joint
US8882816B2 (en) 2007-08-02 2014-11-11 Proactive Orthopedics, Llc Fixation and alignment device and method used in orthopaedic surgery
US8961575B2 (en) 2012-03-14 2015-02-24 Arthrex, Inc. CMC repair using suture-button construct
US8961604B2 (en) * 2012-09-28 2015-02-24 Smith & Nephew, Inc. Fixation implant and method
US9060824B2 (en) 2011-11-17 2015-06-23 Metal Industries Research & Development Centre Bone screw, method for manufacturing the bone screw, and tool for mounting and removing the bone screw
US9101399B2 (en) 2011-12-29 2015-08-11 Proactive Orthopedics, Llc Anchoring systems and methods for surgery
WO2016019389A1 (en) * 2014-08-01 2016-02-04 Cole J Dean System and method for load balancing in knee replacement procedures
US10159512B2 (en) 2009-03-17 2018-12-25 Bonfix Ltd Hallux abducto valgus assemblies
US10463471B2 (en) 2013-07-18 2019-11-05 Medos International Sarl Methods and devices for positioning and securing ligament grafts

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009200864A1 (en) * 2008-02-29 2009-09-17 Robert J. Medoff Method and apparatus for articular scapholunate reconstruction
FR2938753A1 (en) * 2008-11-26 2010-05-28 Comptoir Hospitalier Orthopedi Acromioclavicular ligament surgery system for installation of ligament artificial plantable at level of shoulder, has anchoring screw whose diameter is smaller than that of calvicular anchoring screw, where screws are connected together
CN102481187B (en) * 2009-03-31 2016-06-08 医学嵌入公司暨Imds共同创新公司 Double bundle acl is repaired
US8535377B2 (en) * 2009-03-31 2013-09-17 Imds Corporation Double bundle ACL repair system
FR2952296B1 (en) * 2009-11-10 2012-04-06 Memometal Technologies DEVICE AND METHOD FOR FIXING A LAMELLAR TISSUE ON A BONE
US8469998B2 (en) 2010-08-30 2013-06-25 Depuy Mitek, Llc Knotless suture anchor
US8460340B2 (en) 2010-08-30 2013-06-11 Depuy Mitek, Llc Knotless suture anchor
US8435264B2 (en) 2010-08-30 2013-05-07 Depuy Mitek, Llc Knotless suture anchor and driver
CA3061216C (en) 2010-09-24 2021-06-01 Sportwelding Gmbh Device and method for fixating a suture anchor in hard tissue
PL2618746T3 (en) * 2010-09-24 2020-07-13 Sportwelding Gmbh Suture anchor for fixating a suture relative to hard tissue
US9271714B2 (en) * 2011-01-21 2016-03-01 Syntorr, Inc. Methods and devices for anchoring suture in bone
EP2486856B1 (en) * 2011-02-09 2014-07-09 Arthrex, Inc. Bone anchor for scapholunate construct
WO2012177759A1 (en) 2011-06-20 2012-12-27 Rdc Holdings, Llc System and method for repairing joints
US8998925B2 (en) 2011-06-20 2015-04-07 Rdc Holdings, Llc Fixation system for orthopedic devices
US8968402B2 (en) 2011-10-18 2015-03-03 Arthrocare Corporation ACL implants, instruments, and methods
WO2014134328A1 (en) * 2013-02-27 2014-09-04 Coorstek Medical Llc D/B/A Imds Graft fixation
US9913637B2 (en) * 2013-03-13 2018-03-13 DePuy Synthes Products, Inc. Soft tissue fixation system
US9901333B2 (en) 2013-03-13 2018-02-27 DePuy Synthes Products, Inc. Soft tissue fixation system
US9402650B2 (en) * 2013-03-15 2016-08-02 Smith & Nephew, Inc. Surgical fastening
US9345589B2 (en) * 2013-12-19 2016-05-24 Ilion Medical, Inc. Bone implants for orthopedic procedures and corresponding methods
US10582957B2 (en) * 2014-09-19 2020-03-10 Crossroads Extremity Systems, Llc Bone fixation implant and means of fixation
CN108348344B (en) * 2015-09-14 2020-08-07 莱迪科矫形外科公司 Method, apparatus and implant for scapholunar reconstruction
US11123176B2 (en) * 2016-03-13 2021-09-21 Pontis Orthopaedics Llc Apparatus and method for repair of disruptions between bones
US10743981B2 (en) * 2017-02-16 2020-08-18 L. Pearce McCarty, III Tendon anchoring
US11096731B2 (en) * 2017-10-09 2021-08-24 Jaiyoung Ryu Orthopaedic fracture reduction-fixation tool
US20220183671A1 (en) * 2019-03-21 2022-06-16 New York Society for the Relief of the Ruptured and Crippled, Maintaining the Hospital for Special S Interosseous coupler
JP2023554221A (en) * 2020-11-10 2023-12-27 アキュームド・エルエルシー Cannulated sutures and/or implanted anchors

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772286A (en) * 1987-02-17 1988-09-20 E. Marlowe Goble Ligament attachment method and apparatus
US5423819A (en) * 1989-02-06 1995-06-13 American Cyanamid Company Screw and driver for securing a bone block
US5584836A (en) * 1994-04-07 1996-12-17 Smith & Nephew Richards, Inc. Cannulated medical suture anchor
US5690676A (en) * 1990-07-13 1997-11-25 Smith & Nephew, Inc. Suture anchor and drive assembly
US5718706A (en) * 1993-06-04 1998-02-17 Hip Developments Pty. Ltd. Surgical screw and washer
US5944724A (en) * 1997-10-30 1999-08-31 Mitek Surgical Products, Inc. Suture anchor insertion system
US6139565A (en) * 1993-06-23 2000-10-31 Kevin R. Stone Suture anchor assembly
US6280474B1 (en) * 1997-01-09 2001-08-28 Neucoll, Inc. Devices for tissue repair and methods for preparation and use thereof
US20010041938A1 (en) * 1999-12-15 2001-11-15 Dietmar Hein Graft suspension device
US20020022862A1 (en) * 1996-08-05 2002-02-21 Arthrex, Inc. Hex drive bioabsorbable tissue anchor
US6517564B1 (en) * 1999-02-02 2003-02-11 Arthrex, Inc. Bioabsorbable tissue tack with oval-shaped head and method of tissue fixation using same
US6524317B1 (en) * 1999-12-30 2003-02-25 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US6554852B1 (en) * 1999-08-25 2003-04-29 Michael A. Oberlander Multi-anchor suture
US20030120278A1 (en) * 2000-05-26 2003-06-26 Morgan Craig D. Retrograde fixation technique with insert-molded interference screw
US6616694B1 (en) * 1996-11-21 2003-09-09 Ethicon, Inc. Apparatus for anchoring autologous or artificial tendon grafts in bone
US6685728B2 (en) * 2002-01-25 2004-02-03 Stryker Endoscopy Threaded suture anchor and method of use
US20040127907A1 (en) * 1998-09-28 2004-07-01 Dakin Edward B. Internal cord fixation device
US20040153074A1 (en) * 2003-02-05 2004-08-05 Bojarski Raymond A. Tissue anchor and insertion tool
US6840953B2 (en) * 2000-12-22 2005-01-11 United States Surgical Corporation Suture screw
US20050159812A1 (en) * 2004-01-16 2005-07-21 Dinger Fred B.Iii Bone-tendon-bone implant
US20050177167A1 (en) * 2001-06-21 2005-08-11 Karl-Heinz Hildinger & Helmut Muckter Implantable screw for stabilization of a joint or a bone fracture
US20050283158A1 (en) * 2004-06-22 2005-12-22 West Hugh S Jr Bone anchors for use in attaching soft tissue to a bone
US20060189993A1 (en) * 2004-11-09 2006-08-24 Arthrotek, Inc. Soft tissue conduit device
US20060276795A1 (en) * 2005-06-02 2006-12-07 Orbay Jorge L Scapholunate Disassociation Repair System
US7226469B2 (en) * 1999-02-02 2007-06-05 Arthrex, Inc. Insert molded suture anchor
US7235079B2 (en) * 2004-11-18 2007-06-26 Acumed Llc Composite bone fasteners
US7255700B2 (en) * 2003-06-18 2007-08-14 Biomet Sports Medicine, Inc. Device and method of fastening a graft to a bone
US20070191708A1 (en) * 2003-12-24 2007-08-16 Bodo Gerold Radio-opaque marker for medical implants
US20070213730A1 (en) * 2006-03-09 2007-09-13 Jonathan Martinek Cannulated suture anchor system
US20070292820A1 (en) * 2004-01-28 2007-12-20 Canter Stanton R Anchoring Element for Use in Bone
US20080140118A1 (en) * 2001-09-13 2008-06-12 United States Surgical Corporation Knotless tissue anchor
US20080147063A1 (en) * 2006-11-01 2008-06-19 Depuy Mitek, Inc. Cannulated suture anchor
US7468074B2 (en) * 2004-10-29 2008-12-23 Arthrex, Inc. Ligament fixation using graft harness
US7588587B2 (en) * 2005-03-10 2009-09-15 Tyco Healthcare Group Lp Suture anchors
US20100076499A1 (en) * 2008-03-03 2010-03-25 Alaska Hand Research, Llc Cannulated anchor and system
US7727278B2 (en) * 2005-03-04 2010-06-01 Rti Biologics, Inc. Self fixing assembled bone-tendon-bone graft
US7951198B2 (en) * 2005-05-10 2011-05-31 Acumed Llc Bone connector with pivotable joint

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702397A (en) 1996-02-20 1997-12-30 Medicinelodge, Inc. Ligament bone anchor and method for its use
AU2002213414A1 (en) 2000-11-02 2002-05-15 Smith & Nephew, Inc. Closure device and method for tissue repair
DE10161970A1 (en) * 2001-12-17 2003-06-18 Tutogen Medical Gmbh Bone anchor for re-fixing of soft tissue to bone consists of cylindrical body of cortical human or animal bone for high bio-compatibility
NL1028292C2 (en) 2005-02-16 2006-08-17 Kokbing Lo Securing element for connecting a ligament to bone part, comprises ligament coupling element, clamping element having two parts with corresponding surfaces, stressing element and actuating element

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772286A (en) * 1987-02-17 1988-09-20 E. Marlowe Goble Ligament attachment method and apparatus
US5423819A (en) * 1989-02-06 1995-06-13 American Cyanamid Company Screw and driver for securing a bone block
US5690676A (en) * 1990-07-13 1997-11-25 Smith & Nephew, Inc. Suture anchor and drive assembly
US5718706A (en) * 1993-06-04 1998-02-17 Hip Developments Pty. Ltd. Surgical screw and washer
US6139565A (en) * 1993-06-23 2000-10-31 Kevin R. Stone Suture anchor assembly
US5584836A (en) * 1994-04-07 1996-12-17 Smith & Nephew Richards, Inc. Cannulated medical suture anchor
US20020022862A1 (en) * 1996-08-05 2002-02-21 Arthrex, Inc. Hex drive bioabsorbable tissue anchor
US6569188B2 (en) * 1996-08-05 2003-05-27 Arthrex, Inc. Hex drive bioabsorbable tissue anchor
US6616694B1 (en) * 1996-11-21 2003-09-09 Ethicon, Inc. Apparatus for anchoring autologous or artificial tendon grafts in bone
US6280474B1 (en) * 1997-01-09 2001-08-28 Neucoll, Inc. Devices for tissue repair and methods for preparation and use thereof
US5944724A (en) * 1997-10-30 1999-08-31 Mitek Surgical Products, Inc. Suture anchor insertion system
US20040127907A1 (en) * 1998-09-28 2004-07-01 Dakin Edward B. Internal cord fixation device
US7226469B2 (en) * 1999-02-02 2007-06-05 Arthrex, Inc. Insert molded suture anchor
US6517564B1 (en) * 1999-02-02 2003-02-11 Arthrex, Inc. Bioabsorbable tissue tack with oval-shaped head and method of tissue fixation using same
US6554852B1 (en) * 1999-08-25 2003-04-29 Michael A. Oberlander Multi-anchor suture
US20010041938A1 (en) * 1999-12-15 2001-11-15 Dietmar Hein Graft suspension device
US6524317B1 (en) * 1999-12-30 2003-02-25 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US20030120278A1 (en) * 2000-05-26 2003-06-26 Morgan Craig D. Retrograde fixation technique with insert-molded interference screw
US6840953B2 (en) * 2000-12-22 2005-01-11 United States Surgical Corporation Suture screw
US20050177167A1 (en) * 2001-06-21 2005-08-11 Karl-Heinz Hildinger & Helmut Muckter Implantable screw for stabilization of a joint or a bone fracture
US7625395B2 (en) * 2001-06-21 2009-12-01 Novoplant Gmbh Implantable screw for stabilization of a joint or a bone fracture
US20080140118A1 (en) * 2001-09-13 2008-06-12 United States Surgical Corporation Knotless tissue anchor
US6685728B2 (en) * 2002-01-25 2004-02-03 Stryker Endoscopy Threaded suture anchor and method of use
US20040153074A1 (en) * 2003-02-05 2004-08-05 Bojarski Raymond A. Tissue anchor and insertion tool
US7255700B2 (en) * 2003-06-18 2007-08-14 Biomet Sports Medicine, Inc. Device and method of fastening a graft to a bone
US20070191708A1 (en) * 2003-12-24 2007-08-16 Bodo Gerold Radio-opaque marker for medical implants
US20050159812A1 (en) * 2004-01-16 2005-07-21 Dinger Fred B.Iii Bone-tendon-bone implant
US20070292820A1 (en) * 2004-01-28 2007-12-20 Canter Stanton R Anchoring Element for Use in Bone
US20050283158A1 (en) * 2004-06-22 2005-12-22 West Hugh S Jr Bone anchors for use in attaching soft tissue to a bone
US7468074B2 (en) * 2004-10-29 2008-12-23 Arthrex, Inc. Ligament fixation using graft harness
US20060189993A1 (en) * 2004-11-09 2006-08-24 Arthrotek, Inc. Soft tissue conduit device
US7235079B2 (en) * 2004-11-18 2007-06-26 Acumed Llc Composite bone fasteners
US7727278B2 (en) * 2005-03-04 2010-06-01 Rti Biologics, Inc. Self fixing assembled bone-tendon-bone graft
US7588587B2 (en) * 2005-03-10 2009-09-15 Tyco Healthcare Group Lp Suture anchors
US7951198B2 (en) * 2005-05-10 2011-05-31 Acumed Llc Bone connector with pivotable joint
US20060276795A1 (en) * 2005-06-02 2006-12-07 Orbay Jorge L Scapholunate Disassociation Repair System
US20070213730A1 (en) * 2006-03-09 2007-09-13 Jonathan Martinek Cannulated suture anchor system
US20080243184A1 (en) * 2006-03-09 2008-10-02 Jonathan Martinek Cannulated suture anchor system
US20080147063A1 (en) * 2006-11-01 2008-06-19 Depuy Mitek, Inc. Cannulated suture anchor
US20100076499A1 (en) * 2008-03-03 2010-03-25 Alaska Hand Research, Llc Cannulated anchor and system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140114365A1 (en) * 2005-05-10 2014-04-24 Acumed Llc Bone connector with pivotable joint
US7875058B2 (en) * 2007-01-17 2011-01-25 Arthrex, Inc. Bunion repair using suture-button construct
US20110118780A1 (en) * 2007-01-17 2011-05-19 Holmes Jr George B Bunion repair using suture-button construct
US9642609B2 (en) 2007-01-17 2017-05-09 Arthrex, Inc. Bunion repair using suture-button construct
US20080208252A1 (en) * 2007-01-17 2008-08-28 Arthrex, Inc. Bunion repair using suture-button construct
US8888815B2 (en) 2007-01-17 2014-11-18 Arthrex, Inc. Bone fixation using suture-button construct
US8882816B2 (en) 2007-08-02 2014-11-11 Proactive Orthopedics, Llc Fixation and alignment device and method used in orthopaedic surgery
US20090036893A1 (en) * 2007-08-02 2009-02-05 Proactive Orthopedic, Llc Fixation and alignment device and method used in orthopaedic surgery
US8696716B2 (en) * 2007-08-02 2014-04-15 Proactive Orthopedics, Llc Fixation and alignment device and method used in orthopaedic surgery
US10159512B2 (en) 2009-03-17 2018-12-25 Bonfix Ltd Hallux abducto valgus assemblies
US20110224729A1 (en) * 2010-03-15 2011-09-15 Baker Christian M Hallux valgus repairs using suture-button construct
US8398678B2 (en) 2010-03-15 2013-03-19 Arthrex, Inc. Hallux valgus repairs using suture-button construct
US20160228152A1 (en) * 2010-08-29 2016-08-11 Bonfix Ltd. Orthopedic implant for treatment of bone deformities
US10292735B2 (en) * 2010-08-29 2019-05-21 Bonfix Ltd Orthopedic implant for treatment of bone deformities
WO2012029008A1 (en) * 2010-08-29 2012-03-08 Bonfix Ltd. Orthopedic implant for treatment of bone deformities
US20130184708A1 (en) * 2010-08-29 2013-07-18 Bonfix Ltd. Orthopedic implant for treatment of bone deformities
US9345514B2 (en) * 2010-08-29 2016-05-24 Bonfix Ltd. Orthopedic implant for treatment of bone deformities
US9277912B2 (en) * 2011-06-14 2016-03-08 University Of South Florida Systems and methods for ankle syndesmosis fixation
US20130030480A1 (en) * 2011-06-14 2013-01-31 University Of South Florida Systems and methods for ankle syndesmosis fixation
WO2013049656A1 (en) * 2011-09-30 2013-04-04 The Trustees Of Columbia University In The City Of New York Systems and devices for the reduction and association of bones
US9060824B2 (en) 2011-11-17 2015-06-23 Metal Industries Research & Development Centre Bone screw, method for manufacturing the bone screw, and tool for mounting and removing the bone screw
US9101399B2 (en) 2011-12-29 2015-08-11 Proactive Orthopedics, Llc Anchoring systems and methods for surgery
US9848931B2 (en) 2011-12-29 2017-12-26 Proactive Orthopedics, Llc Anchoring systems and methods for surgery
US8961575B2 (en) 2012-03-14 2015-02-24 Arthrex, Inc. CMC repair using suture-button construct
US8961604B2 (en) * 2012-09-28 2015-02-24 Smith & Nephew, Inc. Fixation implant and method
US10463471B2 (en) 2013-07-18 2019-11-05 Medos International Sarl Methods and devices for positioning and securing ligament grafts
WO2016019389A1 (en) * 2014-08-01 2016-02-04 Cole J Dean System and method for load balancing in knee replacement procedures
US10548621B2 (en) 2014-08-01 2020-02-04 J. Dean Cole System and method for load balancing in knee replacement procedures
US10575863B2 (en) 2014-08-01 2020-03-03 J. Dean Cole System and method for load balancing in knee replacement procedures

Also Published As

Publication number Publication date
US8715348B2 (en) 2014-05-06
WO2008134504A1 (en) 2008-11-06
US20080269743A1 (en) 2008-10-30

Similar Documents

Publication Publication Date Title
US8715348B2 (en) Method and device for stabilizing joints with limited axial movement
US7217279B2 (en) Suture loop anchor
US10881388B2 (en) Swivel anchor for knotless fixation of tissue
US5968045A (en) Intra-articular tendon sling fixation screw
EP1021990B1 (en) Suture anchor having multiple sutures
US9445850B2 (en) Intramedullary nail, system, and method with dynamic compression
US5607432A (en) Threaded suture anchor retriever
EP2486856B1 (en) Bone anchor for scapholunate construct
US20090248029A1 (en) Interference screw driver assembly and method of use
US20090043318A1 (en) Applicator for suture/button construct
US20140228898A1 (en) Universal method and apparatus for repairing bone, ligament and tendon
US20150374416A1 (en) Method and apparatus for spondylolysis repair
US10582957B2 (en) Bone fixation implant and means of fixation
US20200405329A1 (en) Syndesmosis fixation and reconstruction system and method of using the same
JP4922316B2 (en) Suture fixing system with cannula
US11357496B2 (en) Scapho-lunate and other ligament and bone repair/reconstruction
US20230320721A1 (en) Improved push-in suture anchor system

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALASKA HAND RESEARCH, LLC,ALASKA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCNAMARA, MICHAEL G., M.D.;MUNOZ, AVERY B.;SIGNING DATES FROM 20091009 TO 20091013;REEL/FRAME:023428/0993

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION