US20080237146A1 - Apparatus and method for trapping bead based reagents within microfluidic analysis systems - Google Patents

Apparatus and method for trapping bead based reagents within microfluidic analysis systems Download PDF

Info

Publication number
US20080237146A1
US20080237146A1 US11/955,902 US95590207A US2008237146A1 US 20080237146 A1 US20080237146 A1 US 20080237146A1 US 95590207 A US95590207 A US 95590207A US 2008237146 A1 US2008237146 A1 US 2008237146A1
Authority
US
United States
Prior art keywords
packing material
flow
chamber
channel
beads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/955,902
Inventor
D. Jed Harrison
Richard Oleschuk
Loranelle Shultz-Lockyear
Cameron Skinner
Paul Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Alberta
Original Assignee
University of Alberta
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Alberta filed Critical University of Alberta
Priority to US11/955,902 priority Critical patent/US20080237146A1/en
Publication of US20080237146A1 publication Critical patent/US20080237146A1/en
Assigned to THE GOVERNORS OF THE UNIVERSITY OF ALBERTA reassignment THE GOVERNORS OF THE UNIVERSITY OF ALBERTA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHULTZ-LOCKYEAR, LORANELLE, OLESCHUK, RICHARD, SKINNER, CAMERON, LI, PAUL, HARRISON, D. JED
Priority to US12/831,949 priority patent/US8034628B2/en
Priority to US12/852,370 priority patent/US20110048945A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/56Packing methods or coating methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N2030/285Control of physical parameters of the fluid carrier electrically driven carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/56Packing methods or coating methods
    • G01N2030/562Packing methods or coating methods packing
    • G01N2030/565Packing methods or coating methods packing slurry packing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • Y10T436/255Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.] including use of a solid sorbent, semipermeable membrane, or liquid extraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Definitions

  • the present invention relates generally to microfluidic analysis systems, and more specifically to micro-Total Analysis Systems ( ⁇ -TAS), for performing liquid phase analysis at a miniaturized level.
  • ⁇ -TAS micro-Total Analysis Systems
  • a packed bed chromatographic device with a bead trapping frit was fabricated in a silicon substrate [Ocvirk, G., Verpoorte, E., Manz, A., Grasserbauer, M., and Widmer, H. M. Analytical Methods and Instrumentation 1995, 2, 74-82].
  • the packing material in this prior art design could not be readily packed or exchanged, thus limiting its utility.
  • the frits used in conventional systems are prepared using time and labor intensive procedures, the most commonly used method involving the use of pure silica gel, wetted down with aqueous sodium silicate.
  • the frit is made by first tapping a capillary end into a paste made from silica and aqueous sodium silicate. The resulting plug of silica is then heated to make a frit.
  • Current construction methods do not produce high yields of useable frits.
  • Bubbles cause discontinuity within a column, hindering solution flow and ultimately preventing separation from occurring.
  • the bubbles are thought to arise from a change in electroosmotic flow (EOF) velocity caused by moving from a bead trapping frit into an open capillary.
  • EEF electroosmotic flow
  • the present invention provides an on-chip packed reactor bed design using one or more weir structures that allow for an effective exchange of packing materials (beads for example) at a miniaturized level.
  • the present invention extends the function of microfluidic analysis systems to new applications.
  • the packed reactor bed formed according to the present invention allows on chip solid phase extraction (SPE) and on-chip capillary electrochromatography (CEC), as explained in detail further below.
  • SPE on chip solid phase extraction
  • CEC capillary electrochromatography
  • the design can be further extended to include, for example, integrated packed bed immuno or enzyme reactors.
  • the present invention provides a method of treating a sample within a microfluidic analysis system, comprising the steps of:
  • step b) comprises providing packing material comprising porous beads.
  • said porous beads are selected to have a diameter in the range from about 0.7 to about 10.0 ⁇ m.
  • said porous beads are selected to have a diameter in the range from about 1.5 to about 4.0 ⁇ m.
  • said solvent is acetonitrile
  • step e) comprises adjusting the concentration level to less than about 50% to stabilize the packed bed.
  • said solvent is acetonitrile
  • step e) comprises adjusting the concentration level to less than about 30% to stabilize the packed bed.
  • the method further includes the steps of adjusting the concentration level to above 50% to destabilize the packed bed, and reversing the flow in step c) so as to unload said trapping zone.
  • the method further includes the step of repeating step c) so as to reload said trapping zone, and readjusting the concentration level to restabilize the packed bed.
  • step d) comprises applying a fluid force to induce the flow of said packing material.
  • said packing material comprises at least some electrically charged particles and step d) comprises applying a voltage potential to induce the flow of said packing material.
  • said packing material comprises at least some particles susceptible to a magnetic field and step d) comprises applying a magnetic field to induce the flow of said packing material.
  • the method further includes the step of providing a hook structure at the connection point between said flow channel and said trapping zone, so as to prevent direct line-of-sight entry of said packing material, thereby to promote even packing.
  • the present invention provides a method of trapping bead based reagents within a microfluidic analysis system, comprising the steps of:
  • the present invention provides a microfluidic analysis system, comprising:
  • the system further comprises at least one side channel formed into the upper surface of said planar substrate, said side channel being connected at a first end to said main channel at a location upstream from said first weir, and at a second end to a reservoir, said side channel providing a higher flow resistance than said main channel.
  • system further comprises a second weir located upstream from said connected first end of said side channel, said first and second weirs forming a chamber therebetween, said second weir providing at least one flow gap to allow, in use, at least some fluid to flow past said second weir while trapping said packing material within said chamber.
  • each side channel connection to said main channel is provided with a hook structure curved to one side whereby, in use, packing material is sprayed into said chamber to facilitate even packing.
  • said flow gaps comprise a generally uniform gap between said cover plate and the top of said weirs.
  • said flow gaps comprise a plurality of substantially vertical gaps in said weirs.
  • said system is formed entirely on a single microfluidic chip.
  • the present invention provides a method comprising, providing a non-conductive substrate and effecting an electrokinetic flow by applying a relatively high voltage at said second end of said main channel and at said reservoir, said reservoir containing packing material, and providing a relatively low voltage at said first end of said main channel, so that packing material flows from said reservoir into said main channel and is trapped against said first weir.
  • the packing material is removed from said main channel by providing a relatively high voltage at said first and second ends of said main channel while providing a relatively low voltage at said reservoir.
  • the present invention provides a method comprising, effecting a pressure driven flow by providing a relatively high pressure at said second end of said main channel and at said reservoir, said reservoir containing packing material, and providing a relatively low pressure at said first end of said main channel, so that packing material flows from said reservoir into said main channel and is trapped against said first weir.
  • the packing material is removed from the said main channel by providing relatively high pressure at said first and second ends of said main channel while providing relatively low pressure at said reservoir.
  • the method comprises providing a non-conductive substrate and effecting an electrokinetic flow by applying a relatively high voltage at said reservoir, said reservoir containing packing material, and providing relatively low voltages at said first and second ends of said main channel, so that packing material flows from said reservoir into said chamber and is trapped by said first and second weirs.
  • the packing material is removed from the chamber by reversing said electrokinetic flow.
  • the present invention provides a method of packing the chamber in a microfluidic analysis system comprising, effecting a pressure driven flow by providing a relatively high pressure at said reservoir, said reservoir containing packing material, and providing relatively low pressure at said first and second main reservoirs, whereby, packing material flows from said packing material reservoir into said chamber and is trapped by said first and second weirs.
  • the packing material may be removed from the chamber by reversing said pressure driven flow.
  • the method comprises providing magnetically charged packing material, and effecting a magnetically driven flow by providing a magnetically attractive force in the chamber, whereby, the packing material enters the chamber and is trapped by said first and second weirs.
  • the packing material may be removed from the chamber by reversing said magnetic force in said chamber.
  • the packing material may comprise porous beads.
  • the beads may be generally spheroid.
  • the beads are initially suspended in a buffer solution.
  • the buffer solution is an organic solvent miscible with water.
  • the organic solvent is acetonitrile with a concentration level of up to 50%.
  • FIG. 1A shows a top plan view of a microfluidic device according to the present invention
  • FIG. 1B shows an enlarged perspective view of a chamber in which packing materials (such as beads) are trapped;
  • FIG. 2A shows a cross-sectional view of the chamber shown in FIG. 1B taken along line A-A, and further shows packing material (beads) which are packed into the chamber and which are retained by a cover plate;
  • FIGS. 2B and 2C show a side view and end view, respectively, of an alternative embodiment of a weir according to the present invention
  • FIG. 3A shows an initial stage of packing material (beads) being packed into the chamber shown in FIGS. 1B and 2A ;
  • FIG. 3B shows the chamber of FIG. 3A after it has been completely filled with packing material (beads);
  • FIG. 4A shows an early stage of preconcentration of a 1.0 nM BODIPY solution at the weir/bed interface near the top of FIG. 4A ;
  • FIG. 4B shows a later stage of preconcentration of a 1.0 nM BODIPY solution at the weir/bed interface near the top of FIG. 4B ;
  • FIG. 5 shows a plot of fluorescence intensity vs. time, showing fluorescence of a first 1.0 NM BODIPY sample during loading, followed by a buffer flush, and then preconcentrated BODIPY during elution with acetonitrile (ACN);
  • FIG. 6 shows an electrochromatogram of BODIPY and fluorescein, showing different steps of the separation including load, flush, and elution;
  • FIGS. 7A-7D show electrochromatograms of BODIPY and fluorescein with different concentrations of acetonitrile in the mobile phase, specifically at: (a) 30%; (b) 22%; (c) 15%; and (d) 10%;
  • FIG. 8A-8C show top plan views of alternative embodiments of a microfluidic device according to the present invention.
  • FIG. 9 shows a top plan view of a microfluidic device according to the present invention having multiple packed chambers
  • FIG. 10 shows a schematic view of a microfluidic device according to the present invention being used in conjunction with a mass spectrometer
  • FIG. 11 shows a graph plotting the fluorescence intensity of theophylline against time, as it saturates a packed bed
  • FIG. 12 shows theophylline being eluted from packed bed in a relatively narrow band
  • FIG. 13 shows each successive trial resulting in lower light generated from the CL reaction.
  • the present invention is designed to provide a convenient system and method of trapping packing materials (such as beads) on-chip, and of effectively packing and unpacking the trapping zones, to provide a functional on-chip packed reactor bed which significantly extends the number of applications of microfluidic analysis devices.
  • trapping packing materials such as beads
  • SPE solid phase extraction
  • the SPE of an analyte can be beneficial not only for analyte preconcentration, but also for removing other impurities or changing solvent conditions. While the coupling of SPE with microfluidic devices has been accomplished [Figeys, D. and Aebersold, R. Anal. Chem. 1998, 70, 3721 3727], the SPE component in these prior art devices have been made in a capillary or similar cartridge external to the chip, thus resulting in a more complex and more expensive system.
  • the present invention is designed to overcome this prior art limitation by facilitating an on-chip SPE component.
  • an integrated, on chip SPE component is ultimately easier to manufacture, does not require low dead volume coupling to the chip, and eliminates sample handling losses or contamination problems arising from the off chip sample manipulation required in the prior art. It is anticipated that routine incorporation of SPE onto a chip, as facilitated by the present invention, will reduce problems with on chip detection limits and will improve the range of sample preparation steps which can be integrated.
  • CEC capillary electrochromatography
  • on-chip packed bed chromatography has the benefit of providing low mobile phase mass transfer, and makes available a wide variety of stationary phases.
  • the use of an off chip prepared stationary phase offers the advantage that it eliminates the need for coating the chip and allows for optimization of the stationary phase preparation.
  • Yet another extended application facilitated by the present invention is providing on-chip bead based immunoassay and enzyme based assays. These applications are described further below.
  • FIGS. 1A and 1B show a microfluidic device 10 as used in these experiments.
  • the device 10 comprises a main channel 11 formed into the top surface of a substrate 8 , and the main channel 11 is separated by a chamber 4 , also formed into the substrate 8 .
  • Two branches of the main channel 11 as separated by the chamber 4 , are further identified as main reservoirs 1 and 2 .
  • the chamber 4 is connected to a packing material reservoir 3 by a narrow side channel 5 .
  • the packing material reservoir and the narrow side channel 5 are also formed into the substrate 8 .
  • FIG. 1B shows an enlarged image of the chamber 4 obtained with a scanning electron microscope (Jeol X Vision JSM6301FXV, Peabody, Mass.).
  • the chamber 4 is formed by providing two weirs 6 , 7 formed across the main channel 11 at a relatively narrow portion of the main channel 11 ( FIG. 1A ). As can be seen from FIG. 1B , the weirs 6 , 7 are not as high as the main channel 11 is deep, so that some fluid is allowed to flow over the weirs 6 , 7 as explained below.
  • the device 10 was prepared in Corning 0211 glass by the Alberta Microelectronic Corporation (Edmonton, AB), using known chemical etching procedures [Fan, Z. H.; Harrison, D. J. Anal. Chem. 1994, 66, 177 184].
  • this substrate material is non-conductive, but if other than electrokinetic forces are being used (as detailed further below), then the substrate material may be semiconducting or conducting.
  • Two photomasks were required to create device 10 : a first photomask was used to etch the tops of the weirs 6 , 7 to a depth of approximately 1 ⁇ m; and a second photomask was used to etch the channels 5 , 11 to a depth of approximately 10 ⁇ m.
  • FIG. 2A shows a cross-sectional view of the weirs 6 , 7 which are not as high as the channel 11 (main reservoirs 1 , 2 ) is deep, and thus small flow gaps 14 , 15 are provided between the top of the weirs 6 , 7 and a cover plate 9 (not shown in FIG. 1A or 1 B) which is placed on top of the substrate 8 , thereby closing off the chamber 4 , channels 5 , 11 and reservoirs 1 , 2 , 3 .
  • the beads 12 are generally larger than the flow gaps 14 , 15 and therefore cannot escape from the chamber 4 .
  • FIGS. 2B and 2C show a side view and an end view, respectively, of an alternative embodiment of a weir 6 ′ in which substantially vertical notches 6 ′′ are provided so that the weir 6 ′ provides less flow impedance.
  • the vertical notches 6 ′′ should be narrow enough that no beads can pass through them (i.e. they should be at least about 10% smaller than the smallest bead diameter).
  • Acetonitrile (BDH, Toronto, ON) was filtered through a 0.45 ⁇ m Nylon 6,6 filter (Altech, Deerfield, Ill.) prior to use. Otherwise, the acetonitrile was used as received, with no added electrolyte. Also, 50 mM potassium phosphate (pH 7.0) and ammonium acetate (pH 8.5) buffers were prepared in ultra-pure water (Millipore Canada, Mississauga, ON). A 1:1 (v/v) mixture of acetonitrile and buffer was prepared.
  • a stock solution of 0.10 mM, 4,4 difluoro 1,3,5,7,8 penta methyl-4-bora-3a,4a-diaza-s-indacene, BODIPY 493/503 was prepared in HPLC grade methanol (Fisher, Fair Lawn, N.J.).
  • a 1 mM stock solution of fluorescein di sodium salt (Sigma) was prepared in phosphate buffer. Both stock solutions were then diluted in the 50 mM phosphate and 50 mM ammonium acetate buffers to give 1.0 ⁇ M solutions, which were then diluted to 1.0 nM. This 1.0 nM solution served as the sample for preconcentration and electrochromatography. All aqueous (buffer and sample) solutions were filtered through a cellulose acetate syringe filter (0.2 ⁇ m pore size) (Nalgene, Rochester, N.Y.) prior to use.
  • One suitable packing material used in these experiments comprised a reverse phase chromatographic stationary resin.
  • the resin was Spherisorb ODS1 (Phase Separations, Flintshire, UK), a porous C-18 resin whose particles ranged from 1.5 to 4.0 ⁇ m in diameter, as determined by scanning electron microscopy (ODS beads 12 ).
  • ODS beads 12 scanning electron microscopy
  • a slurry of approximately 0.003 g/mL of ODS1 was prepared in acetonitrile. This slurry was used to supply the packing material reservoir 3 , to subsequently pack the chamber 4 .
  • Certain solvent and additive combinations were found to help the packing material stay in the packed chambers. For example, if ODS beads are introduced in acetonitrile they flow readily, while subsequently switching to an aqueous or predominately aqueous solvent causes the beads to aggregate and become trapped within the chamber. With ODS beads up to 30% acetonitrile could be present in the aqueous solution without disrupting the aggregation observed to the point of destabilizing the packed bed. Up to 50% acetonitrile could be present with only modest loss in aggregation and weak destabilization of the bed. As another example protein G or protein A coated beads formed aggregates in aqueous solution, which made it hard to introduce them into the trapping zone.
  • Magnetic beads used for magnetic packing may comprise Abebaw-protein “A” coated beads: composition 36-40% magnetite dispersed within a copolymer matrix consisting of styrene and divinyl benzene (Prozyme, Calif.) Also, Guifeng-oligo (dT)25 coated beads may be used for the isolation of mRNA. The beads have an even dispersion of magnetic material (Fe2 O3 and Fe3O4) through out the bead. The beads are coated with a polystyrene which encases the magnetic material (Dynal, Oslo, Norway).
  • a laser induced fluorescence detection system used in this experiment consisted of a 488 nm argon ion laser (Uniphase, San Jose, Calif.), operated at 4.0 mW, and associated focusing optics [Manz. A., Miyahara, Y., Miura, J., Watanabe, Y., Miyagi, H. and Sato, K. Sens. Actuators 1990, B1, 249 255] (Melles Griot, Irvine, Calif.). Fluorescence emitted from the BODIPY sample (as described above) was collected by a 25 ⁇ , 0.35 NA microscope objective (Leitz Wetzlar, Germany). The images were observed with a SONY CCD IRIS camera.
  • a 530 nm emission filter and a photo multiplier tube (PMT) (R1477, Hamamatsu, Bridgewater, N.J.) were used as a detector positioned so that the narrow channel 5 between the chamber 4 and packing material reservoir 3 could be monitored. Data was collected from the section of main channel 11 just next to the chamber 4 . The weir 6 was just out of the field of view. The PMT was biased at 530 V while the PMT signal was amplified, filtered (25 Hz Butterworth) and sampled at a frequency of 50 Hz.
  • PMT photo multiplier tube
  • the fluorescence of the buffer, acetonitrile, and 1.0 nM BODIPY in both buffer and acetonitrile was measured using a Shimadzu RF 5301PC Spectrofluorophotometer.
  • the narrow side channel 5 leading into the chamber 4 from packing material reservoir 3 was used to direct stationary phase packing material into the chamber 4 using electrokinetic pumping [Yan, C., U.S. Pat. No. 5,453,163, 1995; Knox, J. H. and Grant, I. H. Chromatographia 1991, 32, 317 328].
  • the substrate 8 is non-conductive, which allows packing of the beads 12 using the electrokinetic pumping method.
  • the device 10 was not conditioned with any aqueous solutions prior to use.
  • the chamber 4 , channels 5 , 11 , and reservoirs 1 , 2 , 3 were first filled with acetonitrile.
  • the chamber 4 was packed with ODS beads 12 ( FIG. 2 ) by replacing the acetonitrile in packing material reservoir 3 with the ODS/acetonitrile slurry (described above), then applying positive high voltage at packing material reservoir 3 while holding main reservoirs 1 and 2 at ground.
  • the voltage applied at packing material reservoir 3 was ramped from 200 V to 800 V over approximately 5 min to effect packing of chamber 4 .
  • a step gradient was performed to introduce aqueous solution to the main channel 11 and the ODS beads 12 in the chamber 4 .
  • a 1:1 (v/v) mixture of acetonitrile and buffer was placed in reservoirs 1 and 2 .
  • Acetonitrile replaced the slurry in packing material reservoir 3 .
  • a voltage was then applied to main reservoir 1 and was ramped from 200 V to 800 V, with packing material reservoir 3 biased at 400 V and main reservoir 2 grounded. After 2 to 5 min at 800 V, the acetonitrile/buffer mixture in reservoirs 1 and 2 was replaced with buffer, and the same voltage program repeated.
  • the chamber 4 was monitored visually to ensure that the acetonitrile was completely replaced by buffer and that the packing material (beads 12 ) did not shift or unpack during this procedure. (The beads 12 could be seen to agglomerate as the acetonitrile was expelled, and the index of refraction change at the water/acetonitrile interface was clearly visible.) The experiments conducted are described in further detail below.
  • the narrow side channel 5 shown in FIGS. 1A and 1B was made to be about 30 ⁇ m wide to supply packing material (beads 12 ) to the chamber 4 .
  • a sample could then be delivered from reservoir 2 (the inlet channel), across the chamber 4 and on towards main reservoir 1 (the outlet channel).
  • the volume of the chamber 4 was 330 pL, while the volume of the outlet and inlet channels was 1.5 ⁇ 10 7 L and 4.1 ⁇ 10 8 L, respectively.
  • the main channel 11 had much lower flow resistance than the side channel 5 , in spite of the weirs 6 , 7 , given their relatively wide widths (580 ⁇ m, tapering to 300 ⁇ m at the weirs) in comparison to the width of the narrow channel 5 (30 ⁇ m).
  • the relative flow resistance in the device 10 was manipulated by the selection of the width dimensions for these channels 5 , 11 in order to encourage flow between main reservoirs 1 and 2 , rather than into the narrow bead introduction side channel 5 during sample loading and elution.
  • Reverse phase ODS beads 12 were used in the SPE device because of their extensive use for the chromatography of proteins, peptides and tryptic digests [Seifar, R. M.; Kok, W. T.; Kraak, J. C.; and Poppe, H. Chromatographia, 1997, 46, 131 136. Yan, C.; Dadoo, R.; Zhao, H.; Zare, R. N.; and Rakestraw, D. J,. Anal Chem. 1995, 67, 2026 2029.] as well as other applications of SPE and CEC [Nielsen, R. G.; Riggin, R. M.; Rickard, E. C. J. Chromatogr.
  • the packing procedure involved applying a positive voltage (ramped from 200 800 V) to the packing material reservoir 3 , while grounding main reservoirs 1 and 2 .
  • the applied voltage induced EOF to flow down the bead channel, carrying the beads into the cavity.
  • An organic solvent was required to suspend the chromatographic beads 12 to prevent them from aggregating and plugging the narrow side channel 5 .
  • capillaries filled with acetonitrile exhibit substantial electroosmostic flow [Wright, P. B.; Lister, A. S.; Dorsey, J. G.; Burton, D. E. J. High Resol.
  • the beads 12 entering the chamber 4 contacted the weirs 6 , 7 on either side of the chamber 4 .
  • the beads 12 are unable to traverse the weirs 6 , 7 because the distance from the top of the weirs 6 , 7 to the bottom of the cover plate 9 (approximately 1.0 ⁇ m) is less than the diameter of the individual particles of the ODS beads 12 (approximately 1.5-4.0 ⁇ m).
  • the chamber 4 continued to pack until it was entirely filled with chromatographic material.
  • the difficulties associated with reproducibly fabricating frits for retaining packing material is well known.
  • the weir design used in the present invention circumvented this problem, and the electrokinetic packing of the beads provided an even distribution of beads throughout the chamber with no observable voids.
  • the use of weir structures may ultimately eliminate the need for on column frit fabrication.
  • the weir design of the present invention allows electric fields to be applied across the trapping zone formed by two weirs, when filled with beads, in a range as high as 20,000 to 80,000 V/cm without bubble formation at the weir. Separations performed in devices with these weirs can use electric fields at least as high as 15,000 V/cm.
  • the power dissipated across a weir can be as high as 3-7 W/m without the formation of bubbles.
  • frits formed in conventional columns have at the best been reported to form bubbles at power dissipations above 0.6 W/m, and electric fields in the range of 150-600 V/cm are the best that have been reported without bubble formation.
  • the beads 12 did not pack as tightly as was desirable (as shown in FIGS. 2 and 3B ) they were removed from the chamber 4 by simply reversing the voltages, and the packing procedure was then repeated. It is noted that once an aqueous solution was introduced to the chamber 4 , the reverse phase beads 12 tended to aggregate and were more difficult to remove. However, subsequent removal was accomplished by flushing the aqueous solution out with acetonitrile, using either EOF or vacuum, or a combination of the two.
  • the ability to effectively remove the beads 12 from chamber 4 allowed used chromatographic beads to be refreshed, or a more applicable material to be substituted.
  • FIGS. 1B and 3A a design utilizing a hook structure 13 at the chamber entrance ( FIGS. 1B and 3A ) yielded the most favorable results in packing, enabling the chamber 4 to be packed and remain so after removal or alteration of voltages or vacuum.
  • the side channel 5 connects to the chamber 4 via a chamber mouth 4 A in an asymmetric fashion, relative to the weirs 6 , 7 .
  • the hook structure 13 preferably obstructs direct line-of-sight entry of packing material from the side channel 5 into the chamber 4 . Rather, the hook structure 13 forces packing material to enter the chamber 4 indirectly via the chamber mouth 4 A.
  • the packing material reservoir 3 has a positive bias applied with reservoirs 1 and 2 grounded.
  • the inventors believe that the hooked structure 13 causes electric field lines to follow a curved pathway into the cavity. Consequently, as the chromatographic beads 12 follow the electric field lines into the chamber mouth 4 A they appear to be “sprayed” as if from a snow blower ( FIG. 3A ), to become uniformly packed.
  • the chamber 4 filled only to the beginning of the hook structure 13 (see FIG. 3B ). Once filled, the beads were observed to flow down the sides and up the middle of the narrow side channel 5 (toward packing material reservoir 3 ) mimicking the solvent back flow generated in a closed electrophoretic system [Shaw, D. J. Introduction to Colloid and Surface Chemistry, 3 rd ed. Butterworths: London, 1980.].
  • EOF is directed along the walls until it reaches the end of the chamber, where pressure causes the solution to reverse direction and flow back up the center of the bead introduction channel.
  • a key aspect of the hooked structure as shown is the asymmetric entrance into the trapping zone, which allows for better packing.
  • a symmetric entrance means the entering beads can go to both weirs equally, which tends to lead to uneven or difficult packing.
  • An asymmetric structure allows the beads to pack preferentially at one end of the trapping zone first and then build up in one direction from that location.
  • the key role of the hook structure is to prevent line of sight outflow from the trapping zone during use of the packed bed.
  • Chambers constructed without an asymmetry in the entrance were not observed to pack as well as asymmetric entry designs. In these cases, packing material tended to fill the corners furthest from the entrance, but no additional material would enter the chamber.
  • the inventors believe that, due to its symmetric design, this type of chamber exhibits solvent back flow, after it has filled to a certain extent. That is, the partially filled chamber may resemble a closed or restricted system. Such an occurrence would preclude the filling of the symmetric chamber with beads and is consistent with previously observed behavior, as explained by Shaw. Such behavior may account for the ability to fill symmetric structures on some occasions but less readily on others. In contrast, an asymmetric design, with or without a hook structure 13 guarding the entrance is less likely to experience back flow directly into the narrow bead introduction channel 5 .
  • the present invention allows applications of microfluidic analysis systems to be extended.
  • One such extension is facilitating SPE directly on-chip.
  • Preconcentration is a valuable tool that can be used to enhance the sensitivity of microfluidic devices.
  • the inventors concentrated a 1.0 nM solution of BODIPY reagent from 50 mM phosphate buffer. Solution conditions utilized were similar to those used for protein and peptide analysis in HPLC CE systems. [Bushey, M. M.; Jorgenson, J. W. Anal. Chem. 1990, 62, 978 984.
  • the BODIPY reagent when diluted in aqueous buffer, exhibits a high affinity for ODS material and is an excellent fluorophore.
  • the preconcentration and elution of the BODIPY reagent was carried out in four steps: equilibration of the SPE bed with buffer; sample introduction; buffer flush; and elution of analyte.
  • FIG. 4A fluorescence of the absorbed BODIPY occurred initially at the first few layers of beads 12 only (near the top of the Figure).
  • FIG. 4B shows the SPE bed after 1.5 minutes, with a total of 1.4 ⁇ 10 ⁇ 16 moles of BODIPY reagent loaded on the bed (assuming complete capture of the dye).
  • FIG. 5 shows graphically the 3-step preconcentration experiment for a 1.0 nM BODIPY sample following bed equilibration.
  • the 90-second loading step showed an increase in signal as the fluorescent sample passed by the detector positioned as shown in FIG. 1A .
  • This was followed by a 60-second rinse step.
  • Acetonitrile was then used to elute the BODIPY reagent off the bed in the opposite direction to which it was loaded, eliminating the need for detector repositioning.
  • the BODIPY reagent eluted in a relatively narrow 3 second band following a 90 second preconcentration step exhibiting a many fold concentration increase compared to the original sample.
  • the fluorescence of the BODIPY (1.0 nM) reagent was tested in both buffer and acetonitrile and did not show a significant difference in intensity for either of the solvents.
  • the preconcentration factor (P.F.) can be estimated using equation (1):
  • Vi is the volume of buffer containing analyte and V f is the volume of acetonitrile containing analyte.
  • the volume Vi is the product of the preconcentration time (t pre , sec.) and the electroosmotic flow of the sample being concentrated (f buff , L/sec.) while Vf is the product of width of the eluted analyte peak (t elute , sec.) and the flow rate of the eluting solvent (f elute , L/sec).
  • the analyte was preconcentrated by a factor of at least 100 times. After sufficient concentration the BODIPY is easily observed visually on the SPE bed.
  • CEC capillary electrochromatography
  • FIGS. 7A-7D shows the CEC separation of BODIPY and fluorescein utilizing mobile phases with different concentrations of acetonitrile. It was observed that the increased acetonitrile concentration lowers the polarity of the mobile phase, decreasing the amount of time required for the BODIPY to elute. The elution time for fluorescein does not change, indicating little to no chromatographic retention except at low % acetonitrile. Decreasing the acetonitrile concentration provides baseline resolution, but leads to more extensive band broadening.
  • Immunoassay on beads, or immunosorbent assays involves placing either an antibody or antigen on the surface of the bead. As a solution containing an antigen passes over the beads, the antigen specifically binds the antibody. In this way the specificity of the antigen for the antibody is utilized to separate it from other species in solution. Later the solution conditions are changed so that the antibody or antigen is eluted from the beads and is detected as either complex or the free antibody.
  • the development of immunosorbent assays on chip is attractive because of the small amounts of reagents that are consumed. In addition microchips offer very fast analysis times compared to conventional methods performed in micro titer plates or in syringes packed with immuno beads. Immunosorbent assays on chip also provide lower concentration detection limits than solution phase immunoassays on chip, making the development of bead based immunoassay on chip important.
  • Beads that have specific enzymes linked to them are packed into the chamber created by the two weirs.
  • the use of beads is preferential because of the increased surface area of the beads as opposed surface area of the channel walls.
  • the higher surface area leads to a greater capacity and more efficient trapping of the analyte.
  • the weirs form a well defined chamber for the immunoassay beads to pack.
  • the inventors have demonstrated bead based immunoassay on chip for the enzyme theophylline. In the experiment magnetic beads coated with protein A are packed within the chamber of the chip. Later the antibody (antitheophylline) is flowed across the bed in a 1 mM tricine buffer pH 8.0.
  • the antitheophylline When the antitheophylline flows through the packed bed the antibody binds to the protein A.
  • the antitheophylline was passed over the bed for several minute to ensure that the bed is saturated with antibody.
  • a buffer washing step was then utilized to remove the remaining unbound antibody from the chamber and channels.
  • the bed was then saturated with fluorescently labelled theophylline (diluted from a kit) by flowing it through the bed where it binds to the antitheophylline. The point at which the bed was saturated was determined by monitoring fluorescence below the bed and determining the point where the breakthrough curve ( FIG. 1 ) plateaus. Following breakthrough the theophylline solution is washed from the device using a buffer flush step.
  • a chaotropic agent is then added to elute the theophylline from the bed as either free protein or theophylline/antibody complex.
  • Chaotropic agents can be of various types, however in this example a mixture of 90% acetone/10% tricine buffer was used. Once the chaotropic agent reaches the packed bed the theophylline is eluted in a relatively narrow band ( FIG. 2 ).
  • the direct assay demonstrates the ability of the chamber formed by the weirs to act as an immunoassay bed.
  • XOD and HRP were immobilized onto Nucleosil 1000 5 silica beads (Machrey Nagel, Germany) that had been silanized with 3-aminopropyltriethoxysilane, by crosslinking with gluteraldehyde (Sigma).
  • the immobilization of enzymes on glass beads has been described previously and is known by practitioners of the art. All studies were performed using 50 mM boric acid adjusted with 1 M NaOH to pH 9.
  • the immobilization of HRP and XOD was performed to demonstrate two principals. First was the ability to pack the enzyme immobilized beads within the weir device and then second was to demonstrate that the enzyme was still active and could be utilized to catalyze reactions once packed. To show each of these principals a chemiluminescent reaction was performed using the weir device.
  • the ability to pack immobilized enzymes allows different methods of detection to be used for certain analytes.
  • the luminol chemiluminescence (CL) reaction can be used for very sensitive determinations when only small amounts of analyte are available or when labeling reactions are otherwise difficult to perform.
  • CL reactions are unique in that they do not require a light source simplifying the detection scheme.
  • the chemiluminescence reaction catalyzed by HRP is shown below.
  • Beads immobilized with HRP were packed into the weir device and a solution containing the reagents for the reaction passed through the bed.
  • the immobilized HRP was found to catalyze the chemiluminescent reaction when a solution of H 2 O 2 (100 (M) and luminol (10 mM) was flowed over a bed that had been packed with beads containing immobilized HRP. Light generated from the reaction was detected downstream from the enzyme bed.
  • a chamber 4 is formed between two weirs 6 , 7 .
  • Two side channels 5 a , 5 b are provided to serve as an inlet or outlet to the chamber 4 .
  • the side channels 5 a , 5 b may be offset relative to each other to better facilitate packing of the chamber.
  • a second side channel is added to allow the beads to be flushed out to waste at the other end of the trapping zone, or to allow the flushing agent to be delivered from an alternate reservoir. The latter design can prevent used beads from contaminating the fresh bead stream, and/or prevent sample and sample waste solutions from being directed into the trapping zone during flushing.
  • the side channel in this design may have one or more optional branches 5 c , to allow the side channel 5 b to be flushed of beads, or to allow beads being flushed out of the trapping zone to be directed, for example, into a waste reservoir instead of into the packing material reservoir 3 (not shown).
  • FIG. 8C Another embodiment is shown in FIG. 8C , in which a side channel weir 16 is provided near the entrance of a third side channel 5 d to the chamber 4 , to allow fluid flow without passage of beads.
  • This “weired” side channel 5 d may be used, for example, to release pressure build up in the chamber 4 during loading of the beads, particularly when the length of the chamber 4 (as measured between the weirs 6 , 7 ) is greater than 4-6 mm.
  • the side channel entrance into the chamber 4 may be modified to include a hook or similar shape, as described earlier, in order to prevent direct “line of sight” flow from a side channel into the chamber 4 , or vice versa.
  • this entrance modification serves to spray the beads into the trapping zone in order to assist packing, and to reduce the tendency of the beads to exit from the chamber 4 during later use.
  • Loading of beads with more than one side channel is performed in a manner similar to that for a single side channel, two weir design, (as described above) except that a potential must also be applied to the additional side channels to prevent flow into those side channels when using electrokinetic loading.
  • a voltage may be applied to a second side channel (e.g. side channel 5 b in FIG. 8A ) to drive beads out of the trapping zone or chamber 4 , applying voltage potentials such as those used with the single side channel design but adjusted for the potential drop in the additional side channel.
  • the direction of flow during the flushing step can be controlled by the polarity of the applied voltage.
  • a back pressure When using pressure driven flow to load beads, a back pressure must be applied to the additional side channels during loading, or else the reservoirs attached to the additional side channels may be temporarily sealed.
  • a pressure When flushing the beads from the chamber 4 , a pressure may be applied to the bead supply channel 5 a to flush beads out of one or more additional side channels.
  • a voltage may be applied to the additional side channels to prevent leakage of sample or beads out of the trapping zone and into the side channels, substantially in the same manner as described for a single side channel in the trapping zone.
  • the side channels may a have enough positive pressure applied to eliminate flow into the side channel, or else the reservoirs attached to the respective side channels can be temporarily sealed.
  • a typical monomer solution may be prepared as follows: to a vial that contained 800 ml of a ternary solvent mixture that contained 10 wt % H 2 O, 40 wt % 1,4-butanediol and 50 wt % 1-propanol, 200 ml of a mixture of 2,2′-azobisisobutyronitrile (AIBN, 2 wt %) and ethylene dimethacryllate (EDMA) was added. (C. Peters et al, Anal. Chem. 1997, 69, 3646-3649.) This monomer solution was then purged with N 2 for 15 min to remove dissolved oxygen. Other polymerizable solution of monomer may also be used.
  • a ternary solvent mixture that contained 10 wt % H 2 O, 40 wt % 1,4-butanediol and 50 wt % 1-propanol
  • AIBN 2,2′-azobisisobutyronitrile
  • EDMA ethylene
  • the device was then kept in an oven at 60° C. for 24-48 hr.
  • the device was taken out from the oven and cooled down to room temperature, with all reservoirs covered to prevent evaporation.
  • photo-initiated polymerization with AIBN or other initiator may be used to polymerize the monomer solution, without a need for extended heating of the device.
  • the device was rinsed with acetonitrile then with buffer.
  • Mobile phase compositions of up to 100% acetonitrile could be used in such devices without destabilizing the bead bed.
  • the length of the trapping zone may range anywhere from about 10 ⁇ m up to about 200 cm (using a coiled or serpentine path if necessary to allow for incorporation of such a length within the confines of a single device wafer).
  • the trapping zone length required will be dependent upon the application and will also be limited by the forces which may be applied to achieve packing and unpacking. For example, on-chip CEC would require relatively long trapping zones, with a preferred upper limit of about 5 cm.
  • the depth of the trapping zone, sample and waste channels a practical range is estimated to be about 400 ⁇ m to 0.25 ⁇ m. More preferably, the upper limit should be about 100 ⁇ m and the lower limit should be about 10% larger than the particle depth at a minimum.
  • the bead delivery and bead waste channels (side channels 5 , 5 a - 5 d ) preferably should be at least about 3 times deeper and three times wider than the bead diameter.
  • the maximum dimensions of the side channels 5 , 5 a - 5 d are also dependant upon the relative flow resistances required (i.e. the flow resistance of the side channel versus the main channel and the weirs, so as to minimize side channel backflow during use). Generally speaking, the flow resistance of the side channels should be higher than the flow resistance of weirs to minimize the backflow problem.
  • channel W is element 1 in FIG. 1A ;
  • channel C is called element 5 in FIG. 1A ;
  • channel C′ is element 3 in FIG. 1A
  • ⁇ P is the pressure drop along a channel segment of length L
  • U is the average linear flow velocity
  • h is the viscosity
  • N is a form factor dependent upon the cross sectional ratio b/a (b ⁇ a).
  • the factor N may be estimated from solutions to the Navier Stokes equation for pressure driven, parabolic flow, and was tabulated by Perry in Chemical Engineer's Handbook, (3rd edition, 1950) pp 387.
  • the goal in device design is to make the resistance of the side channel, C in the Tables, higher than the resistance of the weir and the following flow channel W, so that flow across the weir is favoured.
  • Rf is the resistance to fluid flow defined by the right hand side of equation 1, combined together for all channel segments as discussed above.
  • FIG. 9 shows a multiple weir and multiple side channel design, generally referred to by reference numeral 20 , in which several trapping zones are integrated, each serving a different function.
  • a first trapping zone 25 formed between weirs 6 a and 6 b , beads loaded with an antibody to a specific protein are introduced via side channel 25 (and exit via side channel 26 ).
  • a cell lysate or serum sample or other protein source is directed from a sample reservoir (not shown) and loaded into the chip via sample inlet 21 and entrance channel 38 (the sample is removed at sample outlet 22 and an eluent inlet 23 is also provided at the entrance channel.
  • the sample is then passed into the antibody bead bed in trapping zone 25 to isolate a specific protein, while the effluent is directed towards waste outlet 27 .
  • a chaotropic elution agent such as an acetonitrile, water mix, is then introduced (eluent inlet 23 ) to elute the protein from the column and deliver it to the next trapping zone 30 (formed between weirs 6 c and 6 d ) where it is digested by a protease enzyme immobilized on beads loaded into the zone 30 (via side channels 29 , 31 ).
  • the effluent at this stage would be directed towards waste outlet 32 .
  • a buffer is delivered (elution inlet 28 , running buffer 28 a , waste from bed 25 ) to flush the protein digest from the bed and into the next trapping zone 35 (formed between weirs 6 e and 6 f ) with effluent delivered to waste outlet 39 .
  • the third trapping zone 35 contains a solid phase extraction material (packed and unpacked via side channels 34 , 35 ), allowing concentration of the digest peptides onto the bed in zone 35 .
  • An elution solvent such as a methanol/aqueous mixture or acetonitrile/aqueous mixture is then introduced (elution inlet 33 , running buffer 33 a ) to deliver (exit channel 37 , waste 39 , or collection 40 ) a concentrated protein digest to another location on the chip for final analysis.
  • Packed bed flow channels according to the present invention may be interfaced to a mass spectrometer via an electrospray coupler 41 , as illustrated in FIG. 10 .
  • the packed bed 4 may perform an enzyme digestion of a protein, affinity purification and pre concentration of a specific chemical or protein, solid phase extraction concentration enhancement, or capillary electrochromatographic separation, or any combination of these and other steps, prior to electrospray introduction in to a mass spectrometer.
  • the chip to electrospray interface may be made using any method that provides a less than 100 mL dead volume, preferably less than 1 mL and most preferably less than 100 pL dead volume at the coupling region.
  • a method such as that described by Wang et al., or Karger can be used to create the interface [Bings, N. H.; Wang, C.; Skinner, C. D.; Colyer, C. L.; Thibeault, P.; Harrison, D. J. Anal. Chem. 71 (1999) 3292 3296. Zhang, B.; Liu, H.; Karger, B. L.; Foret, F. Anal. Chem. 71 (1999) 3258 3264].

Abstract

An on-chip packed reactor bed design is disclosed that allows for an effective exchange of packing materials such as beads at a miniaturized level. Also disclosed is a method of treating a sample within a microfluidic analysis system, comprising: providing a main channel having a trapping zone; providing a slurry of a reagent treated packing material; inducing a flow of said packing material into said trapping zone through a flow channel connected to said trapping zone to load said trapping zone and form a packed bed of said packing material; and flowing a sample containing analytes through said packed bed, said reagent treating the sample. The present invention extends the function of microfluidic analysis systems to new applications including on-chip solid phase extraction (SPE) and on-chip capillary electrochromatography (CEC). The design can be further extended to include integrated packed bed immuno- or enzyme reactors.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This is a continuation of application Ser. No. 10/148,425 filed Nov. 4, 2002.
  • FIELD OF THE INVENTION
  • The present invention relates generally to microfluidic analysis systems, and more specifically to micro-Total Analysis Systems (μ-TAS), for performing liquid phase analysis at a miniaturized level.
  • BACKGROUND INFORMATION
  • Recent developments in the field of micro-Total Analysis Systems (μ-TAS) have led to systems that perform chemical reactions, separation and detection at a miniaturized level on a single microchip [see, for example, Harrison, D. J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C. S.; and Manz, A., Science 1993, 261, 895-897. Harrison, D. J.; and van den Berg, E.; Eds., Micro Total Analysis Systems '98, Proceedings of the μTAS '98 Workshop (Kluwer: Dordrecht, 1998). Coyler, C. L.; Tang, T.; Chiem, N.; and Harrison, D. J., Electrophoresis 1997, 18, 1733-1741].
  • Most prior art microfluidic devices are based on conventional open tubular flow designs and solution phase reagents. While the functionality of these devices has continued to increase, one key feature that is presently lacking in these prior art devices is the ability to effectively incorporate on-chip packed reactor beds, for introduction of packing materials with immobilized reagents or stationary phases. While a few attempts have been made to employ packed reactor beds in some prior art designs, the difficulty of packing portions of a complex microfluidic manifold with packing material (such as microscopic beads) has so far hindered the effective utilization of these reagent delivery vehicles within microfluidic devices. (The difficulty of packing has been well recognized by practitioners in the field. See, for example, Ericson, C; Holm, J.; Ericson, T.; and Hjertén, S., Analytical Chemistry.)
  • In one prior art example, a packed bed chromatographic device with a bead trapping frit was fabricated in a silicon substrate [Ocvirk, G., Verpoorte, E., Manz, A., Grasserbauer, M., and Widmer, H. M. Analytical Methods and Instrumentation 1995, 2, 74-82]. However, the packing material in this prior art design could not be readily packed or exchanged, thus limiting its utility.
  • Several authors have also described the difficulties associated with reproducibly fabricating frits for retaining packing material in conventional capillaries [Boughtflower, R. J.; Underwood, T.; Paterson, C. J. Chromatographia 1995, 40, 329-335. Van den Bosch, S. E.; Heemstra, S.; Kraak, J. C.; Poppe, H. J. Chromatogr. A 1996, 755, 165-177. Colon, L. A.; Reynolds, K. J.; Alicea-Maldonado, R.; Fermier, A. M. Electrophoresis 1997, 18, 2162-2174. Majors, R. E. LC-GC 1998, 16, 96-110.]. The frits used in conventional systems are prepared using time and labor intensive procedures, the most commonly used method involving the use of pure silica gel, wetted down with aqueous sodium silicate. The frit is made by first tapping a capillary end into a paste made from silica and aqueous sodium silicate. The resulting plug of silica is then heated to make a frit. Current construction methods do not produce high yields of useable frits.
  • Furthermore, using frits produced by prior art methods of construction often leads to the formation of undesirable bubbles. [Altria, K. D.; Smith, N. W.; and Turnbull, C. H., Chromatographia, 46 (1997) 664. Majors, R. E., LC-GC, 16 (1998) 96.] Bubbles cause discontinuity within a column, hindering solution flow and ultimately preventing separation from occurring. The bubbles are thought to arise from a change in electroosmotic flow (EOF) velocity caused by moving from a bead trapping frit into an open capillary. The formation of bubbles, which have been observed to increase at higher voltages, also limits the amount of voltage that can be applied across the capillary, thereby limiting column length, separation efficiency, and speed of analysis.
  • Developing a functional on-chip packed reactor bed design which overcomes the limitations in the prior art would significantly enhance the range of the microfluidic toolbox and extend the number of applications of such devices.
  • SUMMARY OF THE INVENTION
  • Generally, the present invention provides an on-chip packed reactor bed design using one or more weir structures that allow for an effective exchange of packing materials (beads for example) at a miniaturized level. The present invention extends the function of microfluidic analysis systems to new applications. For example, the packed reactor bed formed according to the present invention allows on chip solid phase extraction (SPE) and on-chip capillary electrochromatography (CEC), as explained in detail further below. The design can be further extended to include, for example, integrated packed bed immuno or enzyme reactors.
  • In a first aspect, the present invention provides a method of treating a sample within a microfluidic analysis system, comprising the steps of:
      • a) providing a main channel having a trapping zone suitable for trapping packing material;
      • b) providing a slurry of a reagent treated packing material prepared in a solution having a predetermined composition of a solvent;
      • c) inducing a flow of said packing material into said trapping zone through a flow channel connected to said trapping zone so as to load said trapping zone and form a packed bed of said packing material;
      • d) flowing a sample containing analytes through said packed bed, said reagent treating the sample, whereby the sample leaving the trapping zone has an altered analyte composition.
      • In one embodiment, the method further comprises the step of:
      • e) adjusting the composition of the solvent, so as to affect the aggregation of said packing material and the stabilization of the packed bed.
  • In another embodiment, step b) comprises providing packing material comprising porous beads.
  • In another embodiment, said porous beads are selected to have a diameter in the range from about 0.7 to about 10.0 μm.
  • In yet another embodiment, said porous beads are selected to have a diameter in the range from about 1.5 to about 4.0 μm.
  • In another embodiment, said solvent is acetonitrile, and step e) comprises adjusting the concentration level to less than about 50% to stabilize the packed bed.
  • In another embodiment, said solvent is acetonitrile, and step e) comprises adjusting the concentration level to less than about 30% to stabilize the packed bed.
  • In another embodiment, the method further includes the steps of adjusting the concentration level to above 50% to destabilize the packed bed, and reversing the flow in step c) so as to unload said trapping zone.
  • In another embodiment, the method further includes the step of repeating step c) so as to reload said trapping zone, and readjusting the concentration level to restabilize the packed bed.
      • In yet another embodiment, the method further comprises the steps of:
      •  before step c), adding a neutral surfactant to said packing material so as to inhibit aggregation; and
      •  after step c), removing the neutral surfactant to promote aggregation.
      • In another embodiment, the method further comprising the steps of:
      •  after step c) introducing a polymerizable agent into the flow channel and polymerizing said agent, so as to stabilize the packed bed.
  • In yet another embodiment, step d) comprises applying a fluid force to induce the flow of said packing material.
  • In another embodiment, said packing material comprises at least some electrically charged particles and step d) comprises applying a voltage potential to induce the flow of said packing material.
  • In another embodiment, said packing material comprises at least some particles susceptible to a magnetic field and step d) comprises applying a magnetic field to induce the flow of said packing material.
  • In another embodiment, the method further includes the step of providing a hook structure at the connection point between said flow channel and said trapping zone, so as to prevent direct line-of-sight entry of said packing material, thereby to promote even packing.
  • In another aspect, the present invention provides a method of trapping bead based reagents within a microfluidic analysis system, comprising the steps of:
      • a) providing a main channel having a trapping zone suitable for trapping bead based packing material;
      • b) providing a slurry of a reagent treated beads prepared in a solution having a predetermined composition of a solvent;
      • c) inducing a flow of said beads into said trapping zone through a flow channel connected to said trapping zone so as to load said trapping zone and form a packed bed of said beads; and
      • d) adjusting the composition of the solvent, so as to affect the aggregation of said packing material and the stabilization of the packed bed.
  • In a further aspect, the present invention provides a microfluidic analysis system, comprising:
      • a) a substantially planar substrate having an upper surface;
      • b) at least one main channel formed into said upper surface, said main channel having first and second ends and a defined direction of flow in use;
      • c) a cover plate arranged over said planar substrate, said cover plate closing off said channel from above; and
      • d) a first weir formed across said main channel and between said first and second ends of said channel, said first weir providing at least one flow gap to allow, in use, at least some fluid to flow past said first weir while trapping packing material having constituent particles that are generally larger than said flow gap.
  • In one embodiment, the system further comprises at least one side channel formed into the upper surface of said planar substrate, said side channel being connected at a first end to said main channel at a location upstream from said first weir, and at a second end to a reservoir, said side channel providing a higher flow resistance than said main channel.
  • In another embodiment, the system further comprises a second weir located upstream from said connected first end of said side channel, said first and second weirs forming a chamber therebetween, said second weir providing at least one flow gap to allow, in use, at least some fluid to flow past said second weir while trapping said packing material within said chamber.
  • In another embodiment, each side channel connection to said main channel is provided with a hook structure curved to one side whereby, in use, packing material is sprayed into said chamber to facilitate even packing.
  • direct line-of-sight entry of packing material from said side channel into said chamber and forms a chamber mouth to one side of said hook structure.
  • In another embodiment, said flow gaps comprise a generally uniform gap between said cover plate and the top of said weirs.
  • In yet another embodiment, said flow gaps comprise a plurality of substantially vertical gaps in said weirs.
  • In another embodiment, said system is formed entirely on a single microfluidic chip.
  • In another embodiment, the present invention provides a method comprising, providing a non-conductive substrate and effecting an electrokinetic flow by applying a relatively high voltage at said second end of said main channel and at said reservoir, said reservoir containing packing material, and providing a relatively low voltage at said first end of said main channel, so that packing material flows from said reservoir into said main channel and is trapped against said first weir.
  • In one embodiment, the packing material is removed from said main channel by providing a relatively high voltage at said first and second ends of said main channel while providing a relatively low voltage at said reservoir.
  • In another aspect, the present invention provides a method comprising, effecting a pressure driven flow by providing a relatively high pressure at said second end of said main channel and at said reservoir, said reservoir containing packing material, and providing a relatively low pressure at said first end of said main channel, so that packing material flows from said reservoir into said main channel and is trapped against said first weir.
  • In one embodiment, the packing material is removed from the said main channel by providing relatively high pressure at said first and second ends of said main channel while providing relatively low pressure at said reservoir.
  • In another embodiment, the method comprises providing a non-conductive substrate and effecting an electrokinetic flow by applying a relatively high voltage at said reservoir, said reservoir containing packing material, and providing relatively low voltages at said first and second ends of said main channel, so that packing material flows from said reservoir into said chamber and is trapped by said first and second weirs.
  • In another embodiment, the packing material is removed from the chamber by reversing said electrokinetic flow.
  • In another aspect, the present invention provides a method of packing the chamber in a microfluidic analysis system comprising, effecting a pressure driven flow by providing a relatively high pressure at said reservoir, said reservoir containing packing material, and providing relatively low pressure at said first and second main reservoirs, whereby, packing material flows from said packing material reservoir into said chamber and is trapped by said first and second weirs.
  • In another embodiment, the packing material may be removed from the chamber by reversing said pressure driven flow.
  • In another embodiment, the method comprises providing magnetically charged packing material, and effecting a magnetically driven flow by providing a magnetically attractive force in the chamber, whereby, the packing material enters the chamber and is trapped by said first and second weirs.
  • In another embodiment, the packing material may be removed from the chamber by reversing said magnetic force in said chamber.
  • In any of the above embodiments, the packing material may comprise porous beads.
  • In another embodiment, the beads may be generally spheroid.
  • In another embodiment, the beads are initially suspended in a buffer solution.
  • In another embodiment, the buffer solution is an organic solvent miscible with water.
  • In another embodiment, the organic solvent is acetonitrile with a concentration level of up to 50%.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the present invention, and by way of example, reference will now be made to the accompanying drawings, which show preferred embodiments of the present invention in which:
  • FIG. 1A shows a top plan view of a microfluidic device according to the present invention;
  • FIG. 1B shows an enlarged perspective view of a chamber in which packing materials (such as beads) are trapped;
  • FIG. 2A shows a cross-sectional view of the chamber shown in FIG. 1B taken along line A-A, and further shows packing material (beads) which are packed into the chamber and which are retained by a cover plate;
  • FIGS. 2B and 2C show a side view and end view, respectively, of an alternative embodiment of a weir according to the present invention;
  • FIG. 3A shows an initial stage of packing material (beads) being packed into the chamber shown in FIGS. 1B and 2A;
  • FIG. 3B shows the chamber of FIG. 3A after it has been completely filled with packing material (beads);
  • FIG. 4A shows an early stage of preconcentration of a 1.0 nM BODIPY solution at the weir/bed interface near the top of FIG. 4A;
  • FIG. 4B shows a later stage of preconcentration of a 1.0 nM BODIPY solution at the weir/bed interface near the top of FIG. 4B;
  • FIG. 5 shows a plot of fluorescence intensity vs. time, showing fluorescence of a first 1.0 NM BODIPY sample during loading, followed by a buffer flush, and then preconcentrated BODIPY during elution with acetonitrile (ACN);
  • FIG. 6 shows an electrochromatogram of BODIPY and fluorescein, showing different steps of the separation including load, flush, and elution;
  • FIGS. 7A-7D show electrochromatograms of BODIPY and fluorescein with different concentrations of acetonitrile in the mobile phase, specifically at: (a) 30%; (b) 22%; (c) 15%; and (d) 10%;
  • FIG. 8A-8C show top plan views of alternative embodiments of a microfluidic device according to the present invention;
  • FIG. 9 shows a top plan view of a microfluidic device according to the present invention having multiple packed chambers;
  • FIG. 10 shows a schematic view of a microfluidic device according to the present invention being used in conjunction with a mass spectrometer;
  • FIG. 11 shows a graph plotting the fluorescence intensity of theophylline against time, as it saturates a packed bed;
  • FIG. 12 shows theophylline being eluted from packed bed in a relatively narrow band; and
  • FIG. 13 shows each successive trial resulting in lower light generated from the CL reaction.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As explained above, the present invention is designed to provide a convenient system and method of trapping packing materials (such as beads) on-chip, and of effectively packing and unpacking the trapping zones, to provide a functional on-chip packed reactor bed which significantly extends the number of applications of microfluidic analysis devices.
  • One such extended application facilitated by the present invention is on-chip sample preconcentration by solid phase extraction (SPE). In microfluidic analysis, SPE is often required to overcome detection limit problems, or to eliminate a potential interferent. To date, preconcentration within microchips has been performed by sample stacking using “isoelectric focusing” [Jacobson, S. C. and Ramsey, M. Electrophoresis 1995, 16, 481 486]. Advantageously, unlike sample stacking, SPE can be made selective for a particular analyte and does not require precise control of buffer concentrations. For SPE the amount of preconcentration is limited by the preconcentration time, which makes it more flexible than sample stacking. The SPE of an analyte can be beneficial not only for analyte preconcentration, but also for removing other impurities or changing solvent conditions. While the coupling of SPE with microfluidic devices has been accomplished [Figeys, D. and Aebersold, R. Anal. Chem. 1998, 70, 3721 3727], the SPE component in these prior art devices have been made in a capillary or similar cartridge external to the chip, thus resulting in a more complex and more expensive system. The present invention is designed to overcome this prior art limitation by facilitating an on-chip SPE component.
  • As realized by the present inventors, an integrated, on chip SPE component is ultimately easier to manufacture, does not require low dead volume coupling to the chip, and eliminates sample handling losses or contamination problems arising from the off chip sample manipulation required in the prior art. It is anticipated that routine incorporation of SPE onto a chip, as facilitated by the present invention, will reduce problems with on chip detection limits and will improve the range of sample preparation steps which can be integrated.
  • Another extended application facilitated by the present invention is on-chip capillary electrochromatography (CEC). CEC has recently received significant attention due to the fact that it combines the separation power of both liquid chromatography and capillary electrophoresis. To date the difficulty associated with packing chromatographic material within devices has focused most previous chromatographic efforts upon prior art open channel methods [Manz. A., Miyahara, Y., Miura, J., Watanabe, Y., Miyagi and H. Sato, K., Sens. Actuators 1990, B1, 249 255; Jacobson, S. C., Hergenröder, R., Koutny, L. B. and Ramsey, J. M. Anal. Chem. 1994, 66, 2369 2373; Kutter, J. P., Jacobson, S. C., Matsubara, N. and Ramsey, J. M. Anal. Chem. 1998, 70, 3291 3297; He, B., Tait, N. and Regnier, F. Anal. Chem. 1998, 70, 3790 3797]. In the prior art, open channel method devices with channel widths of 2 μm or less were required to improve mobile phase transfer in open columns leading to other practical considerations such as clogging and a short path length for detection. There were also problems with the reproducibility and the cost of stationary phase coating in such structures.
  • As realized by the inventors, on-chip packed bed chromatography according to the present invention has the benefit of providing low mobile phase mass transfer, and makes available a wide variety of stationary phases. In this case, the use of an off chip prepared stationary phase offers the advantage that it eliminates the need for coating the chip and allows for optimization of the stationary phase preparation.
  • Yet another extended application facilitated by the present invention is providing on-chip bead based immunoassay and enzyme based assays. These applications are described further below.
  • EXAMPLE
  • To illustrate the present invention by way of example, the inventors conducted a series of experiments, which are described here.
  • Chip Design
  • FIGS. 1A and 1B show a microfluidic device 10 as used in these experiments. The device 10 comprises a main channel 11 formed into the top surface of a substrate 8, and the main channel 11 is separated by a chamber 4, also formed into the substrate 8. Two branches of the main channel 11, as separated by the chamber 4, are further identified as main reservoirs 1 and 2. The chamber 4 is connected to a packing material reservoir 3 by a narrow side channel 5. The packing material reservoir and the narrow side channel 5 are also formed into the substrate 8. FIG. 1B shows an enlarged image of the chamber 4 obtained with a scanning electron microscope (Jeol X Vision JSM6301FXV, Peabody, Mass.). The chamber 4 is formed by providing two weirs 6, 7 formed across the main channel 11 at a relatively narrow portion of the main channel 11 (FIG. 1A). As can be seen from FIG. 1B, the weirs 6, 7 are not as high as the main channel 11 is deep, so that some fluid is allowed to flow over the weirs 6, 7 as explained below. The device 10 was prepared in Corning 0211 glass by the Alberta Microelectronic Corporation (Edmonton, AB), using known chemical etching procedures [Fan, Z. H.; Harrison, D. J. Anal. Chem. 1994, 66, 177 184]. It is noted that this substrate material is non-conductive, but if other than electrokinetic forces are being used (as detailed further below), then the substrate material may be semiconducting or conducting. Two photomasks were required to create device 10: a first photomask was used to etch the tops of the weirs 6, 7 to a depth of approximately 1 μm; and a second photomask was used to etch the channels 5, 11 to a depth of approximately 10 μm.
  • FIG. 2A shows a cross-sectional view of the weirs 6, 7 which are not as high as the channel 11 (main reservoirs 1, 2) is deep, and thus small flow gaps 14, 15 are provided between the top of the weirs 6, 7 and a cover plate 9 (not shown in FIG. 1A or 1B) which is placed on top of the substrate 8, thereby closing off the chamber 4, channels 5, 11 and reservoirs 1, 2, 3. As can be seen in FIG. 2A, the beads 12 are generally larger than the flow gaps 14, 15 and therefore cannot escape from the chamber 4.
  • FIGS. 2B and 2C show a side view and an end view, respectively, of an alternative embodiment of a weir 6′ in which substantially vertical notches 6″ are provided so that the weir 6′ provides less flow impedance. The vertical notches 6″ should be narrow enough that no beads can pass through them (i.e. they should be at least about 10% smaller than the smallest bead diameter).
  • Solutions and Reagents
  • Various solutions and reagents were used in these experiments. Acetonitrile (BDH, Toronto, ON) was filtered through a 0.45 μm Nylon 6,6 filter (Altech, Deerfield, Ill.) prior to use. Otherwise, the acetonitrile was used as received, with no added electrolyte. Also, 50 mM potassium phosphate (pH 7.0) and ammonium acetate (pH 8.5) buffers were prepared in ultra-pure water (Millipore Canada, Mississauga, ON). A 1:1 (v/v) mixture of acetonitrile and buffer was prepared. A stock solution of 0.10 mM, 4,4 difluoro 1,3,5,7,8 penta methyl-4-bora-3a,4a-diaza-s-indacene, BODIPY 493/503 (Molecular Probes, Eugene, Oreg.) was prepared in HPLC grade methanol (Fisher, Fair Lawn, N.J.). A 1 mM stock solution of fluorescein di sodium salt (Sigma) was prepared in phosphate buffer. Both stock solutions were then diluted in the 50 mM phosphate and 50 mM ammonium acetate buffers to give 1.0 μM solutions, which were then diluted to 1.0 nM. This 1.0 nM solution served as the sample for preconcentration and electrochromatography. All aqueous (buffer and sample) solutions were filtered through a cellulose acetate syringe filter (0.2 μm pore size) (Nalgene, Rochester, N.Y.) prior to use.
  • Packing Material
  • One suitable packing material used in these experiments comprised a reverse phase chromatographic stationary resin. The resin was Spherisorb ODS1 (Phase Separations, Flintshire, UK), a porous C-18 resin whose particles ranged from 1.5 to 4.0 μm in diameter, as determined by scanning electron microscopy (ODS beads 12). A slurry of approximately 0.003 g/mL of ODS1 was prepared in acetonitrile. This slurry was used to supply the packing material reservoir 3, to subsequently pack the chamber 4.
  • Certain solvent and additive combinations were found to help the packing material stay in the packed chambers. For example, if ODS beads are introduced in acetonitrile they flow readily, while subsequently switching to an aqueous or predominately aqueous solvent causes the beads to aggregate and become trapped within the chamber. With ODS beads up to 30% acetonitrile could be present in the aqueous solution without disrupting the aggregation observed to the point of destabilizing the packed bed. Up to 50% acetonitrile could be present with only modest loss in aggregation and weak destabilization of the bed. As another example protein G or protein A coated beads formed aggregates in aqueous solution, which made it hard to introduce them into the trapping zone. However, the addition of a neutral surfactant such as Tween 20 or Brij 35 (both are trademarks) prevented such aggregation and allowed the beads to be introduced. Conversely, subsequent removal of the surfactant form the aqueous solvent resulted in aggregation and enhanced stability of the trapped bed. The following trend was observed: when using non polar or partially non polar bead phases (for example, ODS and protein coated beads) lowering the surface tension of the solvent from that of water or buffered water, by the addition of organic additives such as organic solvents or surfactants, reduced the tendency to aggregate. Conversely reducing or eliminating materials with lower surface tension from aqueous solution increased the tendency to lock the beads in place on the bed, creating a “solvent lock” method to enhance bead trapping within these devices. Other organic solvents other than acetonitrile, miscible with water may also be used for these purposes, such as methanol, ethanol, dimethylsulfoxide, propylene carbonate, etc. Charged surfactants may also be used instead of neutral surfactants, so long as they are compatible with the proteins that may be present on the beads or in the sample.
  • Magnetic beads used for magnetic packing may comprise Abebaw-protein “A” coated beads: composition 36-40% magnetite dispersed within a copolymer matrix consisting of styrene and divinyl benzene (Prozyme, Calif.) Also, Guifeng-oligo (dT)25 coated beads may be used for the isolation of mRNA. The beads have an even dispersion of magnetic material (Fe2 O3 and Fe3O4) through out the bead. The beads are coated with a polystyrene which encases the magnetic material (Dynal, Oslo, Norway).
  • Instrumentation
  • Various instruments were used in conducting the present experiments. As these instruments and their operation are well known to those skilled in the art, only a brief description is provided, and the instruments are not shown in the figures.
  • A power supply and relay system used to control the electrophoretic voltages necessary for bead packing and all liquid handling on chip has been described previously [Fluri, K., Fitzpatrick, G., Chiem, N. and Harrison, D. J. Anal. Chem. 1996, 68, 4285-4290]. LabVIEW programs (National Instruments, Austin, Tex.), were written for computer control of the voltage system and for data acquisition.
  • A laser induced fluorescence detection system used in this experiment consisted of a 488 nm argon ion laser (Uniphase, San Jose, Calif.), operated at 4.0 mW, and associated focusing optics [Manz. A., Miyahara, Y., Miura, J., Watanabe, Y., Miyagi, H. and Sato, K. Sens. Actuators 1990, B1, 249 255] (Melles Griot, Irvine, Calif.). Fluorescence emitted from the BODIPY sample (as described above) was collected by a 25×, 0.35 NA microscope objective (Leitz Wetzlar, Germany). The images were observed with a SONY CCD IRIS camera. Alternatively a 530 nm emission filter and a photo multiplier tube (PMT) (R1477, Hamamatsu, Bridgewater, N.J.) were used as a detector positioned so that the narrow channel 5 between the chamber 4 and packing material reservoir 3 could be monitored. Data was collected from the section of main channel 11 just next to the chamber 4. The weir 6 was just out of the field of view. The PMT was biased at 530 V while the PMT signal was amplified, filtered (25 Hz Butterworth) and sampled at a frequency of 50 Hz.
  • The fluorescence of the buffer, acetonitrile, and 1.0 nM BODIPY in both buffer and acetonitrile was measured using a Shimadzu RF 5301PC Spectrofluorophotometer.
  • While specific models and manufacturers have been provided for various instrumentation described above, it will be understood by those skilled in the art that any suitable, functional equivalent may be used.
  • Chip Operation
  • Referring back to FIGS. 1A and 1B, the narrow side channel 5 leading into the chamber 4 from packing material reservoir 3 was used to direct stationary phase packing material into the chamber 4 using electrokinetic pumping [Yan, C., U.S. Pat. No. 5,453,163, 1995; Knox, J. H. and Grant, I. H. Chromatographia 1991, 32, 317 328]. As mentioned above, the substrate 8 is non-conductive, which allows packing of the beads 12 using the electrokinetic pumping method.
  • The device 10 was not conditioned with any aqueous solutions prior to use. The chamber 4, channels 5, 11, and reservoirs 1, 2, 3 were first filled with acetonitrile. The chamber 4 was packed with ODS beads 12 (FIG. 2) by replacing the acetonitrile in packing material reservoir 3 with the ODS/acetonitrile slurry (described above), then applying positive high voltage at packing material reservoir 3 while holding main reservoirs 1 and 2 at ground. The voltage applied at packing material reservoir 3 was ramped from 200 V to 800 V over approximately 5 min to effect packing of chamber 4.
  • Once the chamber 4 was packed, a step gradient was performed to introduce aqueous solution to the main channel 11 and the ODS beads 12 in the chamber 4. A 1:1 (v/v) mixture of acetonitrile and buffer was placed in reservoirs 1 and 2. Acetonitrile replaced the slurry in packing material reservoir 3. A voltage was then applied to main reservoir 1 and was ramped from 200 V to 800 V, with packing material reservoir 3 biased at 400 V and main reservoir 2 grounded. After 2 to 5 min at 800 V, the acetonitrile/buffer mixture in reservoirs 1 and 2 was replaced with buffer, and the same voltage program repeated. The chamber 4 was monitored visually to ensure that the acetonitrile was completely replaced by buffer and that the packing material (beads 12) did not shift or unpack during this procedure. (The beads 12 could be seen to agglomerate as the acetonitrile was expelled, and the index of refraction change at the water/acetonitrile interface was clearly visible.) The experiments conducted are described in further detail below.
  • Experimental Results and Discussion
  • In order to conduct the experiments, it was necessary to pack the chamber 4 with packing material (beads 12), as shown in FIG. 2A.
  • The narrow side channel 5 shown in FIGS. 1A and 1B was made to be about 30 μm wide to supply packing material (beads 12) to the chamber 4. A sample could then be delivered from reservoir 2 (the inlet channel), across the chamber 4 and on towards main reservoir 1 (the outlet channel). The volume of the chamber 4 was 330 pL, while the volume of the outlet and inlet channels was 1.5×10 7 L and 4.1×10 8 L, respectively. The main channel 11 had much lower flow resistance than the side channel 5, in spite of the weirs 6, 7, given their relatively wide widths (580 μm, tapering to 300 μm at the weirs) in comparison to the width of the narrow channel 5 (30 μm). The relative flow resistance in the device 10 was manipulated by the selection of the width dimensions for these channels 5, 11 in order to encourage flow between main reservoirs 1 and 2, rather than into the narrow bead introduction side channel 5 during sample loading and elution.
  • Reverse phase ODS beads 12 (as described previously) were used in the SPE device because of their extensive use for the chromatography of proteins, peptides and tryptic digests [Seifar, R. M.; Kok, W. T.; Kraak, J. C.; and Poppe, H. Chromatographia, 1997, 46, 131 136. Yan, C.; Dadoo, R.; Zhao, H.; Zare, R. N.; and Rakestraw, D. J,. Anal Chem. 1995, 67, 2026 2029.] as well as other applications of SPE and CEC [Nielsen, R. G.; Riggin, R. M.; Rickard, E. C. J. Chromatogr. 1989, 480, 393 401. Hancock, W. S.; Chloupek, R. C.; Kirkland, J. J.; Snyder, L. R. J. Chromatogr. A 1994, 686, 31 43.]. Electrokinetic packing of conventional capillaries has been described previously, [Yan, C.; U.S. Pat. No. 5,453,163, 1995. Knox, J. H.; Grant, I. H. Chromatographia 1991, 32, 317 328.], and the inventors have adapted the method for the present invention.
  • As briefly explained earlier, the packing procedure involved applying a positive voltage (ramped from 200 800 V) to the packing material reservoir 3, while grounding main reservoirs 1 and 2. The applied voltage induced EOF to flow down the bead channel, carrying the beads into the cavity. An organic solvent was required to suspend the chromatographic beads 12 to prevent them from aggregating and plugging the narrow side channel 5. Studies have shown that capillaries filled with acetonitrile exhibit substantial electroosmostic flow [Wright, P. B.; Lister, A. S.; Dorsey, J. G. Anal Chem. 1997, 69, 3251 3259. Lister, A. S.; Dorsey, J. G.; Burton, D. E. J. High Resol. Chromatogr. 1997, 20, 523 528. Schwer, C.; Kenndler, E. Anal. Chem. 1991, 63, 1801 1807. Salimi Moosavi, H.; Cassidy, R. M. Anal. Chem. 1995, 67, 1067 1073.].
  • As shown in FIG. 3A, at the early stages of packing, the beads 12 entering the chamber 4 contacted the weirs 6, 7 on either side of the chamber 4. As explained earlier, the beads 12 are unable to traverse the weirs 6, 7 because the distance from the top of the weirs 6, 7 to the bottom of the cover plate 9 (approximately 1.0 μm) is less than the diameter of the individual particles of the ODS beads 12 (approximately 1.5-4.0 μm).
  • As shown in FIG. 3B, the chamber 4 continued to pack until it was entirely filled with chromatographic material. As discussed earlier, the difficulties associated with reproducibly fabricating frits for retaining packing material is well known. Importantly, the weir design used in the present invention circumvented this problem, and the electrokinetic packing of the beads provided an even distribution of beads throughout the chamber with no observable voids. In fact, the use of weir structures may ultimately eliminate the need for on column frit fabrication.
  • The weir design of the present invention allows electric fields to be applied across the trapping zone formed by two weirs, when filled with beads, in a range as high as 20,000 to 80,000 V/cm without bubble formation at the weir. Separations performed in devices with these weirs can use electric fields at least as high as 15,000 V/cm. The power dissipated across a weir can be as high as 3-7 W/m without the formation of bubbles. In contrast frits formed in conventional columns have at the best been reported to form bubbles at power dissipations above 0.6 W/m, and electric fields in the range of 150-600 V/cm are the best that have been reported without bubble formation.
  • It is possible to couple an external capillary to a chip and allow the weir to be used as the trapping element for the beads packed within the external electrochromatography capillary. This can be accomplished using a low dead volume coupling, such as described by Bings et al. (N. H. Bings, C. Wang, C. D. Skinner, C. L. Colyer, P. Thibeault, D. J. Harrison, Anal. Chem. 71 (1999) 3292 3296.) In this way the chip based weir can replace the frits normally formed within external capillaries, and allow higher electric fields to be used, improving speed and separation efficiency.
  • (It is noted here that it was also possible to pack the cavity by applying a vacuum at main reservoirs 1 and 2, although this was less convenient when electrokinetic flow was used for sample loading and elution.)
  • If for some reason the beads 12 did not pack as tightly as was desirable (as shown in FIGS. 2 and 3B) they were removed from the chamber 4 by simply reversing the voltages, and the packing procedure was then repeated. It is noted that once an aqueous solution was introduced to the chamber 4, the reverse phase beads 12 tended to aggregate and were more difficult to remove. However, subsequent removal was accomplished by flushing the aqueous solution out with acetonitrile, using either EOF or vacuum, or a combination of the two. Advantageously, the ability to effectively remove the beads 12 from chamber 4 allowed used chromatographic beads to be refreshed, or a more applicable material to be substituted.
  • Significantly, a design utilizing a hook structure 13 at the chamber entrance (FIGS. 1B and 3A) yielded the most favorable results in packing, enabling the chamber 4 to be packed and remain so after removal or alteration of voltages or vacuum. As seen from the figures, the side channel 5 connects to the chamber 4 via a chamber mouth 4A in an asymmetric fashion, relative to the weirs 6, 7. Also, the hook structure 13 preferably obstructs direct line-of-sight entry of packing material from the side channel 5 into the chamber 4. Rather, the hook structure 13 forces packing material to enter the chamber 4 indirectly via the chamber mouth 4A.
  • As explained earlier, during the packing step, the packing material reservoir 3 has a positive bias applied with reservoirs 1 and 2 grounded. The inventors believe that the hooked structure 13 causes electric field lines to follow a curved pathway into the cavity. Consequently, as the chromatographic beads 12 follow the electric field lines into the chamber mouth 4A they appear to be “sprayed” as if from a snow blower (FIG. 3A), to become uniformly packed.
  • During the packing procedure the chamber 4 filled only to the beginning of the hook structure 13 (see FIG. 3B). Once filled, the beads were observed to flow down the sides and up the middle of the narrow side channel 5 (toward packing material reservoir 3) mimicking the solvent back flow generated in a closed electrophoretic system [Shaw, D. J. Introduction to Colloid and Surface Chemistry, 3rd ed. Butterworths: London, 1980.]. In such a closed system, EOF is directed along the walls until it reaches the end of the chamber, where pressure causes the solution to reverse direction and flow back up the center of the bead introduction channel.
  • A key aspect of the hooked structure as shown is the asymmetric entrance into the trapping zone, which allows for better packing. A symmetric entrance means the entering beads can go to both weirs equally, which tends to lead to uneven or difficult packing. An asymmetric structure allows the beads to pack preferentially at one end of the trapping zone first and then build up in one direction from that location. The key role of the hook structure is to prevent line of sight outflow from the trapping zone during use of the packed bed.
  • Chambers constructed without an asymmetry in the entrance were not observed to pack as well as asymmetric entry designs. In these cases, packing material tended to fill the corners furthest from the entrance, but no additional material would enter the chamber. The inventors believe that, due to its symmetric design, this type of chamber exhibits solvent back flow, after it has filled to a certain extent. That is, the partially filled chamber may resemble a closed or restricted system. Such an occurrence would preclude the filling of the symmetric chamber with beads and is consistent with previously observed behavior, as explained by Shaw. Such behavior may account for the ability to fill symmetric structures on some occasions but less readily on others. In contrast, an asymmetric design, with or without a hook structure 13 guarding the entrance is less likely to experience back flow directly into the narrow bead introduction channel 5.
  • Solid Phase Extraction (SPE) On-Chip
  • As explained earlier, the present invention allows applications of microfluidic analysis systems to be extended. One such extension is facilitating SPE directly on-chip. Preconcentration is a valuable tool that can be used to enhance the sensitivity of microfluidic devices. To determine the ability of a packed SPE bed constructed on a microchip to preconcentrate an analyte, the inventors concentrated a 1.0 nM solution of BODIPY reagent from 50 mM phosphate buffer. Solution conditions utilized were similar to those used for protein and peptide analysis in HPLC CE systems. [Bushey, M. M.; Jorgenson, J. W. Anal. Chem. 1990, 62, 978 984. Castagnola, M.; Cassiano, L.; Rabino, R.; Rossetti, D. V. J. Chromatogr. 1991, 572, 51 58.] The BODIPY reagent, when diluted in aqueous buffer, exhibits a high affinity for ODS material and is an excellent fluorophore. The preconcentration and elution of the BODIPY reagent was carried out in four steps: equilibration of the SPE bed with buffer; sample introduction; buffer flush; and elution of analyte. Following rinsing of the packed bed with phosphate buffer, a solution of 1.0 nM BODIPY was placed in main reservoir 1, and +200 V was applied for 2 minutes, with main reservoir 2 grounded. The EOF (0.2 mm/sec, 1.2×10−9 L/sec) flowed towards reservoir 2, carrying the BODIPY onto the SPE bed during the loading step. As shown in FIG. 4A, fluorescence of the absorbed BODIPY occurred initially at the first few layers of beads 12 only (near the top of the Figure). FIG. 4B shows the SPE bed after 1.5 minutes, with a total of 1.4×10−16 moles of BODIPY reagent loaded on the bed (assuming complete capture of the dye). No sample breakthrough was observed with BODIPY, due to its high affinity for the ODS material. In fact, visual observation indicated that after concentrating 1.0 n M BODIPY solution for two minutes only 5% of the physical volume of the SPE bed was utilized suggesting that the capacity of the 330 pL bed was about 2.8×10−15 moles of analyte. A buffer wash step was used after loading to wash sample remaining within the channel 11 onto the bed (in chamber 4). The solutions in reservoirs 1 and 2 were then replaced with acetonitrile, and the dye was eluted with solvent moving in the same direction as the initial loading step (or by reversal of the potential gradient during the elution step, it could be directed back towards the original sample reservoir). Both procedures work well, but the latter was more convenient for our testing. FIG. 5 shows graphically the 3-step preconcentration experiment for a 1.0 nM BODIPY sample following bed equilibration. The 90-second loading step showed an increase in signal as the fluorescent sample passed by the detector positioned as shown in FIG. 1A. This was followed by a 60-second rinse step. Acetonitrile was then used to elute the BODIPY reagent off the bed in the opposite direction to which it was loaded, eliminating the need for detector repositioning. The BODIPY reagent eluted in a relatively narrow 3 second band following a 90 second preconcentration step exhibiting a many fold concentration increase compared to the original sample. The fluorescence of the BODIPY (1.0 nM) reagent was tested in both buffer and acetonitrile and did not show a significant difference in intensity for either of the solvents. The preconcentration factor (P.F.) can be estimated using equation (1):
  • P . F . = V i V i = t pre · f buff t elute · f elute ( 1 )
  • where Vi is the volume of buffer containing analyte and V f is the volume of acetonitrile containing analyte. The volume Vi is the product of the preconcentration time (tpre, sec.) and the electroosmotic flow of the sample being concentrated (fbuff, L/sec.) while Vf is the product of width of the eluted analyte peak (telute, sec.) and the flow rate of the eluting solvent (felute, L/sec). For this case, the analyte was preconcentrated by a factor of at least 100 times. After sufficient concentration the BODIPY is easily observed visually on the SPE bed.
  • Different sample loading times were utilized to increase the amount of preconcentration. In the experiments, preconcentration times ranging from 120-532 seconds were studied yielding preconcentration factors of 80-500. Peak area (rsd 3-11%) plotted versus preconcentration time yielded a linear relationship (r2=0.9993) over the studied conditions.
  • Capillary Electrochromatography (CEC) On Chip
  • As explained earlier, another application facilitated by the present invention is on-chip capillary electrochromatography (CEC). Reversed phase mode CEC was performed on a chamber 4 packed with octadecyl silane beads 12 equilibrated with buffer. Due to the lack of an injector within the chip design, the samples were loaded onto the front of the chromatographic bed in 50 mM ammonium acetate buffer, pH 8.5 (see “Solutions and Reagents,” above). Both compounds were totally retained under these conditions, as indicated by a lack of analyte signal in the loading and flush steps. The loading step functioned to both introduce the sample and preconcentrate the retained analytes at the front of the bed [Swartz, M. E.; Merion, M.; J. Chromatogr, 1993, 632, 209 213.] FIG. 6 shows the three steps involved in the CEC separation of BODIPY and fluorescein with a mobile phase composition of 30% acetonitrile/70% aqueous 50 mM ammonium acetate. Once the mixed mobile phase reaches the bed, both compounds begin to undergo chromatography and are eluted from the bed. The compounds are completely eluted and separated in less than 20 sec on less than 200 μm of chromatographic bed, yielding a plate height of 2 μm (N=100 plates or 500 000 plates/m) for the fluorescein peak. Under these conditions, the fluorescein is eluted prior to the BODIPY reagent. Peaks were identified by comparing retention times of the standards with those of the mixture. At pH 8.5 fluorescein possesses a net (−2) charge while BODIPY is neutral. In a normal CZE separation the electrophoretic mobility of fluorescein would oppose the EOF, causing the BODIPY to elute prior to fluorescein. In this case the elution order of the two components is reversed, indicating an interaction between the analytes and the stationary phase. The BODIPY being more hydrophobic has a higher affinity for the chromatographic material than does fluorescein causing the BODIPY to be retained more and eluted later.
  • Finally, FIGS. 7A-7D shows the CEC separation of BODIPY and fluorescein utilizing mobile phases with different concentrations of acetonitrile. It was observed that the increased acetonitrile concentration lowers the polarity of the mobile phase, decreasing the amount of time required for the BODIPY to elute. The elution time for fluorescein does not change, indicating little to no chromatographic retention except at low % acetonitrile. Decreasing the acetonitrile concentration provides baseline resolution, but leads to more extensive band broadening.
  • Our present results are comparable to that reported for open tubular CEC on a chip [Jacobson, S. C., Hergenröder, R., Koutny, L. B., Ramsey, J. M. Anal. Chem. 1994, 66, 2369 2373. Kutter, J. P.; Jacobson, S. C.; Matsubara, N.; Ramsey, J. M. Anal. Chem. 1998, 70, 3291 3297. He, B., Tait, N., Regnier, F. Anal. Chem. 1998, 70, 3790 3797.].
  • Immunoassay Using Bead Based Reagents
  • Immunoassay on beads, or immunosorbent assays involves placing either an antibody or antigen on the surface of the bead. As a solution containing an antigen passes over the beads, the antigen specifically binds the antibody. In this way the specificity of the antigen for the antibody is utilized to separate it from other species in solution. Later the solution conditions are changed so that the antibody or antigen is eluted from the beads and is detected as either complex or the free antibody. The development of immunosorbent assays on chip is attractive because of the small amounts of reagents that are consumed. In addition microchips offer very fast analysis times compared to conventional methods performed in micro titer plates or in syringes packed with immuno beads. Immunosorbent assays on chip also provide lower concentration detection limits than solution phase immunoassays on chip, making the development of bead based immunoassay on chip important.
  • Beads that have specific enzymes linked to them are packed into the chamber created by the two weirs. The use of beads is preferential because of the increased surface area of the beads as opposed surface area of the channel walls. The higher surface area leads to a greater capacity and more efficient trapping of the analyte. The weirs form a well defined chamber for the immunoassay beads to pack. The inventors have demonstrated bead based immunoassay on chip for the enzyme theophylline. In the experiment magnetic beads coated with protein A are packed within the chamber of the chip. Later the antibody (antitheophylline) is flowed across the bed in a 1 mM tricine buffer pH 8.0. When the antitheophylline flows through the packed bed the antibody binds to the protein A. The antitheophylline was passed over the bed for several minute to ensure that the bed is saturated with antibody. A buffer washing step was then utilized to remove the remaining unbound antibody from the chamber and channels. The bed was then saturated with fluorescently labelled theophylline (diluted from a kit) by flowing it through the bed where it binds to the antitheophylline. The point at which the bed was saturated was determined by monitoring fluorescence below the bed and determining the point where the breakthrough curve (FIG. 1) plateaus. Following breakthrough the theophylline solution is washed from the device using a buffer flush step. A chaotropic agent is then added to elute the theophylline from the bed as either free protein or theophylline/antibody complex. Chaotropic agents can be of various types, however in this example a mixture of 90% acetone/10% tricine buffer was used. Once the chaotropic agent reaches the packed bed the theophylline is eluted in a relatively narrow band (FIG. 2).
  • Although normally under these circumstances a competitive assay would be performed the direct assay demonstrates the ability of the chamber formed by the weirs to act as an immunoassay bed.
  • Enzyme Reactor Beds
  • There have been several methods developed for immobilizing enzymes onto solid supports like beads. Once immobilized the enzyme beads can be packed into beds to perform chemical reactions on solutions as they are flowed through them. Normally a solution containing a substrate is passed through the bed. When the substrate comes in contact with the enzyme the enzyme reacts with the substrate to yield a product. The product resulting from the reaction of the immobilized enzyme and substrate can be later used as a method of detection or in other synthetic processes. This example illustrates the use of the immobilized enzyme horse radish peroxidase(HRP) and xanthine oxidase(XO) on porous silica beads (5 μm diameter). These results show that enzymes, once immobilized onto beads, can be trapped/packed into the weir device, where they are still active and can be used as an enzyme reactor bed.
  • XOD and HRP were immobilized onto Nucleosil 1000 5 silica beads (Machrey Nagel, Germany) that had been silanized with 3-aminopropyltriethoxysilane, by crosslinking with gluteraldehyde (Sigma). The immobilization of enzymes on glass beads has been described previously and is known by practitioners of the art. All studies were performed using 50 mM boric acid adjusted with 1 M NaOH to pH 9.
  • The immobilization of HRP and XOD was performed to demonstrate two principals. First was the ability to pack the enzyme immobilized beads within the weir device and then second was to demonstrate that the enzyme was still active and could be utilized to catalyze reactions once packed. To show each of these principals a chemiluminescent reaction was performed using the weir device.
    The ability to pack immobilized enzymes allows different methods of detection to be used for certain analytes. For example the luminol chemiluminescence (CL) reaction can be used for very sensitive determinations when only small amounts of analyte are available or when labeling reactions are otherwise difficult to perform. CL reactions are unique in that they do not require a light source simplifying the detection scheme. The chemiluminescence reaction catalyzed by HRP is shown below.

  • Luminol+H2O2+HRP(Light(425 nm)+other products
  • Beads immobilized with HRP were packed into the weir device and a solution containing the reagents for the reaction passed through the bed. The immobilized HRP was found to catalyze the chemiluminescent reaction when a solution of H2O2 (100 (M) and luminol (10 mM) was flowed over a bed that had been packed with beads containing immobilized HRP. Light generated from the reaction was detected downstream from the enzyme bed.
  • However, it was noticed that with each successive trial the light generated from the CL reaction was lower than in the previous trial FIG. 1. This is probably caused by a decrease in the activity of the enzyme with each successive run. These results evidence the advantage of a method of removing the exhausted beads and replacing them with fresh ones, such as discussed for the replacement of ODS beads within the weir device.
  • ALTERNATIVE EMBODIMENTS
  • While a two weir embodiment of the design according to the present invention has been described above, other embodiments are also possible. For example, it is possible to implement a single weir design to form an on-chip reactor bead (i.e. not having a second weir 6 located upstream in the main channel 11). Specifically, by providing a downstream weir 7 formed across the main channel and providing pressure only in a downstream direction (i.e. from main reservoir 2 and side channel 3 to main reservoir 1), it has been observed that packing can be achieved against the downstream weir 7. However, it is noted that a single weir design may result in the formation of a ragged leading edge for the packed bed that reduces separation efficiency when used for SPE or CEC. Additionally, the high back pressure associated with a long bed of small beads limited the length of the pack to about 4-6 mm. A high pressure fitting for the microchip would allow high pressure pumping and allow somewhat greater lengths.
  • Other types of forces may also be used to create a packed bed using a single weir design. For example, it was also possible to achieve a limited degree of packing (to a length of a few millimeters) using electrokinetic forces, directed only in a downstream direction (i.e. from main reservoir 2 and packing material reservoir 3, to main reservoir 1).
  • In addition to varying the number of weirs, it is also possible to provide more than one inlet or outlet to a chamber, as shown in alternative embodiments of the present invention in FIGS. 8A-8C.
  • In FIG. 8A, a chamber 4 is formed between two weirs 6, 7. Two side channels 5 a, 5 b are provided to serve as an inlet or outlet to the chamber 4. As shown in FIG. 6, the side channels 5 a, 5 b may be offset relative to each other to better facilitate packing of the chamber. A second side channel is added to allow the beads to be flushed out to waste at the other end of the trapping zone, or to allow the flushing agent to be delivered from an alternate reservoir. The latter design can prevent used beads from contaminating the fresh bead stream, and/or prevent sample and sample waste solutions from being directed into the trapping zone during flushing.
  • As shown in FIG. 8B the side channel in this design may have one or more optional branches 5 c, to allow the side channel 5 b to be flushed of beads, or to allow beads being flushed out of the trapping zone to be directed, for example, into a waste reservoir instead of into the packing material reservoir 3 (not shown).
  • Another embodiment is shown in FIG. 8C, in which a side channel weir 16 is provided near the entrance of a third side channel 5 d to the chamber 4, to allow fluid flow without passage of beads. This “weired” side channel 5 d may be used, for example, to release pressure build up in the chamber 4 during loading of the beads, particularly when the length of the chamber 4 (as measured between the weirs 6, 7) is greater than 4-6 mm.
  • In all three embodiments shown in FIGS. 8A-8C, the side channel entrance into the chamber 4 may be modified to include a hook or similar shape, as described earlier, in order to prevent direct “line of sight” flow from a side channel into the chamber 4, or vice versa. As explained earlier, this entrance modification serves to spray the beads into the trapping zone in order to assist packing, and to reduce the tendency of the beads to exit from the chamber 4 during later use.
  • Loading of beads with more than one side channel, as shown in FIGS. 8A-8C, is performed in a manner similar to that for a single side channel, two weir design, (as described above) except that a potential must also be applied to the additional side channels to prevent flow into those side channels when using electrokinetic loading. During removal of the beads a voltage may be applied to a second side channel (e.g. side channel 5 b in FIG. 8A) to drive beads out of the trapping zone or chamber 4, applying voltage potentials such as those used with the single side channel design but adjusted for the potential drop in the additional side channel. As will be appreciated, the direction of flow during the flushing step can be controlled by the polarity of the applied voltage.
  • When using pressure driven flow to load beads, a back pressure must be applied to the additional side channels during loading, or else the reservoirs attached to the additional side channels may be temporarily sealed. When flushing the beads from the chamber 4, a pressure may be applied to the bead supply channel 5 a to flush beads out of one or more additional side channels.
  • When performing SPE or CEC using a multiple side channel design and electrokinetic forces, a voltage may be applied to the additional side channels to prevent leakage of sample or beads out of the trapping zone and into the side channels, substantially in the same manner as described for a single side channel in the trapping zone. When using pressure driven pumping, the side channels may a have enough positive pressure applied to eliminate flow into the side channel, or else the reservoirs attached to the respective side channels can be temporarily sealed.
  • Immobilizing the Packed ODS Beads with Polymer
  • After packing the chromatographic bed with beads using electrokinetic, magnetic or pressure packing techniques, a reasonable portion of the bead introduction channel was then packed with the beads using one of these packing techniques. Excess beads in the reservoir were then removed. Then about 40 ml of a monomer mixture was pipeted into the bead reservoir and delivered by pressure or electrokinetic flow along the bead introduction channel, towards the beads. During this step, a change in refractive index in a region within the bead introduction channel was used to monitor the position of the monomer solution, and flow was stopped well before the monomer reached the packed bead bed.
  • A typical monomer solution may be prepared as follows: to a vial that contained 800 ml of a ternary solvent mixture that contained 10 wt % H2O, 40 wt % 1,4-butanediol and 50 wt % 1-propanol, 200 ml of a mixture of 2,2′-azobisisobutyronitrile (AIBN, 2 wt %) and ethylene dimethacryllate (EDMA) was added. (C. Peters et al, Anal. Chem. 1997, 69, 3646-3649.) This monomer solution was then purged with N2 for 15 min to remove dissolved oxygen. Other polymerizable solution of monomer may also be used.
  • The device was then kept in an oven at 60° C. for 24-48 hr. The device was taken out from the oven and cooled down to room temperature, with all reservoirs covered to prevent evaporation. Alternatively, photo-initiated polymerization with AIBN or other initiator may be used to polymerize the monomer solution, without a need for extended heating of the device. Following polymerization the device was rinsed with acetonitrile then with buffer. Mobile phase compositions of up to 100% acetonitrile could be used in such devices without destabilizing the bead bed.
  • Dimension Guidelines
  • While the theoretical limits of various dimensions of a microfluidic device designed according to the present invention are not known, the inventors have adopted some general guidelines for practical purposes, which are discussed below.
  • It is thought that the length of the trapping zone may range anywhere from about 10 μm up to about 200 cm (using a coiled or serpentine path if necessary to allow for incorporation of such a length within the confines of a single device wafer). The trapping zone length required will be dependent upon the application and will also be limited by the forces which may be applied to achieve packing and unpacking. For example, on-chip CEC would require relatively long trapping zones, with a preferred upper limit of about 5 cm.
  • As to the depth of the trapping zone, sample and waste channels, a practical range is estimated to be about 400 μm to 0.25 μm. More preferably, the upper limit should be about 100 μm and the lower limit should be about 10% larger than the particle depth at a minimum.
  • Also, in order to reduce the likelihood of clogging, the bead delivery and bead waste channels ( side channels 5, 5 a-5 d) preferably should be at least about 3 times deeper and three times wider than the bead diameter.
  • The maximum dimensions of the side channels 5, 5 a-5 d are also dependant upon the relative flow resistances required (i.e. the flow resistance of the side channel versus the main channel and the weirs, so as to minimize side channel backflow during use). Generally speaking, the flow resistance of the side channels should be higher than the flow resistance of weirs to minimize the backflow problem.
  • The accompanying tables provide information on the calculated effect of channel and weir dimensions on the volumetric flow rates out of the trapping zone, as a function of flow channel depth, weir depth and side channel length using pressure driven flow.
  • In the tables below, what is called channel W is element 1 in FIG. 1A; what is called channel C is called element 5 in FIG. 1A; and what is called channel C′ is element 3 in FIG. 1A
  • Correlation to FIG. 1A Width Length
    20 μm Deep
    Element
    1 Channel W 600 6,500
    Weir 280 variable
    Element
    5 Channel C 50 variable
    Element
    3 Channel C′ 600 3,500
    10 μm Deep
    Element
    1 Channel W 580 6,500
    Weir 280 variable

    The volumetric flow rates were estimated using the Navier Stokes equation for a rectangular channel cross section and Perry's tabulated values of the effect of channel shape. The flow resistance of a channel with half width a and half depth b is given by equation 2:

  • ΔP/U=hL/abN  (2)
  • where ΔP is the pressure drop along a channel segment of length L, U is the average linear flow velocity, h is the viscosity, and N is a form factor dependent upon the cross sectional ratio b/a (b<a). The factor N may be estimated from solutions to the Navier Stokes equation for pressure driven, parabolic flow, and was tabulated by Perry in Chemical Engineer's Handbook, (3rd edition, 1950) pp 387. The goal in device design is to make the resistance of the side channel, C in the Tables, higher than the resistance of the weir and the following flow channel W, so that flow across the weir is favoured. When flow elements are in series the fluid resistance given by the right hand side of equation 1 for each segment can be added in the manner that the resistance of series electrical impedances can be added. When fluid elements are in parallel the inverse of their fluid resistance can be added to obtain the inverse of the total impedance, as is done for parallel electrical resistances. The volumetric flow rate, Q, through a channel or a combination of channels is then given by equation 3.

  • Q=abΔP/Rf  (3)
  • Where Rf is the resistance to fluid flow defined by the right hand side of equation 1, combined together for all channel segments as discussed above. The ratio, r, of volumetric flow rate across the weir, Qw versus into the side channel, QC, r=Qw/QC, should be large to ensure the percent of solution flowing across the weir, % Qw=1/(1+r), is high. This can be accomplished by using a long narrow side channel compared to a wide main channel, by increasing the depth of the weir relative to the depth of the other channels, by decreasing the depth of the side channel relative to the main channel, etc, as indicated by several calculations presented in the Tables.
  • TABLE
    Volumetric Flow Ratios for 10 and 20 μm Deep Designs
    Channel Channel C Weir Weir Volumetric
    depth Length Depth Length ratio r % Qw
    20 μm 15,000 3 20 12.58 92.6
    25,000 20.85 95.4
    15,000 10 18.75 94.9
    20 μm 15,000 1 20 0.687 41.1
    25,000 1.16 53.6
    15,000 10 1.37 57.8
    10 μm 15,000 3 40 38.9 97.5
    25,000 63.7 98.5
    15,000 30 41.7 97.7
    10 μm 15,000 1 40 4.14 80.5
    25,000 6.87 87.3
    15,000 30 5.83 84.3
  • TABLE
    Fixed Device Dimensions for Calculations
    with a Given Etch Depth
    Width Length
    20 μm Deep
    Channel W 600 6,500
    Weir 280 variable
    Channel C
    50 Variable
    Channel C′ 600 3,500
    10 μm Deep
    Channel W 580 6,500
    Weir 280 variable
    Channel C
    30 Variable
    Channel C′ 580 3,500
  • Integrated Analytical Procedures
  • It will be appreciated that the various features of the present invention as described above may be utilized in a more complex microfluidic design.
  • FIG. 9 shows a multiple weir and multiple side channel design, generally referred to by reference numeral 20, in which several trapping zones are integrated, each serving a different function.
  • As an illustrative example, in a first trapping zone 25, formed between weirs 6 a and 6 b, beads loaded with an antibody to a specific protein are introduced via side channel 25 (and exit via side channel 26). A cell lysate or serum sample or other protein source is directed from a sample reservoir (not shown) and loaded into the chip via sample inlet 21 and entrance channel 38 (the sample is removed at sample outlet 22 and an eluent inlet 23 is also provided at the entrance channel. The sample is then passed into the antibody bead bed in trapping zone 25 to isolate a specific protein, while the effluent is directed towards waste outlet 27.
  • A chaotropic elution agent, such as an acetonitrile, water mix, is then introduced (eluent inlet 23) to elute the protein from the column and deliver it to the next trapping zone 30 (formed between weirs 6 c and 6 d) where it is digested by a protease enzyme immobilized on beads loaded into the zone 30 (via side channels 29, 31). The effluent at this stage would be directed towards waste outlet 32. After sufficient reaction time, a buffer is delivered (elution inlet 28, running buffer 28 a, waste from bed 25) to flush the protein digest from the bed and into the next trapping zone 35 (formed between weirs 6 e and 6 f) with effluent delivered to waste outlet 39.
  • The third trapping zone 35 contains a solid phase extraction material (packed and unpacked via side channels 34, 35), allowing concentration of the digest peptides onto the bed in zone 35. An elution solvent, such as a methanol/aqueous mixture or acetonitrile/aqueous mixture is then introduced (elution inlet 33, running buffer 33 a) to deliver (exit channel 37, waste 39, or collection 40) a concentrated protein digest to another location on the chip for final analysis.
  • Packed Bed Chip to Electrospray Mass Spectrometry Interface
  • Packed bed flow channels according to the present invention may be interfaced to a mass spectrometer via an electrospray coupler 41, as illustrated in FIG. 10. The packed bed 4 may perform an enzyme digestion of a protein, affinity purification and pre concentration of a specific chemical or protein, solid phase extraction concentration enhancement, or capillary electrochromatographic separation, or any combination of these and other steps, prior to electrospray introduction in to a mass spectrometer. The chip to electrospray interface may be made using any method that provides a less than 100 mL dead volume, preferably less than 1 mL and most preferably less than 100 pL dead volume at the coupling region. A method such as that described by Wang et al., or Karger can be used to create the interface [Bings, N. H.; Wang, C.; Skinner, C. D.; Colyer, C. L.; Thibeault, P.; Harrison, D. J. Anal. Chem. 71 (1999) 3292 3296. Zhang, B.; Liu, H.; Karger, B. L.; Foret, F. Anal. Chem. 71 (1999) 3258 3264].
  • While the present invention has been described by reference to various preferred embodiments, it will be understood that obvious changes may be made and equivalents substituted without departing from the true spirit and scope of the invention which is set out in the following claims.

Claims (29)

1. A method of treating a sample within a microfluidic analysis system, comprising the steps of:
a) providing a main channel having “a trapping zone suitable for trapping packing material;
b) providing a slurry of a reagent treated packing material prepared in a solution having a predetermined composition of a solvent;
c) inducing a flow of said packing” material into said trapping zone through a flow channel connected to said trapping zone so as to load said trapping zone and form a packed bed of said packing material;
d) flowing a sample containing analytes through said packed bed, said reagent treating the sample, whereby. The sample leaving the trapping zone has an altered analyte composition.
2. The method claimed in claim 1, further comprising the step of:
e) adjusting the composition of the solvent, so as to affect the aggregation of said packing material and the stabilization of the packed bed.
3. The method claimed in claim 1, wherein, step b) comprises providing packing material comprising porous beads.
4. The method claimed in claim 3, wherein said porous beads are selected to have a diameter in the range from about 0.7 to about 10.0 μm.
5. (canceled)
6. The method claimed in claim 4, wherein said solvent is acetonitrile, and step e) comprises adjusting the concentration level to less than about 50% to stabilize the packed bed.
7. (canceled)
8. The method claimed in claim 6, further including the steps of adjusting the concentration level to above 50% to destabilize the packed bed, and reversing the flow in step c) so as to unload said trapping zone.
9. (canceled)
10. The method claimed in claim 1, further comprising the steps of:
before step c), adding a neutral surfactant to said packing material so as to inhibit aggregation; and
after step c), removing the neutral surfactant to promote aggregation.
11. The method claimed in claim 1, further comprising the steps of:
after step c) introducing a polymerizable agent into the flow channel and polymerizing said agent, so as to stabilize the packed bed.
12. The method claimed in claim 1, wherein step d) comprises applying a fluid force to induce the flow of said packing material.
13. The method claimed in claim 1, wherein said packing material comprises at least some electrically charged particles and step d) comprises applying a voltage potential to induce the flow of said packing material.
14. (canceled)
15. (canceled)
16. A method of trapping bead based reagents within a microfluidic analysis system, comprising the steps of:
a) providing a main channel having a trapping zone suitable for trapping bead based packing material;
b) providing a slurry of a reagent treated beads prepared in a solution having a predetermined composition of a solvent;
c) inducing a flow of said beads into said, trapping zone through a flow channel connected to said trapping zone so as to load said trapping zone and form a packed bed of said beads; and
d) adjusting the composition of the solvent, so as to affect the aggregation of. said packing material and the stabilization of the packed bed.
17. A microfluidic analysis system, comprising:
a) a substantially planar substrate having an upper surface;
b) at least one main Channel formed into said upper surface, said main channel having first and second ends and a defined direction of flow in use;
c) a cover plate arranged over said planar substrate, said cover plate closing off said channel from above; and
d) a first weir formed across said main channel and between said first and second ends of said channel, said first weir providing at least one flow gap to allow, in use, at least some fluid to flow past said first weir while trapping packing material having constituent particles that are generally larger than said flow gap.
18. The microfluidic analysis system claimed in claim 17, further comprising at least one side channel formed into the upper surface of said planar substrate, said side channel being connected at a first end to said main channel at a location upstream from said first weir, and at a second end to a reservoir, said side channel providing a higher flow resistance than said main channel.
19. The microfluidic analysis system claimed in claim 18, further comprising a second weir located upstream from said connected first end of said side channel, said first and second weirs forming a chamber therebetween, said second weir providing at least one flow gap to allow, in use, at least some fluid to flow past said second weir while trapping said packing material within said chamber.
20. The microfluidic analysis system claimed in claim 19, wherein, each side channel connection to said main channel is provided with a hook structure curved to one side whereby, in use, packing material is sprayed into said chamber to facilitate even packing.
21.-28. (canceled)
29. A method of packing the chamber in the microfluidic analysis system claimed in claim 19, said method comprising, providing a nonconductive substrate and effecting an electrokinetic flow by applying a relatively high voltage at said reservoir, said reservoir containing packing material, and providing relatively low voltages at said first and second ends of said main channel, so that packing material flows from said reservoir into said chamber and is trapped by said first and second weirs.
30. (canceled)
31. A method of packing the chamber in the microfluidic analysis system claimed in claim 19, said method comprising, effecting a pressure driven flow by providing a relatively high pressure at said reservoir, said reservoir containing packing material, and providing relatively low pressure at said first and second main reservoirs, whereby, packing material flows from said packing material reservoir into said chamber and is trapped by said first and second weirs.
32. The method as claimed in claim 31, wherein, packing material may be removed from the chamber by reversing said pressure driven flow.
33. A method of packing the chamber in the microfluidic analysis system claimed in claim 32, said method comprising, providing magnetically charged packing material, and effecting a magnetically driven flow by providing a magnetically attractive force in the chamber, whereby, the packing material enters the chamber and is trapped by said first and second weirs.
34. (canceled)
35. The method claimed in anyone of claims 25-34, wherein, said packing material comprises porous beads.
36.-39. (canceled)
US11/955,902 1999-11-26 2007-12-13 Apparatus and method for trapping bead based reagents within microfluidic analysis systems Abandoned US20080237146A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/955,902 US20080237146A1 (en) 1999-11-26 2007-12-13 Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US12/831,949 US8034628B2 (en) 1999-11-26 2010-07-07 Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US12/852,370 US20110048945A1 (en) 1999-11-26 2010-08-06 Apparatus and method for trapping bead based reagents within microfluidic analysis systems

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CA002290731A CA2290731A1 (en) 1999-11-26 1999-11-26 Apparatus and method for trapping bead based reagents within microfluidic analysis system
CA2,290,731 1999-11-26
PCT/CA2000/001421 WO2001038865A1 (en) 1999-11-26 2000-11-27 Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US14842502A 2002-11-04 2002-11-04
US11/955,902 US20080237146A1 (en) 1999-11-26 2007-12-13 Apparatus and method for trapping bead based reagents within microfluidic analysis systems

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/CA2000/001421 Continuation WO2001038865A1 (en) 1999-11-26 2000-11-27 Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US14842502A Continuation 1999-11-26 2002-11-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/831,949 Continuation US8034628B2 (en) 1999-11-26 2010-07-07 Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US12/852,370 Division US20110048945A1 (en) 1999-11-26 2010-08-06 Apparatus and method for trapping bead based reagents within microfluidic analysis systems

Publications (1)

Publication Number Publication Date
US20080237146A1 true US20080237146A1 (en) 2008-10-02

Family

ID=4164711

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/148,425 Expired - Fee Related US7312611B1 (en) 1999-11-26 2000-11-27 Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US11/955,902 Abandoned US20080237146A1 (en) 1999-11-26 2007-12-13 Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US12/831,949 Expired - Fee Related US8034628B2 (en) 1999-11-26 2010-07-07 Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US12/852,370 Abandoned US20110048945A1 (en) 1999-11-26 2010-08-06 Apparatus and method for trapping bead based reagents within microfluidic analysis systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/148,425 Expired - Fee Related US7312611B1 (en) 1999-11-26 2000-11-27 Apparatus and method for trapping bead based reagents within microfluidic analysis systems

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/831,949 Expired - Fee Related US8034628B2 (en) 1999-11-26 2010-07-07 Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US12/852,370 Abandoned US20110048945A1 (en) 1999-11-26 2010-08-06 Apparatus and method for trapping bead based reagents within microfluidic analysis systems

Country Status (6)

Country Link
US (4) US7312611B1 (en)
EP (1) EP1236039A1 (en)
JP (1) JP4799792B2 (en)
AU (1) AU1847701A (en)
CA (1) CA2290731A1 (en)
WO (1) WO2001038865A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084679A1 (en) * 2002-05-24 2009-04-02 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US20100059384A1 (en) * 2006-12-11 2010-03-11 Atotech Deutschland Gmbh Electrodeposition method with analysis of the electrolytic bath by solid Phase Extraction
US7745207B2 (en) 2006-02-03 2010-06-29 IntegenX, Inc. Microfluidic devices
US7749365B2 (en) 2006-02-01 2010-07-06 IntegenX, Inc. Optimized sample injection structures in microfluidic separations
US7766033B2 (en) 2006-03-22 2010-08-03 The Regents Of The University Of California Multiplexed latching valves for microfluidic devices and processors
US7799553B2 (en) 2004-06-01 2010-09-21 The Regents Of The University Of California Microfabricated integrated DNA analysis system
US8034628B2 (en) 1999-11-26 2011-10-11 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
USRE43122E1 (en) 1999-11-26 2012-01-24 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US8388908B2 (en) 2009-06-02 2013-03-05 Integenx Inc. Fluidic devices with diaphragm valves
US8394642B2 (en) 2009-06-05 2013-03-12 Integenx Inc. Universal sample preparation system and use in an integrated analysis system
US8431340B2 (en) 2004-09-15 2013-04-30 Integenx Inc. Methods for processing and analyzing nucleic acid samples
US8454906B2 (en) 2007-07-24 2013-06-04 The Regents Of The University Of California Microfabricated droplet generator for single molecule/cell genetic analysis in engineered monodispersed emulsions
US8512538B2 (en) 2010-05-28 2013-08-20 Integenx Inc. Capillary electrophoresis device
US8557518B2 (en) 2007-02-05 2013-10-15 Integenx Inc. Microfluidic and nanofluidic devices, systems, and applications
US8584703B2 (en) 2009-12-01 2013-11-19 Integenx Inc. Device with diaphragm valve
US8672532B2 (en) 2008-12-31 2014-03-18 Integenx Inc. Microfluidic methods
US8748165B2 (en) 2008-01-22 2014-06-10 Integenx Inc. Methods for generating short tandem repeat (STR) profiles
US8763642B2 (en) 2010-08-20 2014-07-01 Integenx Inc. Microfluidic devices with mechanically-sealed diaphragm valves
US8841116B2 (en) 2006-10-25 2014-09-23 The Regents Of The University Of California Inline-injection microdevice and microfabricated integrated DNA analysis system using same
US9121058B2 (en) 2010-08-20 2015-09-01 Integenx Inc. Linear valve arrays
US9592501B2 (en) 2004-09-28 2017-03-14 Landegren Gene Technology Ab Microfluidic structure
US9644623B2 (en) 2002-12-30 2017-05-09 The Regents Of The University Of California Fluid control structures in microfluidic devices
US10191071B2 (en) 2013-11-18 2019-01-29 IntegenX, Inc. Cartridges and instruments for sample analysis
US10208332B2 (en) 2014-05-21 2019-02-19 Integenx Inc. Fluidic cartridge with valve mechanism
US10525467B2 (en) 2011-10-21 2020-01-07 Integenx Inc. Sample preparation, processing and analysis systems
US10690627B2 (en) 2014-10-22 2020-06-23 IntegenX, Inc. Systems and methods for sample preparation, processing and analysis
US10865440B2 (en) 2011-10-21 2020-12-15 IntegenX, Inc. Sample preparation, processing and analysis systems

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030164335A1 (en) * 1998-10-23 2003-09-04 Grate Jay W. Method for high throughput separations in microfluidic systems using small particles
US8048386B2 (en) * 2002-02-25 2011-11-01 Cepheid Fluid processing and control
US7759067B2 (en) 2001-03-19 2010-07-20 Gyros Patent Ab Method for determining the amount of an analyte with a disc-shaped microfluidic device
US6418968B1 (en) 2001-04-20 2002-07-16 Nanostream, Inc. Porous microfluidic valves
EP1442131A4 (en) * 2001-10-19 2006-06-07 Univ West Virginia Microfluidic system for proteome analysis
WO2003050035A2 (en) 2001-12-06 2003-06-19 Nanostream, Inc. Adhesiveless microfluidic device fabrication
US7347976B2 (en) 2001-12-20 2008-03-25 3M Innovative Properties Company Methods and devices for removal of organic molecules from biological mixtures using a hydrophilic solid support in a hydrophobic matrix
US7192560B2 (en) 2001-12-20 2007-03-20 3M Innovative Properties Company Methods and devices for removal of organic molecules from biological mixtures using anion exchange
US6581441B1 (en) * 2002-02-01 2003-06-24 Perseptive Biosystems, Inc. Capillary column chromatography process and system
US6814859B2 (en) 2002-02-13 2004-11-09 Nanostream, Inc. Frit material and bonding method for microfluidic separation devices
CN100528363C (en) 2002-02-13 2009-08-19 安捷伦科技有限公司 Microfluidic separation column devices and preparation method thereof
US7261812B1 (en) 2002-02-13 2007-08-28 Nanostream, Inc. Multi-column separation devices and methods
EP1359228B1 (en) * 2002-04-23 2013-11-27 Accenture Global Services Limited DNA authentification based on scattered-light detection
AU2003203334A1 (en) * 2002-06-12 2003-12-31 Chengdu Kuachang Science And Technology Co., Ltd Biochip with maximization of the reactor number
JP2005533261A (en) * 2002-07-18 2005-11-04 キヤノン株式会社 Manufacturing method and manufacturing apparatus of mass transfer device
US6936167B2 (en) 2002-10-31 2005-08-30 Nanostream, Inc. System and method for performing multiple parallel chromatographic separations
US7010964B2 (en) 2002-10-31 2006-03-14 Nanostream, Inc. Pressurized microfluidic devices with optical detection regions
WO2004040295A1 (en) 2002-10-31 2004-05-13 Nanostream, Inc. Parallel detection chromatography systems
US7220592B2 (en) 2002-11-15 2007-05-22 Eksigent Technologies, Llc Particulate processing system
US7175810B2 (en) 2002-11-15 2007-02-13 Eksigent Technologies Processing of particles
JP2004354364A (en) 2002-12-02 2004-12-16 Nec Corp Fine particle manipulating unit, chip mounted with the same and detector, and method for separating, capturing and detecting protein
US6987263B2 (en) 2002-12-13 2006-01-17 Nanostream, Inc. High throughput systems and methods for parallel sample analysis
US8012680B2 (en) 2003-03-24 2011-09-06 Sony Corporation Microchip, nucleic acid extracting kit, and nucleic acid extracting method
US7981600B2 (en) 2003-04-17 2011-07-19 3M Innovative Properties Company Methods and devices for removal of organic molecules from biological mixtures using an anion exchange material that includes a polyoxyalkylene
JP2005065607A (en) * 2003-08-26 2005-03-17 Hitachi Ltd Gene treating chip and gene treating apparatus
US7322254B2 (en) 2003-12-12 2008-01-29 3M Innovative Properties Company Variable valve apparatus and methods
US7727710B2 (en) 2003-12-24 2010-06-01 3M Innovative Properties Company Materials, methods, and kits for reducing nonspecific binding of molecules to a surface
US7939249B2 (en) 2003-12-24 2011-05-10 3M Innovative Properties Company Methods for nucleic acid isolation and kits using a microfluidic device and concentration step
SE0400181D0 (en) 2004-01-29 2004-01-29 Gyros Ab Segmented porous and preloaded microscale devices
JP2005257597A (en) * 2004-03-15 2005-09-22 Japan Science & Technology Agency Bead carrier packing type microchip and method for arranging bead carrier using the same
US7077175B2 (en) 2004-04-09 2006-07-18 Hongfeng Yin Particle packing of microdevice
US20080190840A1 (en) * 2004-06-24 2008-08-14 Agilent Technologies Inc. Microfluidic Device with at Least One Retaining Device
JP2007121130A (en) * 2005-10-28 2007-05-17 Fujirebio Inc Microfluid device and its manufacturing method
JP2007147456A (en) * 2005-11-28 2007-06-14 Seiko Epson Corp Micro-fluid system, specimen analyzer, and method for detecting or measuring target substance
DE102005062723B4 (en) * 2005-12-22 2007-11-22 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Sample processing chip, reaction chamber and use of the sample processing chip
US7629797B2 (en) * 2006-04-05 2009-12-08 California Institute Of Technology Resonance-induced sensitivity enhancement method for conductivity sensors
DE102006028124B3 (en) * 2006-06-15 2008-01-03 Sls Micro Technology Gmbh Microtechnological component with functionally filled cavity and process for its production
US20070292889A1 (en) * 2006-06-16 2007-12-20 The Regents Of The University Of California Immunoassay magnetic trapping device
ES2797951T3 (en) 2007-04-04 2020-12-04 Ande Corp Integrated nucleic acid analysis
US20080277356A1 (en) * 2007-05-07 2008-11-13 Caliper Life Sciences, Inc. Microfluidic Device with a Filter
WO2009126352A2 (en) * 2008-01-24 2009-10-15 Sandia National Laboratories Novel micropores and methods of making and using thereof
KR100945129B1 (en) 2008-03-17 2010-03-02 고정문 Chip for DNA Purification and Purification Method Using There of
US8486336B2 (en) * 2008-04-18 2013-07-16 Rohm Co., Ltd. Microchip
US9550985B2 (en) 2009-06-15 2017-01-24 Netbio, Inc. Methods for forensic DNA quantitation
US20110073810A1 (en) * 2009-09-28 2011-03-31 Scott White Landvatter Process for preparing isotopically labeled vitamins suitable for use as analytical reference standards
US8834792B2 (en) 2009-11-13 2014-09-16 3M Innovative Properties Company Systems for processing sample processing devices
JP5726431B2 (en) * 2010-03-31 2015-06-03 一般財団法人電力中央研究所 Target detection apparatus and target detection method
US8931331B2 (en) 2011-05-18 2015-01-13 3M Innovative Properties Company Systems and methods for volumetric metering on a sample processing device
EP2709762B1 (en) 2011-05-18 2021-03-31 DiaSorin S.p.A. Systems and methods for detecting the presence of a selected volume of material in a sample processing device
KR101963721B1 (en) 2011-05-18 2019-03-29 디아소린 에스.피.에이. Systems and methods for valving on a sample processing device
WO2013112877A1 (en) 2012-01-25 2013-08-01 Tasso, Inc. Handheld device for drawing, collecting, and analyzing bodily fluid
KR101959447B1 (en) 2012-04-06 2019-03-18 삼성전자주식회사 Method of processing target material in a sample
FR2993281B1 (en) * 2012-07-13 2014-07-18 Biomerieux Sa AUTOMATED LYSE SYSTEM OF MICROORGANISMS IN SAMPLE, NUCLEIC ACID EXTRACTION AND PURIFICATION OF MICROORGANISMS FOR ANALYSIS
JP6312670B2 (en) * 2012-07-23 2018-04-18 タッソ インコーポレイテッド Methods, systems, and apparatus for open microfluidic channels
WO2014093080A1 (en) * 2012-12-11 2014-06-19 The Regents Of The University Of California Microfluidic devices for liquid chromatography-mass spectrometry and microscopic imaging
US10052631B2 (en) * 2013-03-05 2018-08-21 Board Of Regents, The University Of Texas System Microfluidic devices for the rapid and automated processing of sample populations
JP6641274B2 (en) 2013-11-22 2020-02-05 リーアニクス・インコーポレイテッドRheonix, Inc. Channelless pump, method and use thereof
KR102207922B1 (en) 2014-03-06 2021-01-26 삼성전자주식회사 Primer set specific for a vancomycin resistant Enterococcus, composition comprising the same and method for detecting a vancomycin resistant Enterococcus in a sample
NO337444B1 (en) 2014-06-19 2016-04-11 Spinchip Diagnostics As Analysis Method
EP3769682B1 (en) 2014-08-01 2024-01-03 Tasso, Inc. Systems for gravity-enhanced microfluidic collection, handling and transferring of fluids
WO2016059302A1 (en) * 2014-10-17 2016-04-21 Ecole Polytechnique Method for handling microdrops which include samples
KR102287811B1 (en) 2014-10-31 2021-08-09 삼성전자주식회사 Method of bonding two surfaces and construct therefrom and microfluidic device containing the construct
WO2016203807A1 (en) * 2015-06-18 2016-12-22 ソニー株式会社 Analysis probe
CA3009328A1 (en) 2015-12-21 2017-06-29 Tasso, Inc. Devices, systems and methods for actuation and retraction in fluid collection
US9770717B1 (en) * 2016-11-03 2017-09-26 International Business Machines Corporation Microfluidic chip with bead integration system
JP6339274B1 (en) * 2017-06-19 2018-06-06 積水化学工業株式会社 Microfluidic device
WO2020013800A1 (en) 2018-07-09 2020-01-16 Hewlett-Packard Development Company, L.P. Analyte capturing devices with fluidic ejection devices
CN111657965A (en) 2018-09-14 2020-09-15 塔索公司 Body fluid collection device and related methods
US20210116338A1 (en) * 2019-10-19 2021-04-22 Cfd Research Corporation Fluidic bead trap and methods of use
CN113893892B (en) * 2021-11-10 2023-02-10 大连海事大学 Nanopore based on microfluidic chip and preparation method thereof

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3433257A (en) * 1966-02-01 1969-03-18 Ibm Diaphragm type fluid logic latch
US3568692A (en) * 1967-11-27 1971-03-09 Bowles Eng Corp Optical machining process
US5705813A (en) * 1995-11-01 1998-01-06 Hewlett-Packard Company Integrated planar liquid handling system for maldi-TOF MS
US5726026A (en) * 1992-05-01 1998-03-10 Trustees Of The University Of Pennsylvania Mesoscale sample preparation device and systems for determination and processing of analytes
US5741462A (en) * 1995-04-25 1998-04-21 Irori Remotely programmable matrices with memories
US5750015A (en) * 1990-02-28 1998-05-12 Soane Biosciences Method and device for moving molecules by the application of a plurality of electrical fields
US5770029A (en) * 1996-07-30 1998-06-23 Soane Biosciences Integrated electrophoretic microdevices
US5775371A (en) * 1995-03-08 1998-07-07 Abbott Laboratories Valve control
US5856174A (en) * 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US5863502A (en) * 1996-01-24 1999-01-26 Sarnoff Corporation Parallel reaction cassette and associated devices
US5908552A (en) * 1995-12-14 1999-06-01 Hewlett-Packard Company Column for capillary chromatographic separations
US5942443A (en) * 1996-06-28 1999-08-24 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US6010607A (en) * 1994-08-01 2000-01-04 Lockheed Martin Energy Research Corporation Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US6027031A (en) * 1997-12-19 2000-02-22 Carrier Corporation Method and apparatus for changing operational modes of a transport refrigeration system
US6048100A (en) * 1999-03-10 2000-04-11 Industrial Label Corp. Resealable closure for a bag
US6056860A (en) * 1996-09-18 2000-05-02 Aclara Biosciences, Inc. Surface modified electrophoretic chambers
US6073482A (en) * 1997-07-21 2000-06-13 Ysi Incorporated Fluid flow module
US6074827A (en) * 1996-07-30 2000-06-13 Aclara Biosciences, Inc. Microfluidic method for nucleic acid purification and processing
US6103199A (en) * 1998-09-15 2000-08-15 Aclara Biosciences, Inc. Capillary electroflow apparatus and method
US6168948B1 (en) * 1995-06-29 2001-01-02 Affymetrix, Inc. Miniaturized genetic analysis systems and methods
US6176962B1 (en) * 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US6190616B1 (en) * 1997-09-11 2001-02-20 Molecular Dynamics, Inc. Capillary valve, connector, and router
US6235471B1 (en) * 1997-04-04 2001-05-22 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6280589B1 (en) * 1993-04-15 2001-08-28 Zeptosens Ag Method for controlling sample introduction in microcolumn separation techniques and sampling device
US6348318B1 (en) * 1997-04-04 2002-02-19 Biosite Diagnostics Methods for concentrating ligands using magnetic particles
US20020022587A1 (en) * 2000-03-28 2002-02-21 Ferguson Alastair V. Methods for effecting neuroprotection
US20020025576A1 (en) * 1998-03-17 2002-02-28 Cepheid Integrated sample analysis device
US20020025529A1 (en) * 1999-06-28 2002-02-28 Stephen Quake Methods and apparatus for analyzing polynucleotide sequences
US20020048536A1 (en) * 1999-03-03 2002-04-25 Bergh H. Sam Parallel flow process optimization reactors
US20020047003A1 (en) * 2000-06-28 2002-04-25 William Bedingham Enhanced sample processing devices, systems and methods
US6379929B1 (en) * 1996-11-20 2002-04-30 The Regents Of The University Of Michigan Chip-based isothermal amplification devices and methods
US20020051992A1 (en) * 1997-05-23 2002-05-02 Lynx Therapeutics, Inc. System and apparatus for sequential processing of analytes
US20020058332A1 (en) * 2000-09-15 2002-05-16 California Institute Of Technology Microfabricated crossflow devices and methods
US20020068357A1 (en) * 1995-09-28 2002-06-06 Mathies Richard A. Miniaturized integrated nucleic acid processing and analysis device and method
US6408878B2 (en) * 1999-06-28 2002-06-25 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6423536B1 (en) * 1999-08-02 2002-07-23 Molecular Dynamics, Inc. Low volume chemical and biochemical reaction system
US20020098097A1 (en) * 2001-01-22 2002-07-25 Angad Singh Magnetically-actuated micropump
US6432290B1 (en) * 1999-11-26 2002-08-13 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US20020119480A1 (en) * 1999-02-26 2002-08-29 Lawrence Weir Purification devices comprising immobilized capture probes and uses therefor
US20030008308A1 (en) * 2001-04-06 2003-01-09 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
US20030021734A1 (en) * 1999-02-16 2003-01-30 Vann Charles S. Bead dispensing system
US20030029724A1 (en) * 2000-01-30 2003-02-13 Helene Derand Method for covering a microfluidic assembly
US6521188B1 (en) * 2000-11-22 2003-02-18 Industrial Technology Research Institute Microfluidic actuator
US6524456B1 (en) * 1999-08-12 2003-02-25 Ut-Battelle, Llc Microfluidic devices for the controlled manipulation of small volumes
US6532997B1 (en) * 2001-12-28 2003-03-18 3M Innovative Properties Company Sample processing device with integral electrophoresis channels
US6533914B1 (en) * 1999-07-08 2003-03-18 Shaorong Liu Microfabricated injector and capillary array assembly for high-resolution and high throughput separation
US6537757B1 (en) * 1997-03-05 2003-03-25 The Regents Of The University Of Michigan Nucleic acid sequencing and mapping
US6544734B1 (en) * 1998-10-09 2003-04-08 Cynthia G. Briscoe Multilayered microfluidic DNA analysis system and method
US20030070677A1 (en) * 2000-07-24 2003-04-17 The Regents Of The University Of Michigan Compositions and methods for liquid metering in microchannels
US6581441B1 (en) * 2002-02-01 2003-06-24 Perseptive Biosystems, Inc. Capillary column chromatography process and system
US20040008687A1 (en) * 2002-07-11 2004-01-15 Hitachi Ltd. Method and apparatus for path configuration in networks
US20040014091A1 (en) * 2002-03-11 2004-01-22 Athenix Corporation Integrated system for high throughput capture of genetic diversity
US6685442B2 (en) * 2002-02-20 2004-02-03 Sandia National Laboratories Actuator device utilizing a conductive polymer gel
US20040037739A1 (en) * 2001-03-09 2004-02-26 Mcneely Michael Method and system for microfluidic interfacing to arrays
US20040038385A1 (en) * 2002-08-26 2004-02-26 Langlois Richard G. System for autonomous monitoring of bioagents
US20040053290A1 (en) * 2000-01-11 2004-03-18 Terbrueggen Robert Henry Devices and methods for biochip multiplexing
US20040063217A1 (en) * 2002-09-27 2004-04-01 Webster James Russell Miniaturized fluid delivery and analysis system
US20040072278A1 (en) * 2002-04-01 2004-04-15 Fluidigm Corporation Microfluidic particle-analysis systems
US20040086872A1 (en) * 2002-10-31 2004-05-06 Childers Winthrop D. Microfluidic system for analysis of nucleic acids
US6752922B2 (en) * 2001-04-06 2004-06-22 Fluidigm Corporation Microfluidic chromatography
US20040132170A1 (en) * 2000-08-24 2004-07-08 Imego Ab Microfluidic device and method with trapping of sample in cavities having lids that can be opened or closed
US6764648B1 (en) * 1998-07-02 2004-07-20 Amersham Biosciences (Sv) Corp. Robotic microchannel bioanalytical instrument
US6852287B2 (en) * 2001-09-12 2005-02-08 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US20050047967A1 (en) * 2003-09-03 2005-03-03 Industrial Technology Research Institute Microfluidic component providing multi-directional fluid movement
US20050053952A1 (en) * 2002-10-02 2005-03-10 California Institute Of Technology Microfluidic nucleic acid analysis
US6870185B2 (en) * 2002-08-02 2005-03-22 Amersham Biosciences (Sv) Corp Integrated microchip design
US6885982B2 (en) * 2000-06-27 2005-04-26 Fluidigm Corporation Object oriented microfluidic design method and system
US6899137B2 (en) * 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US20050142663A1 (en) * 2003-12-24 2005-06-30 3M Innovative Properties Company Methods for nucleic acid isolation and kits using a microfluidic device and concentration step
US20050161326A1 (en) * 2003-11-21 2005-07-28 Tomoyuki Morita Microfluidic treatment method and device
US20050161669A1 (en) * 2002-08-02 2005-07-28 Jovanovich Stevan B. Integrated system with modular microfluidic components
US20060027456A1 (en) * 2002-05-24 2006-02-09 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US7005493B2 (en) * 2001-04-06 2006-02-28 Fluidigm Corporation Polymer surface modification
US20060057209A1 (en) * 2004-09-16 2006-03-16 Predicant Biosciences, Inc. Methods, compositions and devices, including microfluidic devices, comprising coated hydrophobic surfaces
US7015030B1 (en) * 1999-07-28 2006-03-21 Genset S.A. Microfluidic devices and uses thereof in biochemical processes
US20060073484A1 (en) * 2002-12-30 2006-04-06 Mathies Richard A Methods and apparatus for pathogen detection and analysis
US20060076068A1 (en) * 2004-10-13 2006-04-13 Kionix Corporation Microfluidic pump and valve structures and fabrication methods
US20060163143A1 (en) * 2005-01-26 2006-07-27 Chirica Gabriela S Microliter scale solid phase extraction devices
US20070017812A1 (en) * 2005-03-30 2007-01-25 Luc Bousse Optimized Sample Injection Structures in Microfluidic Separations
US20070034025A1 (en) * 2005-08-09 2007-02-15 Cfd Research Corporation Electrostatic sampler and method
US7198759B2 (en) * 2002-07-26 2007-04-03 Applera Corporation Microfluidic devices, methods, and systems
US20070122819A1 (en) * 2005-11-25 2007-05-31 Industrial Technology Research Institute Analyte assay structure in microfluidic chip for quantitative analysis and method for using the same
US20080014576A1 (en) * 2006-02-03 2008-01-17 Microchip Biotechnologies, Inc. Microfluidic devices
US7323305B2 (en) * 2003-01-29 2008-01-29 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
US20080124723A1 (en) * 2006-06-30 2008-05-29 Canon U.S. Life Sciences, Inc. Combined thermal devices for thermal cycling
US20080161455A1 (en) * 2006-12-29 2008-07-03 Hall James E Insitu removal of chelator from anionic polymerization reactions
US20090035770A1 (en) * 2006-10-25 2009-02-05 The Regents Of The University Of California Inline-injection microdevice and microfabricated integrated DNA analysis system using same
US7488603B2 (en) * 2003-07-14 2009-02-10 Phynexus, Inc. Method and device for extracting an analyte
US20090134069A1 (en) * 2007-07-13 2009-05-28 Handylab, Inc. Integrated Heater and Magnetic Separator
US20090148933A1 (en) * 2006-03-15 2009-06-11 Micronics, Inc. Integrated nucleic acid assays
US20100068723A1 (en) * 2004-09-15 2010-03-18 Stevan Bogdan Jovanovich Microfluidic devices
US20100165784A1 (en) * 2008-12-31 2010-07-01 Microchip Biotechnologies, Inc., A California Corporation Instrument with microfluidic chip

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352643A (en) * 1964-09-02 1967-11-14 Hitachi Ltd Liquid chromatography and chromatographs
US4963498A (en) 1985-08-05 1990-10-16 Biotrack Capillary flow device
US5126022A (en) * 1990-02-28 1992-06-30 Soane Tecnologies, Inc. Method and device for moving molecules by the application of a plurality of electrical fields
SE470347B (en) 1990-05-10 1994-01-31 Pharmacia Lkb Biotech Microstructure for fluid flow systems and process for manufacturing such a system
EP0459241B1 (en) * 1990-05-29 1994-10-26 Waters Investments Limited Process and apparatus for effecting capillary electrophoresis
US5587128A (en) 1992-05-01 1996-12-24 The Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification devices
AU680195B2 (en) 1992-05-01 1997-07-24 Trustees Of The University Of Pennsylvania, The Analysis based on flow restriction
US5637469A (en) 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
US5304487A (en) * 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
US5776748A (en) * 1993-10-04 1998-07-07 President And Fellows Of Harvard College Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor
US5453163A (en) * 1993-10-29 1995-09-26 Yan; Chao Electrokinetic packing of capillary columns
US5639428A (en) * 1994-07-19 1997-06-17 Becton Dickinson And Company Method and apparatus for fully automated nucleic acid amplification, nucleic acid assay and immunoassay
US5571410A (en) 1994-10-19 1996-11-05 Hewlett Packard Company Fully integrated miniaturized planar liquid sample handling and analysis device
JP3477918B2 (en) 1995-05-29 2003-12-10 株式会社島津製作所 Capillary electrophoresis chip
US5872010A (en) * 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
US5948684A (en) * 1997-03-31 1999-09-07 University Of Washington Simultaneous analyte determination and reference balancing in reference T-sensor devices
US5885470A (en) 1997-04-14 1999-03-23 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
US6387707B1 (en) * 1996-04-25 2002-05-14 Bioarray Solutions Array Cytometry
EP0910474B1 (en) 1996-06-14 2004-03-24 University of Washington Absorption-enhanced differential extraction method
BR9710054A (en) 1996-06-28 2000-01-11 Caliper Techn Corp Apparatus for separating test compounds for an effect on a biochemical system and for detecting a effect of a test compound on a biochemical system, procedures for determining whether a sample contains a compound capable of affecting a biochemical system, for separating a plurality of test compounds for an effect on a biochemical system and uses of a microfluidic system and a test substrate.
US6136212A (en) 1996-08-12 2000-10-24 The Regents Of The University Of Michigan Polymer-based micromachining for microfluidic devices
WO1998052691A1 (en) * 1997-05-16 1998-11-26 Alberta Research Council Microfluidic system and methods of use
US6632619B1 (en) 1997-05-16 2003-10-14 The Governors Of The University Of Alberta Microfluidic system and methods of use
WO1999014368A2 (en) 1997-09-15 1999-03-25 Whitehead Institute For Biomedical Research Methods and apparatus for processing a sample of biomolecular analyte using a microfabricated device
US6007775A (en) 1997-09-26 1999-12-28 University Of Washington Multiple analyte diffusion based chemical sensor
US5842787A (en) 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
JP2001520377A (en) 1997-10-15 2001-10-30 アクレイラ バイオサイエンシズ,インコーポレイティド Laminated micro structural device and method of manufacturing laminated micro structural device
US6167910B1 (en) 1998-01-20 2001-01-02 Caliper Technologies Corp. Multi-layer microfluidic devices
US6200814B1 (en) 1998-01-20 2001-03-13 Biacore Ab Method and device for laminar flow on a sensing surface
US6251343B1 (en) 1998-02-24 2001-06-26 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
WO1999046591A2 (en) 1998-03-10 1999-09-16 Strategic Diagnostics, Inc. Integrated assay device and methods of production and use
JP3048345B2 (en) * 1998-03-26 2000-06-05 科学技術振興事業団 Capillary electrophoresis device
US6787111B2 (en) 1998-07-02 2004-09-07 Amersham Biosciences (Sv) Corp. Apparatus and method for filling and cleaning channels and inlet ports in microchips used for biological analysis
GB9900298D0 (en) 1999-01-07 1999-02-24 Medical Res Council Optical sorting method
WO2000050642A1 (en) 1999-02-23 2000-08-31 Caliper Technologies Corp. Sequencing by incorporation
EP1411340A3 (en) 1999-02-26 2004-05-19 EXACT Sciences Corporation Biochemical purification devices with immobilized capture probes and their uses
US6319476B1 (en) 1999-03-02 2001-11-20 Perseptive Biosystems, Inc. Microfluidic connector
AU4226900A (en) 1999-04-08 2000-10-23 Joseph L. Chan Apparatus for fast preparation and analysis of nucleic acids
US6322683B1 (en) 1999-04-14 2001-11-27 Caliper Technologies Corp. Alignment of multicomponent microfabricated structures
US6929030B2 (en) 1999-06-28 2005-08-16 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6977145B2 (en) 1999-07-28 2005-12-20 Serono Genetics Institute S.A. Method for carrying out a biochemical protocol in continuous flow in a microreactor
US6824663B1 (en) 1999-08-27 2004-11-30 Aclara Biosciences, Inc. Efficient compound distribution in microfluidic devices
US6623945B1 (en) 1999-09-16 2003-09-23 Motorola, Inc. System and method for microwave cell lysing of small samples
WO2002037096A1 (en) 1999-10-01 2002-05-10 University Of California Microfabricated liquid sample loading system
US6120184A (en) 1999-11-17 2000-09-19 Stone Container Corporation Bag apparatus with reclosable pour spout
CA2290731A1 (en) 1999-11-26 2001-05-26 D. Jed Harrison Apparatus and method for trapping bead based reagents within microfluidic analysis system
EP1257664A4 (en) 2000-01-28 2006-04-05 Althea Technologies Inc Methods for analysis of gene expression
KR20020089357A (en) * 2000-02-23 2002-11-29 자이오믹스, 인코포레이티드 Chips having elevated sample surfaces
SE0001768D0 (en) 2000-05-12 2000-05-12 Helen Andersson Microfluidic flow cell for manipulation of particles
AU2001273057A1 (en) 2000-06-27 2002-01-08 Fluidigm Corporation A microfluidic design automation method and system
US7011943B2 (en) 2000-09-06 2006-03-14 Transnetyx, Inc. Method for detecting a designated genetic sequence in murine genomic DNA
US6782746B1 (en) 2000-10-24 2004-08-31 Sandia National Laboratories Mobile monolithic polymer elements for flow control in microfluidic devices
DE60001177T2 (en) * 2000-10-25 2003-10-23 Bruker Biospin Gmbh LC-NMR system containing a device for capturing at least one component of a chromatography flow
US6871476B2 (en) 2000-11-13 2005-03-29 Stefan Tobolka Heat sealing and cutting mechanism and container forming apparatus incorporating the same
AU2002248149A1 (en) 2000-11-16 2002-08-12 Fluidigm Corporation Microfluidic devices for introducing and dispensing fluids from microfluidic systems
US20020123538A1 (en) 2000-12-29 2002-09-05 Peiguang Zhou Hot-melt adhesive based on blend of amorphous and crystalline polymers for multilayer bonding
US6802342B2 (en) 2001-04-06 2004-10-12 Fluidigm Corporation Microfabricated fluidic circuit elements and applications
US6629820B2 (en) 2001-06-26 2003-10-07 Micralyne Inc. Microfluidic flow control device
US20030095897A1 (en) * 2001-08-31 2003-05-22 Grate Jay W. Flow-controlled magnetic particle manipulation
US6864480B2 (en) * 2001-12-19 2005-03-08 Sau Lan Tang Staats Interface members and holders for microfluidic array devices
CN100528363C (en) * 2002-02-13 2009-08-19 安捷伦科技有限公司 Microfluidic separation column devices and preparation method thereof
US20040101444A1 (en) 2002-07-15 2004-05-27 Xeotron Corporation Apparatus and method for fluid delivery to a hybridization station
US6786708B2 (en) 2002-07-18 2004-09-07 The Regents Of The University Of Michigan Laminated devices and methods of making same
US20040018611A1 (en) * 2002-07-23 2004-01-29 Ward Michael Dennis Microfluidic devices for high gradient magnetic separation
US20040197845A1 (en) 2002-08-30 2004-10-07 Arjang Hassibi Methods and apparatus for pathogen detection, identification and/or quantification
AU2003264734A1 (en) 2002-09-06 2004-03-29 Epigem Limited Modular microfluidic system
US7217542B2 (en) 2002-10-31 2007-05-15 Hewlett-Packard Development Company, L.P. Microfluidic system for analyzing nucleic acids
WO2004052540A2 (en) 2002-12-05 2004-06-24 Protasis Corporation Configurable microfluidic substrate assembly
US7338637B2 (en) 2003-01-31 2008-03-04 Hewlett-Packard Development Company, L.P. Microfluidic device with thin-film electronic devices
EP1685282A2 (en) 2003-04-17 2006-08-02 Fluidigm Corporation Crystal growth devices and systems, and methods for using same
WO2004098757A2 (en) 2003-05-06 2004-11-18 New Jersey Institute Of Technology Microfluidic mixing using flow pulsing
US7357898B2 (en) * 2003-07-31 2008-04-15 Agency For Science, Technology And Research Microfluidics packages and methods of using same
EP1711264B1 (en) 2004-02-02 2010-03-31 Silicon Valley Scientific, Inc. Integrated system with modular microfluidic components
US8043849B2 (en) 2004-02-24 2011-10-25 Thermal Gradient Thermal cycling device
US7077175B2 (en) * 2004-04-09 2006-07-18 Hongfeng Yin Particle packing of microdevice
US7799553B2 (en) 2004-06-01 2010-09-21 The Regents Of The University Of California Microfabricated integrated DNA analysis system
KR100634525B1 (en) 2004-11-23 2006-10-16 삼성전자주식회사 Microfluidic device comprising a microchannel disposed of a plurality of electromagnets, method for mixing a sample and method for lysis cells using the same
JP2008522795A (en) 2004-12-03 2008-07-03 カリフォルニア インスティチュート オブ テクノロジー Microfluidic device with chemical reaction circuit
CA2496481A1 (en) 2005-02-08 2006-08-09 Mds Inc., Doing Business Through It's Mds Sciex Division Method and apparatus for sample deposition
US7316766B2 (en) 2005-05-27 2008-01-08 Taidoc Technology Corporation Electrochemical biosensor strip
EP1929269A2 (en) 2005-09-30 2008-06-11 Caliper Life Sciences, Inc. Microfluidic device for purifying a biological component using magnetic beads
US20080311585A1 (en) 2005-11-02 2008-12-18 Affymetrix, Inc. System and method for multiplex liquid handling
US7763453B2 (en) 2005-11-30 2010-07-27 Micronics, Inc. Microfluidic mixing and analytic apparatus
WO2008002462A2 (en) 2006-06-23 2008-01-03 Micronics, Inc. Methods and devices for microfluidic point-of-care immunoassays
US20080179255A1 (en) 2007-01-29 2008-07-31 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Fluidic devices
US7858635B2 (en) * 2005-12-22 2010-12-28 Vertex Pharmaceuticals Incorporated Spiro compounds as modulators of muscarinic receptors
US7749365B2 (en) 2006-02-01 2010-07-06 IntegenX, Inc. Optimized sample injection structures in microfluidic separations
US7766033B2 (en) 2006-03-22 2010-08-03 The Regents Of The University Of California Multiplexed latching valves for microfluidic devices and processors
KR100785010B1 (en) 2006-04-06 2007-12-11 삼성전자주식회사 Method and apparatus for the purification of nucleic acids on hydrophilic surface of solid support using hydrogen bonding
WO2008130463A2 (en) 2007-02-06 2008-10-30 The Trustees Of The University Of Pennsylvania Multiplexed nanoscale electrochemical sensors for multi-analyte detection
EP2150350B1 (en) 2007-05-24 2012-04-25 The Regents of the University of California Integrated fluidics devices with magnetic sorting
JP2010536565A (en) 2007-08-23 2010-12-02 シンベニオ・バイオシステムズ・インコーポレーテッド Magnetic sorting system for traps for target species
KR20110030415A (en) 2008-01-22 2011-03-23 인터젠엑스 인크. Universal sample preparation system and use in an integrated analysis system
US20110137018A1 (en) 2008-04-16 2011-06-09 Cynvenio Biosystems, Inc. Magnetic separation system with pre and post processing modules
KR100960066B1 (en) 2008-05-14 2010-05-31 삼성전자주식회사 Microfluidic device containing lyophilized reagent therein and analysing method using the same
US8323568B2 (en) 2008-06-13 2012-12-04 Honeywell International Inc. Magnetic bead assisted sample conditioning system
EP2334433B1 (en) 2008-10-06 2012-08-15 Koninklijke Philips Electronics N.V. Microfluidic device
KR20120030130A (en) 2009-06-02 2012-03-27 인터젠엑스 인크. Fluidic devices with diaphragm valves
SG176669A1 (en) 2009-06-05 2012-01-30 Integenx Inc Universal sample preparation system and use in an integrated analysis system

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3433257A (en) * 1966-02-01 1969-03-18 Ibm Diaphragm type fluid logic latch
US3568692A (en) * 1967-11-27 1971-03-09 Bowles Eng Corp Optical machining process
US5750015A (en) * 1990-02-28 1998-05-12 Soane Biosciences Method and device for moving molecules by the application of a plurality of electrical fields
US6176962B1 (en) * 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US5726026A (en) * 1992-05-01 1998-03-10 Trustees Of The University Of Pennsylvania Mesoscale sample preparation device and systems for determination and processing of analytes
US6280589B1 (en) * 1993-04-15 2001-08-28 Zeptosens Ag Method for controlling sample introduction in microcolumn separation techniques and sampling device
US6010607A (en) * 1994-08-01 2000-01-04 Lockheed Martin Energy Research Corporation Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US5775371A (en) * 1995-03-08 1998-07-07 Abbott Laboratories Valve control
US5741462A (en) * 1995-04-25 1998-04-21 Irori Remotely programmable matrices with memories
US5856174A (en) * 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US6168948B1 (en) * 1995-06-29 2001-01-02 Affymetrix, Inc. Miniaturized genetic analysis systems and methods
US5922591A (en) * 1995-06-29 1999-07-13 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US20020068357A1 (en) * 1995-09-28 2002-06-06 Mathies Richard A. Miniaturized integrated nucleic acid processing and analysis device and method
US5705813A (en) * 1995-11-01 1998-01-06 Hewlett-Packard Company Integrated planar liquid handling system for maldi-TOF MS
US5908552A (en) * 1995-12-14 1999-06-01 Hewlett-Packard Company Column for capillary chromatographic separations
US5863502A (en) * 1996-01-24 1999-01-26 Sarnoff Corporation Parallel reaction cassette and associated devices
US5942443A (en) * 1996-06-28 1999-08-24 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US5770029A (en) * 1996-07-30 1998-06-23 Soane Biosciences Integrated electrophoretic microdevices
US20020119482A1 (en) * 1996-07-30 2002-08-29 Aclara Biosciences, Inc. Microfluidic method for nucleic acid purification and processing
US6074827A (en) * 1996-07-30 2000-06-13 Aclara Biosciences, Inc. Microfluidic method for nucleic acid purification and processing
US6056860A (en) * 1996-09-18 2000-05-02 Aclara Biosciences, Inc. Surface modified electrophoretic chambers
US6379929B1 (en) * 1996-11-20 2002-04-30 The Regents Of The University Of Michigan Chip-based isothermal amplification devices and methods
US6537757B1 (en) * 1997-03-05 2003-03-25 The Regents Of The University Of Michigan Nucleic acid sequencing and mapping
US6403338B1 (en) * 1997-04-04 2002-06-11 Mountain View Microfluidic systems and methods of genotyping
US6235471B1 (en) * 1997-04-04 2001-05-22 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6348318B1 (en) * 1997-04-04 2002-02-19 Biosite Diagnostics Methods for concentrating ligands using magnetic particles
US20020051992A1 (en) * 1997-05-23 2002-05-02 Lynx Therapeutics, Inc. System and apparatus for sequential processing of analytes
US6073482A (en) * 1997-07-21 2000-06-13 Ysi Incorporated Fluid flow module
US6190616B1 (en) * 1997-09-11 2001-02-20 Molecular Dynamics, Inc. Capillary valve, connector, and router
US6551839B2 (en) * 1997-09-11 2003-04-22 Amersham Biosciences Corp. Method of merging chemical reactants in capillary tubes
US6027031A (en) * 1997-12-19 2000-02-22 Carrier Corporation Method and apparatus for changing operational modes of a transport refrigeration system
US20020025576A1 (en) * 1998-03-17 2002-02-28 Cepheid Integrated sample analysis device
US6764648B1 (en) * 1998-07-02 2004-07-20 Amersham Biosciences (Sv) Corp. Robotic microchannel bioanalytical instrument
US6103199A (en) * 1998-09-15 2000-08-15 Aclara Biosciences, Inc. Capillary electroflow apparatus and method
US6544734B1 (en) * 1998-10-09 2003-04-08 Cynthia G. Briscoe Multilayered microfluidic DNA analysis system and method
US20030021734A1 (en) * 1999-02-16 2003-01-30 Vann Charles S. Bead dispensing system
US20020119480A1 (en) * 1999-02-26 2002-08-29 Lawrence Weir Purification devices comprising immobilized capture probes and uses therefor
US20020048536A1 (en) * 1999-03-03 2002-04-25 Bergh H. Sam Parallel flow process optimization reactors
US6048100A (en) * 1999-03-10 2000-04-11 Industrial Label Corp. Resealable closure for a bag
US6408878B2 (en) * 1999-06-28 2002-06-25 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US20020025529A1 (en) * 1999-06-28 2002-02-28 Stephen Quake Methods and apparatus for analyzing polynucleotide sequences
US6899137B2 (en) * 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6533914B1 (en) * 1999-07-08 2003-03-18 Shaorong Liu Microfabricated injector and capillary array assembly for high-resolution and high throughput separation
US7015030B1 (en) * 1999-07-28 2006-03-21 Genset S.A. Microfluidic devices and uses thereof in biochemical processes
US6423536B1 (en) * 1999-08-02 2002-07-23 Molecular Dynamics, Inc. Low volume chemical and biochemical reaction system
US20020110900A1 (en) * 1999-08-02 2002-08-15 Jovanovich Stevan B. Low volume chemical and biochemical reaction system
US6524456B1 (en) * 1999-08-12 2003-02-25 Ut-Battelle, Llc Microfluidic devices for the controlled manipulation of small volumes
US6432290B1 (en) * 1999-11-26 2002-08-13 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US20040053290A1 (en) * 2000-01-11 2004-03-18 Terbrueggen Robert Henry Devices and methods for biochip multiplexing
US20030029724A1 (en) * 2000-01-30 2003-02-13 Helene Derand Method for covering a microfluidic assembly
US20020022587A1 (en) * 2000-03-28 2002-02-21 Ferguson Alastair V. Methods for effecting neuroprotection
US6885982B2 (en) * 2000-06-27 2005-04-26 Fluidigm Corporation Object oriented microfluidic design method and system
US20020047003A1 (en) * 2000-06-28 2002-04-25 William Bedingham Enhanced sample processing devices, systems and methods
US20030070677A1 (en) * 2000-07-24 2003-04-17 The Regents Of The University Of Michigan Compositions and methods for liquid metering in microchannels
US20040132170A1 (en) * 2000-08-24 2004-07-08 Imego Ab Microfluidic device and method with trapping of sample in cavities having lids that can be opened or closed
US20020058332A1 (en) * 2000-09-15 2002-05-16 California Institute Of Technology Microfabricated crossflow devices and methods
US6521188B1 (en) * 2000-11-22 2003-02-18 Industrial Technology Research Institute Microfluidic actuator
US20020098097A1 (en) * 2001-01-22 2002-07-25 Angad Singh Magnetically-actuated micropump
US20040037739A1 (en) * 2001-03-09 2004-02-26 Mcneely Michael Method and system for microfluidic interfacing to arrays
US6752922B2 (en) * 2001-04-06 2004-06-22 Fluidigm Corporation Microfluidic chromatography
US7005493B2 (en) * 2001-04-06 2006-02-28 Fluidigm Corporation Polymer surface modification
US20030008308A1 (en) * 2001-04-06 2003-01-09 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
US6852287B2 (en) * 2001-09-12 2005-02-08 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US6532997B1 (en) * 2001-12-28 2003-03-18 3M Innovative Properties Company Sample processing device with integral electrophoresis channels
US6581441B1 (en) * 2002-02-01 2003-06-24 Perseptive Biosystems, Inc. Capillary column chromatography process and system
US6685442B2 (en) * 2002-02-20 2004-02-03 Sandia National Laboratories Actuator device utilizing a conductive polymer gel
US20040014091A1 (en) * 2002-03-11 2004-01-22 Athenix Corporation Integrated system for high throughput capture of genetic diversity
US20040072278A1 (en) * 2002-04-01 2004-04-15 Fluidigm Corporation Microfluidic particle-analysis systems
US20060027456A1 (en) * 2002-05-24 2006-02-09 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US20090084679A1 (en) * 2002-05-24 2009-04-02 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US20040008687A1 (en) * 2002-07-11 2004-01-15 Hitachi Ltd. Method and apparatus for path configuration in networks
US7198759B2 (en) * 2002-07-26 2007-04-03 Applera Corporation Microfluidic devices, methods, and systems
US6870185B2 (en) * 2002-08-02 2005-03-22 Amersham Biosciences (Sv) Corp Integrated microchip design
US20050161669A1 (en) * 2002-08-02 2005-07-28 Jovanovich Stevan B. Integrated system with modular microfluidic components
US20040038385A1 (en) * 2002-08-26 2004-02-26 Langlois Richard G. System for autonomous monitoring of bioagents
US20040063217A1 (en) * 2002-09-27 2004-04-01 Webster James Russell Miniaturized fluid delivery and analysis system
US20050053952A1 (en) * 2002-10-02 2005-03-10 California Institute Of Technology Microfluidic nucleic acid analysis
US20040086872A1 (en) * 2002-10-31 2004-05-06 Childers Winthrop D. Microfluidic system for analysis of nucleic acids
US20090060797A1 (en) * 2002-12-30 2009-03-05 The Regents Of The University Of California Fluid control structures in microfluidic devices
US20060073484A1 (en) * 2002-12-30 2006-04-06 Mathies Richard A Methods and apparatus for pathogen detection and analysis
US7323305B2 (en) * 2003-01-29 2008-01-29 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
US7488603B2 (en) * 2003-07-14 2009-02-10 Phynexus, Inc. Method and device for extracting an analyte
US20050047967A1 (en) * 2003-09-03 2005-03-03 Industrial Technology Research Institute Microfluidic component providing multi-directional fluid movement
US20050161326A1 (en) * 2003-11-21 2005-07-28 Tomoyuki Morita Microfluidic treatment method and device
US20050142663A1 (en) * 2003-12-24 2005-06-30 3M Innovative Properties Company Methods for nucleic acid isolation and kits using a microfluidic device and concentration step
US20100068723A1 (en) * 2004-09-15 2010-03-18 Stevan Bogdan Jovanovich Microfluidic devices
US20060057209A1 (en) * 2004-09-16 2006-03-16 Predicant Biosciences, Inc. Methods, compositions and devices, including microfluidic devices, comprising coated hydrophobic surfaces
US20060076068A1 (en) * 2004-10-13 2006-04-13 Kionix Corporation Microfluidic pump and valve structures and fabrication methods
US20060163143A1 (en) * 2005-01-26 2006-07-27 Chirica Gabriela S Microliter scale solid phase extraction devices
US20070017812A1 (en) * 2005-03-30 2007-01-25 Luc Bousse Optimized Sample Injection Structures in Microfluidic Separations
US20070034025A1 (en) * 2005-08-09 2007-02-15 Cfd Research Corporation Electrostatic sampler and method
US20070122819A1 (en) * 2005-11-25 2007-05-31 Industrial Technology Research Institute Analyte assay structure in microfluidic chip for quantitative analysis and method for using the same
US20080014576A1 (en) * 2006-02-03 2008-01-17 Microchip Biotechnologies, Inc. Microfluidic devices
US20090148933A1 (en) * 2006-03-15 2009-06-11 Micronics, Inc. Integrated nucleic acid assays
US20080124723A1 (en) * 2006-06-30 2008-05-29 Canon U.S. Life Sciences, Inc. Combined thermal devices for thermal cycling
US20090035770A1 (en) * 2006-10-25 2009-02-05 The Regents Of The University Of California Inline-injection microdevice and microfabricated integrated DNA analysis system using same
US20080161455A1 (en) * 2006-12-29 2008-07-03 Hall James E Insitu removal of chelator from anionic polymerization reactions
US20090134069A1 (en) * 2007-07-13 2009-05-28 Handylab, Inc. Integrated Heater and Magnetic Separator
US20100165784A1 (en) * 2008-12-31 2010-07-01 Microchip Biotechnologies, Inc., A California Corporation Instrument with microfluidic chip

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43122E1 (en) 1999-11-26 2012-01-24 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US8034628B2 (en) 1999-11-26 2011-10-11 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US20090084679A1 (en) * 2002-05-24 2009-04-02 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US9644623B2 (en) 2002-12-30 2017-05-09 The Regents Of The University Of California Fluid control structures in microfluidic devices
US9651039B2 (en) 2002-12-30 2017-05-16 The Regents Of The University Of California Fluid control structures in microfluidic devices
US8420318B2 (en) 2004-06-01 2013-04-16 The Regents Of The University Of California Microfabricated integrated DNA analysis system
US7799553B2 (en) 2004-06-01 2010-09-21 The Regents Of The University Of California Microfabricated integrated DNA analysis system
US8431340B2 (en) 2004-09-15 2013-04-30 Integenx Inc. Methods for processing and analyzing nucleic acid samples
US8431390B2 (en) 2004-09-15 2013-04-30 Integenx Inc. Systems of sample processing having a macro-micro interface
US8476063B2 (en) 2004-09-15 2013-07-02 Integenx Inc. Microfluidic devices
US9752185B2 (en) 2004-09-15 2017-09-05 Integenx Inc. Microfluidic devices
US8551714B2 (en) 2004-09-15 2013-10-08 Integenx Inc. Microfluidic devices
US9592501B2 (en) 2004-09-28 2017-03-14 Landegren Gene Technology Ab Microfluidic structure
US7749365B2 (en) 2006-02-01 2010-07-06 IntegenX, Inc. Optimized sample injection structures in microfluidic separations
US7745207B2 (en) 2006-02-03 2010-06-29 IntegenX, Inc. Microfluidic devices
US7766033B2 (en) 2006-03-22 2010-08-03 The Regents Of The University Of California Multiplexed latching valves for microfluidic devices and processors
US8286665B2 (en) 2006-03-22 2012-10-16 The Regents Of The University Of California Multiplexed latching valves for microfluidic devices and processors
US8841116B2 (en) 2006-10-25 2014-09-23 The Regents Of The University Of California Inline-injection microdevice and microfabricated integrated DNA analysis system using same
US9057145B2 (en) * 2006-12-11 2015-06-16 Atotech Deutschland Gmbh Electrodeposition method with analysis of the electrolytic bath by solid phase extraction
US20100059384A1 (en) * 2006-12-11 2010-03-11 Atotech Deutschland Gmbh Electrodeposition method with analysis of the electrolytic bath by solid Phase Extraction
US8557518B2 (en) 2007-02-05 2013-10-15 Integenx Inc. Microfluidic and nanofluidic devices, systems, and applications
US8454906B2 (en) 2007-07-24 2013-06-04 The Regents Of The University Of California Microfabricated droplet generator for single molecule/cell genetic analysis in engineered monodispersed emulsions
US8748165B2 (en) 2008-01-22 2014-06-10 Integenx Inc. Methods for generating short tandem repeat (STR) profiles
US8672532B2 (en) 2008-12-31 2014-03-18 Integenx Inc. Microfluidic methods
US8388908B2 (en) 2009-06-02 2013-03-05 Integenx Inc. Fluidic devices with diaphragm valves
US8394642B2 (en) 2009-06-05 2013-03-12 Integenx Inc. Universal sample preparation system and use in an integrated analysis system
US8562918B2 (en) 2009-06-05 2013-10-22 Integenx Inc. Universal sample preparation system and use in an integrated analysis system
US9012236B2 (en) 2009-06-05 2015-04-21 Integenx Inc. Universal sample preparation system and use in an integrated analysis system
US8584703B2 (en) 2009-12-01 2013-11-19 Integenx Inc. Device with diaphragm valve
US8512538B2 (en) 2010-05-28 2013-08-20 Integenx Inc. Capillary electrophoresis device
US9121058B2 (en) 2010-08-20 2015-09-01 Integenx Inc. Linear valve arrays
US8763642B2 (en) 2010-08-20 2014-07-01 Integenx Inc. Microfluidic devices with mechanically-sealed diaphragm valves
US9731266B2 (en) 2010-08-20 2017-08-15 Integenx Inc. Linear valve arrays
US10525467B2 (en) 2011-10-21 2020-01-07 Integenx Inc. Sample preparation, processing and analysis systems
US11684918B2 (en) 2011-10-21 2023-06-27 IntegenX, Inc. Sample preparation, processing and analysis systems
US10865440B2 (en) 2011-10-21 2020-12-15 IntegenX, Inc. Sample preparation, processing and analysis systems
US10989723B2 (en) 2013-11-18 2021-04-27 IntegenX, Inc. Cartridges and instruments for sample analysis
US10191071B2 (en) 2013-11-18 2019-01-29 IntegenX, Inc. Cartridges and instruments for sample analysis
US10208332B2 (en) 2014-05-21 2019-02-19 Integenx Inc. Fluidic cartridge with valve mechanism
US10961561B2 (en) 2014-05-21 2021-03-30 IntegenX, Inc. Fluidic cartridge with valve mechanism
US11891650B2 (en) 2014-05-21 2024-02-06 IntegenX, Inc. Fluid cartridge with valve mechanism
US10690627B2 (en) 2014-10-22 2020-06-23 IntegenX, Inc. Systems and methods for sample preparation, processing and analysis

Also Published As

Publication number Publication date
US8034628B2 (en) 2011-10-11
EP1236039A1 (en) 2002-09-04
AU1847701A (en) 2001-06-04
JP4799792B2 (en) 2011-10-26
WO2001038865A1 (en) 2001-05-31
US20110048945A1 (en) 2011-03-03
JP2003515167A (en) 2003-04-22
US20100326826A1 (en) 2010-12-30
CA2290731A1 (en) 2001-05-26
US7312611B1 (en) 2007-12-25

Similar Documents

Publication Publication Date Title
US8034628B2 (en) Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US6432290B1 (en) Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US20090084679A1 (en) Apparatus and method for trapping bead based reagents within microfluidic analysis systems
Oleschuk et al. Trapping of bead-based reagents within microfluidic systems: on-chip solid-phase extraction and electrochromatography
US5770029A (en) Integrated electrophoretic microdevices
US6274089B1 (en) Microfluidic devices, systems and methods for performing integrated reactions and separations
AU747464B2 (en) Microfluidic devices, systems and methods for performing integrated reactions and separations
US20090071828A1 (en) Devices Exhibiting Differential Resistance to Flow and Methods of Their Use
US20010035351A1 (en) Cross channel device for serial sample injection
US6833068B2 (en) Passive injection control for microfluidic systems
Su et al. Capillary electrophoresis microchip coupled with on-line chemiluminescence detection
US20030057092A1 (en) Microfluidic methods, devices and systems for in situ material concentration
CA2387443A1 (en) Improved apparatus and method for trapping bead based reagents within microfluidic analysis systems
US20050011761A1 (en) Microfluidic methods, devices and systems for in situ material concentration
US20100096267A1 (en) System and method for performing microfluidic manipulation
JP2005106740A (en) Sample injection method and micro device
Jemere Integrated affinity and separation based methods on microfluidic devices
JP2004163163A (en) Micro fluid device and analysis method using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE GOVERNORS OF THE UNIVERSITY OF ALBERTA,CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARRISON, D. JED;OLESCHUK, RICHARD;SHULTZ-LOCKYEAR, LORANELLE;AND OTHERS;SIGNING DATES FROM 20020814 TO 20021014;REEL/FRAME:024614/0442

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION