US20090259917A1 - Method of correcting message errors using cycle redundancy checks - Google Patents

Method of correcting message errors using cycle redundancy checks Download PDF

Info

Publication number
US20090259917A1
US20090259917A1 US12/423,568 US42356809A US2009259917A1 US 20090259917 A1 US20090259917 A1 US 20090259917A1 US 42356809 A US42356809 A US 42356809A US 2009259917 A1 US2009259917 A1 US 2009259917A1
Authority
US
United States
Prior art keywords
parity
crc
message
check matrix
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/423,568
Inventor
Quentin Spencer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/423,568 priority Critical patent/US20090259917A1/en
Publication of US20090259917A1 publication Critical patent/US20090259917A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms

Definitions

  • This invention relates to a method of error detection and correction in messages sent over a digital communications channel. Specifically, the method uses cyclic redundancy checks (CRCs), which previously have only been used for error detection, to provide a certain amount of correction in messages where errors are detected.
  • CRCs cyclic redundancy checks
  • One practical application of the method described herein relates to error detection in messages sent over a power distribution system employing a TWACS® communication system to send and receive messages over electrical power lines to acquire information on the status of power users, including current power usage.
  • the method of error detection is described for inbound TWACS communications; i.e., messages sent from a user's location back to a utility in response to a message (an outbound communication) sent from the utility to the user.
  • MPDs message passing decoders
  • belief-propagation decoders used with LDPC codes
  • MPDs could theoretically be used with any linear block code.
  • an MPD performs best when the parity-check matrix block code is sparse (i.e., there are very few 1s compared to the number of 0s).
  • block codes such as Hamming, BCH, and Reed-Solomon codes, do not have sparse parity check matrices. Because of this, they have not usually been thought of as candidates for using an MPD.
  • CRCs are widely used in digital communication systems for error detection.
  • a CRC of a fixed length (most commonly 16 or 32 bits, although other lengths are also used) is computed and appended to a message to be transmitted.
  • the receiver of the transmitted message recomputes the CRC to determine if an error has occurred in transmission.
  • a detected error often results in a request for a retransmission of the message.
  • CRC based error detection is also combined with some form of error correction.
  • the choice of an error correcting code, the CRC used, and the protocol for handling detected errors are all design decisions that are determined for each application, and depend upon such factors as the expected probability of an error, tolerance for errors in a received message, and the costs of bandwidth and latency in the system.
  • each message is encoded using a Hamming code and a 16 bit CRC. Since a Hamming code is only able to correct one error, the CRC is used to detect whether more than one error has occurred, so a retransmission can be requested. In practice, however, it is theoretically possible for some errors to go undetected.
  • an LPDC code has been designed for TWACS (see cross referenced U.S. patent application Ser. No. 11/232,072) which should help to overcome some of these shortcomings.
  • improving the error detection and correction capability of the Hamming/CRC error control scheme would also benefit the large, currently installed base of TWACS transponders.
  • the scope of the present invention is a method of using CRC bits to correct errors, thereby improving overall error rates. As described hereinafter, the method can be used with a message with only a CRC, or with messages that combine a CRC with a block error correcting code.
  • the present invention is directed to a method of correcting errors in a message of a fixed length that includes CRC parity check bits for error detection.
  • the method includes generating a parity check matrix representation of the CRC which can be applied to any type of CRC regardless of its size or generator polynomial. If a message is also encoded with a block error correcting code such as a Hamming, BCH, Reed-Muller, or Reed-Solomon code, the parity-check matrix is combined with the parity check matrix for the error correcting code to comprise a single parity-check matrix. Because the resulting matrix is not expected to be a sparse matrix, sparsification techniques are utilized to improve its performance for message passing decoding. The result is a reduction in the packet error rate of the communications channel.
  • a block error correcting code such as a Hamming, BCH, Reed-Muller, or Reed-Solomon code
  • FIG. 1 is a representation of a linear feedback shift register
  • FIG. 2 is a simplified representation of an electrical distribution network including a two-way communications capability
  • FIG. 3 is a representation of an outbound or inbound communications signal sent over the network.
  • a CRC has been implemented using a linear feedback shift register (LFSR) such as the 16 bit register R shown in FIG. 1 . This is because of the shift register's very low cost when implemented in hardware. However, the serial nature of the register is not sufficiently fast for some applications. As is known in the art, alternate designs have been proposed that compute a CRC for an entire block in parallel. The first step in using the CRC to create errors is to create a parity check matrix representation of the CRC using methods similar to those for parallelization.
  • LFSR linear feedback shift register
  • CRC-16 is to be computed for messages of a 32 bit length. The message comprises mostly 0s, having 1 bits only at locations 2 , 17 , 30 , and 31 , so to appear as:
  • the computed CRC for this message is all zeros. If the CRC were computed for four (4) separate sequences, where each sequence consisted of all 0s and a single 1 in the same four bit locations, the respective CRCs would be:
  • the modulo-2 sum of the four bit patterns is all 0s, which illustrates the linearity of the CRC. That is, the CRC of the sum of two sequences is equal to the sum of the CRCs of the individual sequences.
  • This property of CRCs can be extended to produce the equivalent of a parity check matrix for the CRC. For messages of a 32 bit length, this is accomplished by computing the CRC of each 32 bit sequence containing exactly one 1. The output of each CRC computation represents one column of the parity check matrix. For the CRC-16, the 16 ⁇ 32 matrix resulting from this operation is:
  • parity-check matrix representations for any type of CRC, as long as the maximum packet length to be supported is known in advance, which is true for many communication protocols. If no other error correction is being used, the CRC parity-check matrix can then be used in the error correction procedure discussed below. If the CRC is used in conjunction with another error correcting code, the two parity-check matrices can be combined into a single parity-check matrix. If H ECC is the parity-check matrix for the error correcting code and H CRC is the parity-check matrix generated for the CRC, then a combined parity-check matrix H is created by “stacking” the two matrices as follows:
  • H [ H ECC H CRC ⁇ ⁇ 0 ] .
  • a matrix containing all zeros is added to the right of the CRC matrix. This is because typically the CRC is encoded first, and then the CRC-encoded message is passed through the second code, so that the dimensions of the error correcting code's parity-check matrix will be larger than that of the CRC matrix. If, for example, a (255, 247) Hamming code is used in conjunction with a CRC-16, the dimensions of the zero matrix are 16 ⁇ 8, since the Hamming code adds 8 bits of additional redundancy.
  • an MPD can be used to decode messages and possibly correct errors.
  • the MPD attempts to find the most likely transmitted codeword that satisfies the operating constraint that all parity checks are zero. If a stacked parity-check matrix is used, the MPD finds a codeword that simultaneously satisfies the constraints set by the CRC and the error correcting code.
  • the main problem with this approach is that the MPD has been shown to work best when the parity-check matrix is sparse, meaning that it contains a relatively few number of 1s.
  • CRC parity-check matrices and most parity-check codes are not sparse, with the exception of LDPC codes which are specifically designed to be sparse. With a non-sparse parity-check matrix, the MPD can still be used, but the performance is degraded.
  • the procedure is an iterative process where, at each step, a new row and column are added to the matrix, such that the resulting extended parity-check matrix takes the form:
  • H ′ [ H N ( 1 ) N ( 2 ) N ( 3 ) ] .
  • N (3) is a square matrix.
  • N (3) is a square matrix.
  • the extra rows and columns in the H matrix are not transmitted, but rather are treated as internal state variables within the MPD.
  • Each value is initially set to 0 at the beginning of a decoding operation, and the most likely correct values for each variable are estimated during the decoding process.
  • guest state variables to decode a message will potentially hinder decoder performance.
  • a relatively dense parity-check matrix such as that produced by a Hamming code, the resulting improvement in performance is sufficient to offset any losses due to the presence of these additional variables.
  • an electrical distribution system 1 includes a generator 2 for producing electrical energy.
  • the energy is routed through various stations 3 and sub-stations 4 over power lines 5 , and through electricity meters 6 into user facilities 7 such as homes, factories, office buildings, etc. Efficient operation of the system requires real time information as to current energy demand, possible overload conditions, outage occurrences, and related conditions.
  • a two-way communications system TWACS T includes a transmitter or transponder 8 located at a sub-station 4 or the like for generating and transmitting an encoded “outbound” message O to an end user location over power line 5 . At the location, the message is received and decoded by a transponder (not shown) incorporated in meter 6 .
  • a coded “inbound” message I is formulated and sent back by the transponder to the sub-station over the power line.
  • An example of an outbound or inbound signal is shown in FIG. 3 as having a message header Oh or Ih which includes the address to which the message is being sent and related information, and a series of encoded message bits conveying the relevant information.
  • the message is divided into blocks 9 1 - 9 n of encoded data. While not shown in the drawings, conventional electrical distribution systems are typically three-phase ( 3 ⁇ ) systems and the TWACS sends and receives messages concurrently over more than one phase.
  • a message passing decoder 10 is utilized at the substation to detect for, and correct, errors in the received and decoded inbound message which are caused, for example, by noise on the transmission line over which the message is sent.
  • a message passing decoder is commonly used to decode LDPC codes.
  • an MPD uses “soft” rather than “hard” decision inputs. That is, rather than determining whether a bit is a “1” or a “0” before using a decoder to correct for an error, with an MPD, the final decision is not made until after the decoding step, and the MPD uses real-valued inputs that indicate whether a particular bit is a 1 or a 0. That is because this information makes it easier to decode multiple bit errors. For example, using hard decisions, a standard Hamming decoder can only correct only 1 bit error per message. With an MPD, if two bits are in error, but barely cross a threshold of being detected as the wrong bit, the MPD will often correct both bits, thereby exceeding the error-correcting capability of the Hamming decoder.
  • CRC-16 16-bit cyclic redundancy check
  • the Hamming code used in TWACS is a “shortened” code; that is, the number of input bits is less than the maximum of 247 a (255, 247) Hamming code is capable of encoding.
  • any unused bits are assumed to be 0s. This allows a single parity-check matrix to be used for a variety of different message lengths. As a result of this, for example, the first column of the Hamming parity-check matrix for a 10-byte message will be the same as the first column of the matrix from an 11-byte message. This is not true for a CRC-based parity check matrix.
  • the first column of the parity-check matrix for the same 10-byte message is the same as the ninth column of the matrix for the 11-byte message. It is therefore not possible to define a single combined parity-check matrix for all sizes of message inputs.
  • TWACS inbound messages only occur in sizes ranging from 4 to 20 bytes. Accordingly, there are only 17 possible parity-check matrices which need to be computed and stored in advance to handle all the possible TWACS inbound messages.

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Detection And Correction Of Errors (AREA)

Abstract

A method of correcting errors in a message transmitted over a digital communication channel, where the message was encoded using a CRC for purposes of error detection. A parity-check matrix representation of the CRC is computed for any fixed-length message, and that parity-check matrix is combined with the parity-check matrix for any error correcting code that used in conjunction with the CRC. The combined parity-check matrix is extended using sparsification algorithms to allow it to work well under a message passing decoder (MPD). Received messages are decoded using the message passing decoder, making it possible to correct more errors than if the CRC were decoded in a conventional manner.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a divisional of U.S. application Ser. No. 11/836,381 filed on Aug. 9, 2007, which claims priority from U.S. Provisional Patent Application Ser. No. 60/837,349 filed on Aug. 11, 2006, all of which is herein incorporated by reference.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
  • Not Applicable.
  • BACKGROUND OF THE INVENTION
  • This invention relates to a method of error detection and correction in messages sent over a digital communications channel. Specifically, the method uses cyclic redundancy checks (CRCs), which previously have only been used for error detection, to provide a certain amount of correction in messages where errors are detected. One practical application of the method described herein relates to error detection in messages sent over a power distribution system employing a TWACS® communication system to send and receive messages over electrical power lines to acquire information on the status of power users, including current power usage. In particular, the method of error detection is described for inbound TWACS communications; i.e., messages sent from a user's location back to a utility in response to a message (an outbound communication) sent from the utility to the user.
  • In recent years, there has been substantial progress in the area of error correction codes. Most of the gains have been achieved using iterative coding techniques and new classes of codes designed to perform well with such coding methods. These new classes of codes include, for example, Turbo-codes and Low-Density Parity-Check (LDPC) codes. While these codes are being incorporated into standards for next-generation communication systems, there remain many “legacy” communication systems and protocols that use more traditional methods of error detection and correction, and are likely to be used well into the foreseeable future. These systems and protocols would benefit from the use of iterative decoding techniques. In particular, message passing decoders (MPDs), which are also referred to as belief-propagation decoders, used with LDPC codes could theoretically be used with any linear block code. In practice, an MPD performs best when the parity-check matrix block code is sparse (i.e., there are very few 1s compared to the number of 0s). Thus the need for a low-density parity-check matrix. However, most commonly used block codes, such as Hamming, BCH, and Reed-Solomon codes, do not have sparse parity check matrices. Because of this, they have not usually been thought of as candidates for using an MPD. There are, however, methods for extending dense parity-check matrices so they have a sparse structure better suited for message passing decoding. Using these sparsification methods, it has been shown that improved performance can be achieved with these older classes of codes; although this comes at the cost of computational complexity, and the performance does not surpass that of good LDPC codes.
  • CRCs are widely used in digital communication systems for error detection. Typically, a CRC of a fixed length (most commonly 16 or 32 bits, although other lengths are also used) is computed and appended to a message to be transmitted. The receiver of the transmitted message recomputes the CRC to determine if an error has occurred in transmission. Depending upon the application, a detected error often results in a request for a retransmission of the message. In many applications, CRC based error detection is also combined with some form of error correction. The choice of an error correcting code, the CRC used, and the protocol for handling detected errors, are all design decisions that are determined for each application, and depend upon such factors as the expected probability of an error, tolerance for errors in a received message, and the costs of bandwidth and latency in the system.
  • In some communication systems, errors are relatively rare, and the bandwidth is sufficiently high that retransmission of a message does not have a significant impact (the Ethernet protocol is an example of this). Conversely, some communications are quite noisy and error prone, and retransmissions are commonplace. Reducing the frequency of retransmissions can save valuable bandwidth, particularly in systems whose underlying data rates are low. An example of this is a TWACS powerline communications system, which will be used hereafter as an example of how the method of the invention functions. In a TWACS outbound communications, each message is encoded using a Hamming code and a 16 bit CRC. Since a Hamming code is only able to correct one error, the CRC is used to detect whether more than one error has occurred, so a retransmission can be requested. In practice, however, it is theoretically possible for some errors to go undetected.
  • In order to improve performance, an LPDC code has been designed for TWACS (see cross referenced U.S. patent application Ser. No. 11/232,072) which should help to overcome some of these shortcomings. However, improving the error detection and correction capability of the Hamming/CRC error control scheme would also benefit the large, currently installed base of TWACS transponders. The scope of the present invention is a method of using CRC bits to correct errors, thereby improving overall error rates. As described hereinafter, the method can be used with a message with only a CRC, or with messages that combine a CRC with a block error correcting code.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is directed to a method of correcting errors in a message of a fixed length that includes CRC parity check bits for error detection. The method includes generating a parity check matrix representation of the CRC which can be applied to any type of CRC regardless of its size or generator polynomial. If a message is also encoded with a block error correcting code such as a Hamming, BCH, Reed-Muller, or Reed-Solomon code, the parity-check matrix is combined with the parity check matrix for the error correcting code to comprise a single parity-check matrix. Because the resulting matrix is not expected to be a sparse matrix, sparsification techniques are utilized to improve its performance for message passing decoding. The result is a reduction in the packet error rate of the communications channel.
  • Other objects and features will be in part apparent and in part pointed out hereinafter.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • The objects of the invention are achieved as set forth in the illustrative embodiments shown in the drawings, which form a part of the specification.
  • FIG. 1 is a representation of a linear feedback shift register;
  • FIG. 2 is a simplified representation of an electrical distribution network including a two-way communications capability; and,
  • FIG. 3 is a representation of an outbound or inbound communications signal sent over the network.
  • Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The following detailed description illustrates the invention by way of example and not by way of limitation. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what I presently believe is the best mode of carrying out the invention. As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
  • Traditionally, a CRC has been implemented using a linear feedback shift register (LFSR) such as the 16 bit register R shown in FIG. 1. This is because of the shift register's very low cost when implemented in hardware. However, the serial nature of the register is not sufficiently fast for some applications. As is known in the art, alternate designs have been proposed that compute a CRC for an entire block in parallel. The first step in using the CRC to create errors is to create a parity check matrix representation of the CRC using methods similar to those for parallelization.
  • One way of viewing parallelization algorithms is to consider the CRC as a linear filter which, because it has feedback, functions similarly to an infinite impulse response (IIR) filter. As with any linear IIR filter, its impulse response can be calculated for finite length responses. For example, a CRC-16 is to be computed for messages of a 32 bit length. The message comprises mostly 0s, having 1 bits only at locations 2, 17, 30, and 31, so to appear as:
      • 01000000000000001000000000000110
  • The computed CRC for this message is all zeros. If the CRC were computed for four (4) separate sequences, where each sequence consisted of all 0s and a single 1 in the same four bit locations, the respective CRCs would be:
      • 1000000000000110
      • 1000000000000000
      • 0000000000000100
      • 0000000000000010
  • I
  • It will be noted that the modulo-2 sum of the four bit patterns is all 0s, which illustrates the linearity of the CRC. That is, the CRC of the sum of two sequences is equal to the sum of the CRCs of the individual sequences. This property of CRCs can be extended to produce the equivalent of a parity check matrix for the CRC. For messages of a 32 bit length, this is accomplished by computing the CRC of each 32 bit sequence containing exactly one 1. The output of each CRC computation represents one column of the parity check matrix. For the CRC-16, the 16×32 matrix resulting from this operation is:
      • 11011111111111111000000000000000
      • 00110000000000000100000000000000
      • 00011000000000000010000000000000
      • 00001100000000000001000000000000
      • 00000110000000000000100000000000
      • 00000011000000000000010000000000
      • 00000001100000000000001000000000
      • 00000000110000000000000100000000
      • 00000000011000000000000010000000
      • 00000000001100000000000001000000
      • 00000000000110000000000000100000
      • 00000000000011000000000000010000
      • 10000000000001100000000000001000
      • 01000000000000110000000000000100
      • 01111111111111100000000000000010
      • 10111111111111110000000000000001
  • This same procedure can be used to generate parity-check matrix representations for any type of CRC, as long as the maximum packet length to be supported is known in advance, which is true for many communication protocols. If no other error correction is being used, the CRC parity-check matrix can then be used in the error correction procedure discussed below. If the CRC is used in conjunction with another error correcting code, the two parity-check matrices can be combined into a single parity-check matrix. If HECC is the parity-check matrix for the error correcting code and HCRC is the parity-check matrix generated for the CRC, then a combined parity-check matrix H is created by “stacking” the two matrices as follows:
  • H = [ H ECC H CRC 0 ] .
  • Note that a matrix containing all zeros is added to the right of the CRC matrix. This is because typically the CRC is encoded first, and then the CRC-encoded message is passed through the second code, so that the dimensions of the error correcting code's parity-check matrix will be larger than that of the CRC matrix. If, for example, a (255, 247) Hamming code is used in conjunction with a CRC-16, the dimensions of the zero matrix are 16×8, since the Hamming code adds 8 bits of additional redundancy.
  • After a parity-check matrix is defined, an MPD can be used to decode messages and possibly correct errors. The MPD attempts to find the most likely transmitted codeword that satisfies the operating constraint that all parity checks are zero. If a stacked parity-check matrix is used, the MPD finds a codeword that simultaneously satisfies the constraints set by the CRC and the error correcting code. The main problem with this approach is that the MPD has been shown to work best when the parity-check matrix is sparse, meaning that it contains a relatively few number of 1s. CRC parity-check matrices and most parity-check codes are not sparse, with the exception of LDPC codes which are specifically designed to be sparse. With a non-sparse parity-check matrix, the MPD can still be used, but the performance is degraded.
  • The performance of decoding with dense parity-check matrices has been improved significantly using recent advances in this area such as described by S. Sankaranarayanan and B. Vasic “Iterative decoding of linear block codes: A parity check orthogonalization approach,” IEEE Transactions on Information Theory, vol. 51, pp. 3347-3353, September, 2005, and V. Kumar and O. Milenkovic, “On graphical representations of algebraic codes suitable for iterative decoding,” IEEE Communications Letters, vol. 9, pp 729-731, August, 2005. The methods described by the authors of these articles make it possible to create alternate representations of these codes that are more sparse and therefore improve the performance of the older codes. Such alternate representations are based on the premise of adding auxiliary variables to the code; or, additional variables that are not transmitted, but are included in the parity check, and must be estimated by the decoder.
  • To model this mathematically, suppose a matrix H is the base parity-check matrix for a given code, such that a vector c is a valid codeword if Hc=0. If additional columns are now appended to matrix H, so that:

  • H′=[H N]
  • then there exists a vector x such that:
  • H [ c x ] = Hc + Nx = 0
  • The algorithm proposed by Sankaranarayanan and Vasic, and modified by Kumar and Milenkovic, now provide a process to eliminate all cycles in a code of length 4. The procedure is an iterative process where, at each step, a new row and column are added to the matrix, such that the resulting extended parity-check matrix takes the form:
  • H = [ H N ( 1 ) N ( 2 ) N ( 3 ) ] .
  • where N(3) is a square matrix. As indicated above, the extra rows and columns in the H matrix are not transmitted, but rather are treated as internal state variables within the MPD. Each value is initially set to 0 at the beginning of a decoding operation, and the most likely correct values for each variable are estimated during the decoding process. It will be appreciated that “guessing” at unknown state variables to decode a message will potentially hinder decoder performance. However, there is a trade-off in that all cycles of length 4 can be removed from the code. For a relatively dense parity-check matrix, such as that produced by a Hamming code, the resulting improvement in performance is sufficient to offset any losses due to the presence of these additional variables.
  • A practical application of the method is now described.
  • Referring now to FIG. 2, an electrical distribution system 1 includes a generator 2 for producing electrical energy. The energy is routed through various stations 3 and sub-stations 4 over power lines 5, and through electricity meters 6 into user facilities 7 such as homes, factories, office buildings, etc. Efficient operation of the system requires real time information as to current energy demand, possible overload conditions, outage occurrences, and related conditions. For this purpose, a two-way communications system TWACS T includes a transmitter or transponder 8 located at a sub-station 4 or the like for generating and transmitting an encoded “outbound” message O to an end user location over power line 5. At the location, the message is received and decoded by a transponder (not shown) incorporated in meter 6. In reply to the outbound message, a coded “inbound” message I is formulated and sent back by the transponder to the sub-station over the power line. An example of an outbound or inbound signal is shown in FIG. 3 as having a message header Oh or Ih which includes the address to which the message is being sent and related information, and a series of encoded message bits conveying the relevant information. As is known in the art, the message is divided into blocks 9 1-9 n of encoded data. While not shown in the drawings, conventional electrical distribution systems are typically three-phase (3φ) systems and the TWACS sends and receives messages concurrently over more than one phase. A message passing decoder 10 is utilized at the substation to detect for, and correct, errors in the received and decoded inbound message which are caused, for example, by noise on the transmission line over which the message is sent.
  • As noted above, a message passing decoder is commonly used to decode LDPC codes. Unlike traditional algebraic decoders, an MPD uses “soft” rather than “hard” decision inputs. That is, rather than determining whether a bit is a “1” or a “0” before using a decoder to correct for an error, with an MPD, the final decision is not made until after the decoding step, and the MPD uses real-valued inputs that indicate whether a particular bit is a 1 or a 0. That is because this information makes it easier to decode multiple bit errors. For example, using hard decisions, a standard Hamming decoder can only correct only 1 bit error per message. With an MPD, if two bits are in error, but barely cross a threshold of being detected as the wrong bit, the MPD will often correct both bits, thereby exceeding the error-correcting capability of the Hamming decoder.
  • As previously noted, a 16-bit cyclic redundancy check, or CRC-16, is included in all TWACS messages, and is used to detect whether a message has been correctly received. If the CRC is converted into a parity-check matrix format as described above, it can be used as part of the MPD to provide an additional error correction capability.
  • It is important to note that the Hamming code used in TWACS is a “shortened” code; that is, the number of input bits is less than the maximum of 247 a (255, 247) Hamming code is capable of encoding. When using the MPD, any unused bits are assumed to be 0s. This allows a single parity-check matrix to be used for a variety of different message lengths. As a result of this, for example, the first column of the Hamming parity-check matrix for a 10-byte message will be the same as the first column of the matrix from an 11-byte message. This is not true for a CRC-based parity check matrix. With the CRC, the first column of the parity-check matrix for the same 10-byte message is the same as the ninth column of the matrix for the 11-byte message. It is therefore not possible to define a single combined parity-check matrix for all sizes of message inputs. However, TWACS inbound messages only occur in sizes ranging from 4 to 20 bytes. Accordingly, there are only 17 possible parity-check matrices which need to be computed and stored in advance to handle all the possible TWACS inbound messages.
  • In view of the above, it will be seen that the several objects and advantages of the present invention have been achieved and other advantageous results have been obtained.

Claims (5)

1. A method of using cyclic redundancy checks (CRCs) in messages transmitted over a digital communications link to correct errors that may have occurred during transmission in order to improve overall reliability of the communication link, the method comprising:
computing a parity-check representation of a CRC;
extending the parity-check matrix using a sparsification algorithm; and,
directing the received message to a message passing decoder, the message processing decoder processing the message using the extended parity-check matrix of the CRC to correct the errors in the message.
2. The method of claim 1 in which the CRC matrix is combined with a parity-check matrix from an error correcting code to create a single, combined parity-check matrix.
3. The method of claim 2 in which the error correcting code is a general linear block code, including, but not limited to, a Hamming code, a BCH code, a Reed-Muller code, or a Reed-Solomon code.
4. The method of claim 2 further including removing all cycles of length 4 from the combined parity-check matrix representing the CRC and error correcting code.
5-15. (canceled)
US12/423,568 2006-08-11 2009-04-14 Method of correcting message errors using cycle redundancy checks Abandoned US20090259917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/423,568 US20090259917A1 (en) 2006-08-11 2009-04-14 Method of correcting message errors using cycle redundancy checks

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US83734906P 2006-08-11 2006-08-11
US11/836,381 US7831884B2 (en) 2006-08-11 2007-08-09 Method of correcting message errors using cyclic redundancy checks
US12/423,568 US20090259917A1 (en) 2006-08-11 2009-04-14 Method of correcting message errors using cycle redundancy checks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/836,381 Division US7831884B2 (en) 2006-08-11 2007-08-09 Method of correcting message errors using cyclic redundancy checks

Publications (1)

Publication Number Publication Date
US20090259917A1 true US20090259917A1 (en) 2009-10-15

Family

ID=39082948

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/836,381 Active 2027-12-25 US7831884B2 (en) 2006-08-11 2007-08-09 Method of correcting message errors using cyclic redundancy checks
US12/423,568 Abandoned US20090259917A1 (en) 2006-08-11 2009-04-14 Method of correcting message errors using cycle redundancy checks

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/836,381 Active 2027-12-25 US7831884B2 (en) 2006-08-11 2007-08-09 Method of correcting message errors using cyclic redundancy checks

Country Status (5)

Country Link
US (2) US7831884B2 (en)
EP (1) EP2062364A2 (en)
CA (1) CA2661264C (en)
MX (1) MX2009001546A (en)
WO (1) WO2008021930A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100153814A1 (en) * 2007-06-19 2010-06-17 France Telecom Method based on error corrector codes, applicable to a variable rate multimedia datastream
US20100318844A1 (en) * 2008-02-08 2010-12-16 Fujitsu Limited Backup method and disk array apparatus
US20130297983A1 (en) * 2012-05-07 2013-11-07 Lsi Corporation Data Processing System with Failure Recovery
US9747790B1 (en) 2016-02-12 2017-08-29 King Fahd University Of Petroleum And Minerals Method, device, and computer-readable medium for correcting at least one error in readings of electricity meters

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2466425B (en) * 2008-10-09 2014-01-08 Sonicwall Inc Computer networks
CN101795175B (en) * 2010-02-23 2014-03-19 中兴通讯股份有限公司 Data verifying method and device
WO2013019560A2 (en) * 2011-07-29 2013-02-07 Sandisk Technologies Inc. Checksum using sums of permutation sub-matrices
CA2856377C (en) 2011-11-22 2018-10-23 Aclara Technologies Llc Metrology timekeeping systems and methods
CN102801501B (en) * 2012-08-21 2015-03-11 中国电子科技集团公司第三十六研究所 Identification method of code parameter of BCH (broadcast channel) shortened code
US9577675B1 (en) * 2013-12-03 2017-02-21 Marvell International Ltd. System and method for encoding user data with low-density parity-check codes with flexible redundant parity check matrix structures
US9906270B2 (en) 2015-03-26 2018-02-27 Aclara Technologies Llc Concurrent outbound communications in a TWACS
US10218465B2 (en) * 2015-07-02 2019-02-26 Nextivity, Inc. Method and system for maximizing channel bandwidth while employing error control coding
CN108400787B (en) * 2018-03-07 2021-04-13 中山大学 Parallel FIR filter fault-tolerant method based on BCH coding
CN114124111A (en) * 2020-09-01 2022-03-01 华为技术有限公司 Coding method and device
CN115037414B (en) * 2022-05-31 2023-12-22 江苏屹信航天科技有限公司 CRC-based error correction decoding method, device and terminal

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058672A (en) * 1976-11-10 1977-11-15 International Telephone And Telegraph Corporation Packet-switched data communications system
US4442492A (en) * 1979-08-21 1984-04-10 Karlsson Bjoern G E Device for central reading and registration of customers' power consumption
US5535227A (en) * 1993-06-10 1996-07-09 Bull Hn Information Systems Italia S.P.A. Digital information error correcting apparatus for single error correcting (SEC), double error detecting (DED), single byte error detecting (SBED), and odd numbered single byte error correcting (OSBEC)
US5563894A (en) * 1991-12-10 1996-10-08 Hitachi, Ltd. Error detecting and correcting method and system
US5781568A (en) * 1996-02-28 1998-07-14 Sun Microsystems, Inc. Error detection and correction method and apparatus for computer memory
US6085349A (en) * 1997-08-27 2000-07-04 Qualcomm Incorporated Method for selecting cyclic redundancy check polynomials for linear coded systems
US6470472B1 (en) * 1998-10-23 2002-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Arrangements and method relating to transmission of digital data
US6539367B1 (en) * 2000-05-26 2003-03-25 Agere Systems Inc. Methods and apparatus for decoding of general codes on probability dependency graphs
US6662332B1 (en) * 2000-07-05 2003-12-09 3Com Corporation Interleaver for burst error correction
US6691278B1 (en) * 1999-10-13 2004-02-10 Maxtor Corporation Detecting errors in coded bit strings
US20040098659A1 (en) * 2002-11-18 2004-05-20 Bjerke Bjorn A. Rate-compatible LDPC codes
US20050193320A1 (en) * 2004-02-09 2005-09-01 President And Fellows Of Harvard College Methods and apparatus for improving performance of information coding schemes
US20050229091A1 (en) * 2004-03-25 2005-10-13 Narayanan Krishna R Iterative decoding of linear block codes by adapting the parity check matrix
US20060059401A1 (en) * 2004-09-12 2006-03-16 Ko Young J Design of rate-compatible LDPC codes using optimal extending
US7089485B2 (en) * 2000-02-03 2006-08-08 Agere Systems Inc. Simple link protocol providing low overhead coding for LAN serial and WDM solutions
US7143336B1 (en) * 2001-08-15 2006-11-28 Regents Of The Univerisity Of Minnesota Decoding parallel concatenated parity-check code
US7260763B2 (en) * 2004-03-11 2007-08-21 Nortel Networks Limited Algebraic low-density parity check code design for variable block sizes and code rates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683600B1 (en) * 2002-07-03 2007-02-16 휴우즈 일렉트로닉스 코오포레이션 Encoding of low-density parity check codes using a structured parity check matrix

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058672A (en) * 1976-11-10 1977-11-15 International Telephone And Telegraph Corporation Packet-switched data communications system
US4442492A (en) * 1979-08-21 1984-04-10 Karlsson Bjoern G E Device for central reading and registration of customers' power consumption
US5563894A (en) * 1991-12-10 1996-10-08 Hitachi, Ltd. Error detecting and correcting method and system
US5535227A (en) * 1993-06-10 1996-07-09 Bull Hn Information Systems Italia S.P.A. Digital information error correcting apparatus for single error correcting (SEC), double error detecting (DED), single byte error detecting (SBED), and odd numbered single byte error correcting (OSBEC)
US5781568A (en) * 1996-02-28 1998-07-14 Sun Microsystems, Inc. Error detection and correction method and apparatus for computer memory
US6085349A (en) * 1997-08-27 2000-07-04 Qualcomm Incorporated Method for selecting cyclic redundancy check polynomials for linear coded systems
US6470472B1 (en) * 1998-10-23 2002-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Arrangements and method relating to transmission of digital data
US6691278B1 (en) * 1999-10-13 2004-02-10 Maxtor Corporation Detecting errors in coded bit strings
US7089485B2 (en) * 2000-02-03 2006-08-08 Agere Systems Inc. Simple link protocol providing low overhead coding for LAN serial and WDM solutions
US6539367B1 (en) * 2000-05-26 2003-03-25 Agere Systems Inc. Methods and apparatus for decoding of general codes on probability dependency graphs
US6662332B1 (en) * 2000-07-05 2003-12-09 3Com Corporation Interleaver for burst error correction
US7143336B1 (en) * 2001-08-15 2006-11-28 Regents Of The Univerisity Of Minnesota Decoding parallel concatenated parity-check code
US20040098659A1 (en) * 2002-11-18 2004-05-20 Bjerke Bjorn A. Rate-compatible LDPC codes
US20050193320A1 (en) * 2004-02-09 2005-09-01 President And Fellows Of Harvard College Methods and apparatus for improving performance of information coding schemes
US7260763B2 (en) * 2004-03-11 2007-08-21 Nortel Networks Limited Algebraic low-density parity check code design for variable block sizes and code rates
US20050229091A1 (en) * 2004-03-25 2005-10-13 Narayanan Krishna R Iterative decoding of linear block codes by adapting the parity check matrix
US7519898B2 (en) * 2004-03-25 2009-04-14 Krishna Rama Narayanan Iterative decoding of linear block codes by adapting the parity check matrix
US20060059401A1 (en) * 2004-09-12 2006-03-16 Ko Young J Design of rate-compatible LDPC codes using optimal extending

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V. Kumar and O. Milenkovic, "On graphical representations of algebraic codes suitable for iterative decoding," IEEE Communications Letters, vol. 9, pp 729-731, August, 2005 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100153814A1 (en) * 2007-06-19 2010-06-17 France Telecom Method based on error corrector codes, applicable to a variable rate multimedia datastream
US8407552B2 (en) * 2007-06-19 2013-03-26 France Telecom Method based on error corrector codes, applicable to a variable rate multimedia datastream
US20100318844A1 (en) * 2008-02-08 2010-12-16 Fujitsu Limited Backup method and disk array apparatus
US8286028B2 (en) * 2008-02-08 2012-10-09 Fujitsu Limited Backup method and disk array apparatus
US20130297983A1 (en) * 2012-05-07 2013-11-07 Lsi Corporation Data Processing System with Failure Recovery
US8775897B2 (en) * 2012-05-07 2014-07-08 Lsi Corporation Data processing system with failure recovery
US9747790B1 (en) 2016-02-12 2017-08-29 King Fahd University Of Petroleum And Minerals Method, device, and computer-readable medium for correcting at least one error in readings of electricity meters
US9792812B1 (en) 2016-02-12 2017-10-17 King Fahd University Of Petroleum And Minerals Method for correcting electricity meter readings
US9842494B1 (en) 2016-02-12 2017-12-12 King Fahd University Of Petroleum And Minerals Method for electrical energy meter correction in customer-distribution grid

Also Published As

Publication number Publication date
US7831884B2 (en) 2010-11-09
CA2661264C (en) 2014-06-10
WO2008021930A3 (en) 2008-10-16
CA2661264A1 (en) 2008-02-21
MX2009001546A (en) 2009-12-15
EP2062364A2 (en) 2009-05-27
US20080040644A1 (en) 2008-02-14
WO2008021930A2 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
US7831884B2 (en) Method of correcting message errors using cyclic redundancy checks
CN101785189B (en) Encoding device and decoding device
JP4366463B2 (en) Encoding apparatus and encoding method
US6694478B1 (en) Low delay channel codes for correcting bursts of lost packets
US7523375B2 (en) Set of irregular LDPC codes with random structure and low encoding complexity
CN101039119B (en) Encoding and decoding methods and systems
US11201695B2 (en) Forward error correction with compression coding
CN101427495A (en) Multiple-field based code generator and decoder for communications systems
CN1954510A (en) Apparatus and method for encoding and decoding block low density parity check codes with a variable coding rate
Shrivastava et al. Error detection and correction using Reed Solomon codes
CN1301117A (en) 'Not or' codes and serial connected encoder/decoder therewith
Brown et al. Improved decoding of interleaved AG codes
Chaudhary et al. Error control techniques and their applications
Piriou et al. Efficient architecture for Reed Solomon block turbo code
CN110268634B (en) Encoder and decoder for low-consumption applications such as remote reading using short length quasi-cyclic semi-regular LDPC codes
Tallini et al. Efficient systematic deletions/insertions of 0’s error control codes
Sonawane et al. Implementation of RS-CC Encoder and Decoder using MATLAB
Huang et al. Research of Error Control Coding and Decoding
Yuan et al. Quasi-systematic doped LT codes
Al-Shaikhi et al. Packet loss recovery codes based on Vandermonde matrices and shift operators
KR101279283B1 (en) Apparatus and method for transmitting/receiving signal in a communication system using a block code
Durai et al. Multiple-Rate Channel Codes in $\texttt {GF}(p^{n^{2}}) $
Luo et al. Optimized Algebraic Decoding Algorithm for (47, 24, 11) QR Code
WO2022159100A1 (en) Efficient large object transport
Egwali Annie et al. Performance Evaluation of AN-VE: An Error Detection and Correction Code

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION