US20090275253A1 - Staple fiber yarn, textile fabric comprising the staple fiber yarn and articles comprising the textile fabric - Google Patents

Staple fiber yarn, textile fabric comprising the staple fiber yarn and articles comprising the textile fabric Download PDF

Info

Publication number
US20090275253A1
US20090275253A1 US12/309,230 US30923007A US2009275253A1 US 20090275253 A1 US20090275253 A1 US 20090275253A1 US 30923007 A US30923007 A US 30923007A US 2009275253 A1 US2009275253 A1 US 2009275253A1
Authority
US
United States
Prior art keywords
staple fibers
staple
fiber yarn
staple fiber
linear density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/309,230
Inventor
Christoph Hahn
Regine Zumloh-Nebe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Aramid GmbH
Original Assignee
Teijin Aramid GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Aramid GmbH filed Critical Teijin Aramid GmbH
Assigned to TEIJIN ARAMID GMBH reassignment TEIJIN ARAMID GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAHN, CHRISTOPH, ZUMLOH-NEBE, REGINE
Publication of US20090275253A1 publication Critical patent/US20090275253A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/442Cut or abrasion resistant yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/047Blended or other yarns or threads containing components made from different materials including aramid fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]

Definitions

  • the present invention relates to a staple fiber yarn, a textile fabric comprising the staple fiber yarn and articles comprising the textile fabric.
  • WO 97/25464 discloses a staple fiber yarn containing para-aramid staple fibers, having in each case a linear density that lies within the range of 3 to 6 dtex.
  • WO 97/25464 teaches that the cut resistance of an article manufactured from such a yarn, e.g. a glove, can be increased by increasing the linear density of the staple fibers forming the yarn, whereby cut resistance means the force that is necessary to cut through the article, in which the length of the cut measures 25 millimeters.
  • WO 97/25464 teaches that a staple fiber yarn with a linear density of the staple fibers higher than approx.
  • WO 97/25464 teaches that a staple fiber yarn with a linear density of the staple fibers less than approx. 3 dtex leads to fabrics that indeed have a good wear comfort; however, their cut resistance constantly decreases the more the linear density of the staple fibers drops below 3 dtex.
  • WO 97/25464 teaches that the increase in cut resistance can only be realized with a loss in aesthetic acceptance and wear comfort, while an increase in wear comfort and an improvement in aesthetic acceptance is only obtainable with a loss in cut resistance.
  • the object of the present invention is to provide a staple fiber yarn that facilitates the manufacture of a textile fabric with a high cut resistance and simultaneously with a high wear comfort.
  • the object of the invention is achieved through a staple fiber yarn comprising a staple fiber blend, containing staple fibers A and staple fibers B, and additional staple fibers as necessary, whereby the staple fibers A as well as the staple fibers B consist of polymers that are selected from the groups of aramids, polyolefins, polybenzoxazoles and polybenzthiazoles, the staple fibers A having a linear density T(A) and the staple fibers B having a linear density T(B), and the linear density ratio of T(B):T(A) lying within the range from 1.5:1 to 8.8:1.
  • a textile fabric containing the staple fiber yarn according to the invention, and an article comprising this textile fabric, e.g. a glove, show a cut resistance that is at least the same as, if not indeed higher than the cut resistance of a textile fabric manufactured in the same manner from one staple fiber yarn, which contains exclusively staple fibers with a higher linear density T(B).
  • the staple fiber yarn according to the invention comprises to a high degree cut-resistant embodiments that, measured according to DIN EN 388, e.g., are to be classified in cut resistance class 3, and for which the staple fiber linear density T(A) as well as the staple fiber linear density T(B) clearly lie below 3 dtex, so that textile fabrics manufactured from such yarns not only show a high cut resistance, but are also distinguished by a high wear comfort and an appealing appearance.
  • the staple fiber yarn according to the invention contains staple fibers A and B, whereby the staple fibers A as well as the staple fibers B consist of polymers that are selected from the groups of aramids, polyolefins, polybenzoxazoles and polybenzthiazoles.
  • aromatics means aromatic polyamides, wherein at least 85% of the amide linkages (—CO—NH—) are attached directly to two aromatic rings.
  • An aromatic polyamide particularly preferred for the present invention is polyparaphenylene terephthalamide, a homopolymer resulting from the mole-for-mole polymerization of paraphenylene diamine and terephthaloyl dichloride.
  • copolymers are suitable as aromatic polyamides for the present invention, which copolymers contain, in addition to paraphenylene diamine and terephthaloyl dichloride, minor amounts of other diamines and/or other dicarboxylic acids embedded in the polymer chain.
  • the other diamines and/or other dicarboxylic acids can be incorporated in the polymer chain at an amount of up to 10 mole percent.
  • polyolefins means polyethylene or polypropylene.
  • polyethylene is understood to be an essentially linear polyethylene material, which has a molecular weight preferably greater than one million and can include minor amounts of chain branchings or of comonomers, whereby “minor amount” is understood to mean that for every 100 carbon atoms in the primary chain, no more than 5 chain branchings or comonomers are present.
  • the linear polyethylene material can additionally contain up to 50 wt. % of one or more polymer additives, such as, e.g. alkene-1 polymers, in particular, low-pressure polyethylene, low-pressure polypropylene and the like; or low-molecular additives such as antioxidants, UV absorbers, dyes and the like, which are usually incorporated.
  • a polyethylene material of this type is known under the designation “extended chain polyethylene” (ECPE).
  • polypropylene is understood to be an essentially linear polypropylene, having a molecular weight of preferably more than one million.
  • polybenzoxazoles and “polybenzthiazoles” are understood to be polymers having the structural units presented in the following, whereby the aromatic groups attached to the nitrogen are preferably carbocyclic, as shown in the structural units. However, said groups can also be heterocyclic. In addition, the aromatic groups attached to the nitrogen are preferably six-membered rings, as shown in the structural units. However, said groups can also be formed as fused or unfused polycyclic systems.
  • the staple fibers A as well as the staple fibers B consist of polymers that are selected from the groups of aramids, polyolefins, polybenzoxazoles and polybenzthiazoles means, within the context of the present invention, that all combinations possible through said selection of the polymers mentioned for the staple fibers A and B are comprised.
  • the staple fibers A and the staple fibers B are each selected from only one of the groups.
  • the staple fibers A are selected either from the group of aramids or from the group of polyolefins or from the group of polybenzoxazoles or from the group of polybenzthiazoles
  • the staple fibers B are selected either from the group of aramids or from the group of polyolefins or from the group of polybenzoxazoles or from the group of polybenzthiazoles.
  • the staple fibers A and the staple fibers B are selected from the same group. This comprises embodiments, in which the staple fibers A and the staple fibers B are selected either from the group of aramids or from the group of polyolefins or from the group of polybenzoxazoles or from the group of polybenzthiazoles.
  • the staple fibers A and the staple fibers B are selected from the same group of aramids, preferably from the para-aramids, whereby within the last-mentioned embodiment, polyparaphenylene terephthalamide is particularly preferred.
  • the staple fiber yarn according to the invention contains in a preferred embodiment the staple fibers A and B in an at least approx. homogenous blend.
  • the weight ratio A:B of the staple fibers A and B specified is at least approx. the same during the manufacture of the yarn, so that in this preferred embodiment, the staple fiber yarn according to the invention is at least approx. free from any core-sheath structure.
  • the staple fiber yarn according to the invention contains the staple fibers A and B in a homogenous blend, so that in this especially preferred embodiment the staple fiber yarn according to the invention is free from any core-sheath structure.
  • the linear density ratio T(B):T(A) lies in the range from 1.5:1 to 8.8:1. At a linear density ratio less than 1.5:1, the advantageous effects of the yarn are not brought to bear. At a linear density ratio greater than 8.8:1, the wear comfort of an article manufactured from such a yarn, e.g. a glove, leaves much to be desired.
  • the weight ratio of staple fibers A to staple fibers B can be set within a broad range, e.g. in the range from 90:10 to 10:90.
  • a weight ratio of staple fibers A to staple fibers B from 80:20 to 20:80; in particular at a weight ratio of staple fibers A to staple fibers B from 75:25 to 25:75; and to a still greater degree at a weight ratio of staple fibers A to staple fibers B from 70:30 to 30:70, the advantageous effects initially described appear particularly clearly.
  • the linear density of the staple fibers B lies in the range from 0.5 to 5.0 dtex and e.g. is 4.5 dtex, especially preferably in the range from 0.6 to 4.0 dtex wherein in each case the condition T(B):T(A) 1.5:1 to 8.8:1 is fulfilled.
  • the total linear density of the staple fiber yarn according to the invention lies preferably in the range from 12 to 500 tex, especially preferably in the range from 16 to 200 tex.
  • the staple fiber yarn according to the invention can be manufactured—as soon as the staple fibers A and B have been selected in the manner according to the invention—in principle by every method for manufacturing a staple fiber yarn, such as e.g. by a method comprising the following steps:
  • the staple fibers A and staple fibers B consist of polymers that are selected from the groups of aramids, polyolefins, polybenzoxazoles and polybenzthiazoles, the staple fibers A having a linear density T(A) and the staple fibers B having a linear density T(B), and the linear density ratio T(B):T(A) lying in the range from 1.5:1 to 8.8:1,
  • step b) blending at least approx. homogeneously the staple fibers A and B and, if necessary, the additional staple fibers present, in the linear density selected in step a) by producing a sliver, and
  • step c) spinning the sliver produced in step b) into a staple fiber yarn.
  • the staple fibers A and B provided by the method according to the invention in step a) can be manufactured by one of the known methods for the manufacture of staple fibers, e.g. by shredding or preferably by cutting the corresponding filaments to the desired length, which e.g. lies in the range from 25 to 100 mm and especially preferably in the range from 30 to 60 mm.
  • the previously mentioned staple fibers A and B can be manufactured exclusively from unused filaments.
  • the previously mentioned staple fibers can also be manufactured from filaments that were already in use, e.g. in a recycling process, in which an already used textile fabric, such as e.g. a woven, knitted, or crocheted fabrics made of aramid, polyolefin, polybenzoxazole or polybenzthiazole fibers has been processed into staple fibers.
  • the staple fibers derived through recycling in step a) of the previously described method should, however, only be provided by blending with the staple fibers manufactured from unused filaments, so that the initially described advantageous characteristics of the staple fiber yarn, produced by the previously described method, and the textile fabric manufactured from said yarn would be in effect.
  • the at least approx. homogeneous blending of staple fibers A and B and the, if necessary, additionally present staple fibers implemented in step b) of the method according to the invention by manufacturing a sliver can be implemented in any manner that results in the fact that at least the staple fibers A and B are at least approx. homogeneously distributed in the sliver so obtained.
  • the spinning implemented in step c) of the method according to the invention of the sliver produced in step b) into a staple fiber yarn can be implemented by any of the known methods for manufacturing a staple fiber yarn, such as, e.g. by rotor, friction, or preferably ring spinning, such as e.g. by cotton or worsted spinning.
  • the underlying object of the present invention is further achieved by a textile fabric comprising a staple fiber yarn according to the invention.
  • the textile fabric according to the invention is knitted, crocheted, plaited or woven.
  • the textile fabric according to the invention has a mass per unit area in the range from 150 to 1500 g/m 2 , especially preferably in the range from 200 to 900 g/m 2 .
  • the textile fabric is a knitted fabric, whereby the knitted fabric preferably has a knit density of 3 to 9 courses or wales and, especially preferably, of 3 to 8 courses or wales.
  • the underlying object of the present invention is achieved through an article that comprises the textile fabric according to the invention.
  • the article according to the invention profits correspondingly from the advantageous characteristics of the textile fabric, i.e. from the fabric's combination of high cut resistance with high wear comfort and appealing appearance.
  • a preferred embodiment of the article according to the invention is a glove, an apron, a pair of pants, a jacket, a sleeve, a hose, a hose jacket or a vandalism-resistant article.
  • a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fibers B with a linear density of 2.5 dtex (Comparison Example 1V).
  • a glove is manufactured from each of the staple fiber yarns according to the invention from Examples 1a-c and from the staple fiber yarn from Comparison Example 1V, which glove is produced as described in the following: Two of the respective staple fiber yarns are processed into a twisted thread. Four such twisted threads are fed parallel into a knitting machine and knitted, whereby the needle gauge is 7 gg (7 needles per 2.54 cm), the mesh density is 3.5 in courses and 4 in wales.
  • Table 1 lists the total weight, the mass per unit area, and the thickness of the gloves produced. In addition, the table lists the lowest single value determined, according to DIN EN 388, from 10 measurements of cut resistance for each case.
  • Table 1 shows, that the cut resistance of the gloves manufactured from the staple fiber yarns according to the invention is 12% (compare Example 1b with Example 1V) to 25% (compare Example 1c to Example 1V) higher than the corresponding values of the glove manufactured from the comparison staple fiber yarn, although the total weight of these gloves is increased by only 2% (compare Example 1a with Example 1V) to 8% (compare Example 1c with Example 1V), and the mass per unit area of these gloves is only increased by 3% (compare Example 1a with Example 1V) to 10% (compare Example 1c with Example 1V).
  • the thickness of the gloves manufactured from the staple fiber yarns according to the invention is 2% (compare Example 1c with Example 1V) to 6% (compare Example 1b to Example 1V) lower, so that the gloves manufactured from the staple fiber yarns according to the invention have a higher tactility than the glove manufactured from the comparison staple fiber yarn.
  • the previously described advantageous characteristics are achieved with linear densities of the staple fibers A and B considerably less than 3 dtex, so that the gloves manufactured from the staple fiber yarns according to the invention have an agreeable wear comfort and an appealing appearance.
  • a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber B with a linear density of 2.5 dtex (Comparison Example 2V 1 ).
  • a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber A with a linear density of 0.93 dtex (Comparison Example 2V 2 ).
  • a glove is manufactured from each of the staple fiber yarns according to the invention, according to Examples 2a-b, and also from the staple fiber yarn from Comparison Example 2V 1 , and from the staple fiber yarn from Comparison Example 2V 2 , which glove is produced as described in the following:
  • Two of the respective staple fiber yarns are processed into a twisted thread. Four such twisted threads are fed parallel into a knitting machine and knitted, whereby the needle gauge is 7 gg (7 needles per 2.54 cm), the mesh density is 3.5 in courses and 4 in wales.
  • Table 2 lists the mass per unit area and the cut resistance, whereby the cut resistance is stated as cutting force, which is determined according to EN ISO 13997.
  • the cutting force is the weight expressed in Newtons, which must be exerted on a blade of standardized sharpness in order to cut through the material to be examined with one straight cut of 20 mm made by the blade.
  • Table 2 shows that the cutting force of the gloves manufactured from the staple fiber yarns according to the invention is 15% (compare Example 2a with Example 2V 1 ) to 17% (compare Example 2b to Example 2V 1 ) higher than the corresponding values for the glove manufactured from the comparison staple fiber yarn.
  • the mass per unit area of the glove from Example 2a according to the invention is even 2% lower and the mass per unit area of the glove from Example 2b according to the invention is only 1% higher than the mass per unit area of the comparison glove from Example 2V 1 .
  • the previously described advantageous characteristics are achieved with linear densities of the staple fibers A and B considerably less than 3 dtex, so that the gloves manufactured from the staple fiber yarns according to the invention have an agreeable wear comfort and an appealing appearance.
  • a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber B with a linear density of 1.7 dtex (Comparison Example 3V 1 ).
  • a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber A with a linear density of 0.93 dtex (Comparison Example 3V 2 ).
  • a glove is manufactured from each of the staple fiber yarns according to the invention, according to Examples 3a-b, and also from the staple fiber yarn from Comparison Example 3V 1 , and from the staple fiber yarn from Comparison Example 3V 2 , which glove is produced as described in the following:
  • Two of the respective staple fiber yarns are processed into a twisted thread. Four such twisted threads are fed parallel into a knitting machine and knitted, whereby the needle gauge is 7 gg (7 needles per 2.54 cm), the mesh density is 3.5 in courses and 4 in wales.
  • Table 3 lists the mass per unit area and the cut resistance, whereby the cut resistance is stated as cutting force, which is determined according to EN ISO 13997.
  • Table 3 shows that the cutting force of the glove manufactured from the staple fiber yarn from Example 3b according to the invention is practically the same as the cutting force of the glove from Example 3V 1 manufactured from the comparison staple fiber yarn with almost the same mass per unit area. This is surprising, because the aforesaid staple fiber yarn according to the invention comprises 70 wt. % staple fibers of the lower linear density, which, in light of the teaching given in WO 97/25464, should lead to a distinctly reduced cutting force.
  • Table 3 shows that the cutting force of the glove manufactured from the staple fiber yarn according to the invention from Example 3a is even 11% higher than the cutting force of the glove from Example 3V 1 manufactured from the comparison staple fiber yarn, even though in this staple fiber yarn according to the invention, 50 wt. % of the staple fibers present have the lower linear density.
  • the mass per unit area of the glove according to the invention from Example 3a is even 10% lower than the mass per unit area of the comparison glove from Example 3V 1 .
  • the previously described advantageous characteristics are achieved with linear densities of the staple fibers A and B considerably less than 3 dtex, so that the gloves manufactured from the staple fiber yarns according to the invention have an agreeable wear comfort and an appealing appearance.
  • a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber B with a linear density of 4.5 dtex (Comparison Example 4V 1 ).
  • a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber A with a linear density of 0.52 dtex (Comparison Example 4V 2 ).
  • a glove is manufactured from each of the staple fiber yarns according to the invention, according to Examples 4a-b, and also from the staple fiber yarn from Comparison Example 4V 1 , and from the staple fiber yarn from Comparison Example 4V 2 , which glove is produced as described in the following:
  • Two of the respective staple fiber yarns are processed into a twisted thread. Four such twisted threads are fed parallel into a knitting machine and knitted, whereby the needle gauge is 7 gg (7 needles per 2.54 cm), the mesh density is 3.5 in courses and 4 in wales.
  • Table 4 lists the mass per unit area and the cut resistance, whereby the cut resistance is stated as cutting force, which is determined according to EN ISO 13997.
  • Table 4 shows that the cutting force of the glove manufactured from the staple fiber yarn from Example 4b according to the invention is 15% higher than the cutting force of the glove from Example 4V 1 manufactured from the comparison staple fiber yarn with a mass per unit area which is only 3% lower than the mass per unit area of the glove according to the invention example 4b.
  • the aforesaid staple fiber yarn according to the invention comprises 70 wt. % staple fibers of the lower linear density, which, in light of the teaching given in WO 97/25464, should lead to a distinctly reduced cutting force.
  • Table 4 shows that the cutting force of the glove manufactured from the staple fiber yarn according to the invention from Example 4a is 12% higher than the cutting force of the glove from Example 4V 1 manufactured from the comparison staple fiber yarn, even though in this staple fiber yarn according to the invention, 50 wt. % of the staple fibers present have the lower linear density.
  • the mass per unit area of the glove according to the invention from Example 4a is only 2% higher than the mass per unit area of the comparison glove from Example 4V 1 .

Abstract

A staple fiber yarn is presented, which comprises a staple fiber blend that contains staple fibers A and staple fibers B, whereby the staple fibers A as well as the staple fibers B consist of polymers that are selected from the groups of aramids, polyolefins, polybenzoxazoles and polybenzthiazoles, the staple fibers A having a linear density T(A) and the staple fibers B having a linear density T(B) and the linear density ratio T(B):T(A) lying in the range from 1.5:1 to 8.8:1. In addition, a textile fabric comprising the staple fiber yarn and articles comprising the textile fabric are presented.

Description

  • The present invention relates to a staple fiber yarn, a textile fabric comprising the staple fiber yarn and articles comprising the textile fabric.
  • WO 97/25464 discloses a staple fiber yarn containing para-aramid staple fibers, having in each case a linear density that lies within the range of 3 to 6 dtex. WO 97/25464 teaches that the cut resistance of an article manufactured from such a yarn, e.g. a glove, can be increased by increasing the linear density of the staple fibers forming the yarn, whereby cut resistance means the force that is necessary to cut through the article, in which the length of the cut measures 25 millimeters. In addition, WO 97/25464 teaches that a staple fiber yarn with a linear density of the staple fibers higher than approx. 6 dtex leads to fabrics that indeed have a very good cut resistance; however, they are neither aesthetically acceptable nor do they offer a suitable wear comfort. Finally, WO 97/25464 teaches that a staple fiber yarn with a linear density of the staple fibers less than approx. 3 dtex leads to fabrics that indeed have a good wear comfort; however, their cut resistance constantly decreases the more the linear density of the staple fibers drops below 3 dtex. Thus, WO 97/25464 teaches that the increase in cut resistance can only be realized with a loss in aesthetic acceptance and wear comfort, while an increase in wear comfort and an improvement in aesthetic acceptance is only obtainable with a loss in cut resistance.
  • Therefore, the object of the present invention is to provide a staple fiber yarn that facilitates the manufacture of a textile fabric with a high cut resistance and simultaneously with a high wear comfort.
  • The object of the invention is achieved through a staple fiber yarn comprising a staple fiber blend, containing staple fibers A and staple fibers B, and additional staple fibers as necessary, whereby the staple fibers A as well as the staple fibers B consist of polymers that are selected from the groups of aramids, polyolefins, polybenzoxazoles and polybenzthiazoles, the staple fibers A having a linear density T(A) and the staple fibers B having a linear density T(B), and the linear density ratio of T(B):T(A) lying within the range from 1.5:1 to 8.8:1.
  • A textile fabric containing the staple fiber yarn according to the invention, and an article comprising this textile fabric, e.g. a glove, show a cut resistance that is at least the same as, if not indeed higher than the cut resistance of a textile fabric manufactured in the same manner from one staple fiber yarn, which contains exclusively staple fibers with a higher linear density T(B).
  • This is surprising, because one would expect, in light of the teaching given by WO 97/25464, that replacing the staple fibers having a higher linear density with staple fibers having a lower linear density would lead to a loss of cut resistance. Therefore, it is already surprising that the cut resistance does not decline due to the substitution just described. It is even more surprising that the cut resistance can actually be increased due to the aforesaid substitution.
  • In addition, in light of the teaching given in WO 97/25464, according to which a textile fabric manufactured using yarns from staple fibers with a linear density lower than approx. 3 dtex has a low cut resistance, it has to be surprising that the staple fiber yarn according to the invention comprises to a high degree cut-resistant embodiments that, measured according to DIN EN 388, e.g., are to be classified in cut resistance class 3, and for which the staple fiber linear density T(A) as well as the staple fiber linear density T(B) clearly lie below 3 dtex, so that textile fabrics manufactured from such yarns not only show a high cut resistance, but are also distinguished by a high wear comfort and an appealing appearance.
  • The staple fiber yarn according to the invention contains staple fibers A and B, whereby the staple fibers A as well as the staple fibers B consist of polymers that are selected from the groups of aramids, polyolefins, polybenzoxazoles and polybenzthiazoles.
  • Within the context of the present invention, “aramids” means aromatic polyamides, wherein at least 85% of the amide linkages (—CO—NH—) are attached directly to two aromatic rings. An aromatic polyamide particularly preferred for the present invention is polyparaphenylene terephthalamide, a homopolymer resulting from the mole-for-mole polymerization of paraphenylene diamine and terephthaloyl dichloride. In addition, copolymers are suitable as aromatic polyamides for the present invention, which copolymers contain, in addition to paraphenylene diamine and terephthaloyl dichloride, minor amounts of other diamines and/or other dicarboxylic acids embedded in the polymer chain. As a general rule it is understood that, in relation to paraphenylene diamine and terephthaloyl dichloride, the other diamines and/or other dicarboxylic acids can be incorporated in the polymer chain at an amount of up to 10 mole percent.
  • Within the context of the present invention, “polyolefins” means polyethylene or polypropylene.
  • Thereby, “polyethylene” is understood to be an essentially linear polyethylene material, which has a molecular weight preferably greater than one million and can include minor amounts of chain branchings or of comonomers, whereby “minor amount” is understood to mean that for every 100 carbon atoms in the primary chain, no more than 5 chain branchings or comonomers are present. The linear polyethylene material can additionally contain up to 50 wt. % of one or more polymer additives, such as, e.g. alkene-1 polymers, in particular, low-pressure polyethylene, low-pressure polypropylene and the like; or low-molecular additives such as antioxidants, UV absorbers, dyes and the like, which are usually incorporated. A polyethylene material of this type is known under the designation “extended chain polyethylene” (ECPE).
  • Within the context of the present invention, “polypropylene” is understood to be an essentially linear polypropylene, having a molecular weight of preferably more than one million.
  • Within the context of the present invention, “polybenzoxazoles” and “polybenzthiazoles” are understood to be polymers having the structural units presented in the following, whereby the aromatic groups attached to the nitrogen are preferably carbocyclic, as shown in the structural units. However, said groups can also be heterocyclic. In addition, the aromatic groups attached to the nitrogen are preferably six-membered rings, as shown in the structural units. However, said groups can also be formed as fused or unfused polycyclic systems.
  • Figure US20090275253A1-20091105-C00001
  • The statement that the staple fibers A as well as the staple fibers B consist of polymers that are selected from the groups of aramids, polyolefins, polybenzoxazoles and polybenzthiazoles means, within the context of the present invention, that all combinations possible through said selection of the polymers mentioned for the staple fibers A and B are comprised.
  • In a preferred embodiment of the staple fiber yarn according to the invention, the staple fibers A and the staple fibers B are each selected from only one of the groups. This comprises embodiments, in which the staple fibers A are selected either from the group of aramids or from the group of polyolefins or from the group of polybenzoxazoles or from the group of polybenzthiazoles, and the staple fibers B are selected either from the group of aramids or from the group of polyolefins or from the group of polybenzoxazoles or from the group of polybenzthiazoles.
  • In a more preferred embodiment of the staple fiber yarn according to the invention, the staple fibers A and the staple fibers B are selected from the same group. This comprises embodiments, in which the staple fibers A and the staple fibers B are selected either from the group of aramids or from the group of polyolefins or from the group of polybenzoxazoles or from the group of polybenzthiazoles.
  • In an especially preferred embodiment of the staple fiber yarn according to the invention, the staple fibers A and the staple fibers B are selected from the same group of aramids, preferably from the para-aramids, whereby within the last-mentioned embodiment, polyparaphenylene terephthalamide is particularly preferred.
  • The staple fiber yarn according to the invention contains in a preferred embodiment the staple fibers A and B in an at least approx. homogenous blend. This means, within the context of the present invention, that in each volume unit of the staple fiber yarn according to the invention, the weight ratio A:B of the staple fibers A and B specified is at least approx. the same during the manufacture of the yarn, so that in this preferred embodiment, the staple fiber yarn according to the invention is at least approx. free from any core-sheath structure. It is especially preferred that the staple fiber yarn according to the invention contains the staple fibers A and B in a homogenous blend, so that in this especially preferred embodiment the staple fiber yarn according to the invention is free from any core-sheath structure.
  • In the staple fiber yarn according to the invention, the linear density ratio T(B):T(A) lies in the range from 1.5:1 to 8.8:1. At a linear density ratio less than 1.5:1, the advantageous effects of the yarn are not brought to bear. At a linear density ratio greater than 8.8:1, the wear comfort of an article manufactured from such a yarn, e.g. a glove, leaves much to be desired.
  • At a linear density ratio T(B):T(A) according to the invention in the range from 1.6:1 to 4.4:1 and in particular in the range from 1.7:1 to 3.2:1, the advantageous effects initially described appear particularly clearly.
  • In the staple fiber yarn according to the invention, the weight ratio of staple fibers A to staple fibers B can be set within a broad range, e.g. in the range from 90:10 to 10:90. However, at a weight ratio of staple fibers A to staple fibers B from 80:20 to 20:80; in particular at a weight ratio of staple fibers A to staple fibers B from 75:25 to 25:75; and to a still greater degree at a weight ratio of staple fibers A to staple fibers B from 70:30 to 30:70, the advantageous effects initially described appear particularly clearly.
  • In a preferred embodiment of the staple fiber yarn according to the invention, the linear density of the staple fibers A lies in the range from 0.5 to 5.0 dtex, and e.g. is 0.52 dtex, especially preferably in the range from 0.6 to 4.0 dtex wherein in each case the condition T(B):T(A)=1.5:1 to 8.8:1 is fulfilled.
  • In a further preferred embodiment of the staple fiber yarn according to the invention, the linear density of the staple fibers B lies in the range from 0.5 to 5.0 dtex and e.g. is 4.5 dtex, especially preferably in the range from 0.6 to 4.0 dtex wherein in each case the condition T(B):T(A) 1.5:1 to 8.8:1 is fulfilled.
  • The total linear density of the staple fiber yarn according to the invention lies preferably in the range from 12 to 500 tex, especially preferably in the range from 16 to 200 tex.
  • The staple fiber yarn according to the invention can be manufactured—as soon as the staple fibers A and B have been selected in the manner according to the invention—in principle by every method for manufacturing a staple fiber yarn, such as e.g. by a method comprising the following steps:
  • a) providing of staple fibers A and staple fibers B and, if necessary, additional staple fibers, whereby the staple fibers A as well as the staple fibers B consist of polymers that are selected from the groups of aramids, polyolefins, polybenzoxazoles and polybenzthiazoles, the staple fibers A having a linear density T(A) and the staple fibers B having a linear density T(B), and the linear density ratio T(B):T(A) lying in the range from 1.5:1 to 8.8:1,
  • b) blending at least approx. homogeneously the staple fibers A and B and, if necessary, the additional staple fibers present, in the linear density selected in step a) by producing a sliver, and
  • c) spinning the sliver produced in step b) into a staple fiber yarn.
  • Thereby, the previously mentioned process characteristics have the corresponding meaning initially explained within the description of the staple fiber yarn according to the invention.
  • The staple fibers A and B provided by the method according to the invention in step a) can be manufactured by one of the known methods for the manufacture of staple fibers, e.g. by shredding or preferably by cutting the corresponding filaments to the desired length, which e.g. lies in the range from 25 to 100 mm and especially preferably in the range from 30 to 60 mm.
  • Thereby, the previously mentioned staple fibers A and B can be manufactured exclusively from unused filaments.
  • However, the previously mentioned staple fibers can also be manufactured from filaments that were already in use, e.g. in a recycling process, in which an already used textile fabric, such as e.g. a woven, knitted, or crocheted fabrics made of aramid, polyolefin, polybenzoxazole or polybenzthiazole fibers has been processed into staple fibers. Preferably, the staple fibers derived through recycling in step a) of the previously described method should, however, only be provided by blending with the staple fibers manufactured from unused filaments, so that the initially described advantageous characteristics of the staple fiber yarn, produced by the previously described method, and the textile fabric manufactured from said yarn would be in effect.
  • The at least approx. homogeneous blending of staple fibers A and B and the, if necessary, additionally present staple fibers implemented in step b) of the method according to the invention by manufacturing a sliver can be implemented in any manner that results in the fact that at least the staple fibers A and B are at least approx. homogeneously distributed in the sliver so obtained. This means, that in every volume unit of the sliver the specified weight ratio A:B of the staple fibers A and B is at least approx. the same. For this purpose, one can employ, in principle, any method which is able to produce the desired—preferably completely homogenous—staple fiber blend, such as, e.g. sliver blending.
  • The spinning implemented in step c) of the method according to the invention of the sliver produced in step b) into a staple fiber yarn can be implemented by any of the known methods for manufacturing a staple fiber yarn, such as, e.g. by rotor, friction, or preferably ring spinning, such as e.g. by cotton or worsted spinning.
  • The underlying object of the present invention is further achieved by a textile fabric comprising a staple fiber yarn according to the invention.
  • Preferably, the textile fabric according to the invention is knitted, crocheted, plaited or woven.
  • In a further preferred embodiment, the textile fabric according to the invention has a mass per unit area in the range from 150 to 1500 g/m2, especially preferably in the range from 200 to 900 g/m2.
  • In a further preferred embodiment, the textile fabric is a knitted fabric, whereby the knitted fabric preferably has a knit density of 3 to 9 courses or wales and, especially preferably, of 3 to 8 courses or wales.
  • Finally, the underlying object of the present invention is achieved through an article that comprises the textile fabric according to the invention. At the same time, the article according to the invention profits correspondingly from the advantageous characteristics of the textile fabric, i.e. from the fabric's combination of high cut resistance with high wear comfort and appealing appearance.
  • Therefore, concrete embodiments of the article according to the invention are objects, in which the advantageous characteristics just mentioned are desired in whole or also only in part. For example, a preferred embodiment of the article according to the invention is a glove, an apron, a pair of pants, a jacket, a sleeve, a hose, a hose jacket or a vandalism-resistant article.
  • The invention will now be described in more detail by way of the following examples.
  • EXAMPLE 1
  • Step a): Staple fibers A and B composed of polyparaphenylene terephthalamide are used, whereby the staple fibers A have a linear density of 0.93 dtex and a length of 50 mm and the staple fibers B have a linear density of 2.5 dtex and a length of 50 mm.
  • Step b): Slivers are manufactured from the staple fibers A and B by sliver blending, which slivers each have a weight ratio A:B of 30:70, 50:50, and 70:30, and in which the staple fibers A and B are present in a homogeneous blend.
  • Step c): All slivers produced in step b) are spun by ring spinning to a staple fiber yarn according to the invention with a total linear density of 36 tex, whereby staple fiber yarns with a weight ratio of A:B of 30:70 (Example 1a), 50:50 (Example 1b), and 70:30 (Example 1c) are produced.
  • As a comparison, a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fibers B with a linear density of 2.5 dtex (Comparison Example 1V).
  • A glove is manufactured from each of the staple fiber yarns according to the invention from Examples 1a-c and from the staple fiber yarn from Comparison Example 1V, which glove is produced as described in the following: Two of the respective staple fiber yarns are processed into a twisted thread. Four such twisted threads are fed parallel into a knitting machine and knitted, whereby the needle gauge is 7 gg (7 needles per 2.54 cm), the mesh density is 3.5 in courses and 4 in wales.
  • Table 1 lists the total weight, the mass per unit area, and the thickness of the gloves produced. In addition, the table lists the lowest single value determined, according to DIN EN 388, from 10 measurements of cut resistance for each case.
  • TABLE 1
    Example 1V 1a 1b 1c
    % B (2.5 dtex) 100 70 50 30
    % A (0.93 dtex) 0 30 50 70
    Total weight [g] 34.7 35.4 36.5 37.3
    of the glove
    Mass per unit area 538 555 572 591
    [g/m2] of the glove
    Thickness [mm] 2.17 2.10 2.04 2.13
    of the glove
    Cut resistance 6.9 8.1 7.7 8.6
    (lowest single value)
  • Table 1 shows, that the cut resistance of the gloves manufactured from the staple fiber yarns according to the invention is 12% (compare Example 1b with Example 1V) to 25% (compare Example 1c to Example 1V) higher than the corresponding values of the glove manufactured from the comparison staple fiber yarn, although the total weight of these gloves is increased by only 2% (compare Example 1a with Example 1V) to 8% (compare Example 1c with Example 1V), and the mass per unit area of these gloves is only increased by 3% (compare Example 1a with Example 1V) to 10% (compare Example 1c with Example 1V). In addition, the thickness of the gloves manufactured from the staple fiber yarns according to the invention is 2% (compare Example 1c with Example 1V) to 6% (compare Example 1b to Example 1V) lower, so that the gloves manufactured from the staple fiber yarns according to the invention have a higher tactility than the glove manufactured from the comparison staple fiber yarn. The previously described advantageous characteristics are achieved with linear densities of the staple fibers A and B considerably less than 3 dtex, so that the gloves manufactured from the staple fiber yarns according to the invention have an agreeable wear comfort and an appealing appearance.
  • EXAMPLE 2
  • Step a): Staple fibers A and B composed of polyparaphenylene terephthalamide are used, whereby the staple fibers A have a linear density of 0.93 dtex and a length of 50 mm and the staple fibers B have a linear density of 2.5 dtex and a length of 50 mm.
  • Step b): Slivers are manufactured from the staple fibers A and B by sliver blending, which slivers each have a weight ratio A:B of 30:70 and 70:30, and in which the staple fibers A and B are present in a homogeneous blend.
  • Step c): All slivers produced in step b) are spun by ring spinning to a staple fiber yarn according to the invention with a total linear density of 36 tex, whereby staple fiber yarns with a weight ratio of A:B of 30:70 (Example 2a) and 70:30 (Example 2b) are produced.
  • As a comparison, a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber B with a linear density of 2.5 dtex (Comparison Example 2V1).
  • As an additional comparison, a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber A with a linear density of 0.93 dtex (Comparison Example 2V2).
  • A glove is manufactured from each of the staple fiber yarns according to the invention, according to Examples 2a-b, and also from the staple fiber yarn from Comparison Example 2V1, and from the staple fiber yarn from Comparison Example 2V2, which glove is produced as described in the following: Two of the respective staple fiber yarns are processed into a twisted thread. Four such twisted threads are fed parallel into a knitting machine and knitted, whereby the needle gauge is 7 gg (7 needles per 2.54 cm), the mesh density is 3.5 in courses and 4 in wales.
  • Table 2 lists the mass per unit area and the cut resistance, whereby the cut resistance is stated as cutting force, which is determined according to EN ISO 13997. The cutting force is the weight expressed in Newtons, which must be exerted on a blade of standardized sharpness in order to cut through the material to be examined with one straight cut of 20 mm made by the blade.
  • TABLE 2
    Mass per unit
    area of the glove Wt. % B Wt. % A Cutting force
    Example [g/m2] (2.5 dtex) (0.93 dtex) [N]
    2V1 590 100 0 14.5
    2a 580 70 30 16.7
    2b 596 30 70 16.9
    2V2 590 0 100 11.9
  • Table 2 shows that the cutting force of the gloves manufactured from the staple fiber yarns according to the invention is 15% (compare Example 2a with Example 2V1) to 17% (compare Example 2b to Example 2V1) higher than the corresponding values for the glove manufactured from the comparison staple fiber yarn. At the same time, the mass per unit area of the glove from Example 2a according to the invention is even 2% lower and the mass per unit area of the glove from Example 2b according to the invention is only 1% higher than the mass per unit area of the comparison glove from Example 2V1. The previously described advantageous characteristics are achieved with linear densities of the staple fibers A and B considerably less than 3 dtex, so that the gloves manufactured from the staple fiber yarns according to the invention have an agreeable wear comfort and an appealing appearance.
  • EXAMPLE 3
  • Step a): Staple fibers A and B composed of poly paraphenylene terephthalamide are used, whereby the staple fibers A have a linear density of 0.93 dtex and a length of 50 mm and the staple fibers B have a linear density of 1.7 dtex and a length of 50 mm.
  • Step b): Slivers are manufactured from the staple fibers A and B by sliver blending, which slivers each have a weight ratio A:B of 30:70 and 50:50, and in which the staple fibers A and B are present in a homogeneous blend.
  • Step c): All slivers produced in step b) are spun by ring spinning to a staple fiber yarn according to the invention with a total linear density of 36 tex, whereby staple fiber yarns with a weight ratio of A:B of 50:50 (Example 3a) and 70:30 (Example 3b) are obtained.
  • As a comparison, a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber B with a linear density of 1.7 dtex (Comparison Example 3V1).
  • As an additional comparison, a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber A with a linear density of 0.93 dtex (Comparison Example 3V2).
  • A glove is manufactured from each of the staple fiber yarns according to the invention, according to Examples 3a-b, and also from the staple fiber yarn from Comparison Example 3V1, and from the staple fiber yarn from Comparison Example 3V2, which glove is produced as described in the following: Two of the respective staple fiber yarns are processed into a twisted thread. Four such twisted threads are fed parallel into a knitting machine and knitted, whereby the needle gauge is 7 gg (7 needles per 2.54 cm), the mesh density is 3.5 in courses and 4 in wales.
  • Table 3 lists the mass per unit area and the cut resistance, whereby the cut resistance is stated as cutting force, which is determined according to EN ISO 13997.
  • TABLE 3
    Mass per unit
    area of the glove Wt. % B Wt. % A Cutting force
    Example [g/m2] (1.7 dtex) (0.93 dtex) [N]
    3V1 580 100 0 13.8
    3a 564 50 50 15.4
    3b 584 30 70 13.8
    3V2 590 0 100 11.9
  • Table 3 shows that the cutting force of the glove manufactured from the staple fiber yarn from Example 3b according to the invention is practically the same as the cutting force of the glove from Example 3V1 manufactured from the comparison staple fiber yarn with almost the same mass per unit area. This is surprising, because the aforesaid staple fiber yarn according to the invention comprises 70 wt. % staple fibers of the lower linear density, which, in light of the teaching given in WO 97/25464, should lead to a distinctly reduced cutting force.
  • In addition, Table 3 shows that the cutting force of the glove manufactured from the staple fiber yarn according to the invention from Example 3a is even 11% higher than the cutting force of the glove from Example 3V1 manufactured from the comparison staple fiber yarn, even though in this staple fiber yarn according to the invention, 50 wt. % of the staple fibers present have the lower linear density. At the same time, the mass per unit area of the glove according to the invention from Example 3a is even 10% lower than the mass per unit area of the comparison glove from Example 3V1. The previously described advantageous characteristics are achieved with linear densities of the staple fibers A and B considerably less than 3 dtex, so that the gloves manufactured from the staple fiber yarns according to the invention have an agreeable wear comfort and an appealing appearance.
  • EXAMPLE 4
  • Step a): Staple fibers A and B composed of poly paraphenylene terephthalamide are used, whereby the staple fibers A have a linear density of 0.52 dtex and a length of 50 mm and the staple fibers B have a linear density of 4.5 dtex and a length of 50 mm.
  • Step b): Slivers are manufactured from the staple fibers A and B by sliver blending, which slivers each have a weight ratio A:B of 30:70 and 50:50, and in which the staple fibers A and B are present in a homogeneous blend.
  • Step c): All slivers produced in step b) are spun by ring spinning to a staple fiber yarn according to the invention with a total linear density of 36 tex, whereby staple fiber yarns with a weight ratio of A:B of 50:50 (Example 4a) and 70:30 (Example 4b) are obtained.
  • As a comparison, a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber B with a linear density of 4.5 dtex (Comparison Example 4V1).
  • As an additional comparison, a staple fiber yarn is manufactured as described above with a total linear density of 36 tex, which yarn comprises 100 wt. % of the staple fiber A with a linear density of 0.52 dtex (Comparison Example 4V2).
  • A glove is manufactured from each of the staple fiber yarns according to the invention, according to Examples 4a-b, and also from the staple fiber yarn from Comparison Example 4V1, and from the staple fiber yarn from Comparison Example 4V2, which glove is produced as described in the following: Two of the respective staple fiber yarns are processed into a twisted thread. Four such twisted threads are fed parallel into a knitting machine and knitted, whereby the needle gauge is 7 gg (7 needles per 2.54 cm), the mesh density is 3.5 in courses and 4 in wales.
  • Table 4 lists the mass per unit area and the cut resistance, whereby the cut resistance is stated as cutting force, which is determined according to EN ISO 13997.
  • TABLE 4
    Mass per unit
    area of the glove Wt. % B Wt. % A Cutting force
    Example [g/m2] (4.5 dtex) (0.52 dtex) [N]
    4V1 570 100 0 14.9
    4a 580 50 50 16.7
    4b 585 30 70 17.2
    4V2 575 0 100 10.5
  • Table 4 shows that the cutting force of the glove manufactured from the staple fiber yarn from Example 4b according to the invention is 15% higher than the cutting force of the glove from Example 4V1 manufactured from the comparison staple fiber yarn with a mass per unit area which is only 3% lower than the mass per unit area of the glove according to the invention example 4b. This is surprising, because the aforesaid staple fiber yarn according to the invention comprises 70 wt. % staple fibers of the lower linear density, which, in light of the teaching given in WO 97/25464, should lead to a distinctly reduced cutting force. In addition, Table 4 shows that the cutting force of the glove manufactured from the staple fiber yarn according to the invention from Example 4a is 12% higher than the cutting force of the glove from Example 4V1 manufactured from the comparison staple fiber yarn, even though in this staple fiber yarn according to the invention, 50 wt. % of the staple fibers present have the lower linear density. At the same time, the mass per unit area of the glove according to the invention from Example 4a is only 2% higher than the mass per unit area of the comparison glove from Example 4V1.

Claims (19)

1. Staple fiber yarn comprising a staple fiber blend that contains staple fibers A and staple fibers B, whereby the staple fibers A as well as the staple fibers B consist of polymers that are selected from the groups of aramids, polyolefins, polybenzoxazoles and polybenzthiazoles, the staple fibers A having a linear density T(A) and the staple fibers B having a linear density T(B) and the linear density ratio T(B):T(A) lying in the range from 1.5:1 to 8.8:1.
2. Staple fiber yarn according to claim 1, wherein the staple fibers A and the staple fibers B are each selected from only one of the groups.
3. Staple fiber yarn according to claim 2, wherein the staple fibers A and the staple fibers B are selected from the same group.
4. Staple fiber yarn according to claim 3, wherein the staple fibers A and the staple fibers B are selected from the group of aramids.
5. Staple fiber yarn according to claim 1, wherein the yarn contains the staple fibers A and B in an at least approx. homogenous blend.
6. Staple fiber yarn according to claim 1, wherein the linear density ratio T(B):T(A) lies in the range from 1.6:1 to 4.4:1.
7. Staple fiber yarn according to claim 6, wherein the linear density ratio T(B):T(A) lies in the range from 1.7:1 to 3.2:1.
8. Staple fiber yarn according to claim 1, wherein the weight ratio of staple fibers A to staple fibers B lies in the range from 90:10 to 10:90.
9. Staple fiber yarn according to claim 8, wherein the weight ratio of staple fibers A to staple fibers B lies in the range from 80:20 to 20:80.
10. Staple fiber yarn according to claim 9, wherein the weight ratio of staple fibers A to staple fibers B lies in the range from 75:25 to 25:75.
11. Staple fiber yarn according to claim 10, wherein the weight ratio of staple fibers A to staple fibers B lies in the range from 70:30 to 30:70.
12. Staple fiber yarn according to claim 1, wherein the linear density of the staple fibers A lies in the range from 0.5 to 5.0 dtex.
13. Staple fiber yarn according to claim 1, wherein the linear density of the staple fibers B lies in the range from 0.5 to 5.0 dtex.
14. Textile fabric comprising a staple fiber yarn according to claim 1.
15. Textile fabric according to claim 14, wherein it is knitted, crocheted, plaited or woven.
16. Textile fabric according to claim 14, wherein it has a mass per unit area in the range from 156 to 1500 g/m2.
17. Textile fabric according to claim 16, wherein it is a knitted fabric, whereby the knitted fabric was produced with a knit density of 3 to 9 courses or wales.
18. Article comprising a textile fabric according to claim 14.
19. Article according to claim 18, wherein the article is a glove, an apron, a pair of pants, a jacket, a sleeve, a hose, a hose jacket or a vandalism-resistant article.
US12/309,230 2006-08-11 2007-07-31 Staple fiber yarn, textile fabric comprising the staple fiber yarn and articles comprising the textile fabric Abandoned US20090275253A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06016797.0 2006-08-11
EP06016797 2006-08-11
PCT/EP2007/006743 WO2008017400A1 (en) 2006-08-11 2007-07-31 Staple fibre yarn, textile fabric comprising the staple fibre yarn, and articles comprising the textile fabric

Publications (1)

Publication Number Publication Date
US20090275253A1 true US20090275253A1 (en) 2009-11-05

Family

ID=37591520

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/309,230 Abandoned US20090275253A1 (en) 2006-08-11 2007-07-31 Staple fiber yarn, textile fabric comprising the staple fiber yarn and articles comprising the textile fabric

Country Status (12)

Country Link
US (1) US20090275253A1 (en)
EP (1) EP2052102B1 (en)
CN (1) CN101501256B (en)
AT (1) ATE484619T1 (en)
DE (1) DE502007005365D1 (en)
DK (1) DK2052102T3 (en)
ES (1) ES2353342T3 (en)
PL (1) PL2052102T3 (en)
PT (1) PT2052102E (en)
SI (1) SI2052102T1 (en)
TW (1) TW200837232A (en)
WO (1) WO2008017400A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110237146A1 (en) * 2008-12-10 2011-09-29 Teijin Aramid Gmbh Knitted fabric
US20150051712A1 (en) * 2013-08-15 2015-02-19 Shriners Hospital For Children Protective sleeve for a medical device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080085411A1 (en) * 2006-10-10 2008-04-10 Larry John Prickett Multidenier fiber cut resistant fabrics and articles and processes for making same
US7358203B1 (en) * 2006-10-10 2008-04-15 E.I. Du Pont De Nemours And Company Stain-masking cut resistant fabrics and articles and processes for making same
US7638193B1 (en) * 2006-10-10 2009-12-29 E. I. Du Pont De Nemours And Company Cut-resistant yarns and method of manufacture

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356700A (en) * 1990-06-11 1994-10-18 Teijin Limited Aromatic polyamide fiber-polyester fiber-blended spun yarn fabric
US6001474A (en) * 1996-01-05 1999-12-14 E. I. Du Pont De Nemours And Company Cut resistant yarn and fabric
US6254988B1 (en) * 2000-06-16 2001-07-03 E. I. Du Pont De Nemours And Company Comfortable cut-abrasion resistant fiber composition
US20030129395A1 (en) * 2000-12-22 2003-07-10 Reiyao Zhu Yarn and fabric having improved abrasion resistance
US6668868B2 (en) * 2000-08-30 2003-12-30 Warwick Mills, Inc Woven fabric constructions having high cover factors and fill yarns with a weight per unit length less than the weight per unit length of warp yarns of the fabric
US20040235383A1 (en) * 2003-05-23 2004-11-25 Celanese Advanced Materials, Inc. Fabric and yarn for protective garments
US6829881B1 (en) * 1998-08-07 2004-12-14 Teijin Twaron Gmbh Cut-resistant articles of aramid microfilaments
US20060177656A1 (en) * 2005-02-10 2006-08-10 Supreme Elastic Corporation High performance fiber blend and products made therefrom

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2178470C2 (en) * 1996-01-05 2002-01-20 Е.И.Дюпон Де Немур Энд Компани Cutting-resistant yarn, material and clothing piece
KR100469108B1 (en) * 2000-10-06 2005-02-02 아사히 가세이 가부시키가이샤 Spun yarn

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356700A (en) * 1990-06-11 1994-10-18 Teijin Limited Aromatic polyamide fiber-polyester fiber-blended spun yarn fabric
US6001474A (en) * 1996-01-05 1999-12-14 E. I. Du Pont De Nemours And Company Cut resistant yarn and fabric
US6829881B1 (en) * 1998-08-07 2004-12-14 Teijin Twaron Gmbh Cut-resistant articles of aramid microfilaments
US6254988B1 (en) * 2000-06-16 2001-07-03 E. I. Du Pont De Nemours And Company Comfortable cut-abrasion resistant fiber composition
US6668868B2 (en) * 2000-08-30 2003-12-30 Warwick Mills, Inc Woven fabric constructions having high cover factors and fill yarns with a weight per unit length less than the weight per unit length of warp yarns of the fabric
US20030129395A1 (en) * 2000-12-22 2003-07-10 Reiyao Zhu Yarn and fabric having improved abrasion resistance
US20040235383A1 (en) * 2003-05-23 2004-11-25 Celanese Advanced Materials, Inc. Fabric and yarn for protective garments
US20060177656A1 (en) * 2005-02-10 2006-08-10 Supreme Elastic Corporation High performance fiber blend and products made therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110237146A1 (en) * 2008-12-10 2011-09-29 Teijin Aramid Gmbh Knitted fabric
US20150051712A1 (en) * 2013-08-15 2015-02-19 Shriners Hospital For Children Protective sleeve for a medical device
US9579223B2 (en) * 2013-08-15 2017-02-28 Shriners Hospital For Children Protective sleeve for a medical device

Also Published As

Publication number Publication date
TW200837232A (en) 2008-09-16
PL2052102T3 (en) 2011-04-29
DE502007005365D1 (en) 2010-11-25
PT2052102E (en) 2010-12-16
WO2008017400A1 (en) 2008-02-14
EP2052102A1 (en) 2009-04-29
DK2052102T3 (en) 2010-12-20
SI2052102T1 (en) 2011-02-28
CN101501256A (en) 2009-08-05
ES2353342T3 (en) 2011-03-01
ATE484619T1 (en) 2010-10-15
CN101501256B (en) 2012-07-04
EP2052102B1 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
KR101105105B1 (en) Ply-Twisted Yarns and Fabric Having Both Cut-Resistance and Elastic Recovery and Processes for Making Same
EP2097566B1 (en) Cut resistant fabric comprising aramid fibers of different denier and method for making articles therefrom
US6666235B2 (en) Lightweight denim fabric containing high strength fibers and clothing formed therefrom
KR20050025613A (en) Cut and abrasion resistant fibrous structure comprising an elastic nylon
US9382646B2 (en) Abrasion resistant yarn
US8021994B2 (en) Textile fabric and protective clothing containing the fabric
US20090275253A1 (en) Staple fiber yarn, textile fabric comprising the staple fiber yarn and articles comprising the textile fabric
US8297081B2 (en) Staple fiber yarn, method for producing a textile article, and textile article
US20080286513A1 (en) Knit fabrics and socks made therefrom incorporating high tensile nylon staple
KR20220053627A (en) Cut-Resistant Multi-ply Twisted Yarns and Fabrics
KR100899761B1 (en) Process for Recycling Articles Containing High-Performance Fiber
US20110237146A1 (en) Knitted fabric
US20140165251A1 (en) Cut Resistant Articles
US7767599B2 (en) Multidenier fiber cut resistant fabrics and articles
US20040011088A1 (en) Cut and abrasion resistant fibrous structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEIJIN ARAMID GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAHN, CHRISTOPH;ZUMLOH-NEBE, REGINE;REEL/FRAME:022251/0426

Effective date: 20090203

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION