US20090061659A1 - Through-hole interconnection structure for semiconductor wafer - Google Patents

Through-hole interconnection structure for semiconductor wafer Download PDF

Info

Publication number
US20090061659A1
US20090061659A1 US12/194,668 US19466808A US2009061659A1 US 20090061659 A1 US20090061659 A1 US 20090061659A1 US 19466808 A US19466808 A US 19466808A US 2009061659 A1 US2009061659 A1 US 2009061659A1
Authority
US
United States
Prior art keywords
section
hole
wafer
hole interconnection
bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/194,668
Inventor
Takanori MAEBASHI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to US12/194,668 priority Critical patent/US20090061659A1/en
Assigned to HONDA MOTOR CO., LTD. reassignment HONDA MOTOR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAEBASHI, TAKANORI
Publication of US20090061659A1 publication Critical patent/US20090061659A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10125Reinforcing structures
    • H01L2224/10126Bump collar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10135Alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10145Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13009Bump connector integrally formed with a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01037Rubidium [Rb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present invention relates to a through-hole interconnection structure. More particularly, the present invention relates to a through-hole interconnection structure for a semiconductor wafer suitably used in a semiconductor device which includes plural wafers stacked together.
  • a three-dimensional semiconductor integrated circuit device which includes two or more wafers stacked together and electrically connected via penetrating wiring.
  • a semiconductor device manufactured in the following method is disclosed in Japanese Unexamined Patent Application, First Publication No. H11-261000.
  • a trench i.e., a deep groove
  • the inside of the trench is thermally-oxidized, and then Poly-Si is buried as a conductor to form a penetrating wiring.
  • the thickness of the wafer is reduced so as to expose the penetrating wiring.
  • Backside micro bumps are formed on a back surface of the wafer at a position in which the penetrating wiring is formed.
  • the wafers are stacked with the backside micro bumps on one wafer and surface bumps provided on a surface of the other wafer are joined.
  • an insulating adhesive is injected between the wafers to provide a three-dimensional semiconductor integrated circuit device.
  • An exemplary semiconductor device is disclosed in Japanese Unexamined Patent Application, First Publication No. 2007-59769, in which a desired semiconductor circuit is provided by plural wafers bonded together and semiconductor circuit portions provided on each of the wafers electrically connected to each other.
  • the upper and lower substrates are electrically connected via a through-hole interconnecting section protruding from the back surface of the upper substrate and a bump protruding from the principal surface of the lower substrate.
  • an electric resistance value may be large at the electric connection between the wafers, or variation in the electric resistance may be large. Thus, a reliable electric connection may not be provided between the wafers.
  • connecting strength at a connecting section for electrically connecting the wafers may be insufficient. Thus, a stable electric connection may not be provided between the wafers.
  • An object of the invention is to provide a through-hole interconnection structure for a semiconductor wafer with which a semiconductor device with a highly reliable and stable electric connection of the wafers can be obtained even if a transverse cross sectional area of a connecting section which electrically connects the wafers is reduced.
  • the present inventors intensively studied on a contact state of a connecting section which electrically connects the wafers. As a result, they have successfully found a through-hole interconnection structure for a semiconductor wafer according to the invention in which the contact area in a connecting section which electrically connects the wafers can be increased.
  • the present invention adopted the followings.
  • a through-hole interconnection structure for a semiconductor wafer is a through-hole interconnection structure for a semiconductor wafer in which plural wafers are bonded together each having a substrate with devices provided thereon, an electrical signal connecting section is provided on a bonding surface of each wafer, the bonding surface being for bonding with other wafers, and the electrical signal connecting section is electrically connected to an electrical signal connecting section provided on another of the oppositely-facing wafers to form a desired semiconductor circuit
  • the through-hole interconnection structure for a semiconductor wafer including: a through-hole interconnection section which has a through-hole protruding section which protrudes from the bonding surface to conduct the opposite surfaces of the wafer, the through-hole interconnection section being one of the oppositely-facing electrical signal connecting sections; and a bump which is the other of the oppositely-facing electrical signal connecting sections, wherein: the through-hole protruding section has an oppositely-placed pair of wiring side walls which extend from the bonding surface toward the another wafer
  • one of the oppositely-placed electrical signal connecting sections is the through-hole interconnection section which has the through-hole protruding section protruding from the bonding surface to conduct the both surfaces of the wafer, and the other of the oppositely-placed electrical signal connecting sections is the bump.
  • the end of the through-hole interconnection section is extended to reach the inside of the bump.
  • the end of the through-hole interconnection section is surrounded by the conductive member which is a part of the bump. Accordingly, even if the transverse cross sectional area of the through-hole interconnection section is significantly reduced, a contact area between the through-hole interconnection section and the bump can be increased in the depth direction of the bump. The through-hole interconnection section and the bump are thus reliably surface-contacted.
  • the wafers are electrically connected to each other by the surface contact of the through-hole interconnection section and the bump.
  • an electric resistance value in the inter-wafer electric connection is sufficiently low, and variation in electric resistance value is small.
  • Connection strength in the connecting section formed by the through-hole interconnection section and the bump is sufficiently high. For this reason, the through-hole interconnection structure has a highly reliable and stable inter-wafer electric connection, and thus can be manufactured with high yield.
  • a sufficient contact area of the through-hole interconnection section and the bump is obtained. Accordingly, in a semiconductor device with plural connecting sections of the through-hole interconnection section and the bump, the number of the connecting sections can be decreased. As a result, a compact semiconductor device can be obtained.
  • a through-hole interconnection structure for a semiconductor wafer in which plural wafers are bonded together each having a substrate with devices provided thereon, an electrical signal connecting section is provided on a bonding surface of each wafer, the bonding surface being for bonding with other wafers, and the electrical signal connecting section is electrically connected to an electrical signal connecting section provided on another of the oppositely-facing wafers to form a desired semiconductor circuit
  • the through-hole interconnection structure for a semiconductor wafer including: a through-hole interconnection section which has a through-hole protruding section which protrudes from the bonding surface to conduct the opposite surfaces of the wafer, the through-hole interconnection section being one of the oppositely-facing electrical signal connecting sections; a bump which is the other of the oppositely-facing electrical signal connecting sections; and a separating section provided on the bonding surface and protruding from the bonding surface, the separating section surrounding the through-hole interconnection section, wherein: the through-hole interconnection section and the separating section are integrally formed; an electrical
  • a through-hole interconnection structure for a semiconductor wafer is a through-hole interconnection structure for a semiconductor wafer in which plural wafers are bonded together each having a substrate with devices provided thereon, an electrical signal connecting section is provided on a bonding surface of each wafer, the bonding surface being for bonding with other wafers, and the electrical signal connecting section is electrically connected to an electrical signal connecting section provided on another of the oppositely-facing wafers to form a desired semiconductor circuit
  • the through-hole interconnection structure including: a through-hole interconnection section which has a through-hole protruding section which protrudes from the bonding surface to conduct the opposite surfaces of the wafer, the through-hole interconnection section being one of the oppositely-facing electrical signal connecting sections; a bump which is the other of the oppositely-facing electrical signal connecting sections; and a separating section which has an oppositely-placed pair of separating side walls extending from the bonding surface toward the another wafer, the separating section being provided on the bonding surface and
  • the through-hole protruding section may have an oppositely-placed pair of wiring side walls which extend from the bonding surface toward the another wafer; and the bump may be placed between the pair of wiring side walls.
  • FIG. 1 illustrates an embodiment of the invention, showing a configuration of an electrical signal connecting section which is a part of a semiconductor device.
  • FIG. 2A shows a configuration of the electrical signal connecting section which is a part of the semiconductor device.
  • FIG. 2B shows a configuration of the electrical signal connecting section which is a part of the semiconductor device.
  • FIG. 2C shows a configuration of the electrical signal connecting section which is a part of the semiconductor device.
  • FIG. 2D shows a configuration of the electrical signal connecting section which is a part of the semiconductor device.
  • FIG. 3 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 4 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 5 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 6 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 7 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 8 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 9 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 10 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 11 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 12 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 13 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 14 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 15 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 16 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 17 shows a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 18 is a cross-sectional view of main part showing another example of the semiconductor device according to the invention.
  • FIG. 19 is a flow chart showing a manufacturing process of the semiconductor device shown in FIG. 18 .
  • FIG. 20 is a cross-sectional view of main part showing another example of the semiconductor device.
  • FIG. 21 shows a configuration of an electrical signal connecting section which is a part of the semiconductor device of FIG. 20 .
  • FIG. 22A shows another example of the semiconductor device.
  • FIG. 22B is a longitudinal cross-sectional view showing another example of the semiconductor device.
  • FIG. 23A is a longitudinal cross-sectional view showing another example of the semiconductor device.
  • FIG. 23B is s transverse cross-sectional view showing another example of the semiconductor device in the longitudinal cross-sectional view of FIG. 23A .
  • FIG. 23C is a transverse cross-sectional view showing another example of the semiconductor device.
  • FIG. 24 shows another example of the semiconductor device according to the invention.
  • FIG. 25A is a transverse cross-sectional view showing another example of the semiconductor device according to the invention.
  • FIG. 25B shows another example of the semiconductor device of the invention corresponding to FIG. 2B .
  • FIG. 25C shows another example of the semiconductor device of the invention corresponding to FIG. 2C .
  • FIG. 25D shows another example of the semiconductor device of the invention corresponding to FIG. 2D .
  • FIG. 25E shows another example of the semiconductor device according to the invention.
  • FIG. 26 is a plan view showing a test piece used in an experiment.
  • FIG. 27 is a graph showing electric resistance values in an electric connection between an upper wafer and middle wafer which together constitute a wafer shown in FIG. 26 , and variation in the electric resistance values.
  • FIGS. 1 to 19 illustrate a through-hole interconnection structure for a semiconductor wafer according to the invention.
  • FIGS. 1 to 2D illustrate configurations of an electrical signal connecting section which is a part of the through-hole interconnection structure according to the invention.
  • FIG. 18 is a cross-sectional view of main part of an exemplary semiconductor device which includes the through-hole interconnection structure for a semiconductor wafer according to the invention.
  • FIGS. 3 to 17 describe a manufacturing process of a semiconductor device shown in FIG. 18 .
  • FIG. 19 is a flowchart of the manufacturing process of the semiconductor device shown in FIG. 18 .
  • the semiconductor device shown in FIG. 18 includes an upper wafer 1 WA and a lower wafer 1 WB which are bonded together.
  • An electrical signal connecting section which includes a through-hole interconnecting section 92 is provided on a bonding surface 30 a of the upper wafer 1 WA which faces the lower wafer 1 WB.
  • the through-hole interconnecting section 92 is formed to penetrate a substrate 1 SA which is a part of the upper wafer 1 WA.
  • the through-hole interconnecting section 92 makes a principal surface (one surface, the upper one in FIG. 18 ) and an opposite back surface (the other surface, the lower one in FIG. 18 ) of the wafer 1 WA in the thickness direction interconnect to each other.
  • An electrical signal connecting section which includes a bump 26 is provided on a bonding surface 30 b of the lower wafer 1 WB which faces the upper wafer 1 WA.
  • oppositely disposed end 92 c of the through-hole interconnecting section 92 of the upper wafer 1 WA and the bump 26 of the lower wafer 1 WB are electrically connected to each other to form a desired semiconductor circuit.
  • the semiconductor circuit includes a MOS-FET 6 provided on the substrates 1 SA and 1 SB which are parts of the wafers 1 WA and 1 WB.
  • an insulating adhesive 30 is placed between the bonding surfaces 30 a and 30 b of the upper and lower wafers 1 WA and 1 WB.
  • the adhesive 30 ensures mechanical strength between the upper and lower wafers 1 WA and 1 WB.
  • the adhesive 30 enters the range of the through-hole separating section 51 . Since the adhesive 30 has an insulating property, the adhesive 30 never disturbs the performance of the semiconductor circuit.
  • Reference numeral 51 in the semiconductor device shown in FIG. 18 denotes a through-hole separating section (separating section) which penetrates the substrate 1 AS and includes an insulating layer. As shown in FIG. 18 , the through-hole separating section 51 is provided to protrude from the bonding surface 30 a . The through-hole separating section 51 surrounds each through-hole interconnecting section 92 which is the electrical signal connecting section. The through-hole separating section 51 and the through-hole interconnection section 92 are integrally formed.
  • the through-hole interconnecting section 92 is electrically connected to a bonding pad BP or the MOS-FET 6 via wires 15 a , 15 b and 15 c .
  • the bump 26 is provided to protrude from the bonding surface 30 b of the lower wafer 1 WB.
  • the bump 26 includes a conductive material, and as shown in FIG. 18 , is electrically connected to an uppermost wiring layer 15 c of the lower wafer 1 WB.
  • the bump 26 preferably has hardness lower than that of the through-hole interconnection section 92 .
  • the bump 26 has hardness lower than that of the through-hole interconnection section 92 , the wafers 1 WA and 1 WB can be bonded together with low pressing force.
  • breakage of the through-hole interconnection section 92 due to the pressing force for bonding the wafers 1 WA and 1 WB can be prevented.
  • the end 92 c of the through-hole interconnection section 92 can be extended to reliably reach the inside of the bump 26 .
  • the bump 26 may preferably be made from a conductive material including indium (In), gold added to an indium surface (In/Au) or tin (Sn).
  • the through-hole interconnection section 92 is preferably made from a conductive material including copper and tungsten.
  • FIG. 1 is an enlarged vertical longitudinal sectional view showing only a neighborhood of a bonding surface 30 a of the upper wafer 1 WA which is a part of the semiconductor device shown in FIG. 18 .
  • FIG. 2A is an enlarged transverse cross-sectional view showing only the through-hole interconnection section 92 and the bump 26 of the semiconductor device.
  • the longitudinal cross-sectional view shown in FIG. 1 corresponds to line C-C in FIG. 2A .
  • the transverse cross-sectional view (plan view) shown in FIG. 2A corresponds to line A-A in FIG. 1 .
  • the through-hole interconnection section 92 shown in FIG. 18 includes two wiring sections 92 d and 92 d which have U-shaped transverse cross sections. As shown in the transverse cross-sectional view of FIG. 2A , the two U-shaped wiring sections 92 a and 92 a are disposed symmetrically in both vertical and horizontal directions with open end thereof facing each other. As shown in FIG. 1 , each of the wiring sections 92 d and 92 d includes a through-hole protruding section 92 a protruding from the bonding surface 30 a .
  • the through-hole protruding section 92 a includes an oppositely-facing pair of wiring side walls 92 b and 92 b which extend from the bonding surface 30 a toward the lower wafer 1 WB. As shown in FIG. 1 , an end 92 c of the through-hole interconnection section 92 extends to reach an inside of the bump 26 .
  • the bump 26 is placed between the pair of the wiring side walls 92 b and 92 b of the through-hole interconnection section 92 . In this manner, a bottom surface and side surfaces of the end 92 c of the through-hole interconnection section 92 are in contact with the bump 26 .
  • a through-hole separating section 51 shown in FIG. 18 is in contact with a peripheral surface of each wiring section 92 d .
  • the through-hole separating section 51 surrounds and covers each wiring section 92 d .
  • the through-hole separating section 51 is provided to protrude from the bonding surface 30 a .
  • the protrusion length of the through-hole separating section 51 from the bonding surface 30 a is shorter than that of the through-hole protruding section 92 a of the through-hole interconnection section 92 .
  • the end 92 c of each wiring section 92 d of the through-hole interconnection section 92 is provided to protrude from an end of the through-hole separating section 51 .
  • the through-hole interconnection section 92 is described to include two wiring sections 92 d and 92 d which have U-shaped transverse cross sections.
  • the configuration of the transverse cross section of the through-hole interconnection section is not limited to that described in FIG. 2A .
  • configurations shown in FIGS. 2B to 2D may be employed.
  • FIGS. 2B to 2D illustrate other exemplary configurations of the through-hole interconnection section.
  • FIGS. 2B to 2D are enlarged transverse cross-sectional views showing only the through-hole interconnection section and the bump 26 of the semiconductor device shown in FIG. 18 .
  • the transverse cross-sectional view (plan view) shown in FIGS. 2B to 2D correspond to line A-A in FIG. 1 .
  • the longitudinal cross-sectional view shown in FIG. 1 corresponds to line C-C in FIGS. 2B to 2D .
  • the through-hole interconnection section 93 shown in FIG. 2B is described to include two wiring sections 93 d and 93 d which have L-shaped transverse cross sections. As shown in the transverse cross-sectional view of FIG. 2B , the two L-shaped wiring sections 93 d and 93 d are symmetrically placed with a substantially square-shaped space formed therebetween with respect to a diagonal line of the substantially square-shaped space.
  • a through-hole interconnection section 94 shown in FIG. 2C has a square ring transverse cross section. Instead of the transverse cross section shown in FIG. 2C , the through-hole interconnection section 94 may have a rectangular or parallelogram ring cross section.
  • a rough-hole interconnection section 95 shown in FIG. 2D has a circular ring transverse cross section.
  • the through-hole interconnection section 95 has a circular ring transverse cross section.
  • the through-hole interconnection section 95 may alternatively have one or more circular arc transverse cross sections.
  • the upper wafer 1 WA includes a thin plate shaped as a substantial circle when seen in a plan view.
  • the substrate 1 SA which is a part of the upper wafer 1 WA is made of n-type or p-type single crystal of silicon (Si) or other material.
  • a groove-shaped separating section 2 for separating devices is formed on the principal surface of the substrate 1 SA (i.e., on the principal surface of the wafer 1 WA).
  • the groove-shaped separating section 2 includes a buried insulating layer 2 b of silicon oxide (SiO 2 ) or other material.
  • An active region is defined on the principal surface of the substrate 1 SA by the separating section 2 .
  • MOS-FET Metal Oxide Semiconductor Field Effect Transistor
  • the MOS-FET 6 includes a semiconductor region 6 a for source and drain, a gate insulation film 6 b and a gate electrode 6 c .
  • the semiconductor region 6 a for source and drain is provided by doping the substrate 1 SA with desired impurity (e.g., phosphorus (P) or arsenic (As) for n-type channel MOS-FET 6 , and boron (B) for p-type channel MOS-FET 6 ).
  • desired impurity e.g., phosphorus (P) or arsenic (As) for n-type channel MOS-FET 6
  • B boron
  • the gate insulation film 6 b includes silicon oxide or other material and is provided on the principal surface of the substrate 1 SA.
  • the gate electrode 6 c includes low-resistance polysilicon or other material and is provided on the gate insulation film 6 b .
  • the insulating layer 7 in the active region on the principal surface of the substrate 1 SA includes an insulating layer of silicon oxide or other material.
  • active devices such as a bipolar transistor and a diode may be provided instead of the MOS-FET 6 shown in FIG. 18 .
  • Passive devices such as resistance (e.g., diffusion resistance and polysilicon resistance), a capacitor and an inductor may be provided instead of the MOS-FET 6 .
  • reference numerals 8 a , 8 b , 8 c and 8 d each denote an interlayer insulation film
  • numeral 10 denotes a surface protecting film
  • numerals 15 a , 15 b , and 15 c denote wiring and numerals 16 a , 16 b , 16 c and 16 d each denote a plug.
  • the interlayer insulation films 8 a , 8 b , 8 c , and 8 d are made of silicon oxide or other material.
  • the wiring 15 a to 15 c and the plugs 16 a to 16 d are made of metal such as tungsten (W), aluminum (Al), copper (Cu).
  • the wiring 15 a of a first layer is electrically connected to the semiconductor region 6 a for source and drain and the gate electrode 6 c of the MOS-FET 6 via the plug 16 a .
  • the wiring 15 a of the first layer is also electrically connected to the through-hole interconnecting section 9 via the plug 16 b .
  • the surface protecting film 10 includes, for example, a single silicon oxide film or a lamination of a silicon oxide film and a silicon nitride film deposited on the silicon oxide film.
  • An opening 17 is formed in a part of the surface protecting film 10 through which a part of the third wiring 15 c is exposed.
  • the part of the wiring 15 c exposed through the opening 17 when seen in a plan view is formed as a bonding pad BP.
  • a bump may be provided in connection with the bonding pad BP on the principal surface of the wafer 1 WA.
  • the structure of the lower wafer 1 WB is almost the same as that of the upper wafer 1 WA except for the following points.
  • the through-hole separating section 51 and the through-hole interconnecting section 92 are not formed on the lower wafer 1 WB.
  • a conductive pattern 25 underlying the bump electrically connected to the bonding pad BP through the opening 17 is formed on the opening 17 provided on the principal surface of the lower wafer 1 WB.
  • a bump 26 is formed on the conductive pattern 25 underlying the bump.
  • FIGS. 3 to 17 and 19 a manufacturing process of the semiconductor device shown in FIG. 18 will be described.
  • the upper wafer 1 WA is first prepared (process 100 A in FIG. 19 ), and as shown in FIG. 3 , the groove-shaped separating section 2 for device separation is formed on the principal surface (i.e., the principal surface of the wafer 1 WA) of the substrate 1 SA (process 101 A in FIG. 19 ).
  • a device like the MOS-FET 6 which includes a semiconductor region 6 a for source and drain, a gate insulation film 6 b and a gate electrode 6 c is formed in the active region surrounded by the groove-shaped separating section 2 of the substrate 1 SA (process 103 A in FIG. 19 ).
  • the insulating layer 7 of silicon oxide or other material is provided on the principal surface of the active region of the substrate 1 SA.
  • an insulating layer of silicon oxide or other material is deposited on the principal surface of the substrate 1 SA by a chemical vapor deposition (CVD) or other process, and the upper surface of the insulating layer is smoothed to provide an interlayer insulation film 8 a as shown in FIG. 4 .
  • CVD chemical vapor deposition
  • the through-hole separating section 51 is formed on the substrate 1 SA.
  • a resist film is applied on the principal surface of the substrate 1 SA by spin coating or other process and then exposed and developed to form a resist pattern RA on the principal surface of the substrate 1 SA.
  • Deep separation grooves 5 a are then formed on the substrate 1 SA as shown in FIG. 5 by etching, using the resist pattern RA as an etching mask, portions of the interlayer insulation film 8 a , the insulating layer 7 and the substrate 1 SA exposed from the resist pattern RA. As shown in FIG. 5 , the deep separation groove 5 a extends from the principal surface of the substrate 1 SA along a direction perpendicular to the principal surface. The deep separation groove 5 a ends at a position deeper than the separation groove 2 a for device separation.
  • the resist pattern RA is removed and the insulating layer is formed on an inner surface and a bottom surface of the separation groove 5 a .
  • an insulating layer of silicon oxide (SiO 2 ) or other material is deposited by a chemical vapor deposition (CVD) or other process to form the through-hole separating section 51 (process 102 A in FIG. 19 ) as shown in FIGS. 6 and 7 .
  • the insulating layer which is a part of the through-hole separating section 51 is formed in the inner surface and the bottom surface of the deep separation groove 5 a as shown in FIG. 6 .
  • FIG. 6 is a cross-sectional view taken along line A-A in FIG. 7 .
  • FIG. 7 is a plan view, the through-hole separating section 51 is shown with diagonal lines to facilitate visualization.
  • the through-hole interconnecting section 92 will be formed.
  • the space 9 a defined by the through-hole separating section 51 in the deep separation groove 5 a is filled with a conductive material, which is deposited on the principal surface of the substrate 1 SA by CVD or other process.
  • CMP chemical mechanical polishing
  • a conductive section used as the wiring sections 92 a and 92 a of the through-hole interconnecting section 92 is formed as shown in FIGS. 8 and 9 (process 104 A in FIG. 19 ).
  • the method of forming the conductive section used as the wiring sections 92 a and 92 a of the through-hole interconnecting section 92 is not limited to CVD and may include plating or other processes.
  • FIG. 8 is a cross-sectional view taken along line A-A in FIG. 9 .
  • FIG. 9 is a plan view, the through-hole separating section 51 and the through-hole interconnecting section 92 are shown with diagonal lines to facilitate visualization.
  • the through-hole interconnecting section 92 includes two wire sections 92 d and 92 d having U-shaped transverse cross sections.
  • the through-hole separating section 51 surrounds and covers outer peripheries of the wiring sections 92 d and 92 d .
  • the through-hole separating section 51 and the through-hole interconnection section 92 are integrally formed.
  • the interlayer insulation films 8 b , 8 c and 8 d , the surface protecting film 10 , the wiring 15 a , 15 b and 15 c , the plugs 16 a , 16 b , 16 c and 16 d , the opening 17 , and the bonding pad BP are formed on the principal surface of the substrate 1 SA to form a multi-layered wiring layer (process 105 A in FIG. 19 ).
  • the thickness reducing process of the wafer 1 WA of the present embodiment includes the following first thickness reducing processes and the second thickness reducing process.
  • a dashed line in FIG. 12 shows the substrate 1 SA before being subject to the first thickness reducing process.
  • the back surface of the wafer 1 WA i.e., the back surface of the substrate 1 SA
  • the first thickness reducing process is a mechanical process including grinding.
  • the first thickness reducing process is completed before reaching the through-hole separating section 51 (i.e., before the through-hole separating section 51 is exposed from the back surface of the wafer 1 WA).
  • the back surface of the wafer 1 WA is subject to etching (wet etching, dry etching or both) with the glass support substrate 21 fixed to the principal surface of the wafer 1 WA.
  • etching wet etching, dry etching or both
  • a dashed line in FIG. 13 shows the substrate 1 SA before being subject to the second thickness reducing process.
  • the back surface of the wafer 1 WA is immersed in a chemical solution for etching the wafer 1 WA so as to wet-etch the substrate 1 SA.
  • the through-hole separating section 51 is exposed from the back surface of the wafer 1 WA as shown in FIG. 13 .
  • the back surface of the wafer 1 WA is immersed in a chemical solution for etching the through-hole separating section 51 so as to wet-etch a portion of the through-hole separating section 51 exposed from the back surface of the wafer 1 WA.
  • the end 92 c of the through-hole interconnecting section 92 is exposed from the back surface of the wafer 1 WA as shown in FIG. 14 .
  • the back surface of the wafer 1 WA is etched by immersing in a chemical solution so as to expose the through-hole separating section 51 and the through-hole interconnecting section 92 from the back surface of the wafer 1 WA.
  • FIG. 15 is a cross-sectional view of main part of the upper wafer 1 WA after being subject to the second thickness reducing process.
  • lower parts of the through-hole separating section 51 and the through-hole interconnecting section 92 protrude a desired amount from the back surface of the wafer 1 WA serving as the bonding surface 30 a after being subject to the second thickness reducing process.
  • the wiring section 92 d and 92 d of the through-hole interconnecting section 92 are separated from the substrate 1 SA at the side thereof by the through-hole separating section 51 .
  • the through-hole interconnection section 92 is exposed to be completely electrically separated from the substrate 1 SA.
  • the deep separation groove 5 a becomes a hole penetrating through the main surface and the back surface of the substrate 1 SA.
  • the first thickness reducing process i.e., grinding
  • the second thickness reducing process i.e., etching
  • the first thickness reducing process may be omitted.
  • the described second thickness reducing process includes three etching processes. However, the substrate 1 SA and the through-hole separating section 51 may be etched in one etching process to complete the second thickness reducing process. The substrate 1 SA and the through-hole separating section 51 may also be etched in two etching processes. The substrate 1 SA may be first etched and then the through-hole separating section 51 is etched to complete the second thickness reducing process.
  • the lower wafer is manufactured.
  • a lowermost wafer i.e., a lower wafer manufacturing process above the second layer in FIG. 19
  • the reference numeral 302 in FIG. 19 denotes the lower wafer of the second layer.
  • the manufacturing process of the lower wafer which is the lowermost wafer, is almost the same as that of the upper wafer 1 WA (processes 100 A to 107 A in FIG. 19 ) except for the following points.
  • a bump formation process (process 106 B) is conducted after a formation process (process 105 B) of a multi-layer wiring layer shown in FIG. 19 .
  • the manufacturing process of the lowermost wafer includes no reducing process (process 107 A) of the wafer, no formation process (process 102 B) of the through-hole separating section, and no formation process (process 104 B) of the through-hole interconnecting section.
  • a wafer with reduced thickness is used in an assembly process.
  • the wafer thickness reducing process of process 107 A has a purpose different from that of the assembly process. Thus, no wafer with reduced thickness is included in process 107 A.
  • the thus-manufactured upper and lower wafers 1 WA and 1 WB are bonded together (an upper and lower wafer bonding process 303 of the first and second layers in FIG. 19 ).
  • the upper wafer 1 WA shown in FIG. 15 is disposed over the principal surface (i.e., the bonding surface 30 b ) of the lower wafer 1 WB so that the back surface (i.e., the bonding surface 30 a ) of the upper wafer 1 WA faces the principal surface of the lower wafer 1 WB as shown in FIG. 16 .
  • the upper wafer 1 WA and the lower wafer 1 WB are aligned with each other.
  • the bump 26 on the principal surface of the lower wafer 1 WB and the through-hole interconnecting section 9 on the back surface of the upper wafer 1 WA corresponding to the bump 26 are aligned with each other (process 201 in FIG. 19 ).
  • the facing surfaces (i.e., the bonding surfaces 30 a and 30 b ) of the upper and lower wafers 1 WA and 1 WB are moved closer to each other so as to bond and press the lower wafer 1 WB and upper wafer 1 WA with each other.
  • the ends 92 c of the through-hole interconnection sections 92 on the back surface of the upper wafer 1 WA are arranged so as to reach to the insides of the bumps 26 on the principal surface of the lower wafer 1 WB; thereby, the bumps 26 and the through-hole interconnection sections 92 become in contact with each other and are connected electrically.
  • semiconductor circuit sections of the upper and lower wafers 1 WA and 1 WB are electrically connected to each other to form a desired semiconductor circuit (process 202 in FIG. 19 ).
  • the distance between the bonding surfaces 30 a and 30 b is sufficiently longer than the height of the bump 26 .
  • the wafer 1 WA and the bump 26 are not in contact with each other.
  • the insulating adhesive 30 is then placed between the oppositely facing bonding surfaces 30 a and 30 b of the upper and lower wafers 1 WA and 1 WB to fix the wafers 1 WA and 1 WB (process 203 in FIG. 19 ).
  • the glass support substrate 21 is separated from the principal surface of the upper wafer 1 WA to provide the semiconductor device shown in FIG. 18 .
  • the semiconductor device shown in FIG. 18 is cut into chips.
  • the thus-obtained chip has a three-dimensional structure that includes plural wafers stacked together. That is, the semiconductor circuits formed on the wafers included in the chips are electrically connected to each other via the through through-hole interconnecting section 92 and the bump 26 so as to collectively form a semiconductor integrated circuit.
  • the end 92 c of the through-hole interconnection section 92 is extended to reach the inside of the bump 26 . Accordingly, the bottom surface and the side surfaces of the end 92 c of the through-hole interconnection section 92 are made to contact with the bump 26 . Thus, the through-hole interconnection section 92 and the bump 26 are reliably surface-contacted. Thus, a highly reliable and stable electric connection can be established between the wafers 1 WA and 1 WB.
  • the through-hole protruding section 92 a protruding from the bonding surface 30 a of the through-hole interconnection section 92 has an oppositely-facing pair of wiring side walls 92 b and 92 b which extend from the bonding surface 30 a toward the lower wafer 1 WB.
  • the bump 26 is placed between the pair of wiring side walls 92 b and 92 b . In this manner, the contact area of the through-hole interconnection section 92 and the bump 26 is sufficiently large and thus the through-hole interconnection section 92 and the bump 26 are reliably surface-contacted.
  • FIG. 20 is a cross-sectional view of main part of another exemplary semiconductor device which includes a through-hole interconnection structure according to the invention.
  • the semiconductor device shown in FIG. 20 is a three-dimensional multi-layered semiconductor device in which three substrates 1 SA, 1 SB and 1 SC are stacked.
  • the same members as those shown in FIG. 18 are denoted by the same reference numerals and description thereof will be omitted.
  • an exemplary manufacturing process of the semiconductor device shown in FIG. 20 will be described with reference to FIG. 19 .
  • a middle wafer 1 WC is prepared in the processes 100 B to 106 B shown in FIG. 19 .
  • the middle wafer 1 WC (i.e., the semiconductor wafer) also includes a through-hole separating section 51 and a through-hole interconnecting section 92 as in the uppermost wafer 1 WA.
  • the middle wafer 1 WC differs from the uppermost wafer 1 WA in that a conductive pattern 25 underlying the bump and a bump 26 are formed on a principal surface of the middle wafer 1 WC.
  • the middle wafer 1 WC in this stage has not been subject to the first and second thickness reducing processes and thus is still thick.
  • two wafers 1 WA and 1 WC are aligned with each other as in the manufacturing method of the semiconductor device shown in FIG. 18 .
  • An adhesive 30 is placed between the wafer 1 WA and 1 WC.
  • the wafers 1 WA and 1 WC are fixed together (process 304 : 201 , 202 and 203 for bonding upper and lower wafers above the third layer in FIG. 19 ).
  • a thickness of the lower middle wafer 1 WC is reduced from the backside thereof in a thickness reducing process as described above with the glass support substrate 21 bonded to the principal surface of upper uppermost wafer 1 WA (process 107 A in the middle in FIG. 19 ).
  • the through-hole separating section 51 and the through-hole interconnecting section 92 are exposed (i.e., protrude) from the back surface (i.e., the bonding surface 30 a ) of the lower middle wafer 1 WC.
  • the middle wafer 1 WC and the lowermost wafer 1 WB are aligned with each other with the glass support substrate 21 bonded to the principal surface of the upper uppermost wafer WA.
  • the adhesive 30 is placed between the wafers 1 WC and 1 WB to fix the wafers 1 WC and 1 WB (processes 201 to 203 in the lower middle in FIG. 19 ). Subsequent processes are the same as described above and description thereof will be omitted. When four or more wafers are to be bonded together, the process conducted for the middle wafer 1 WC and the wafer bonding process may be repeated as required.
  • the end 92 c of the through-hole interconnection section 92 is extended to reach the inside of the bump 26 .
  • the bottom surface and the side surfaces of the end 92 c of the through-hole interconnection section 92 are in contact with the bump 26 , and thus the through-hole interconnection section 92 and the bump 26 are reliably surface-contacted. In this manner, a reliable and stable electric connection can be established among the wafers 1 WA, 1 WB and 1 WC.
  • the through-hole interconnection structure of the semiconductor wafer according to the invention is not limited to those described above. Alternatively, through-hole interconnection structures of semiconductor wafers shown in FIGS. 21 to 25 may be employed.
  • the through-hole interconnection section 96 includes a through-hole interconnection section main part 96 d which penetrates the substrate 1 SA, a plug wiring 96 e provided in contact with an end of the through-hole interconnection section main part 96 d at the side of the bonding surface 30 a , and a branched conductive section 96 f provided in contact with a surface of the plug wiring 96 e at the side of the bonding surface 30 a.
  • the through-hole interconnection section 96 has two through-hole protruding sections 96 a protruded from the bonding surface 30 a .
  • Each of the two through-hole protruding sections 96 a has an oppositely-facing pair of wiring side walls 96 b and 96 b which extend from the bonding surface 30 a toward the lower wafer 1 WB. As shown in FIG. 21 , the through-hole interconnection section 96 has two through-hole protruding sections 96 a protruded from the bonding surface 30 a .
  • Each of the two through-hole protruding sections 96 a has an oppositely-facing pair of wiring side walls 96 b and 96 b which extend from the bonding surface 30 a toward the lower wafer 1 WB.
  • the pair of wiring side walls 96 b and 96 b is branched from the through-hole interconnection section main part 96 d by the plug wiring 96 e and the branched conductive section 96 f
  • the wiring side walls 96 b and 96 b are electrically connected to the through-hole interconnection section main part 96 d.
  • the pair of wiring side walls 96 b and 96 b have two U-shaped transverse cross sections.
  • the wiring side walls 96 b and 96 b are disposed symmetrically in both vertical and horizontal directions with open end thereof facing each other.
  • an end 96 c of the through-hole interconnection section 96 extends to reach the inside of the bump 26 .
  • the bump 26 is placed between the pair of wiring side walls 96 b and 96 b of the through-hole interconnection section 96 .
  • a through-hole interconnection section main part 96 d is surrounded by the through-hole separating section 52 which is integrally formed with the through-hole interconnection section main part 96 d .
  • the plug wiring 96 e is buried in the first layer insulation layer 8 e .
  • the branched conductive section 96 f is buried in the second layer insulation layer 8 f . Ends of the pair of wiring side walls 96 b and 96 b at the side of the branched conductive section 96 f are buried in the third layer insulation layer 8 g .
  • the plug wiring 96 e is buried in the first layer insulation layer 8 e .
  • the plug wiring 96 e is insulated from the upper wafer 1 WA with the edge of the plug wiring 96 e overlapping the through-hole separating section 52 when seen in a plan view.
  • the through-hole interconnection section main part 96 d , the plug wiring 96 e , and the branched conductive section 96 f all have square transverse cross sections. As shown in FIG. 21 , the area of the transverse cross section of the branched conductive section 96 f is the largest, the area of the transverse cross section of the through-hole interconnection section main part 96 d is the smallest, and the area of the transverse cross section of the plug wiring 96 e is the middle of them.
  • the area of the transverse cross section of the plug wiring 96 e may be smaller than that of the through-hole interconnection section main part 96 d , and the edge of the plug wiring 96 e may overlap the through-hole interconnection section main part 96 d when seen in a plan view.
  • the plug wiring 96 e is provided in contact with the branched conductive section 96 f .
  • the entire or a part of the plug wiring 96 e may overlap the branched conductive section 96 f when seen in a plan view.
  • the contact area of the plug wiring 96 e and the branched conductive section 96 f is made sufficiently large so that the electric resistance value in the electric connection between the plug wiring 96 e and the branched conductive section 96 f becomes sufficiently small, and a sufficient alignment margin of the plug wiring 96 e and the branched conductive section 96 f can be provided.
  • the entire surface of the plug wiring 96 e overlaps the branched conductive section 96 f when seen in a plan view.
  • the configurations of the transverse cross sections of the through-hole interconnection section main part 96 d , the plug wiring 96 e and the branched conductive section 96 f are not particularly limited. It suffices that a branched conductive section 96 f with a sufficiently large area of the transverse cross section is provided so that the through-hole interconnection section main part 96 d , the plug wiring 96 e and the branched conductive section 96 f are electrically connected with one another, and are insulated from the upper wafer 1 WA, and the pair of wiring side walls 96 b and 96 b can be formed with predetermined configurations of the transverse cross sections.
  • the configuration of the transverse cross section of the through-hole separating section 52 can surround a peripheral surface of the through-hole interconnection section main part 96 d to prevent electric connection of the through-hole interconnection section main part 96 d and the plug wiring 96 e with the upper wafer 1 WA.
  • the configuration of the transverse cross section of the through-hole separating section 52 is not particularly limited and can be suitably determined depending on the configuration of the transverse cross sections of the through-hole interconnection section main part 96 d and the plug wiring 96 e.
  • the pair of wiring side walls 96 b and 96 b of the through-hole interconnection section 96 have two U-shaped transverse cross sections (see FIG. 2A ).
  • the configurations of the transverse cross sections of the pair of wiring side walls 96 b and 96 b are not limited to these shown in FIG. 2A , and configurations shown in FIGS. 2B to 2D may also be employed.
  • FIGS. 22A and 22B illustrate another example of the through-hole interconnection structure of the semiconductor wafer according to the invention.
  • the bump may be disposed within the ring configuration of the through-hole separating section 5 .
  • the bump may also be projected from the ring configuration of the through-hole separating section 5 as in the bump 26 a shown in FIG. 22A .
  • FIG. 22A is an enlarged vertical longitudinal sectional view showing only a neighborhood of the bonding surface 30 a of the upper wafer 1 WA when the bump 26 a is projected from the ring configuration of the through-hole separating section 5 .
  • FIG. 22B is a transverse cross-sectional view (plan view) of the connecting section of the through-hole interconnection section 9 and the bump 26 a in a longitudinal cross-sectional view shown in FIG. 22A .
  • the longitudinal cross-sectional view shown in FIG. 22A corresponds to line C-C in FIG. 22B .
  • the transverse cross-sectional view (plan view) shown in FIG. 22B corresponds to line A-A in FIG. 22A .
  • the through-hole interconnection section 9 shown in FIGS. 22A and 22B includes two wiring sections 91 and 91 which have rectangular transverse cross sections. The two wiring sections 91 and 91 are disposed in parallel. Each wiring sections 91 and 91 has a through-hole protruding section 91 a protruding from the bonding surface 30 a .
  • the through-hole protruding section 91 a has an oppositely-facing pair of wiring side walls 91 b and 91 b which extend from the bonding surface 30 a toward the lower wafer 1 WB.
  • the transverse cross section of through-hole separating section 5 is a square ring configuration.
  • the through-hole separating section 5 and the through-hole interconnection section 9 are separated from each other.
  • the through-hole separating section 5 is formed as a frame surrounding the through-hole interconnection section 9 with certain space left therebetween.
  • the through-hole separating section 5 has an oppositely-facing pair of separating side walls which extend from the bonding surface 30 a toward the lower wafer 1 WB.
  • the through-hole separating section 5 has a square ring configuration.
  • the pair of separating side wall has a first pair of separating side walls 51 a and 51 a and a second pair of separating side walls 51 b and 51 b disposed in a direction perpendicular to the first pair of separating side walls 51 a and 51 a in their transverse cross sections.
  • the end 9 c of the through-hole interconnection section 9 is extended to reach the inside of the bump 26 .
  • the bump 26 is placed between the pair of wiring side walls 91 b and 91 b of the through-hole interconnection section 9 . That is, after the end 9 c of the through-hole interconnection section 9 is made to abut the bump 26 , the end 9 c is pressed into the bump 26 .
  • the bump 26 is deformed so that the end 9 c of the through-hole interconnection section 9 and the bump 26 are in close contact and are surface contacted.
  • a side surface of the through-hole interconnection section 9 and the bump 26 are made to contact to provide a large contact area.
  • the bump 26 is placed between the first pair of separating side walls 51 a and 51 a and the second pair of separating side walls 51 b and 51 b of the through-hole separating section 5 .
  • the through-hole separating section 5 is extended to reach the inside of the bump 26 a , and the bump 26 a is projected from the ring configuration of the through-hole separating section 5 .
  • the distance between the bonding surfaces 30 a and 30 b is sufficiently longer than the height of the bump 26 a .
  • the bump 26 a projecting from the ring configuration of the through-hole separating section 5 and the wafer 1 WA are not in contact with each other.
  • the through-hole interconnection structure of the semiconductor wafer shown in FIG. 22 can be manufactured in the following process.
  • the end 9 c of the through-hole interconnection section 9 on the back surface of the upper wafer 1 WA is extended to reach the inside of the bump 26 a on the principal surface of the lower wafer 1 WB
  • the bump 26 a and the through-hole interconnection section 9 are made to contact with each other and is electrically connected
  • the through-hole separating section 5 is extended to reach the inside of the bump 26 a to make the bump 26 a project from the ring configuration of the through-hole separating section 5 .
  • the bump 26 a is placed between the pair of wiring side walls 91 b and 91 b .
  • the contact area of the through-hole interconnection section 9 and the bump 26 a becomes large to provide reliable surface contact between the through-hole interconnection section 9 and the bump 26 a.
  • the bump 26 a is placed between the first pair of separating side walls 51 a and 51 a and the second pair of separating side wall pairs 51 b and 51 b (i.e., inside of the square ring configuration of the through-hole separating section 5 ), and the through-hole separating section 5 is extended to reach the inside of the bump 26 a .
  • the connecting section which includes the through-hole interconnection section 9 and the bump 26 a are thus reinforced by the through-hole separating section 5 . Accordingly, a more reliable and stable electric connection can be established between the wafers.
  • the through-hole separating section 5 is extended to reach the inside of the bump 26 a .
  • the bump 26 a between the through-hole separating section 5 and the through-hole interconnection section 9 is deformed toward the through-hole interconnection section 9 .
  • the substantial contact area of the through-hole interconnection section 9 and the bump 26 a is increased to provide a sufficient contact area of the through-hole interconnection section 9 and the bump 26 a in the thickness direction of the bump 26 a . Accordingly, the through-hole interconnection section 9 and the bump 26 a are more reliably surface-contacted.
  • FIGS. 23A to 23C illustrate another example of the through-hole interconnection structure of the semiconductor wafer according to the invention.
  • FIG. 23A is an enlarged vertical longitudinal sectional view showing only a neighborhood of the bonding surface 30 a of the upper wafer 1 WA when the bump 26 a is projected from the ring configuration of the through-hole separating section 5 .
  • FIG. 23B is a transverse cross-sectional view (plan view) of the connecting section of the through-hole interconnection section 97 and the bump 26 a in the longitudinal cross-sectional view shown in FIG. 23A .
  • the longitudinal cross-sectional view shown in FIG. 23A corresponds to line C-C in FIG. 23B .
  • the transverse cross-sectional view (plan view) shown in FIG. 23B corresponds to line A-A in FIG. 23A .
  • the through-hole interconnection section 97 shown in FIGS. 23A and 23B has a square pole configuration, it may alternatively have a cylindrical or a polygonal column shape.
  • the transverse cross-sectional view (plan view) shown in FIG. 23C corresponds to line A-A in FIG. 23A
  • the longitudinal cross-sectional view shown in FIG. 23A corresponds to line C-C in FIG. 23C .
  • a configuration of the through-hole separating section 5 is made as a ring concentric with the through-hole interconnection section 98 .
  • the through-hole separating section 5 is extended to reach the inside of the bump 26 a , and the bump 26 a is projecting from the ring configuration of the through-hole separating section 5 .
  • the distance between the bonding surfaces 30 a and 30 b is sufficiently long with respect to the height of the bump 26 a .
  • the bump 26 a projecting from the ring configuration of the through-hole separating section 5 and the wafer 1 WA are not in contact.
  • the through-hole interconnection structures of the semiconductor wafer of semiconductor device shown in FIGS. 23A to 23C can be manufactured in the following process.
  • the end 97 c of the through-hole interconnection section 97 on the back surface of the upper wafer 1 WA is extended to reach the inside of the bump on the principal surface of the lower wafer 1 WB
  • the bump 26 a and the through-hole interconnection section 97 are made to contact with each other and is electrically connected
  • the through-hole separating section 5 is extended to reach the inside of the bump 26 a to make the bump 26 a project from the ring configuration of the through-hole separating section 5 .
  • the bump 26 a is placed between the pair of the separating side walls (i.e., inside of the square ring configuration shown in FIG. 23B or the circular ring configuration shown in FIG. 23C of the through-hole separating section 5 ), and the through-hole separating section 5 is extended to reach the inside of the bump 26 a .
  • the connecting section which includes the through-hole interconnection section 97 ( 98 ) and the bump 26 a are reinforced by the through-hole separating section 5 .
  • the through-hole separating section 5 is extended to reach the inside of the bump 26 a .
  • the bump 26 a between the through-hole separating section 5 and the through-hole interconnection section 97 ( 98 ) is deformed toward the through-hole interconnection section 97 ( 98 ).
  • the through-hole interconnection section 97 ( 98 ) and the bump 26 a are more reliably surface-contacted.
  • the through-hole separating section 51 may be extended to reach the inside of the bump 26 as shown in FIG. 24 .
  • a manufacturing method of the semiconductor device shown in FIG. 24 is the same as that of the semiconductor device shown in FIG. 18 except the following point.
  • the through-hole separating section 51 is extended to reach the inside of the bump 26 .
  • FIG. 24 is an enlarged vertical longitudinal sectional view showing only a neighborhood of the bonding surface 30 a of the upper wafer 1 WA which is a part of the through-hole interconnection structure of the semiconductor wafer.
  • FIG. 25A is an enlarged transverse cross-sectional view showing only the through-hole interconnection section 92 , the through-hole separating section 51 and the bump 26 of the semiconductor device.
  • the longitudinal cross-sectional view shown in FIG. 24 corresponds to line C-C in FIG. 25A .
  • the transverse cross-sectional view (plan view) shown in FIG. 25A corresponds to line A-A in FIG. 24 .
  • the end 92 c of the through-hole interconnection section 92 is extended to reach the inside of the bump 26 .
  • the through-hole interconnection section 92 and the bump 26 are reliably surface-contacted, and thus a more reliable and stable electric connection can be established between the wafers 1 WA and 1 WB.
  • the through-hole protruding section 92 a protruding from the bonding surface 30 a of the through-hole interconnection section 92 includes an oppositely-facing pair of wiring side walls 92 b and 92 b which extend from the bonding surface 30 a toward the lower wafer 1 WB.
  • the bump 26 is placed between the pair of wiring side walls 92 b and 92 b . Accordingly, the contact area of the through-hole interconnection section 92 and the bump 26 becomes sufficiently large.
  • the through-hole separating section 51 which surrounds each of the wiring sections 92 d and 92 d which are the part of the through-hole interconnection section 92 is provided on the bonding surface 30 a and protrudes from the bonding surface 30 a . Further, the wiring sections 92 d and 92 d of the through-hole interconnection section 92 and the through-hole separating section 51 are integrally formed, and the end 92 c of the through-hole interconnection section 92 is formed to protrude from an end of the through-hole separating section 51 .
  • the through-hole separating section 51 is extended to reach the inside of the bump 26 .
  • the bump 26 between the wiring sections 92 d and 92 d is pressed against the lower wafer 1 WB by the through-hole separating section 51 and is expanded in the transverse direction.
  • a more reliable connection is established between the through-hole interconnection section 92 and the bump 26 , and thus these are more stably surface-contacted.
  • the through-hole separating section 51 is extended to reach the inside of the bump 26 .
  • the connecting section which includes the through-hole interconnection section 92 and the bump 26 is reinforced by the through-hole separating section 51 .
  • the configuration of the transverse cross section of the through-hole interconnection section is not limited to that shown in FIG. 25A .
  • the configurations shown in FIGS. 25B to 25D each corresponding to FIGS. 2B to 2D may be employed.
  • the configuration of the transverse cross section of the through-hole interconnection section may be that shown in FIG. 25E .
  • FIG. 25E is an enlarged transverse cross-sectional view showing only a through-hole interconnection section 99 and the bump 26 .
  • the transverse cross-sectional view (plan view) shown in FIG. 25E corresponds to line A-A in FIG. 24 and the longitudinal cross-sectional view shown in FIG. 24 corresponds to line C-C in FIG. 25E .
  • the through-hole interconnection section 99 shown in FIG. 25E includes two wiring sections 99 d and 99 d which have rectangular transverse cross sections.
  • the two wiring sections 99 d and 99 d are disposed in parallel.
  • a peripheral part of each of the wiring sections 99 d and 99 d is surrounded by the through-hole separating section 51 .
  • the through-hole separating section 51 and the through-hole interconnection section 99 are integrally formed.
  • the through-hole interconnection section may have an area of the transverse cross section which is constant when seen in a vertical section.
  • the end portion of the through-hole interconnection section may have a varying transverse cross sectional area when seen in a vertical section.
  • the end portion of the through-hole interconnection section may have a transverse cross section of which area is gradually reduced toward the lower wafer 1 WB.
  • Such a configuration is preferred in that the through-hole interconnection section is easily extended to reach the inside of the bump.
  • a silicon substrate having diameter of 200 mm (8 inches) was used.
  • a through-hole separating section and a through-hole interconnection section were formed in the same manner as in the through-hole interconnection structure of the semiconductor wafer shown in FIGS. 22A and 22B .
  • a wafer was obtained with a principal surface having a bump underlying conductive pattern and a bump was formed thereon.
  • the through-hole interconnection section includes two wiring sections disposed in parallel.
  • the wiring sections were made of tungsten and have rectangular cross sections with length of 5.6 ⁇ m and width of 1.5 ⁇ m.
  • the protruding length of the through-hole protruding section protruding from the bonding surface was 40 ⁇ m.
  • test pieces Six of such test pieces were prepared. Each test piece was measured at 58 measuring points arranged on the shadowed grids shown in FIG. 26 . The electric resistance value was measured in the electric connection in the connecting section of the through-hole interconnection section of the upper wafer and the bump of middle wafer at the 58 measuring points. The electric resistance values were obtained for 310 measuring points of the 348 measuring points. The thus-obtained electric resistance values had an average of 0.5 ⁇ 0.2 ⁇ .

Abstract

A through-hole interconnection structure for a semiconductor wafer in which plural wafers are bonded together each having a substrate with devices provided thereon, an electrical signal connecting section is provided on a bonding surface of each wafer, the bonding surface being for bonding with other wafers, and the electrical signal connecting section is electrically connected to an electrical signal connecting section provided on another of the oppositely-facing wafers to form a desired semiconductor circuit, the through-hole interconnection structure being provided with: a through-hole interconnection section which has a through-hole protruding section which protrudes from the bonding surface to conduct the opposite surfaces of the wafer, the through-hole interconnection section being one of the oppositely-facing electrical signal connecting sections; and a bump which is the other of the oppositely-facing electrical signal connecting sections, wherein: the through-hole protruding section has an oppositely-placed pair of wiring side walls which extend from the bonding surface toward the another wafer; an end of the through-hole interconnection section is extended to reach an inside of the bump; and the bump is placed between the pair of wiring side walls.

Description

  • The present application claims priority of U.S. Provisional Patent Application No. 60/957,791 filed Aug. 24, 2007, which is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a through-hole interconnection structure. More particularly, the present invention relates to a through-hole interconnection structure for a semiconductor wafer suitably used in a semiconductor device which includes plural wafers stacked together.
  • 2. Background Art
  • A three-dimensional semiconductor integrated circuit device has been known which includes two or more wafers stacked together and electrically connected via penetrating wiring. For example, a semiconductor device manufactured in the following method is disclosed in Japanese Unexamined Patent Application, First Publication No. H11-261000.
  • First, a trench (i.e., a deep groove) is formed on one of the wafers to be stacked together, the inside of the trench is thermally-oxidized, and then Poly-Si is buried as a conductor to form a penetrating wiring. Then, the thickness of the wafer is reduced so as to expose the penetrating wiring. Backside micro bumps are formed on a back surface of the wafer at a position in which the penetrating wiring is formed. The wafers are stacked with the backside micro bumps on one wafer and surface bumps provided on a surface of the other wafer are joined. Then, an insulating adhesive is injected between the wafers to provide a three-dimensional semiconductor integrated circuit device.
  • An exemplary semiconductor device is disclosed in Japanese Unexamined Patent Application, First Publication No. 2007-59769, in which a desired semiconductor circuit is provided by plural wafers bonded together and semiconductor circuit portions provided on each of the wafers electrically connected to each other. In the technique disclosed in Japanese Unexamined Patent Application, First Publication No. 2007-59769, the upper and lower substrates are electrically connected via a through-hole interconnecting section protruding from the back surface of the upper substrate and a bump protruding from the principal surface of the lower substrate.
  • However, in a conventional semiconductor device with plural wafers bonded together, an electric resistance value may be large at the electric connection between the wafers, or variation in the electric resistance may be large. Thus, a reliable electric connection may not be provided between the wafers. In a conventional semiconductor device with plural wafers bonded together, connecting strength at a connecting section for electrically connecting the wafers may be insufficient. Thus, a stable electric connection may not be provided between the wafers.
  • It is therefore required to provide a reliable and stable electric connection between the wafers in a conventional semiconductor device with plural wafers bonded together Especially when a transverse cross sectional area of the connecting section which electrically connects the wafers is reduced to provide a compact semiconductor device, there arises a problem that reliability and stability in the electric connection of the wafers easily become insufficient.
  • The present invention has been made in view of the aforementioned problems. An object of the invention is to provide a through-hole interconnection structure for a semiconductor wafer with which a semiconductor device with a highly reliable and stable electric connection of the wafers can be obtained even if a transverse cross sectional area of a connecting section which electrically connects the wafers is reduced.
  • SUMMARY OF THE INVENTION
  • In order to achieve the object, the present inventors intensively studied on a contact state of a connecting section which electrically connects the wafers. As a result, they have successfully found a through-hole interconnection structure for a semiconductor wafer according to the invention in which the contact area in a connecting section which electrically connects the wafers can be increased.
  • In order to solve the above problems, the present invention adopted the followings.
  • Namely, a through-hole interconnection structure for a semiconductor wafer according to the present invention is a through-hole interconnection structure for a semiconductor wafer in which plural wafers are bonded together each having a substrate with devices provided thereon, an electrical signal connecting section is provided on a bonding surface of each wafer, the bonding surface being for bonding with other wafers, and the electrical signal connecting section is electrically connected to an electrical signal connecting section provided on another of the oppositely-facing wafers to form a desired semiconductor circuit, the through-hole interconnection structure for a semiconductor wafer including: a through-hole interconnection section which has a through-hole protruding section which protrudes from the bonding surface to conduct the opposite surfaces of the wafer, the through-hole interconnection section being one of the oppositely-facing electrical signal connecting sections; and a bump which is the other of the oppositely-facing electrical signal connecting sections, wherein: the through-hole protruding section has an oppositely-placed pair of wiring side walls which extend from the bonding surface toward the another wafer, an end of the through-hole interconnection section is extended to reach an inside of the bump; and the bump is placed between the pair of wiring side walls.
  • According to the through-hole interconnection structure of the semiconductor wafer of the invention, one of the oppositely-placed electrical signal connecting sections is the through-hole interconnection section which has the through-hole protruding section protruding from the bonding surface to conduct the both surfaces of the wafer, and the other of the oppositely-placed electrical signal connecting sections is the bump. The end of the through-hole interconnection section is extended to reach the inside of the bump. With this configuration, the end of the through-hole interconnection section is surrounded by the conductive member which is a part of the bump. Accordingly, even if the transverse cross sectional area of the through-hole interconnection section is significantly reduced, a contact area between the through-hole interconnection section and the bump can be increased in the depth direction of the bump. The through-hole interconnection section and the bump are thus reliably surface-contacted.
  • Accordingly, in the through-hole interconnection structure of the semiconductor wafer according to the invention, the wafers are electrically connected to each other by the surface contact of the through-hole interconnection section and the bump. In addition, an electric resistance value in the inter-wafer electric connection is sufficiently low, and variation in electric resistance value is small. Connection strength in the connecting section formed by the through-hole interconnection section and the bump is sufficiently high. For this reason, the through-hole interconnection structure has a highly reliable and stable inter-wafer electric connection, and thus can be manufactured with high yield.
  • In the invention, a sufficient contact area of the through-hole interconnection section and the bump is obtained. Accordingly, in a semiconductor device with plural connecting sections of the through-hole interconnection section and the bump, the number of the connecting sections can be decreased. As a result, a compact semiconductor device can be obtained.
  • In addition, a through-hole interconnection structure for a semiconductor wafer in which plural wafers are bonded together each having a substrate with devices provided thereon, an electrical signal connecting section is provided on a bonding surface of each wafer, the bonding surface being for bonding with other wafers, and the electrical signal connecting section is electrically connected to an electrical signal connecting section provided on another of the oppositely-facing wafers to form a desired semiconductor circuit, the through-hole interconnection structure for a semiconductor wafer including: a through-hole interconnection section which has a through-hole protruding section which protrudes from the bonding surface to conduct the opposite surfaces of the wafer, the through-hole interconnection section being one of the oppositely-facing electrical signal connecting sections; a bump which is the other of the oppositely-facing electrical signal connecting sections; and a separating section provided on the bonding surface and protruding from the bonding surface, the separating section surrounding the through-hole interconnection section, wherein: the through-hole interconnection section and the separating section are integrally formed; an end of the through-hole interconnection section is provided to protrude from an end of the separating section; and an end of the through-hole interconnection section is extended to reach an inside of the bump and the separating section is extended to reach the inside of the bump.
  • Further, a through-hole interconnection structure for a semiconductor wafer according to the invention is a through-hole interconnection structure for a semiconductor wafer in which plural wafers are bonded together each having a substrate with devices provided thereon, an electrical signal connecting section is provided on a bonding surface of each wafer, the bonding surface being for bonding with other wafers, and the electrical signal connecting section is electrically connected to an electrical signal connecting section provided on another of the oppositely-facing wafers to form a desired semiconductor circuit, the through-hole interconnection structure including: a through-hole interconnection section which has a through-hole protruding section which protrudes from the bonding surface to conduct the opposite surfaces of the wafer, the through-hole interconnection section being one of the oppositely-facing electrical signal connecting sections; a bump which is the other of the oppositely-facing electrical signal connecting sections; and a separating section which has an oppositely-placed pair of separating side walls extending from the bonding surface toward the another wafer, the separating section being provided on the bonding surface and protruding from the bonding surface to surround the through-hole interconnection section; an end of the through-hole interconnection section is extended to reach an inside of the bump; the through-hole interconnection section and the separating section are separately disposed; and the bump is placed between the pair of separating side walls.
  • The through-hole protruding section may have an oppositely-placed pair of wiring side walls which extend from the bonding surface toward the another wafer; and the bump may be placed between the pair of wiring side walls.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an embodiment of the invention, showing a configuration of an electrical signal connecting section which is a part of a semiconductor device.
  • FIG. 2A shows a configuration of the electrical signal connecting section which is a part of the semiconductor device.
  • FIG. 2B shows a configuration of the electrical signal connecting section which is a part of the semiconductor device.
  • FIG. 2C shows a configuration of the electrical signal connecting section which is a part of the semiconductor device.
  • FIG. 2D shows a configuration of the electrical signal connecting section which is a part of the semiconductor device.
  • FIG. 3 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 4 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 5 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 6 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 7 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 8 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 9 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 10 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 11 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 12 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 13 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 14 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 15 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 16 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 17 shows a manufacturing process of a semiconductor device shown in FIG. 18.
  • FIG. 18 is a cross-sectional view of main part showing another example of the semiconductor device according to the invention.
  • FIG. 19 is a flow chart showing a manufacturing process of the semiconductor device shown in FIG. 18.
  • FIG. 20 is a cross-sectional view of main part showing another example of the semiconductor device.
  • FIG. 21 shows a configuration of an electrical signal connecting section which is a part of the semiconductor device of FIG. 20.
  • FIG. 22A shows another example of the semiconductor device.
  • FIG. 22B is a longitudinal cross-sectional view showing another example of the semiconductor device.
  • FIG. 23A is a longitudinal cross-sectional view showing another example of the semiconductor device.
  • FIG. 23B is s transverse cross-sectional view showing another example of the semiconductor device in the longitudinal cross-sectional view of FIG. 23A.
  • FIG. 23C is a transverse cross-sectional view showing another example of the semiconductor device.
  • FIG. 24 shows another example of the semiconductor device according to the invention.
  • FIG. 25A is a transverse cross-sectional view showing another example of the semiconductor device according to the invention.
  • FIG. 25B shows another example of the semiconductor device of the invention corresponding to FIG. 2B.
  • FIG. 25C shows another example of the semiconductor device of the invention corresponding to FIG. 2C.
  • FIG. 25D shows another example of the semiconductor device of the invention corresponding to FIG. 2D.
  • FIG. 25E shows another example of the semiconductor device according to the invention.
  • FIG. 26 is a plan view showing a test piece used in an experiment.
  • FIG. 27 is a graph showing electric resistance values in an electric connection between an upper wafer and middle wafer which together constitute a wafer shown in FIG. 26, and variation in the electric resistance values.
  • PREFERRED EMBODIMENTS
  • Referring now to the drawings, the invention will be described in detail.
  • First Embodiment
  • FIGS. 1 to 19 illustrate a through-hole interconnection structure for a semiconductor wafer according to the invention. FIGS. 1 to 2D illustrate configurations of an electrical signal connecting section which is a part of the through-hole interconnection structure according to the invention. FIG. 18 is a cross-sectional view of main part of an exemplary semiconductor device which includes the through-hole interconnection structure for a semiconductor wafer according to the invention. FIGS. 3 to 17 describe a manufacturing process of a semiconductor device shown in FIG. 18. FIG. 19 is a flowchart of the manufacturing process of the semiconductor device shown in FIG. 18.
  • The semiconductor device shown in FIG. 18 according to the present embodiment includes an upper wafer 1WA and a lower wafer 1WB which are bonded together. An electrical signal connecting section which includes a through-hole interconnecting section 92 is provided on a bonding surface 30 a of the upper wafer 1WA which faces the lower wafer 1WB. The through-hole interconnecting section 92 is formed to penetrate a substrate 1SA which is a part of the upper wafer 1WA. The through-hole interconnecting section 92 makes a principal surface (one surface, the upper one in FIG. 18) and an opposite back surface (the other surface, the lower one in FIG. 18) of the wafer 1WA in the thickness direction interconnect to each other. An electrical signal connecting section which includes a bump 26 is provided on a bonding surface 30 b of the lower wafer 1WB which faces the upper wafer 1WA. In the semiconductor device shown in FIG. 18, oppositely disposed end 92 c of the through-hole interconnecting section 92 of the upper wafer 1WA and the bump 26 of the lower wafer 1WB are electrically connected to each other to form a desired semiconductor circuit. The semiconductor circuit includes a MOS-FET 6 provided on the substrates 1SA and 1SB which are parts of the wafers 1WA and 1WB.
  • As shown in FIG. 18, an insulating adhesive 30 is placed between the bonding surfaces 30 a and 30 b of the upper and lower wafers 1WA and 1WB. The adhesive 30 ensures mechanical strength between the upper and lower wafers 1WA and 1WB. In the present embodiment, the adhesive 30 enters the range of the through-hole separating section 51. Since the adhesive 30 has an insulating property, the adhesive 30 never disturbs the performance of the semiconductor circuit.
  • Reference numeral 51 in the semiconductor device shown in FIG. 18 denotes a through-hole separating section (separating section) which penetrates the substrate 1AS and includes an insulating layer. As shown in FIG. 18, the through-hole separating section 51 is provided to protrude from the bonding surface 30 a. The through-hole separating section 51 surrounds each through-hole interconnecting section 92 which is the electrical signal connecting section. The through-hole separating section 51 and the through-hole interconnection section 92 are integrally formed.
  • The through-hole interconnecting section 92 is electrically connected to a bonding pad BP or the MOS-FET 6 via wires 15 a, 15 b and 15 c. The bump 26 is provided to protrude from the bonding surface 30 b of the lower wafer 1WB.
  • The bump 26 includes a conductive material, and as shown in FIG. 18, is electrically connected to an uppermost wiring layer 15 c of the lower wafer 1WB.
  • The bump 26 preferably has hardness lower than that of the through-hole interconnection section 92. When the bump 26 has hardness lower than that of the through-hole interconnection section 92, the wafers 1WA and 1WB can be bonded together with low pressing force. Thus, breakage of the through-hole interconnection section 92 due to the pressing force for bonding the wafers 1WA and 1WB can be prevented. The end 92 c of the through-hole interconnection section 92 can be extended to reliably reach the inside of the bump 26.
  • To reduce the hardness of the bump 26 with respect to that of the through-hole interconnection section 92, the bump 26 may preferably be made from a conductive material including indium (In), gold added to an indium surface (In/Au) or tin (Sn). The through-hole interconnection section 92 is preferably made from a conductive material including copper and tungsten.
  • Next, configurations of the through-hole separating section 51 and the through-hole interconnection section 92 shown in FIG. 18 will be described with reference to FIGS. 1 and 2. FIG. 1 is an enlarged vertical longitudinal sectional view showing only a neighborhood of a bonding surface 30 a of the upper wafer 1WA which is a part of the semiconductor device shown in FIG. 18. FIG. 2A is an enlarged transverse cross-sectional view showing only the through-hole interconnection section 92 and the bump 26 of the semiconductor device. The longitudinal cross-sectional view shown in FIG. 1 corresponds to line C-C in FIG. 2A. The transverse cross-sectional view (plan view) shown in FIG. 2A corresponds to line A-A in FIG. 1.
  • As shown in FIGS. 1 and 2A, the through-hole interconnection section 92 shown in FIG. 18 includes two wiring sections 92 d and 92 d which have U-shaped transverse cross sections. As shown in the transverse cross-sectional view of FIG. 2A, the two U-shaped wiring sections 92 a and 92 a are disposed symmetrically in both vertical and horizontal directions with open end thereof facing each other. As shown in FIG. 1, each of the wiring sections 92 d and 92 d includes a through-hole protruding section 92 a protruding from the bonding surface 30 a. The through-hole protruding section 92 a includes an oppositely-facing pair of wiring side walls 92 b and 92 b which extend from the bonding surface 30 a toward the lower wafer 1WB. As shown in FIG. 1, an end 92 c of the through-hole interconnection section 92 extends to reach an inside of the bump 26. The bump 26 is placed between the pair of the wiring side walls 92 b and 92 b of the through-hole interconnection section 92. In this manner, a bottom surface and side surfaces of the end 92 c of the through-hole interconnection section 92 are in contact with the bump 26.
  • As shown in FIG. 1, a through-hole separating section 51 shown in FIG. 18 is in contact with a peripheral surface of each wiring section 92 d. The through-hole separating section 51 surrounds and covers each wiring section 92 d. The through-hole separating section 51 is provided to protrude from the bonding surface 30 a. The protrusion length of the through-hole separating section 51 from the bonding surface 30 a is shorter than that of the through-hole protruding section 92 a of the through-hole interconnection section 92. The end 92 c of each wiring section 92 d of the through-hole interconnection section 92 is provided to protrude from an end of the through-hole separating section 51.
  • In the example shown in FIG. 2A, the through-hole interconnection section 92 is described to include two wiring sections 92 d and 92 d which have U-shaped transverse cross sections. However, the configuration of the transverse cross section of the through-hole interconnection section is not limited to that described in FIG. 2A. Alternatively, configurations shown in FIGS. 2B to 2D may be employed.
  • FIGS. 2B to 2D illustrate other exemplary configurations of the through-hole interconnection section. FIGS. 2B to 2D are enlarged transverse cross-sectional views showing only the through-hole interconnection section and the bump 26 of the semiconductor device shown in FIG. 18. The transverse cross-sectional view (plan view) shown in FIGS. 2B to 2D correspond to line A-A in FIG. 1. The longitudinal cross-sectional view shown in FIG. 1 corresponds to line C-C in FIGS. 2B to 2D.
  • The through-hole interconnection section 93 shown in FIG. 2B is described to include two wiring sections 93 d and 93 d which have L-shaped transverse cross sections. As shown in the transverse cross-sectional view of FIG. 2B, the two L-shaped wiring sections 93 d and 93 d are symmetrically placed with a substantially square-shaped space formed therebetween with respect to a diagonal line of the substantially square-shaped space.
  • A through-hole interconnection section 94 shown in FIG. 2C has a square ring transverse cross section. Instead of the transverse cross section shown in FIG. 2C, the through-hole interconnection section 94 may have a rectangular or parallelogram ring cross section.
  • A rough-hole interconnection section 95 shown in FIG. 2D has a circular ring transverse cross section. In the example shown in FIG. 2D, the through-hole interconnection section 95 has a circular ring transverse cross section. The through-hole interconnection section 95 may alternatively have one or more circular arc transverse cross sections.
  • In the semiconductor device shown in FIG. 18, the upper wafer 1WA includes a thin plate shaped as a substantial circle when seen in a plan view. The substrate 1SA which is a part of the upper wafer 1WA is made of n-type or p-type single crystal of silicon (Si) or other material. As shown in FIG. 18, a groove-shaped separating section 2 for separating devices is formed on the principal surface of the substrate 1SA (i.e., on the principal surface of the wafer 1WA). The groove-shaped separating section 2 includes a buried insulating layer 2 b of silicon oxide (SiO2) or other material. An active region is defined on the principal surface of the substrate 1SA by the separating section 2.
  • In active region surrounded by groove type separating section 2, device which constitutes semiconductor circuit like MOS-FET (Metal Oxide Semiconductor Field Effect Transistor) 6, for example is formed. The MOS-FET 6 includes a semiconductor region 6 a for source and drain, a gate insulation film 6 b and a gate electrode 6 c. The semiconductor region 6 a for source and drain is provided by doping the substrate 1SA with desired impurity (e.g., phosphorus (P) or arsenic (As) for n-type channel MOS-FET 6, and boron (B) for p-type channel MOS-FET 6). The gate insulation film 6 b includes silicon oxide or other material and is provided on the principal surface of the substrate 1SA. The gate electrode 6 c includes low-resistance polysilicon or other material and is provided on the gate insulation film 6 b. The insulating layer 7 in the active region on the principal surface of the substrate 1SA includes an insulating layer of silicon oxide or other material.
  • Other active devices such as a bipolar transistor and a diode may be provided instead of the MOS-FET 6 shown in FIG. 18. Passive devices such as resistance (e.g., diffusion resistance and polysilicon resistance), a capacitor and an inductor may be provided instead of the MOS-FET 6.
  • In FIG. 18, reference numerals 8 a, 8 b, 8 c and 8 d each denote an interlayer insulation film, numeral 10 denotes a surface protecting film, numerals 15 a, 15 b, and 15 c denote wiring and numerals 16 a, 16 b, 16 c and 16 d each denote a plug. The interlayer insulation films 8 a, 8 b, 8 c, and 8 d are made of silicon oxide or other material. The wiring 15 a to 15 c and the plugs 16 a to 16 d are made of metal such as tungsten (W), aluminum (Al), copper (Cu). The wiring 15 a of a first layer is electrically connected to the semiconductor region 6 a for source and drain and the gate electrode 6 c of the MOS-FET 6 via the plug 16 a. The wiring 15 a of the first layer is also electrically connected to the through-hole interconnecting section 9 via the plug 16 b. The surface protecting film 10 includes, for example, a single silicon oxide film or a lamination of a silicon oxide film and a silicon nitride film deposited on the silicon oxide film. An opening 17 is formed in a part of the surface protecting film 10 through which a part of the third wiring 15 c is exposed. The part of the wiring 15 c exposed through the opening 17 when seen in a plan view is formed as a bonding pad BP. Although not shown in FIG. 18, a bump may be provided in connection with the bonding pad BP on the principal surface of the wafer 1WA.
  • In the semiconductor device shown in FIG. 18, the structure of the lower wafer 1WB is almost the same as that of the upper wafer 1WA except for the following points. The through-hole separating section 51 and the through-hole interconnecting section 92 are not formed on the lower wafer 1WB. Unlike the upper wafer 1WA, a conductive pattern 25 underlying the bump electrically connected to the bonding pad BP through the opening 17 is formed on the opening 17 provided on the principal surface of the lower wafer 1WB. A bump 26 is formed on the conductive pattern 25 underlying the bump.
  • Referring now to FIGS. 3 to 17 and 19, a manufacturing process of the semiconductor device shown in FIG. 18 will be described.
  • First, a manufacturing process of the upper wafer (i.e., a manufacturing process 300 of the upper wafer of the first layer in FIG. 19) will be described. The upper wafer 1WA is first prepared (process 100A in FIG. 19), and as shown in FIG. 3, the groove-shaped separating section 2 for device separation is formed on the principal surface (i.e., the principal surface of the wafer 1WA) of the substrate 1SA (process 101A in FIG. 19).
  • Next, in the present embodiment, as shown in FIG. 3, a device like the MOS-FET 6 which includes a semiconductor region 6 a for source and drain, a gate insulation film 6 b and a gate electrode 6 c is formed in the active region surrounded by the groove-shaped separating section 2 of the substrate 1SA (process 103A in FIG. 19). Next, the insulating layer 7 of silicon oxide or other material is provided on the principal surface of the active region of the substrate 1SA.
  • Then, an insulating layer of silicon oxide or other material is deposited on the principal surface of the substrate 1SA by a chemical vapor deposition (CVD) or other process, and the upper surface of the insulating layer is smoothed to provide an interlayer insulation film 8 a as shown in FIG. 4.
  • Next, the through-hole separating section 51 is formed on the substrate 1SA. First, as shown in FIG. 4, a resist film is applied on the principal surface of the substrate 1SA by spin coating or other process and then exposed and developed to form a resist pattern RA on the principal surface of the substrate 1SA.
  • Deep separation grooves 5 a are then formed on the substrate 1SA as shown in FIG. 5 by etching, using the resist pattern RA as an etching mask, portions of the interlayer insulation film 8 a, the insulating layer 7 and the substrate 1SA exposed from the resist pattern RA. As shown in FIG. 5, the deep separation groove 5 a extends from the principal surface of the substrate 1SA along a direction perpendicular to the principal surface. The deep separation groove 5 a ends at a position deeper than the separation groove 2 a for device separation.
  • The resist pattern RA is removed and the insulating layer is formed on an inner surface and a bottom surface of the separation groove 5 a. For example, an insulating layer of silicon oxide (SiO2) or other material is deposited by a chemical vapor deposition (CVD) or other process to form the through-hole separating section 51 (process 102A in FIG. 19) as shown in FIGS. 6 and 7. The insulating layer which is a part of the through-hole separating section 51 is formed in the inner surface and the bottom surface of the deep separation groove 5 a as shown in FIG. 6. Space 9 a formed as a U-shaped groove when seen in a plan view exists in a central portion of the deep separation groove 5 a to be surrounded by the through-hole separating section 51. FIG. 6 is a cross-sectional view taken along line A-A in FIG. 7. Although FIG. 7 is a plan view, the through-hole separating section 51 is shown with diagonal lines to facilitate visualization.
  • Next, the through-hole interconnecting section 92 will be formed. First, the space 9 a defined by the through-hole separating section 51 in the deep separation groove 5 a is filled with a conductive material, which is deposited on the principal surface of the substrate 1SA by CVD or other process. Then, an excess portion of the conductive material formed outside of the deep separation groove 5 a is removed by a chemical mechanical polishing (CMP) or other process so that the conductive material exists only within the deep separation groove 5 a. In this manner, a conductive section used as the wiring sections 92 a and 92 a of the through-hole interconnecting section 92 is formed as shown in FIGS. 8 and 9 (process 104A in FIG. 19).
  • The method of forming the conductive section used as the wiring sections 92 a and 92 a of the through-hole interconnecting section 92 is not limited to CVD and may include plating or other processes.
  • FIG. 8 is a cross-sectional view taken along line A-A in FIG. 9. Although FIG. 9 is a plan view, the through-hole separating section 51 and the through-hole interconnecting section 92 are shown with diagonal lines to facilitate visualization. As shown in FIGS. 9 and 2A, the through-hole interconnecting section 92 includes two wire sections 92 d and 92 d having U-shaped transverse cross sections. The through-hole separating section 51 surrounds and covers outer peripheries of the wiring sections 92 d and 92 d. The through-hole separating section 51 and the through-hole interconnection section 92 are integrally formed.
  • Next, as shown in FIG. 10, in an ordinary wiring formation method of a semiconductor device, the interlayer insulation films 8 b, 8 c and 8 d, the surface protecting film 10, the wiring 15 a, 15 b and 15 c, the plugs 16 a, 16 b, 16 c and 16 d, the opening 17, and the bonding pad BP are formed on the principal surface of the substrate 1SA to form a multi-layered wiring layer (process 105A in FIG. 19).
  • Then, as shown in FIG. 11, a glass support substrate 21 is made to adhere to the principal surface of the wafer 1WA via an adhesive sheet 20 and a thickness of the wafer 1WA is reduced (process 107A in FIG. 19). The thickness reducing process of the wafer 1WA of the present embodiment includes the following first thickness reducing processes and the second thickness reducing process.
  • A dashed line in FIG. 12 shows the substrate 1SA before being subject to the first thickness reducing process. In the first thickness reducing process, as shown in FIG. 12, the back surface of the wafer 1WA (i.e., the back surface of the substrate 1SA) is ground to a desired thickness with the glass support substrate 21 fixed to the principal surface of the wafer 1WA. The first thickness reducing process is a mechanical process including grinding. The first thickness reducing process is completed before reaching the through-hole separating section 51 (i.e., before the through-hole separating section 51 is exposed from the back surface of the wafer 1WA).
  • In the second thickness reducing process, the back surface of the wafer 1WA is subject to etching (wet etching, dry etching or both) with the glass support substrate 21 fixed to the principal surface of the wafer 1WA. A dashed line in FIG. 13 shows the substrate 1SA before being subject to the second thickness reducing process.
  • First, the back surface of the wafer 1WA is immersed in a chemical solution for etching the wafer 1WA so as to wet-etch the substrate 1SA. As a result of the etching, the through-hole separating section 51 is exposed from the back surface of the wafer 1WA as shown in FIG. 13.
  • Next, the back surface of the wafer 1WA is immersed in a chemical solution for etching the through-hole separating section 51 so as to wet-etch a portion of the through-hole separating section 51 exposed from the back surface of the wafer 1WA. As a result of the etching, the end 92 c of the through-hole interconnecting section 92 is exposed from the back surface of the wafer 1WA as shown in FIG. 14.
  • Finally, the back surface of the wafer 1WA is etched by immersing in a chemical solution so as to expose the through-hole separating section 51 and the through-hole interconnecting section 92 from the back surface of the wafer 1WA.
  • FIG. 15 is a cross-sectional view of main part of the upper wafer 1WA after being subject to the second thickness reducing process. In the upper wafer 1WA after being subject to the second thickness reducing process, lower parts of the through-hole separating section 51 and the through-hole interconnecting section 92 protrude a desired amount from the back surface of the wafer 1WA serving as the bonding surface 30 a after being subject to the second thickness reducing process.
  • As a result of the second thickness reducing process, the wiring section 92 d and 92 d of the through-hole interconnecting section 92 are separated from the substrate 1SA at the side thereof by the through-hole separating section 51. At the lower part of each of the wiring sections 92 d and 92 d of the through-hole interconnecting section 92, the through-hole interconnection section 92 is exposed to be completely electrically separated from the substrate 1SA. In this stage, the deep separation groove 5 a becomes a hole penetrating through the main surface and the back surface of the substrate 1SA.
  • In the above-described example, the first thickness reducing process (i.e., grinding) and the second thickness reducing process (i.e., etching) are conducted in this order in the thickness reducing process of the wafer 1WA. However, the first thickness reducing process (i.e., grinding) may be omitted.
  • The described second thickness reducing process includes three etching processes. However, the substrate 1SA and the through-hole separating section 51 may be etched in one etching process to complete the second thickness reducing process. The substrate 1SA and the through-hole separating section 51 may also be etched in two etching processes. The substrate 1SA may be first etched and then the through-hole separating section 51 is etched to complete the second thickness reducing process.
  • In this manner, the manufacturing process of the upper wafer 1WA is completed.
  • Next, the lower wafer is manufactured. As a lower wafer, a lowermost wafer (i.e., a lower wafer manufacturing process above the second layer in FIG. 19) of which back surface is not bonded to another wafer will be described in the manufacturing process. Here, the reference numeral 302 in FIG. 19 denotes the lower wafer of the second layer.
  • The manufacturing process of the lower wafer, which is the lowermost wafer, is almost the same as that of the upper wafer 1WA (processes 100A to 107A in FIG. 19) except for the following points.
  • In the manufacturing process of the lowermost wafer, a bump formation process (process 106B) is conducted after a formation process (process 105B) of a multi-layer wiring layer shown in FIG. 19. The manufacturing process of the lowermost wafer includes no reducing process (process 107A) of the wafer, no formation process (process 102B) of the through-hole separating section, and no formation process (process 104B) of the through-hole interconnecting section. A wafer with reduced thickness is used in an assembly process. However, the wafer thickness reducing process of process 107A has a purpose different from that of the assembly process. Thus, no wafer with reduced thickness is included in process 107A.
  • Next, the thus-manufactured upper and lower wafers 1WA and 1WB are bonded together (an upper and lower wafer bonding process 303 of the first and second layers in FIG. 19). First, after the lower wafer 1WB is fixed, the upper wafer 1WA shown in FIG. 15 is disposed over the principal surface (i.e., the bonding surface 30 b) of the lower wafer 1WB so that the back surface (i.e., the bonding surface 30 a) of the upper wafer 1WA faces the principal surface of the lower wafer 1WB as shown in FIG. 16.
  • Then, the upper wafer 1WA and the lower wafer 1WB are aligned with each other. In particular, the bump 26 on the principal surface of the lower wafer 1WB and the through-hole interconnecting section 9 on the back surface of the upper wafer 1WA corresponding to the bump 26 are aligned with each other (process 201 in FIG. 19).
  • Subsequently, as shown in FIG. 17, the facing surfaces (i.e., the bonding surfaces 30 a and 30 b) of the upper and lower wafers 1WA and 1WB are moved closer to each other so as to bond and press the lower wafer 1WB and upper wafer 1WA with each other. The ends 92 c of the through-hole interconnection sections 92 on the back surface of the upper wafer 1WA are arranged so as to reach to the insides of the bumps 26 on the principal surface of the lower wafer 1WB; thereby, the bumps 26 and the through-hole interconnection sections 92 become in contact with each other and are connected electrically. In this manner, semiconductor circuit sections of the upper and lower wafers 1WA and 1WB are electrically connected to each other to form a desired semiconductor circuit (process 202 in FIG. 19).
  • In the present embodiment, the distance between the bonding surfaces 30 a and 30 b is sufficiently longer than the height of the bump 26. Thus, The wafer 1WA and the bump 26 are not in contact with each other. The insulating adhesive 30 is then placed between the oppositely facing bonding surfaces 30 a and 30 b of the upper and lower wafers 1WA and 1WB to fix the wafers 1WA and 1WB (process 203 in FIG. 19).
  • Then, the glass support substrate 21 is separated from the principal surface of the upper wafer 1WA to provide the semiconductor device shown in FIG. 18.
  • After these processes, the semiconductor device shown in FIG. 18 is cut into chips. The thus-obtained chip has a three-dimensional structure that includes plural wafers stacked together. That is, the semiconductor circuits formed on the wafers included in the chips are electrically connected to each other via the through through-hole interconnecting section 92 and the bump 26 so as to collectively form a semiconductor integrated circuit.
  • In the through-hole interconnection structure of the semiconductor wafer of the semiconductor device according to the present embodiment, the end 92 c of the through-hole interconnection section 92 is extended to reach the inside of the bump 26. Accordingly, the bottom surface and the side surfaces of the end 92 c of the through-hole interconnection section 92 are made to contact with the bump 26. Thus, the through-hole interconnection section 92 and the bump 26 are reliably surface-contacted. Thus, a highly reliable and stable electric connection can be established between the wafers 1WA and 1WB.
  • In the through-hole interconnection structure of the semiconductor wafer according to the present embodiment, the through-hole protruding section 92 a protruding from the bonding surface 30 a of the through-hole interconnection section 92 has an oppositely-facing pair of wiring side walls 92 b and 92 b which extend from the bonding surface 30 a toward the lower wafer 1WB. The bump 26 is placed between the pair of wiring side walls 92 b and 92 b. In this manner, the contact area of the through-hole interconnection section 92 and the bump 26 is sufficiently large and thus the through-hole interconnection section 92 and the bump 26 are reliably surface-contacted.
  • The invention, however, is not limited only to the aforementioned examples. For example, although the example shown in FIG. 18 relates to the semiconductor device with two wafers 1WA and 1WB bonded together, the number of the wafers to be bonded is not limited to two, and three or more wafers may be bonded. FIG. 20 is a cross-sectional view of main part of another exemplary semiconductor device which includes a through-hole interconnection structure according to the invention. The semiconductor device shown in FIG. 20 is a three-dimensional multi-layered semiconductor device in which three substrates 1SA, 1SB and 1SC are stacked. In the semiconductor device shown in FIG. 20, the same members as those shown in FIG. 18 are denoted by the same reference numerals and description thereof will be omitted.
  • Next, an exemplary manufacturing process of the semiconductor device shown in FIG. 20 will be described with reference to FIG. 19. First, an uppermost wafer 1WA and a lowermost wafer 1WB are prepared in the same manner as in the manufacturing process of the semiconductor device shown in FIG. 18.
  • A middle wafer 1WC is prepared in the processes 100B to 106B shown in FIG. 19. The middle wafer 1WC (i.e., the semiconductor wafer) also includes a through-hole separating section 51 and a through-hole interconnecting section 92 as in the uppermost wafer 1WA. The middle wafer 1WC differs from the uppermost wafer 1WA in that a conductive pattern 25 underlying the bump and a bump 26 are formed on a principal surface of the middle wafer 1WC. The middle wafer 1WC in this stage has not been subject to the first and second thickness reducing processes and thus is still thick.
  • Then, two wafers 1WA and 1WC are aligned with each other as in the manufacturing method of the semiconductor device shown in FIG. 18. An adhesive 30 is placed between the wafer 1WA and 1WC. The wafers 1WA and 1WC are fixed together (process 304: 201, 202 and 203 for bonding upper and lower wafers above the third layer in FIG. 19).
  • Subsequently, a thickness of the lower middle wafer 1WC is reduced from the backside thereof in a thickness reducing process as described above with the glass support substrate 21 bonded to the principal surface of upper uppermost wafer 1WA (process 107A in the middle in FIG. 19). In this manner, the through-hole separating section 51 and the through-hole interconnecting section 92 are exposed (i.e., protrude) from the back surface (i.e., the bonding surface 30 a) of the lower middle wafer 1WC.
  • Then, the middle wafer 1WC and the lowermost wafer 1WB are aligned with each other with the glass support substrate 21 bonded to the principal surface of the upper uppermost wafer WA. The adhesive 30 is placed between the wafers 1WC and 1WB to fix the wafers 1WC and 1WB (processes 201 to 203 in the lower middle in FIG. 19). Subsequent processes are the same as described above and description thereof will be omitted. When four or more wafers are to be bonded together, the process conducted for the middle wafer 1WC and the wafer bonding process may be repeated as required.
  • Also in the semiconductor device shown in FIG. 20, the end 92 c of the through-hole interconnection section 92 is extended to reach the inside of the bump 26. Thus, the bottom surface and the side surfaces of the end 92 c of the through-hole interconnection section 92 are in contact with the bump 26, and thus the through-hole interconnection section 92 and the bump 26 are reliably surface-contacted. In this manner, a reliable and stable electric connection can be established among the wafers 1WA, 1WB and 1WC.
  • OTHERS EXAMPLES
  • The through-hole interconnection structure of the semiconductor wafer according to the invention is not limited to those described above. Alternatively, through-hole interconnection structures of semiconductor wafers shown in FIGS. 21 to 25 may be employed.
  • Other Example 1
  • FIG. 21 illustrates another example of the through-hole interconnection structure of the semiconductor wafer according to the invention. FIG. 21 is an enlarged vertical longitudinal sectional view showing only a neighborhood of the bonding surface 30 a of the upper wafer 1WA of the semiconductor device. The transverse cross-sectional view plan view) of the connecting section of the through-hole interconnection section 96 and the bump 26 in the longitudinal cross-sectional view shown in FIG. 21 is the same as that shown in FIG. 2A. That is, the longitudinal cross-sectional view shown in FIG. 21 corresponds to line C-C in FIG. 2A. The transverse cross-sectional view (plan view) shown in FIG. 2A corresponds to line A-A in FIG. 21.
  • As shown in FIG. 21, the through-hole interconnection section 96 includes a through-hole interconnection section main part 96 d which penetrates the substrate 1SA, a plug wiring 96 e provided in contact with an end of the through-hole interconnection section main part 96 d at the side of the bonding surface 30 a, and a branched conductive section 96 f provided in contact with a surface of the plug wiring 96 e at the side of the bonding surface 30 a.
  • As shown in FIG. 21, the through-hole interconnection section 96 has two through-hole protruding sections 96 a protruded from the bonding surface 30 a. Each of the two through-hole protruding sections 96 a has an oppositely-facing pair of wiring side walls 96 b and 96 b which extend from the bonding surface 30 a toward the lower wafer 1WB. As shown in FIG. 21, the pair of wiring side walls 96 b and 96 b is branched from the through-hole interconnection section main part 96 d by the plug wiring 96 e and the branched conductive section 96 f The wiring side walls 96 b and 96 b are electrically connected to the through-hole interconnection section main part 96 d.
  • In the present embodiment, as in the through-hole interconnection section 92 shown in FIG. 2A, the pair of wiring side walls 96 b and 96 b have two U-shaped transverse cross sections. The wiring side walls 96 b and 96 b are disposed symmetrically in both vertical and horizontal directions with open end thereof facing each other.
  • As shown in FIG. 21, an end 96 c of the through-hole interconnection section 96 extends to reach the inside of the bump 26. The bump 26 is placed between the pair of wiring side walls 96 b and 96 b of the through-hole interconnection section 96.
  • As shown in FIG. 21, a through-hole interconnection section main part 96 d is surrounded by the through-hole separating section 52 which is integrally formed with the through-hole interconnection section main part 96 d. The plug wiring 96 e is buried in the first layer insulation layer 8 e. The branched conductive section 96 f is buried in the second layer insulation layer 8 f. Ends of the pair of wiring side walls 96 b and 96 b at the side of the branched conductive section 96 f are buried in the third layer insulation layer 8 g. The plug wiring 96 e is buried in the first layer insulation layer 8 e. The plug wiring 96 e is insulated from the upper wafer 1WA with the edge of the plug wiring 96 e overlapping the through-hole separating section 52 when seen in a plan view.
  • In the present embodiment, the through-hole interconnection section main part 96 d, the plug wiring 96 e, and the branched conductive section 96 f all have square transverse cross sections. As shown in FIG. 21, the area of the transverse cross section of the branched conductive section 96 f is the largest, the area of the transverse cross section of the through-hole interconnection section main part 96 d is the smallest, and the area of the transverse cross section of the plug wiring 96 e is the middle of them. The area of the transverse cross section of the plug wiring 96 e may be smaller than that of the through-hole interconnection section main part 96 d, and the edge of the plug wiring 96 e may overlap the through-hole interconnection section main part 96 d when seen in a plan view.
  • It suffices that the plug wiring 96 e is provided in contact with the branched conductive section 96 f. As shown in FIG. 21, the entire or a part of the plug wiring 96 e may overlap the branched conductive section 96 f when seen in a plan view. It is preferable, however, that the contact area of the plug wiring 96 e and the branched conductive section 96 f is made sufficiently large so that the electric resistance value in the electric connection between the plug wiring 96 e and the branched conductive section 96 f becomes sufficiently small, and a sufficient alignment margin of the plug wiring 96 e and the branched conductive section 96 f can be provided. It is further preferable that the entire surface of the plug wiring 96 e overlaps the branched conductive section 96 f when seen in a plan view.
  • The configurations of the transverse cross sections of the through-hole interconnection section main part 96 d, the plug wiring 96 e and the branched conductive section 96 f are not particularly limited. It suffices that a branched conductive section 96 f with a sufficiently large area of the transverse cross section is provided so that the through-hole interconnection section main part 96 d, the plug wiring 96 e and the branched conductive section 96 f are electrically connected with one another, and are insulated from the upper wafer 1WA, and the pair of wiring side walls 96 b and 96 b can be formed with predetermined configurations of the transverse cross sections. In particular, the configurations of the transverse cross sections of the through-hole interconnection section main part 96 d, the plug wiring 96 e and the branched conductive section 96 f are not limited to square, but may be circular or rectangle. The configurations of the transverse cross sections of the through-hole interconnection section main part 96 d, the plug wiring 96 e, and the branched conductive section 96 f may be similar to or different from one another. For example, the configurations of the transverse cross sections of the through-hole interconnection section main part 96 d and the plug wiring 96 e may be circular, and the configuration of the transverse cross section of the branched conductive section 96 f may be rectangle.
  • It suffices that the configuration of the transverse cross section of the through-hole separating section 52 can surround a peripheral surface of the through-hole interconnection section main part 96 d to prevent electric connection of the through-hole interconnection section main part 96 d and the plug wiring 96 e with the upper wafer 1WA. The configuration of the transverse cross section of the through-hole separating section 52 is not particularly limited and can be suitably determined depending on the configuration of the transverse cross sections of the through-hole interconnection section main part 96 d and the plug wiring 96 e.
  • In the example shown in FIG. 21, the pair of wiring side walls 96 b and 96 b of the through-hole interconnection section 96 have two U-shaped transverse cross sections (see FIG. 2A). The configurations of the transverse cross sections of the pair of wiring side walls 96 b and 96 b, however, are not limited to these shown in FIG. 2A, and configurations shown in FIGS. 2B to 2D may also be employed.
  • Other Example 2
  • FIGS. 22A and 22B illustrate another example of the through-hole interconnection structure of the semiconductor wafer according to the invention. As in the through-hole interconnection structure of the semiconductor wafer shown in FIG. 22A, when the through-hole separating section 5 has a ring configuration, the bump may be disposed within the ring configuration of the through-hole separating section 5. The bump may also be projected from the ring configuration of the through-hole separating section 5 as in the bump 26 a shown in FIG. 22A.
  • FIG. 22A is an enlarged vertical longitudinal sectional view showing only a neighborhood of the bonding surface 30 a of the upper wafer 1WA when the bump 26 a is projected from the ring configuration of the through-hole separating section 5. FIG. 22B is a transverse cross-sectional view (plan view) of the connecting section of the through-hole interconnection section 9 and the bump 26 a in a longitudinal cross-sectional view shown in FIG. 22A. The longitudinal cross-sectional view shown in FIG. 22A corresponds to line C-C in FIG. 22B. The transverse cross-sectional view (plan view) shown in FIG. 22B corresponds to line A-A in FIG. 22A.
  • The through-hole interconnection section 9 shown in FIGS. 22A and 22B includes two wiring sections 91 and 91 which have rectangular transverse cross sections. The two wiring sections 91 and 91 are disposed in parallel. Each wiring sections 91 and 91 has a through-hole protruding section 91 a protruding from the bonding surface 30 a. The through-hole protruding section 91 a has an oppositely-facing pair of wiring side walls 91 b and 91 b which extend from the bonding surface 30 a toward the lower wafer 1WB.
  • As shown in FIGS. 22A and 22B, the transverse cross section of through-hole separating section 5 is a square ring configuration. The through-hole separating section 5 and the through-hole interconnection section 9 are separated from each other. The through-hole separating section 5 is formed as a frame surrounding the through-hole interconnection section 9 with certain space left therebetween.
  • As shown in FIGS. 22A and 22B, the through-hole separating section 5 has an oppositely-facing pair of separating side walls which extend from the bonding surface 30 a toward the lower wafer 1WB. Here, the through-hole separating section 5 has a square ring configuration. Accordingly, the pair of separating side wall has a first pair of separating side walls 51 a and 51 a and a second pair of separating side walls 51 b and 51 b disposed in a direction perpendicular to the first pair of separating side walls 51 a and 51 a in their transverse cross sections.
  • As shown in FIG. 22A, the end 9 c of the through-hole interconnection section 9 is extended to reach the inside of the bump 26. The bump 26 is placed between the pair of wiring side walls 91 b and 91 b of the through-hole interconnection section 9. That is, after the end 9 c of the through-hole interconnection section 9 is made to abut the bump 26, the end 9 c is pressed into the bump 26. Thus, the bump 26 is deformed so that the end 9 c of the through-hole interconnection section 9 and the bump 26 are in close contact and are surface contacted. A side surface of the through-hole interconnection section 9 and the bump 26 are made to contact to provide a large contact area.
  • The bump 26 is placed between the first pair of separating side walls 51 a and 51 a and the second pair of separating side walls 51 b and 51 b of the through-hole separating section 5.
  • In the through-hole interconnection structure of the semiconductor wafer shown in FIGS. 22A and 22B, the through-hole separating section 5 is extended to reach the inside of the bump 26 a, and the bump 26 a is projected from the ring configuration of the through-hole separating section 5. However, the distance between the bonding surfaces 30 a and 30 b is sufficiently longer than the height of the bump 26 a. Thus, the bump 26 a projecting from the ring configuration of the through-hole separating section 5 and the wafer 1WA are not in contact with each other.
  • The through-hole interconnection structure of the semiconductor wafer shown in FIG. 22 can be manufactured in the following process. In a process in which the end 9 c of the through-hole interconnection section 9 on the back surface of the upper wafer 1WA is extended to reach the inside of the bump 26 a on the principal surface of the lower wafer 1WB, the bump 26 a and the through-hole interconnection section 9 are made to contact with each other and is electrically connected, the through-hole separating section 5 is extended to reach the inside of the bump 26 a to make the bump 26 a project from the ring configuration of the through-hole separating section 5.
  • In this through-hole interconnection structure of the semiconductor wafer, the end 9 c of the through-hole interconnection section 9 is extended to reach the inside of the bump 26 a. Thus, the bottom surface and the side surfaces of the end 9 c of the through-hole interconnection section 9 are made to contact with the bump 26 a. Thus, a reliable and stable electric connection can be established between the wafers 1WA and 1WB.
  • In the through-hole interconnection structure of the semiconductor wafer shown in FIGS. 22A and 22B, the bump 26 a is placed between the pair of wiring side walls 91 b and 91 b. With this configuration, the contact area of the through-hole interconnection section 9 and the bump 26 a becomes large to provide reliable surface contact between the through-hole interconnection section 9 and the bump 26 a.
  • In the through-hole interconnection structure of the semiconductor wafer shown in FIGS. 22A and 22B, the bump 26 a is placed between the first pair of separating side walls 51 a and 51 a and the second pair of separating side wall pairs 51 b and 51 b (i.e., inside of the square ring configuration of the through-hole separating section 5), and the through-hole separating section 5 is extended to reach the inside of the bump 26 a. The connecting section which includes the through-hole interconnection section 9 and the bump 26 a are thus reinforced by the through-hole separating section 5. Accordingly, a more reliable and stable electric connection can be established between the wafers.
  • In the through-hole interconnection structure of the semiconductor wafer shown in FIGS. 22A and 22B, the through-hole separating section 5 is extended to reach the inside of the bump 26 a. In this configuration, when the end 9 c of the through-hole interconnection section 9 is extended to reach the inside of the bump 26 a, the bump 26 a between the through-hole separating section 5 and the through-hole interconnection section 9 is deformed toward the through-hole interconnection section 9. In this manner, the substantial contact area of the through-hole interconnection section 9 and the bump 26 a is increased to provide a sufficient contact area of the through-hole interconnection section 9 and the bump 26 a in the thickness direction of the bump 26 a. Accordingly, the through-hole interconnection section 9 and the bump 26 a are more reliably surface-contacted.
  • Other Example 3
  • FIGS. 23A to 23C illustrate another example of the through-hole interconnection structure of the semiconductor wafer according to the invention. FIG. 23A is an enlarged vertical longitudinal sectional view showing only a neighborhood of the bonding surface 30 a of the upper wafer 1WA when the bump 26 a is projected from the ring configuration of the through-hole separating section 5. FIG. 23B is a transverse cross-sectional view (plan view) of the connecting section of the through-hole interconnection section 97 and the bump 26 a in the longitudinal cross-sectional view shown in FIG. 23A. The longitudinal cross-sectional view shown in FIG. 23A corresponds to line C-C in FIG. 23B. The transverse cross-sectional view (plan view) shown in FIG. 23B corresponds to line A-A in FIG. 23A.
  • Although the through-hole interconnection section 97 shown in FIGS. 23A and 23B has a square pole configuration, it may alternatively have a cylindrical or a polygonal column shape. Here, the transverse cross-sectional view (plan view) shown in FIG. 23C corresponds to line A-A in FIG. 23A, and the longitudinal cross-sectional view shown in FIG. 23A corresponds to line C-C in FIG. 23C. In the example shown in FIG. 23C, a configuration of the through-hole separating section 5 is made as a ring concentric with the through-hole interconnection section 98.
  • In the through-hole interconnection structure of the semiconductor wafer shown in FIGS. 23A to 23C, the through-hole separating section 5 is extended to reach the inside of the bump 26 a, and the bump 26 a is projecting from the ring configuration of the through-hole separating section 5. However, the distance between the bonding surfaces 30 a and 30 b is sufficiently long with respect to the height of the bump 26 a. Thus, the bump 26 a projecting from the ring configuration of the through-hole separating section 5 and the wafer 1WA are not in contact.
  • The through-hole interconnection structures of the semiconductor wafer of semiconductor device shown in FIGS. 23A to 23C can be manufactured in the following process. In a process in which the end 97 c of the through-hole interconnection section 97 on the back surface of the upper wafer 1WA is extended to reach the inside of the bump on the principal surface of the lower wafer 1WB, the bump 26 a and the through-hole interconnection section 97 are made to contact with each other and is electrically connected, the through-hole separating section 5 is extended to reach the inside of the bump 26 a to make the bump 26 a project from the ring configuration of the through-hole separating section 5.
  • In such a through-hole interconnection structure of the semiconductor wafer, the end 97 c of the through-hole interconnection section 97(98) is extended to reach the inside of the bump 26 a. With this configuration, the bottom surface and the side surfaces of the end 97 c of the through-hole interconnection section 97(98) are made in contact with the bump 26 a. A more reliable and stable electric connection can be established between the wafers 1WA and 1WB.
  • In the through-hole interconnection structure of the semiconductor wafer shown in FIGS. 23A to 23C, the bump 26 a is placed between the pair of the separating side walls (i.e., inside of the square ring configuration shown in FIG. 23B or the circular ring configuration shown in FIG. 23C of the through-hole separating section 5), and the through-hole separating section 5 is extended to reach the inside of the bump 26 a. With this configuration, the connecting section which includes the through-hole interconnection section 97(98) and the bump 26 a are reinforced by the through-hole separating section 5.
  • In the through-hole interconnection structure of the semiconductor wafer shown in FIGS. 23A to 23C, the through-hole separating section 5 is extended to reach the inside of the bump 26 a. When the end 97 c of the through-hole interconnection section 97(98) is extended to reach the inside of the bump 26 a, the bump 26 a between the through-hole separating section 5 and the through-hole interconnection section 97(98) is deformed toward the through-hole interconnection section 97(98). With this configuration, the through-hole interconnection section 97(98) and the bump 26 a are more reliably surface-contacted.
  • Other Example 4
  • In the through-hole interconnection structure of the semiconductor wafer shown in FIG. 18, as shown in FIG. 1, although the through-hole separating section 51 is not in contact with the bump 26, the through-hole separating section 51 may be extended to reach the inside of the bump 26 as shown in FIG. 24. A manufacturing method of the semiconductor device shown in FIG. 24 is the same as that of the semiconductor device shown in FIG. 18 except the following point. In the process in which the end 92 c of the through-hole interconnection section 92 on the back surface of the upper wafer 1WA is extended to reach the inside of the bump 26 on the principal surface of the lower wafer 1WB so that the bump 26 and the through-hole interconnection section 92 are made to contact with each other and are electrically contacted to each other, the through-hole separating section 51 is extended to reach the inside of the bump 26. Thus, description of the manufacturing method will be omitted.
  • FIG. 24 is an enlarged vertical longitudinal sectional view showing only a neighborhood of the bonding surface 30 a of the upper wafer 1WA which is a part of the through-hole interconnection structure of the semiconductor wafer. FIG. 25A is an enlarged transverse cross-sectional view showing only the through-hole interconnection section 92, the through-hole separating section 51 and the bump 26 of the semiconductor device. The longitudinal cross-sectional view shown in FIG. 24 corresponds to line C-C in FIG. 25A. The transverse cross-sectional view (plan view) shown in FIG. 25A corresponds to line A-A in FIG. 24.
  • In this through-hole interconnection structure of the semiconductor wafer, the end 92 c of the through-hole interconnection section 92 is extended to reach the inside of the bump 26. Thus, the through-hole interconnection section 92 and the bump 26 are reliably surface-contacted, and thus a more reliable and stable electric connection can be established between the wafers 1WA and 1WB.
  • The through-hole protruding section 92 a protruding from the bonding surface 30 a of the through-hole interconnection section 92 includes an oppositely-facing pair of wiring side walls 92 b and 92 b which extend from the bonding surface 30 a toward the lower wafer 1WB. The bump 26 is placed between the pair of wiring side walls 92 b and 92 b. Accordingly, the contact area of the through-hole interconnection section 92 and the bump 26 becomes sufficiently large.
  • In the through-hole interconnection structure of the semiconductor wafer shown in FIG. 24, the through-hole separating section 51 which surrounds each of the wiring sections 92 d and 92 d which are the part of the through-hole interconnection section 92 is provided on the bonding surface 30 a and protrudes from the bonding surface 30 a. Further, the wiring sections 92 d and 92 d of the through-hole interconnection section 92 and the through-hole separating section 51 are integrally formed, and the end 92 c of the through-hole interconnection section 92 is formed to protrude from an end of the through-hole separating section 51. With this configuration, when the end 92 c of the through-hole interconnection section 92 is extended to reach the inside of the bump 26, the through-hole interconnection section 92 is reinforced by the through-hole separating section 51. Thus, a more reliable connection can be established between the through-hole interconnection section 92 and the bump 26.
  • In the through-hole interconnection structure of the semiconductor wafer shown in FIG. 24, the through-hole separating section 51 is extended to reach the inside of the bump 26. With this configuration, when the through-hole separating section 51 is extended to reach the inside of the bump 26, the bump 26 between the wiring sections 92 d and 92 d is pressed against the lower wafer 1WB by the through-hole separating section 51 and is expanded in the transverse direction. As a result, a more reliable connection is established between the through-hole interconnection section 92 and the bump 26, and thus these are more stably surface-contacted.
  • In the through-hole interconnection structure of the semiconductor wafer shown in FIG. 24, the through-hole separating section 51 is extended to reach the inside of the bump 26. With this configuration, the connecting section which includes the through-hole interconnection section 92 and the bump 26 is reinforced by the through-hole separating section 51.
  • The configuration of the transverse cross section of the through-hole interconnection section is not limited to that shown in FIG. 25A. Alternatively, the configurations shown in FIGS. 25B to 25D each corresponding to FIGS. 2B to 2D may be employed. The configuration of the transverse cross section of the through-hole interconnection section may be that shown in FIG. 25E.
  • FIG. 25E is an enlarged transverse cross-sectional view showing only a through-hole interconnection section 99 and the bump 26. The transverse cross-sectional view (plan view) shown in FIG. 25E corresponds to line A-A in FIG. 24 and the longitudinal cross-sectional view shown in FIG. 24 corresponds to line C-C in FIG. 25E.
  • The through-hole interconnection section 99 shown in FIG. 25E includes two wiring sections 99 d and 99 d which have rectangular transverse cross sections. The two wiring sections 99 d and 99 d are disposed in parallel. A peripheral part of each of the wiring sections 99 d and 99 d is surrounded by the through-hole separating section 51. The through-hole separating section 51 and the through-hole interconnection section 99 are integrally formed.
  • In the through-hole interconnection structure of the semiconductor wafer of the semiconductor device according to the invention, the through-hole interconnection section may have an area of the transverse cross section which is constant when seen in a vertical section. The end portion of the through-hole interconnection section, however, may have a varying transverse cross sectional area when seen in a vertical section. For example, the end portion of the through-hole interconnection section may have a transverse cross section of which area is gradually reduced toward the lower wafer 1WB. Such a configuration is preferred in that the through-hole interconnection section is easily extended to reach the inside of the bump.
  • Experiments
  • A silicon substrate having diameter of 200 mm (8 inches) was used. A through-hole separating section and a through-hole interconnection section were formed in the same manner as in the through-hole interconnection structure of the semiconductor wafer shown in FIGS. 22A and 22B. A wafer was obtained with a principal surface having a bump underlying conductive pattern and a bump was formed thereon. The through-hole interconnection section includes two wiring sections disposed in parallel. The wiring sections were made of tungsten and have rectangular cross sections with length of 5.6 μm and width of 1.5 μm. The protruding length of the through-hole protruding section protruding from the bonding surface was 40 μm.
  • Three of these wafers were stacked. The through-hole interconnection section and the bump are connected between the wafers at the grid positions shown in FIG. 26. In this manner, the three wafers were bonded together to form a test piece shown in FIG. 26.
  • Six of such test pieces were prepared. Each test piece was measured at 58 measuring points arranged on the shadowed grids shown in FIG. 26. The electric resistance value was measured in the electric connection in the connecting section of the through-hole interconnection section of the upper wafer and the bump of middle wafer at the 58 measuring points. The electric resistance values were obtained for 310 measuring points of the 348 measuring points. The thus-obtained electric resistance values had an average of 0.5Ω±0.2Ω.
  • The data of the electric resistance values of 310 measuring points is shown in FIG. 27. FIG. 27 is a graph showing the electric resistance values in the electric connection between the upper wafer and the middle wafer which together constitute a wafer shown in FIG. 26, and the variation in the electric resistance values. The vertical axis shows frequency (i.e., the number of data) and the horizontal axis shows the electric resistance value.
  • As shown in FIG. 27, in the test piece shown in FIG. 26, it was confirmed that the electric resistance value in the inter-wafer electric connection was sufficiently small, and the variation in the electric resistance values was also small.
  • While preferred embodiments of the invention have been described and illustrated above and it should be understood that these are exemplary of the invention and are not to be considered as limiting. Additions, omissions and substitutions, and other modifications can be made without departing from the spirit or scope of the invention. Accordingly, the invention is not to be considered as being limited by the foregoing description, and is only limited by the scope of the appended claims.

Claims (4)

1. A through-hole interconnection structure for a semiconductor wafer in which plural wafers are bonded together each having a substrate with devices provided thereon, an electrical signal connecting section is provided on a bonding surface of each wafer, the bonding surface being for bonding with other wafers, and the electrical signal connecting section is electrically connected to an electrical signal connecting section provided on another of the oppositely-facing wafers to form a desired semiconductor circuit, the through-hole interconnection structure for a semiconductor wafer comprising:
a through-hole interconnection section which has a through-hole protruding section which protrudes from the bonding surface to conduct the opposite surfaces of the wafer, the through-hole interconnection section being one of the oppositely-facing electrical signal connecting sections; and
a bump which is the other of the oppositely-facing electrical signal connecting sections, wherein:
the through-hole protruding section has an oppositely-placed pair of wiring side walls which extend from the bonding surface toward the another wafer;
an end of the through-hole interconnection section is extended to reach an inside of the bump; and
the bump is placed between the pair of wiring side walls.
2. A through-hole interconnection structure for a semiconductor wafer in which plural wafers are bonded together each having a substrate with devices provided thereon, an electrical signal connecting section is provided on a bonding surface of each wafer, the bonding surface being for bonding with other wafers, and the electrical signal connecting section is electrically connected to an electrical signal connecting section provided on another of the oppositely-facing wafers to form a desired semiconductor circuit, the through-hole interconnection structure for a semiconductor wafer comprising:
a through-hole interconnection section which has a through-hole protruding section which protrudes from the bonding surface to conduct the opposite surfaces of the wafer, the through-hole interconnection section being one of the oppositely-facing electrical signal connecting sections;
a bump which is the other of the oppositely-facing electrical signal connecting sections; and
a separating section provided on the bonding surface and protruding from the bonding surface, the separating section surrounding the through-hole interconnection section, wherein:
the through-hole interconnection section and the separating section are integrally formed;
an end of the through-hole interconnection section is provided to protrude from an end of the separating section; and
an end of the through-hole interconnection section is extended to reach an inside of the bump and the separating section is extended to reach the inside of the bump.
3. A through-hole interconnection structure for a semiconductor wafer in which plural wafers are bonded together each having a substrate with devices provided thereon, an electrical signal connecting section is provided on a bonding surface of each wafer, the bonding surface being for bonding with other wafers, and the electrical signal connecting section is electrically connected to an electrical signal connecting section provided on another of the oppositely-facing wafers to form a desired semiconductor circuit, the through-hole interconnection structure comprising:
a through-hole interconnection section which has a through-hole protruding section which protrudes from the bonding surface to conduct the opposite surfaces of the wafer, the through-hole interconnection section being one of the oppositely-facing electrical signal connecting sections;
a bump which is the other of the oppositely-facing electrical signal connecting sections; and
a separating section which has an oppositely-placed pair of separating side walls extending from the bonding surface toward the another wafer, the separating section being provided on the bonding surface and protruding from the bonding surface to surround the through-hole interconnection section;
an end of the through-hole interconnection section is extended to reach an inside of the bump;
the through-hole interconnection section and the separating section are separately disposed; and
the bump is placed between the pair of separating side walls.
4. The through-hole interconnection structure for a semiconductor wafer according to claim 3, wherein:
the through-hole protruding section has an oppositely-placed pair of wiring side walls which extend from the bonding surface toward the another wafer; and
the bump is placed between the pair of wiring side walls.
US12/194,668 2007-08-24 2008-08-20 Through-hole interconnection structure for semiconductor wafer Abandoned US20090061659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/194,668 US20090061659A1 (en) 2007-08-24 2008-08-20 Through-hole interconnection structure for semiconductor wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95779107P 2007-08-24 2007-08-24
US12/194,668 US20090061659A1 (en) 2007-08-24 2008-08-20 Through-hole interconnection structure for semiconductor wafer

Publications (1)

Publication Number Publication Date
US20090061659A1 true US20090061659A1 (en) 2009-03-05

Family

ID=40381390

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/194,670 Expired - Fee Related US8058708B2 (en) 2007-08-24 2008-08-20 Through hole interconnection structure for semiconductor wafer
US12/194,668 Abandoned US20090061659A1 (en) 2007-08-24 2008-08-20 Through-hole interconnection structure for semiconductor wafer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/194,670 Expired - Fee Related US8058708B2 (en) 2007-08-24 2008-08-20 Through hole interconnection structure for semiconductor wafer

Country Status (2)

Country Link
US (2) US8058708B2 (en)
JP (2) JP5346510B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243120A1 (en) * 2008-03-25 2009-10-01 Panasonic Corporation Semiconductor element and semiconductor element fabrication method
US8525342B2 (en) 2010-04-12 2013-09-03 Qualcomm Incorporated Dual-side interconnected CMOS for stacked integrated circuits
US11710679B2 (en) 2019-02-18 2023-07-25 Yangtze Memory Technologies Co., Ltd. Through silicon contact structure and method of forming the same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003712A (en) * 2007-08-09 2010-01-07 Renesas Technology Corp Semiconductor device, layout and wiring method thereof, and data processing system
JP5346510B2 (en) * 2007-08-24 2013-11-20 本田技研工業株式会社 Through wiring structure
US8227889B2 (en) * 2008-12-08 2012-07-24 United Microelectronics Corp. Semiconductor device
US8513119B2 (en) 2008-12-10 2013-08-20 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming bump structure having tapered sidewalls for stacked dies
US20100171197A1 (en) 2009-01-05 2010-07-08 Hung-Pin Chang Isolation Structure for Stacked Dies
US8405197B2 (en) * 2009-03-25 2013-03-26 Stats Chippac Ltd. Integrated circuit packaging system with stacked configuration and method of manufacture thereof
US8791549B2 (en) 2009-09-22 2014-07-29 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer backside interconnect structure connected to TSVs
JP5648812B2 (en) * 2009-09-24 2015-01-07 国立大学法人東北大学 Field effect transistor and integrated circuit
FR2951018A1 (en) * 2009-10-05 2011-04-08 St Microelectronics Crolles 2 ELECTRICAL CONNECTION VIA FOR SEMICONDUCTOR DEVICE SUBSTRATE
FR2951017A1 (en) * 2009-10-05 2011-04-08 St Microelectronics Crolles 2 ELECTRICAL CONNECTION VIA FOR SEMICONDUCTOR DEVICE SUBSTRATE
KR101559958B1 (en) * 2009-12-18 2015-10-13 삼성전자주식회사 3 3 Method for manufacturing three dimensional semiconductor device and three dimensional semiconductor device manufactured by the method
US8466059B2 (en) 2010-03-30 2013-06-18 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-layer interconnect structure for stacked dies
US20110291287A1 (en) * 2010-05-25 2011-12-01 Xilinx, Inc. Through-silicon vias with low parasitic capacitance
US20120049358A1 (en) * 2010-08-24 2012-03-01 Bin-Hong Cheng Semiconductor Device and Semiconductor Process for Making the Same
US8900994B2 (en) 2011-06-09 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method for producing a protective structure
US8487425B2 (en) * 2011-06-23 2013-07-16 International Business Machines Corporation Optimized annular copper TSV
JP5751131B2 (en) * 2011-10-28 2015-07-22 富士通株式会社 Semiconductor device and manufacturing method thereof
US9664641B2 (en) 2013-07-29 2017-05-30 Honeywell International Inc. pH sensor with substrate or bonding layer configured to maintain piezoresistance of the ISFET die
JP6073757B2 (en) * 2013-08-07 2017-02-01 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2015079827A (en) * 2013-10-16 2015-04-23 富士通セミコンダクター株式会社 Semiconductor device and semiconductor device manufacturing method
US9759679B2 (en) * 2014-02-07 2017-09-12 Honeywell International Inc. Fluid sensor with backside of sensor die contacting header
US9123738B1 (en) 2014-05-16 2015-09-01 Xilinx, Inc. Transmission line via structure
WO2016140072A1 (en) * 2015-03-03 2016-09-09 ソニー株式会社 Semiconductor device and electronic device
US10177127B2 (en) * 2015-09-04 2019-01-08 Hong Kong Beida Jade Bird Display Limited Semiconductor apparatus and method of manufacturing the same
CN112928077A (en) * 2021-01-20 2021-06-08 上海先方半导体有限公司 Multi-chip heterogeneous integrated packaging unit and manufacturing method and stacking structure thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998808A (en) * 1997-06-27 1999-12-07 Sony Corporation Three-dimensional integrated circuit device and its manufacturing method
US20020190371A1 (en) * 2001-06-14 2002-12-19 Shinko Electric Industries Co., Ltd. Semiconductor device and method of production of same
US20040188822A1 (en) * 2003-01-15 2004-09-30 Kazumi Hara Semiconductor chip, semiconductor wafer, semiconductor device and method of manufacturing the same, circuit board, and electronic instrument
US20040238927A1 (en) * 2003-03-17 2004-12-02 Ikuya Miyazawa Method of manufacturing semiconductor device, semiconductor device, circuit substrate and electronic apparatus
US20050001320A1 (en) * 2003-05-19 2005-01-06 Seiko Epson Corporation Semiconductor device, stacked semiconductor device, methods of manufacturing them, circuit board, and electronic instrument
US20050017338A1 (en) * 2003-06-19 2005-01-27 Seiko Epson Corporation Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument
US20060118965A1 (en) * 2004-12-02 2006-06-08 Nec Electronics Corporation Semiconductor device, semiconductor module employing thereof and method for manufacturing semiconductor device
US7132731B2 (en) * 2002-08-29 2006-11-07 Micron Technology, Inc. Semiconductor component and assembly having female conductive members
US20070134819A1 (en) * 2005-12-12 2007-06-14 Elpida Memory, Inc. Semiconductor device and method of manufacturing the same
US7525186B2 (en) * 2006-09-30 2009-04-28 Hynix Semiconductor Inc. Stack package having guard ring which insulates through-via interconnection plug and method for manufacturing the same
US7679179B2 (en) * 2002-08-28 2010-03-16 Micron Technology, Inc. Castellation wafer level packaging of integrated circuit chips

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261000A (en) 1998-03-13 1999-09-24 Japan Science & Technology Corp Manufacture of three-dimensional semiconductor integrated-circuit device
JP2004228392A (en) * 2003-01-24 2004-08-12 Seiko Epson Corp Manufacturing method of semiconductor device and manufacturing method of semiconductor module
JP3951944B2 (en) * 2003-03-19 2007-08-01 セイコーエプソン株式会社 Manufacturing method of semiconductor device
JP4263953B2 (en) * 2003-06-23 2009-05-13 三洋電機株式会社 Semiconductor device and manufacturing method thereof
WO2006138423A2 (en) * 2005-06-14 2006-12-28 Cubic Wafer, Inc. Chip connector
US7215032B2 (en) * 2005-06-14 2007-05-08 Cubic Wafer, Inc. Triaxial through-chip connection
JP2007049103A (en) * 2005-08-05 2007-02-22 Zycube:Kk Semiconductor chip, method for manufacturing same, and semiconductor device
JP4869664B2 (en) * 2005-08-26 2012-02-08 本田技研工業株式会社 Manufacturing method of semiconductor device
JP5346510B2 (en) * 2007-08-24 2013-11-20 本田技研工業株式会社 Through wiring structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998808A (en) * 1997-06-27 1999-12-07 Sony Corporation Three-dimensional integrated circuit device and its manufacturing method
US20020190371A1 (en) * 2001-06-14 2002-12-19 Shinko Electric Industries Co., Ltd. Semiconductor device and method of production of same
US7679179B2 (en) * 2002-08-28 2010-03-16 Micron Technology, Inc. Castellation wafer level packaging of integrated circuit chips
US7132731B2 (en) * 2002-08-29 2006-11-07 Micron Technology, Inc. Semiconductor component and assembly having female conductive members
US20040188822A1 (en) * 2003-01-15 2004-09-30 Kazumi Hara Semiconductor chip, semiconductor wafer, semiconductor device and method of manufacturing the same, circuit board, and electronic instrument
US20040238927A1 (en) * 2003-03-17 2004-12-02 Ikuya Miyazawa Method of manufacturing semiconductor device, semiconductor device, circuit substrate and electronic apparatus
US20050001320A1 (en) * 2003-05-19 2005-01-06 Seiko Epson Corporation Semiconductor device, stacked semiconductor device, methods of manufacturing them, circuit board, and electronic instrument
US20050017338A1 (en) * 2003-06-19 2005-01-27 Seiko Epson Corporation Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument
US20060118965A1 (en) * 2004-12-02 2006-06-08 Nec Electronics Corporation Semiconductor device, semiconductor module employing thereof and method for manufacturing semiconductor device
US20070134819A1 (en) * 2005-12-12 2007-06-14 Elpida Memory, Inc. Semiconductor device and method of manufacturing the same
US7525186B2 (en) * 2006-09-30 2009-04-28 Hynix Semiconductor Inc. Stack package having guard ring which insulates through-via interconnection plug and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243120A1 (en) * 2008-03-25 2009-10-01 Panasonic Corporation Semiconductor element and semiconductor element fabrication method
US7994634B2 (en) 2008-03-25 2011-08-09 Panasonic Corporation Semiconductor element and semiconductor element fabrication method
US8525342B2 (en) 2010-04-12 2013-09-03 Qualcomm Incorporated Dual-side interconnected CMOS for stacked integrated circuits
US8912043B2 (en) 2010-04-12 2014-12-16 Qualcomm Incorporated Dual-side interconnected CMOS for stacked integrated circuits
EP2559066B1 (en) * 2010-04-12 2021-03-10 1/6 Qualcomm Incorporated Dual-side interconnected cmos for stacked integrated circuits
US11710679B2 (en) 2019-02-18 2023-07-25 Yangtze Memory Technologies Co., Ltd. Through silicon contact structure and method of forming the same
US11721609B2 (en) 2019-02-18 2023-08-08 Yangtze Memory Technologies Co., Ltd. Through silicon contact structure and method of forming the same

Also Published As

Publication number Publication date
US8058708B2 (en) 2011-11-15
US20090051012A1 (en) 2009-02-26
JP2009055004A (en) 2009-03-12
JP5346510B2 (en) 2013-11-20
JP2009055003A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
US20090061659A1 (en) Through-hole interconnection structure for semiconductor wafer
US7646079B2 (en) Semiconductor device, method of manufacturing the same, circuit board, and method of manufacturing the same
US8748308B2 (en) Through wafer vias and method of making same
TWI503981B (en) Through-substrate vias and methods for forming the same
JP5048230B2 (en) Semiconductor device and manufacturing method thereof
TWI744173B (en) Integrated circuit die, three-dimensional integrated circuit stack and method of forming integrated circuit
US8421238B2 (en) Stacked semiconductor device with through via
JP5154000B2 (en) Semiconductor device
US8299566B2 (en) Through wafer vias and method of making same
JP5637632B2 (en) RF apparatus and method featuring grooves under bond pads
US10930619B2 (en) Multi-wafer bonding structure and bonding method
CN112490235A (en) Integrated circuit, stack thereof and method for manufacturing the same
TW201417227A (en) Semiconductor substrate, hydrid-bonded structure and method of forming a substrate for hydrid bonding
US8658529B2 (en) Method for manufacturing semiconductor device
TWI757140B (en) Semiconductor package with air gap and manufacturing method thereof
TW201419483A (en) Semiconductor device and method of manufacturing the same
CN111508963B (en) Peripheral circuit, three-dimensional memory and preparation method thereof
JP5025922B2 (en) Circuit board, method for manufacturing circuit board, and semiconductor device
JP4945545B2 (en) Manufacturing method of semiconductor device
JP5271562B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2006319203A (en) Semiconductor device and its manufacturing method
US7492009B2 (en) Semiconductor device having silicon on insulator structure and method of fabricating the same
JP5589907B2 (en) Semiconductor device, electronic device, and method of manufacturing electronic device
US11569188B2 (en) Semiconductor device including elongated bonding structure between the substrate
US11769711B2 (en) Semiconductor device including a through silicon via structure and method of fabricating the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONDA MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAEBASHI, TAKANORI;REEL/FRAME:021845/0348

Effective date: 20081030

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION