US20080207116A1 - Navigation device and method using a personal area network - Google Patents

Navigation device and method using a personal area network Download PDF

Info

Publication number
US20080207116A1
US20080207116A1 US11/907,238 US90723807A US2008207116A1 US 20080207116 A1 US20080207116 A1 US 20080207116A1 US 90723807 A US90723807 A US 90723807A US 2008207116 A1 US2008207116 A1 US 2008207116A1
Authority
US
United States
Prior art keywords
document
navigation device
short
network
personal area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/907,238
Inventor
Pieter Geelen
Victor Shcherbatyuk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/907,238 priority Critical patent/US20080207116A1/en
Publication of US20080207116A1 publication Critical patent/US20080207116A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3691Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level

Definitions

  • the present application generally relates to navigation methods and devices.
  • Navigation devices were traditionally utilized mainly in the areas of vehicle use, such as on cars, motorcycles, trucks, boats, etc. Alternatively, if such navigation devices were portable, they were further transferable between vehicles and/or useable outside the vehicle, for foot travel for example.
  • These devices provide a user with directions and map information to direct the user from one location to another location. File transfer between these devices and a personal computer required USB communication through a USB cable.
  • the inventors of the present application developed a method and implementation of a navigation device, to allow users of the navigation device to send and/or receive at least one document to/from at least one other device via a personal area network
  • a navigation device includes a memory to store at least one document, an input device to select at least one document stored in memory, and a network interface to identify at least one other device.
  • the selected at least one document is sent via a personal area network to the at least one other identified device.
  • the personal area network is a short-range wireless network.
  • a navigation device includes a network interface to receive at least one document from at least one other device via a personal area network and a memory to store the at least one document.
  • the personal area network is a short-range wireless network.
  • a method includes selecting at least one document in a memory associated with a navigation device, identifying at least one other device accessible via a personal area network, and sending the at least one selected document via the personal area network to the at least one other identified device in response to a received input.
  • the personal area network is a short-range wireless network.
  • a method includes receiving at least one document from at least one other device via a personal area network and storing the at least one document in memory associated with a navigation device.
  • the personal area network is a short-range wireless network.
  • a navigation device includes means for storing at least one document; means for selecting at least one document stored in memory, and means for identifying at least one other device, the selected at least one document being sent via a personal area network to the at least one other device.
  • the personal area network is a short-range wireless network.
  • a navigation device includes means for receiving at least one document from at least one other device via a personal area network and means for storing the at least one document.
  • the personal area network is a short-range wireless network.
  • FIG. 1 illustrates an example view of a Global Positioning System (GPS);
  • GPS Global Positioning System
  • FIG. 2 illustrates an example block diagram of electronic components of a navigation device of an embodiment of the present application
  • FIG. 3 illustrates an example block diagram of a server, navigation device and connection therebetween of an embodiment of the present application
  • FIG. 4A illustrates a perspective view of a navigation device separated from an arm of a docking station
  • FIG. 4B illustrates a perspective view of a navigation device connected to the arm of the docking station
  • FIG. 5 illustrates a method of sending a document according to one aspect of the present application
  • FIG. 6 illustrates a method of receiving a document according to one aspect of the present application.
  • FIG. 7 illustrates a method of sending and receiving a document.
  • FIG. 1 illustrates an example view of Global Positioning System (GPS), usable by navigation devices, including the navigation device of embodiments of the present application.
  • GPS Global Positioning System
  • Such systems are known and are used for a variety of purposes.
  • GPS is a satellite-radio based navigation system capable of determining continuous position, velocity, time, and in some instances direction information for an unlimited number of users.
  • the GPS incorporates a plurality of satellites which work with the earth in extremely precise orbits. Based on these precise orbits, GPS satellites can relay their location to any number of receiving units.
  • the GPS system is implemented when a device, specially equipped to receive GPS data, begins scanning radio frequencies for GPS satellite signals. Upon receiving a radio signal from a GPS satellite, the device determines the precise location of that satellite via one of a plurality of different conventional methods. The device will continue scanning, in most instances, for signals until it has acquired at least three different satellite signals (noting that position is not normally, but can be determined, with only two signals using other triangulation techniques). Implementing geometric triangulation, the receiver utilizes the three known positions to determine its own two-dimensional position relative to the satellites. This can be done in a known manner. Additionally, acquiring a fourth satellite signal will allow the receiving device to calculate its three dimensional position by the same geometrical calculation in a known manner. The position and velocity data can be updated in real time on a continuous basis by an unlimited number of users.
  • the GPS system is denoted generally by reference numeral 100 .
  • a plurality of satellites 120 are in orbit about the earth 124 .
  • the orbit of each satellite 120 is not necessarily synchronous with the orbits of other satellites 120 and, in fact, is likely asynchronous.
  • a GPS receiver 140 usable in embodiments of navigation devices of the present application, is shown receiving spread spectrum GPS satellite signals 160 from the various satellites 120 .
  • the spread spectrum signals 160 continuously transmitted from each satellite 120 , utilize a highly accurate frequency standard accomplished with an extremely accurate atomic clock.
  • Each satellite 120 as part of its data signal transmission 160 , transmits a data stream indicative of that particular satellite 120 .
  • the GPS receiver device 140 generally acquires spread spectrum GPS satellite signals 160 from at least three satellites 120 for the GPS receiver device 140 to calculate its two-dimensional position by triangulation. Acquisition of an additional signal, resulting in signals 160 from a total of four satellites 120 , permits the GPS receiver device 140 to calculate its three-dimensional position in a known manner.
  • FIG. 2 illustrates an example block diagram of electronic components of a navigation device 200 of an embodiment of the present application, in block component format. It should be noted that the block diagram of the navigation device 200 is not inclusive of all components of the navigation device, but is only representative of many example components.
  • the navigation device 200 is located within a housing (not shown).
  • the housing includes a processor 210 connected to an input device 220 and a display screen 240 .
  • the input device 220 can include a keyboard device, voice input device, touch panel and/or any other known input device utilized to input information; and the display screen 240 can include any type of display screen such as an LCD display, for example.
  • the input device 220 and display screen 240 are integrated into an integrated input and display device, including a touchpad or touchscreen input wherein a user need only touch a portion of the display screen 240 to select one of a plurality of display choices or to activate one of a plurality of virtual buttons.
  • output devices 250 can also include, including but not limited to, an audible output device.
  • output device 250 can produce audible information to a user of the navigation device 200
  • input device 240 can also include a microphone and software for receiving input voice commands as well.
  • processor 210 is operatively connected to and set to receive input information from input device 240 via a connection 225 , and operatively connected to at least one of display screen 240 and output device 250 , via output connections 245 , to output information thereto. Further, the processor 210 is operatively connected to memory 230 via connection 235 and is further adapted to receive/send information from/to input/output (I/O) ports 270 via connection 275 , wherein the I/O port 270 is connectable to an I/O device 280 external to the navigation device 200 .
  • the external I/O device 270 may include, but is not limited to an external listening device such as an earpiece for example.
  • connection to I/O device 280 can further be a wired or wireless connection to any other external device such as a car stereo unit for hands-free operation and/or for voice activated operation for example, for connection to an ear piece or head phones, and/or for connection to a mobile phone for example, wherein the mobile phone connection may be used to establish a data connection between the navigation device 200 and the internet or any other network for example, and/or to establish a connection to a server via the internet or some other network for example.
  • any other external device such as a car stereo unit for hands-free operation and/or for voice activated operation for example, for connection to an ear piece or head phones, and/or for connection to a mobile phone for example
  • the mobile phone connection may be used to establish a data connection between the navigation device 200 and the internet or any other network for example, and/or to establish a connection to a server via the internet or some other network for example.
  • the navigation device 200 may establish a “mobile” network connection with the server 302 via a mobile device (such as a mobile phone, PDA, and/or any device with mobile phone technology) establishing a digital connection (such as a digital connection via known Bluetooth technology for example). Thereafter, through its network service provider, the mobile device can establish a network connection (through the internet for example) with a server 302 . As such, a “mobile” network connection is established between the navigation device 200 (which can be, and often times is mobile as it travels alone and/or in a vehicle) and the server 302 to provide a “real-time” or at least very “up to date” gateway for information.
  • a mobile device such as a mobile phone, PDA, and/or any device with mobile phone technology
  • a digital connection such as a digital connection via known Bluetooth technology for example
  • the mobile device can establish a network connection (through the internet for example) with a server 302 .
  • a “mobile” network connection is established between the navigation device 200 (which can be,
  • the establishing of the network connection between the mobile device (via a service provider) and another device such as the server 302 , using the internet 410 for example, can be done in a known manner. This can include use of TCP/IP layered protocol for example.
  • the mobile device 400 can utilize any number of communication standards such as CDMA, GSM, WAN, etc.
  • an internet connection may be utilized which is achieved via data connection, via a mobile phone or mobile phone technology within the navigation device 200 for example.
  • an internet connection between the server 302 and the navigation device 200 is established. This can be done, for example, through a mobile phone or other mobile device and a GPRS (General Packet Radio Service)-connection (GPRS connection is a high-speed data connection for mobile devices provided by telecom operators; GPRS is a method to connect to the internet.
  • GPRS General Packet Radio Service
  • the navigation device 200 can further complete a data connection with the mobile device, and eventually with the internet and server 302 , via existing Bluetooth technology for example, in a known manner, wherein the data protocol can utilize any number of standards, such as the GSRM, the Data Protocol Standard for the GSM standard, for example.
  • the data protocol can utilize any number of standards, such as the GSRM, the Data Protocol Standard for the GSM standard, for example.
  • the navigation device 200 may include its own mobile phone technology within the navigation device 200 itself (including an antenna for example, wherein the internal antenna of the navigation device 200 can further alternatively be used).
  • the mobile phone technology within the navigation device 200 can include internal components as specified above, and/or can include an insertable card, complete with necessary mobile phone technology and/or an antenna for example.
  • mobile phone technology within the navigation device 200 can similarly establish a network connection between the navigation device 200 and the server 302 , via the internet for example, in a manner similar to that of any mobile device.
  • the Bluetooth enabled device may be used to correctly work with the ever changing spectrum of mobile phone models, manufacturers, etc., model/manufacturer specific settings may be stored on the navigation device 200 for example.
  • the data stored for this information can be updated in a manner discussed in any of the embodiments, previous and subsequent.
  • FIG. 2 further illustrates an operative connection between the processor 210 and an antenna/receiver 250 via connection 255 , wherein the antenna/receiver 250 can be a GPS antenna/receiver for example.
  • the antenna and receiver designated by reference numeral 250 are combined schematically for illustration, but that the antenna and receiver may be separately located components, and that the antenna may be a GPS patch antenna or helical antenna for example.
  • the electronic components shown in FIG. 2 are powered by power sources (not shown) in a conventional manner.
  • power sources not shown
  • different configurations of the components shown in FIG. 2 are considered within the scope of the present application.
  • the components shown in FIG. 2 may be in communication with one another via wired and/or wireless connections and the like.
  • the scope of the navigation device 200 of the present application includes a portable or handheld navigation device 200 .
  • the portable or handheld navigation device 200 of FIG. 2 can be connected or “docked” in a known manner to a motorized vehicle such as a car or boat for example. Such a navigation device 200 is then removable from the docked location for portable or handheld navigation use.
  • FIG. 3 illustrates an example block diagram of a server 302 and a navigation device 200 of the present application, via a generic communications channel 318 , of an embodiment of the present application.
  • the server 302 and a navigation device 200 of the present application can communicate when a connection via communications channel 318 is established between the server 302 and the navigation device 200 (noting that such a connection can be a data connection via mobile device, a direct connection via personal computer via the internet, etc.).
  • the server 302 includes, in addition to other components which may not be illustrated, a processor 304 operatively connected to a memory 306 and further operatively connected, via a wired or wireless connection 314 , to a mass data storage device 312 .
  • the processor 304 is further operatively connected to transmitter 308 and receiver 310 , to transmit and send information to and from navigation device 200 via communications channel 318 .
  • the signals sent and received may include data, communication, and/or other propagated signals.
  • the transmitter 308 and receiver 310 may be selected or designed according to the communications requirement and communication technology used in the communication design for the navigation system 200 . Further, it should be noted that the functions of transmitter 308 and receiver 310 may be combined into a signal transceiver.
  • Server 302 is further connected to (or includes) a mass storage device 312 , noting that the mass storage device 312 may be coupled to the server 302 via communication link 314 .
  • the mass storage device 312 contains a store of navigation data and map information, and can again be a separate device from the server 302 or can be incorporated into the server 302 .
  • the navigation device 200 is adapted to communicate with the server 302 through communications channel 318 , and includes processor, memory, etc. as previously described with regard to FIG. 2 , as well as transmitter 320 and receiver 322 to send and receive signals and/or data through the communications channel 318 , noting that these devices can further be used to communicate with devices other than server 302 .
  • the transmitter 320 and receiver 322 are selected or designed according to communication requirements and communication technology used in the communication design for the navigation device 200 and the functions of the transmitter 320 and receiver 322 may be combined into a single transceiver.
  • Software stored in server memory 306 provides instructions for the processor 304 and allows the server 302 to provide services to the navigation device 200 .
  • One service provided by the server 302 involves processing requests from the navigation device 200 and transmitting navigation data from the mass data storage 312 to the navigation device 200 .
  • another service provided by the server 302 includes processing the navigation data using various algorithms for a desired application and sending the results of these calculations to the navigation device 200 .
  • the communication channel 318 generically represents the propagating medium or path that connects the navigation device 200 and the server 302 .
  • both the server 302 and navigation device 200 include a transmitter for transmitting data through the communication channel and a receiver for receiving data that has been transmitted through the communication channel.
  • the communication channel 318 is not limited to a particular communication technology. Additionally, the communication channel 318 is not limited to a single communication technology; that is, the channel 318 may include several communication links that use a variety of technology. For example, according to at least one embodiment, the communication channel 318 can be adapted to provide a path for electrical, optical, and/or electromagnetic communications, etc. As such, the communication channel 318 includes, but is not limited to, one or a combination of the following: electric circuits, electrical conductors such as wires and coaxial cables, fiber optic cables, converters, radio-frequency (rf) waves, the atmosphere, empty space, etc. Furthermore, according to at least one various embodiment, the communication channel 318 can include intermediate devices such as routers, repeaters, buffers, transmitters, and receivers, for example.
  • intermediate devices such as routers, repeaters, buffers, transmitters, and receivers, for example.
  • the communication channel 318 includes telephone and computer networks. Furthermore, in at least one embodiment, the communication channel 318 may be capable of accommodating wireless communication such as radio frequency, microwave frequency, infrared communication, etc. Additionally, according to at least one embodiment, the communication channel 318 can accommodate satellite communication.
  • the communication signals transmitted through the communication channel 318 include, but are not limited to, signals as may be required or desired for given communication technology.
  • the signals may be adapted to be used in cellular communication technology such as Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), Global System for Mobile Communications (GSM), etc.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • Both digital and analogue signals can be transmitted through the communication channel 318 .
  • these signals may be modulated, encrypted and/or compressed signals as may be desirable for the communication technology.
  • the mass data storage 312 includes sufficient memory for the desired navigation applications.
  • Examples of the mass data storage 312 may include magnetic data storage media such as hard drives for example, optical storage media such as CD-Roms for example, charged data storage media such as flash memory for example, molecular memory, etc.
  • the server 302 includes a remote server accessible by the navigation device 200 via a wireless channel.
  • the server 302 may include a network server located on a local area network (LAN), wide area network (WAN), virtual private network (VPN), etc. Connection to the server can be wired or wireless. The device could host connection itself or use a gateway to access the server.
  • LAN local area network
  • WAN wide area network
  • VPN virtual private network
  • the server 302 may include a personal computer such as a desktop or laptop computer, and the communication channel 318 may be a cable connected between the personal computer and the navigation device 200 .
  • a personal computer may be connected between the navigation device 200 and the server 302 to establish an internet connection between the server 302 and the navigation device 200 .
  • a mobile telephone or other handheld device may establish a wireless connection to the internet, for connecting the navigation device 200 to the server 302 via the internet.
  • the navigation device 200 may be provided with information from the server 302 via information downloads which may be periodically updated upon a user connecting navigation device 200 to the server 302 and/or may be more dynamic upon a more constant or frequent connection being made between the server 302 and navigation device 200 via a wireless mobile connection device and TCP/IP connection for example.
  • the processor 304 in the server 302 may be used to handle the bulk of the processing needs, however, processor 210 of navigation device 200 can also handle much processing and calculation, oftentimes independent of a connection to a server 302 .
  • the mass storage device 312 connected to the server 302 can include volumes more cartographic and route data than that which is able to be maintained on the navigation device 200 itself, including maps, etc.
  • the server 302 may process, for example, the majority of the devices of a navigation device 200 which travel along the route using a set of processing algorithms. Further, the cartographic and route data stored in memory 312 can operate on signals (e.g. GPS signals), originally received by the navigation device 200 .
  • a navigation device 200 of an embodiment of the present application includes a processor 210 , an input device 220 , and a display screen 240 .
  • the input device 220 and display screen 240 are integrated into an integrated input and display device to enable both input of information (via direct input, menu selection, etc.) and display of information through a touch panel screen, for example.
  • a touch panel screen for example.
  • Such a screen may be a touch input LCD screen, for example, as is well known to those of ordinary skill in the art.
  • the navigation device 200 can also include any additional input device 220 and/or any additional output device 240 , such as audio input/output devices for example.
  • FIGS. 4A and 4B are perspective views of an actual implementation of an embodiment of the navigation device 200 .
  • the navigation device 200 may be a unit that includes an integrated input and display device 290 (a touch panel screen for example) and the other components of FIG. 2 (including but not limited to internal GPS receiver 250 , microprocessor 210 , a power supply, memory systems 220 , etc.).
  • the navigation device 200 may sit on an arm 292 , which itself may be secured to a vehicle dashboard/window/etc. using a large suction cup 294 .
  • This arm 292 is one example of a docking station to which the navigation device 200 can be docked.
  • the navigation device 200 can be docked or otherwise connected to an arm 292 of the docking station by snap connecting the navigation device 292 to the arm 292 for example (this is only one example, as other known alternatives for connection to a docking station are within the scope of the present application).
  • the navigation device 200 may then be rotatable on the arm 292 , as shown by the arrow of FIG. 4B .
  • a button on the navigation device 200 may be pressed, for example (this is only one example, as other known alternatives for disconnection to a docking station are within the scope of the present application).
  • a navigation device 200 includes a memory 230 to store at least one document; an input device 220 to select at least one document stored in memory; and a network interface 270 to identify at least one other device.
  • the selected at least one document is sent via a personal area network to the at least one other identified device.
  • the personal area network is a short-range wireless network.
  • a navigation device 200 includes a network interface 324 to receive at least one document from at least one other device via a personal area network and a memory 230 to store the at least one document.
  • the personal area network is a short-range wireless network.
  • a method includes selecting at least one document in a memory associated with a navigation device 200 , identifying at least one other device accessible via a personal area network, and sending the at least one selected document via the personal area network to the at least one other identified device in response to a received input.
  • the personal area network is a short-range wireless network.
  • a method includes receiving at least one document from at least one other device via a personal area network and storing the at least one document in memory 230 associated with a navigation device.
  • the personal area network is a short-range wireless network.
  • a navigation device 200 includes means for storing at least one document; means for selecting at least one document stored in memory, and means for identifying at least one other device, the selected at least one document being sent via a personal area network to the at least one other device.
  • the personal area network is a short-range wireless network.
  • a navigation device 200 includes means for receiving at least one document from at least one other device via a personal area network and means for storing the at least one document.
  • the personal area network is a short-range wireless network.
  • a method for sharing a document with at least one other device is illustrated in FIG. 5 and referenced generally by numeral 500 .
  • the method 500 includes a step 502 of selecting at least one document in a memory and a step 504 of identifying at least one other device accessible via a personal area network.
  • Method 500 also includes a step 506 of sending the at least one selected document via the personal area network to the at least one other identified device.
  • a navigation device 200 including a memory 230 to store at least one document, an input device 220 to select at least one document stored in memory, and a network interface to identify at least one other device.
  • the selected at least one document is sent via a personal area network to the at least one other identified device.
  • the personal area network is a short-range wireless network.
  • a personal area network is a short-range wireless network.
  • the short-range wireless network provides communication between two or more devices over a relatively small area.
  • the area can be limited to a range of about ten (10) meters, about fifty (50) meters, or about one hundred (100) meters. In another implementation of the present application, a range can include up to about five (5) kilometers.
  • the short-range wireless network is a Bluetooth network.
  • the short-range wireless network is one of an ultra-wide bandwidth (UWB) network, IrDA, HomeRF SWAP, WiFi, WiMax, ZigBee, etc.
  • UWB ultra-wide bandwidth
  • the short-range network is limited to a relatively small area by low-power signal transmission associated with network communication.
  • a short-range wireless network can permit maximum power transmission up to between about 1 milliwatt to about 200 milliwatts.
  • identifying the at least one other device can include a navigation device 200 transmitting a search signal through the personal area network. If another device is within the range of the navigation device, the other device responds to the search signal. The other device is identified by the navigation device 200 by its response. Once the navigation device 200 has identified the other device, the navigation device 200 can receive an input via an input device 220 indicating a document be sent to the other devices.
  • an initial step can include seeking permission from the other device.
  • the other device can respond by accepting or rejecting the document. If the other device rejects the document, the navigation device 200 terminates sending the document and exists to a menu displayed on display device 240 of the navigation device 200 . If the other device accepts the document, the document is sent to the other device via the personal area network. While sending the document, a status screen can be shown on the display device 240 .
  • a navigation device 200 can receive an input to an input device 220 for selecting one of the other devices identified by the navigation device 200 .
  • a navigation device 200 transmits a search signal through the personal area network, more than one other device on the personal area network can respond the search signal. If a navigation device 200 receives a response from more than one other device, a user can provide an input to an input device 240 to select one or more of the other devices before sending a document. As a result, a user of a navigation device 200 can exclude certain other devices on a personal area network from receiving a document sent by the navigation device 200 .
  • a user of a navigation device 200 can also select one or more documents to be sent via a personal area network.
  • the navigation device 200 can include a plurality of documents stored in memory 230 associated with the navigation device 200 .
  • a user can select one or more of these documents to send via the personal area network.
  • the document can include at least one of an image document, an audio document, a video document, an address book document, and a movie document. Additionally, the document can be a point of interest entry, a rich content document, a symbol, an icon, a ring tone, and/or a color scheme stored in memory 230 associated with the navigation device 200 .
  • a navigation device 200 can receive a document from another device via a personal area network.
  • the navigation device 200 includes a network interface 270 to a document from another device and a memory 230 for storing the document.
  • the personal area network is the short-range wireless network.
  • a method accordingly to another aspect of the present application is illustrated in FIG. 6 and generally referenced by numeral 600 .
  • the method 600 includes a step 602 of receiving a document from another device via a personal area network and a step 604 of storing the document in memory associated with the navigation device.
  • the personal area network is a short-range wireless network.
  • a navigation device 200 including a network interface to receive at least one document from at least one other device via a personal area network and a memory 230 to store the at least one document.
  • the personal area network is a short-range wireless network.
  • a navigation device 200 may be used to perform the various aspects of the method described with regard to FIGS. 5-7 , as would be understood by one of ordinary skill in the art. Thus, further explanation is omitted for the sake of brevity.
  • receiving the document from another device can includes checking memory 230 associated with a navigation device 200 to ensure sufficient memory capacity is available to store the document. If insufficient memory is available, the navigation device 200 can reject reception of the document. In addition to memory capacity, the navigation device 200 can also check the type of document to be received by the navigation device 200 .
  • a navigation device 200 may not support a particular type of document. Thus, the navigation device may be adapted to reject a document of the particular type. For example, one embodiment of a navigation device 200 may not be able to recognize a video document.
  • the navigation device 200 receives an indication a video document is to be received, the navigation device 200 can reject reception of the video document.
  • the navigation device 200 displays a reception failure message on a displays device 240 .
  • a user of the navigation device 200 can also indicate whether to accept or reject a document by providing an input to an input device 220 .
  • the user commands the navigation device 200 to receive the document from the other device.
  • the other device will stop sending a document if the user of the navigation device 200 refuses or does not accept a document.
  • the type of documents being received can also be considered in conjunction step 604 , storing the at least one file.
  • a document can be stored in a specific location or directory in memory 230 associated with the navigation device 200 .
  • several different types of documents can be sent via a personal area network, such as an image document, an address book document, and/or a video document.
  • the document can be stored in a particular directory to ensure the document is readily accessible by an application associated with the type of document.
  • an audio document can be stored in an mp3 directory.
  • an mp3 application allows the user to ready select a desired audio document stored in the mp3 directory.
  • image document can be stored in a photo gallery directory.
  • a photo viewing application can be set up such that is only displays images included in the photo gallery directory.
  • Image documents stored elsewhere may not be viewable by the photo viewing application.
  • the document can be a rich content document. Rich content documents can be stored in a memory location accessible to a document browser or associated with a point of interest.
  • a document can be shared, sent and/or received by a navigation device 200 .
  • a navigation device capable of one of sharing, sending and receiving a document via a short-range wireless network is within the scope of the present application.
  • a navigation device 200 capable of sharing sending and receiving a document via a short-range wireless network is also within the scope of the present application.
  • the other device can be a navigation device.
  • Other device capable of communicating with a short-range network, such as a Bluetooth network can be the other device.
  • the other device can be one or more of a mobile phone, a personal digital assistant, a pager, a computer, and another short-range wireless communication device.
  • a method of sending and receiving a document via a personal area network is illustrated and referenced 700 .
  • the method 700 is illustrated by a number of example displays which are displayed on a navigation device 200 .
  • Example display 702 is a menu option display which allows a user of the navigation device 200 to send a document and/or receive a document.
  • a user provides an input to an input device 220 , as shown on example display 702 .
  • the navigation device 200 receives the input and displays example display 704 .
  • the navigation device 200 prompts the user to ensure at least one other device is ready to receive a document.
  • the navigation device 200 displays example display 706 on a display device 240 .
  • Example display 706 indicates to the user that the navigation device 200 is searching for other devices on the personal area network.
  • the navigation device 200 sends a search signal via the personal area network, by a transmitter 320 and/or I/O port 270 .
  • the navigation device 200 displays example display 708 .
  • example display 708 indicates to the user the other devices that responded to the search signal transmitted by the navigation device 200 .
  • the at least one other device includes multiple other devices, i.e. three devices.
  • the user can provide an input to the input device 220 of the navigation device 200 indicating which of the other devices are to receive the document sent by the navigation device 200 .
  • the input device is integrated into an integrated input and display device 290 .
  • the integrated input and display device 290 receives the user selection of at least one of the other devices. If multiple other devices are selected by the user, sending the document includes sending the document to the multiple other devices.
  • the navigation device 200 displays example displays 710 A/B in the integrated input and display device 290 .
  • example displays 710 A/B allow the user to select one or more documents to send to the other device(s).
  • the user can select the document via a search of documents stored in memory 230 associated with the navigation device 200 or a document browser displayed on the navigation device 200 .
  • the navigation device 200 displays an example status display 712 .
  • the example status display 712 indicates the status of sending the document.
  • the integrated input and display device 290 indicates the status of sending the document as shown in example display 712 . Based on a number of factors, sending the document either succeeds, in which case example display 714 is displayed, or fails, in which case example display 714 is displayed. Subsequently, the navigation device 200 gives the user an option to send another document.
  • a user provides an input to input device 220 as shown in example display 702 .
  • the input device can be integrated into an integrated input and display device 290 .
  • the navigation device 200 displays example display 718 .
  • the navigation device 200 indicates the status of receiving a document.
  • the navigation device 200 checks memory 230 associated with the navigation device to ensure sufficient memory capacity is available to store the document. If insufficient memory capacity is available, the navigation device 200 displays a received failed message as shown in example display 720 . If sufficient memory capacity is available, the navigation device 200 displays example display 722 .
  • Example display 722 prompts the user to provide an input to the integrated input and display device 290 to accept or reject a document waiting to be received. If the user rejects or does not accept the document, the navigation device 200 exits to a menu. If the user provides an input indicating an acceptance of the document, the navigation device 200 displays the example status display 724 , which indicates the status of receiving the document. Based on a number of factors, receiving the document either succeeds, in which case display 726 is displayed, or fails, in which case display 720 is displayed. Subsequently, the navigation device 200 gives the user an option to send another document.
  • the methods of at least one embodiment expressed above may be implemented as a computer data signal embodied in the carrier wave or propagated signal that represents a sequence of instructions which, when executed by a processor (such as processor 304 of server 302 , and/or processor 210 of navigation device 200 for example) causes the processor to perform a respective method.
  • a processor such as processor 304 of server 302 , and/or processor 210 of navigation device 200 for example
  • at least one method provided above may be implemented above as a set of instructions contained on a computer readable or computer accessible medium, such as one of the memory devices previously described, for example, to perform the respective method when executed by a processor or other computer device.
  • the medium may be a magnetic medium, electronic medium, optical medium, etc.
  • any of the aforementioned methods may be embodied in the form of a program.
  • the program may be stored on a computer readable media and is adapted to perform any one of the aforementioned methods when run on a computer device (a device including a processor).
  • a computer device a device including a processor
  • the storage medium or computer readable medium is adapted to store information and is adapted to interact with a data processing facility or computer device to perform the method of any of the above mentioned embodiments.
  • the storage medium may be a built-in medium installed inside a computer device main body or a removable medium arranged so that it can be separated from the computer device main body.
  • Examples of the built-in medium include, but are not limited to, rewriteable non-volatile memories, such as ROMs and flash memories, and hard disks.
  • the removable medium examples include, but are not limited to, optical storage media such as CD-ROMs and DVDs; magneto-optical storage media, such as MOs; magnetism storage media, including but not limited to floppy disks (trademark), cassette tapes, and removable hard disks; media with a built-in rewriteable non-volatile memory, including but not limited to memory cards; and media with a built-in ROM, including but not limited to ROM cassettes; etc.
  • various information regarding stored images for example, property information, may be stored in any other form, or it may be provided in other ways.
  • the electronic components of the navigation device 200 and/or the components of the server 302 can be embodied as computer hardware circuitry or as a computer readable program, or as a combination of both.
  • the system and method of embodiments of the present application include software operative on the processor to perform at least one of the methods according to the teachings of the present application.
  • One of ordinary skill in the art will understand, upon reading and comprehending this disclosure, the manner in which a software program can be launched from a computer readable medium in a computer based system to execute the functions found in the software program.
  • One of ordinary skill in the art will further understand the various programming languages which may be employed to create a software program designed to implement and perform at least one of the methods of the present application.
  • the programs can be structured in an object-orientation using an object-oriented language including but not limited to JAVA, Smalltalk, C++, etc., and the programs can be structured in a procedural-orientation using a procedural language including but not limited to COBOL, C, etc.
  • the software components can communicate in any number of ways that are well known to those of ordinary skill in the art, including but not limited to by application of program interfaces (API), interprocess communication techniques, including but not limited to report procedure call (RPC), common object request broker architecture (CORBA), Component Object Model (COM), Distributed Component Object Model (DCOM), Distributed System Object Model (DSOM), and Remote Method Invocation (RMI).
  • API program interfaces
  • interprocess communication techniques including but not limited to report procedure call (RPC), common object request broker architecture (CORBA), Component Object Model (COM), Distributed Component Object Model (DCOM), Distributed System Object Model (DSOM), and Remote Method Invocation (RMI).
  • RPC report procedure call
  • any one of the above-described and other example features of the present invention may be embodied in the form of an apparatus, method, system, computer program and computer program product.
  • the aforementioned methods may be embodied in the form of a system or device, including, but not limited to, any of the structure for performing the methodology illustrated in the drawings.

Abstract

A method and a navigation device are disclosed for . . . . The navigation device includes a memory to store at least one document; an input device to select at least one document stored in memory; and a network interface to identify at least one other device. The selected at least one document is sent via a personal area network to the at least one other identified device. The personal area network is a short-range wireless network. The method includes selecting at least one document in a memory associated with a navigation device, identifying at least one other device accessible via a personal area network, and sending the at least one selected document via the personal area network to the at least one other identified device in response to a received input. The personal area network is a short-range wireless network.

Description

    PRIORITY STATEMENT
  • The present application hereby claims priority under 35 U.S.C. §119(e) on each of U.S. Provisional Patent Application Nos. 60/879,523 filed Jan. 10, 2007; 60/879,549 filed Jan. 10, 2007; 60/879,553 filed Jan. 10, 2007; 60/879,577 filed Jan. 10, 2007; and 60/879,599 filed Jan. 10, 2007; the entire contents of each of which is hereby incorporated herein by reference.
  • CO-PENDING APPLICATIONS
  • The following applications are being filed concurrently with the present applications. The entire contents of each of the following applications is hereby incorporated herein by reference: A NAVIGATION DEVICE AND METHOD FOR EARLY INSTRUCTION OUTPUT (Attorney docket number 06P207US01) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR ESTABLISHING AND USING PROFILES (Attorney docket number 06P207US02) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR ENHANCED MAP DISPLAY (Attorney docket number 06P207US03) filed on even date herewith; A NAVIGATION DEVICE AND METHOD RELATING TO AN AUDIBLE RECOGNITION MODE (Attorney docket number 06P207US04) filed on even date herewith; NAVIGATION DEVICE AND METHOD FOR PROVIDING POINTS OF INTEREST (Attorney docket number 06P207US05) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR FUEL PRICING DISPLAY (Attorney docket number 06P057US06) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR INFORMATIONAL SCREEN DISPLAY (Attorney docket number 06P207US06) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR DEALING WITH LIMITED ACCESS ROADS (Attorney docket number 06P057US07) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR TRAVEL WARNINGS (Attorney docket number 06P057US07) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR DRIVING BREAK WARNING (Attorney docket number 06P057US07) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR ISSUING WARNINGS (Attorney docket number 06P207US07) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR DISPLAY OF POSITION IN TEXT READABLE FORM (Attorney docket number 06P207US08) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR EMERGENCY SERVICE ACCESS (Attorney docket number 06P057US08) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR PROVIDING REGIONAL TRAVEL INFORMATION IN A NAVIGATION DEVICE (Attorney docket number 06P207US09) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR USING SPECIAL CHARACTERS IN A NAVIGATION DEVICE (Attorney docket number 06P207US09) filed on even date herewith; A NAVIGATION DEVICE AND METHOD USING A LOCATION MESSAGE (Attorney docket number 06P207US10) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR CONSERVING POWER (Attorney docket number 06P207US11) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR USING A TRAFFIC MESSAGE CHANNEL (Attorney docket number 06P207US13) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR USING A TRAFFIC MESSAGE CHANNEL RESOURCE (Attorney docket number 06P207US13) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR QUICK OPTION ACCESS (Attorney docket number 06P207US15) filed on even date herewith; A NAVIGATION DEVICE AND METHOD FOR DISPLAYING A RICH CONTENT DOCUMENT (Attorney docket number 06P207US27) filed on even date herewith.
  • FIELD
  • The present application generally relates to navigation methods and devices.
  • BACKGROUND
  • Navigation devices were traditionally utilized mainly in the areas of vehicle use, such as on cars, motorcycles, trucks, boats, etc. Alternatively, if such navigation devices were portable, they were further transferable between vehicles and/or useable outside the vehicle, for foot travel for example.
  • These devices provide a user with directions and map information to direct the user from one location to another location. File transfer between these devices and a personal computer required USB communication through a USB cable.
  • SUMMARY
  • The inventors of the present application developed a method and implementation of a navigation device, to allow users of the navigation device to send and/or receive at least one document to/from at least one other device via a personal area network
  • In at least one embodiment of the present application, a navigation device includes a memory to store at least one document, an input device to select at least one document stored in memory, and a network interface to identify at least one other device. The selected at least one document is sent via a personal area network to the at least one other identified device. The personal area network is a short-range wireless network.
  • In at least one embodiment of the present application, a navigation device includes a network interface to receive at least one document from at least one other device via a personal area network and a memory to store the at least one document. The personal area network is a short-range wireless network.
  • In at least one embodiment of the present application, a method includes selecting at least one document in a memory associated with a navigation device, identifying at least one other device accessible via a personal area network, and sending the at least one selected document via the personal area network to the at least one other identified device in response to a received input. The personal area network is a short-range wireless network.
  • In at least one embodiment of the present application, a method includes receiving at least one document from at least one other device via a personal area network and storing the at least one document in memory associated with a navigation device. The personal area network is a short-range wireless network.
  • In at least one embodiment of the present application, a navigation device includes means for storing at least one document; means for selecting at least one document stored in memory, and means for identifying at least one other device, the selected at least one document being sent via a personal area network to the at least one other device. The personal area network is a short-range wireless network.
  • In at least one embodiment of the present application, a navigation device includes means for receiving at least one document from at least one other device via a personal area network and means for storing the at least one document. The personal area network is a short-range wireless network.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present application will be described in more detail below by using example embodiments, which will be explained with the aid of the drawings, in which:
  • FIG. 1 illustrates an example view of a Global Positioning System (GPS);
  • FIG. 2 illustrates an example block diagram of electronic components of a navigation device of an embodiment of the present application;
  • FIG. 3 illustrates an example block diagram of a server, navigation device and connection therebetween of an embodiment of the present application;
  • FIG. 4A illustrates a perspective view of a navigation device separated from an arm of a docking station;
  • FIG. 4B illustrates a perspective view of a navigation device connected to the arm of the docking station;
  • FIG. 5 illustrates a method of sending a document according to one aspect of the present application;
  • FIG. 6 illustrates a method of receiving a document according to one aspect of the present application; and
  • FIG. 7 illustrates a method of sending and receiving a document.
  • DETAILED DESCRIPTION OF THE EXAMPLE EMBODIMENTS
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention. As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • In describing example embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner.
  • Referencing the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, example embodiments of the present patent application are hereafter described. Like numbers refer to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • FIG. 1 illustrates an example view of Global Positioning System (GPS), usable by navigation devices, including the navigation device of embodiments of the present application. Such systems are known and are used for a variety of purposes. In general, GPS is a satellite-radio based navigation system capable of determining continuous position, velocity, time, and in some instances direction information for an unlimited number of users.
  • Formerly known as NAVSTAR, the GPS incorporates a plurality of satellites which work with the earth in extremely precise orbits. Based on these precise orbits, GPS satellites can relay their location to any number of receiving units.
  • The GPS system is implemented when a device, specially equipped to receive GPS data, begins scanning radio frequencies for GPS satellite signals. Upon receiving a radio signal from a GPS satellite, the device determines the precise location of that satellite via one of a plurality of different conventional methods. The device will continue scanning, in most instances, for signals until it has acquired at least three different satellite signals (noting that position is not normally, but can be determined, with only two signals using other triangulation techniques). Implementing geometric triangulation, the receiver utilizes the three known positions to determine its own two-dimensional position relative to the satellites. This can be done in a known manner. Additionally, acquiring a fourth satellite signal will allow the receiving device to calculate its three dimensional position by the same geometrical calculation in a known manner. The position and velocity data can be updated in real time on a continuous basis by an unlimited number of users.
  • As shown in FIG. 1, the GPS system is denoted generally by reference numeral 100. A plurality of satellites 120 are in orbit about the earth 124. The orbit of each satellite 120 is not necessarily synchronous with the orbits of other satellites 120 and, in fact, is likely asynchronous. A GPS receiver 140, usable in embodiments of navigation devices of the present application, is shown receiving spread spectrum GPS satellite signals 160 from the various satellites 120.
  • The spread spectrum signals 160, continuously transmitted from each satellite 120, utilize a highly accurate frequency standard accomplished with an extremely accurate atomic clock. Each satellite 120, as part of its data signal transmission 160, transmits a data stream indicative of that particular satellite 120. It is appreciated by those skilled in the relevant art that the GPS receiver device 140 generally acquires spread spectrum GPS satellite signals 160 from at least three satellites 120 for the GPS receiver device 140 to calculate its two-dimensional position by triangulation. Acquisition of an additional signal, resulting in signals 160 from a total of four satellites 120, permits the GPS receiver device 140 to calculate its three-dimensional position in a known manner.
  • FIG. 2 illustrates an example block diagram of electronic components of a navigation device 200 of an embodiment of the present application, in block component format. It should be noted that the block diagram of the navigation device 200 is not inclusive of all components of the navigation device, but is only representative of many example components.
  • The navigation device 200 is located within a housing (not shown). The housing includes a processor 210 connected to an input device 220 and a display screen 240. The input device 220 can include a keyboard device, voice input device, touch panel and/or any other known input device utilized to input information; and the display screen 240 can include any type of display screen such as an LCD display, for example. In at least one embodiment of the present application, the input device 220 and display screen 240 are integrated into an integrated input and display device, including a touchpad or touchscreen input wherein a user need only touch a portion of the display screen 240 to select one of a plurality of display choices or to activate one of a plurality of virtual buttons.
  • In addition, other types of output devices 250 can also include, including but not limited to, an audible output device. As output device 250 can produce audible information to a user of the navigation device 200, it is equally understood that input device 240 can also include a microphone and software for receiving input voice commands as well.
  • In the navigation device 200, processor 210 is operatively connected to and set to receive input information from input device 240 via a connection 225, and operatively connected to at least one of display screen 240 and output device 250, via output connections 245, to output information thereto. Further, the processor 210 is operatively connected to memory 230 via connection 235 and is further adapted to receive/send information from/to input/output (I/O) ports 270 via connection 275, wherein the I/O port 270 is connectable to an I/O device 280 external to the navigation device 200. The external I/O device 270 may include, but is not limited to an external listening device such as an earpiece for example. The connection to I/O device 280 can further be a wired or wireless connection to any other external device such as a car stereo unit for hands-free operation and/or for voice activated operation for example, for connection to an ear piece or head phones, and/or for connection to a mobile phone for example, wherein the mobile phone connection may be used to establish a data connection between the navigation device 200 and the internet or any other network for example, and/or to establish a connection to a server via the internet or some other network for example.
  • The navigation device 200, in at least one embodiment, may establish a “mobile” network connection with the server 302 via a mobile device (such as a mobile phone, PDA, and/or any device with mobile phone technology) establishing a digital connection (such as a digital connection via known Bluetooth technology for example). Thereafter, through its network service provider, the mobile device can establish a network connection (through the internet for example) with a server 302. As such, a “mobile” network connection is established between the navigation device 200 (which can be, and often times is mobile as it travels alone and/or in a vehicle) and the server 302 to provide a “real-time” or at least very “up to date” gateway for information.
  • The establishing of the network connection between the mobile device (via a service provider) and another device such as the server 302, using the internet 410 for example, can be done in a known manner. This can include use of TCP/IP layered protocol for example. The mobile device 400 can utilize any number of communication standards such as CDMA, GSM, WAN, etc.
  • As such, an internet connection may be utilized which is achieved via data connection, via a mobile phone or mobile phone technology within the navigation device 200 for example. For this connection, an internet connection between the server 302 and the navigation device 200 is established. This can be done, for example, through a mobile phone or other mobile device and a GPRS (General Packet Radio Service)-connection (GPRS connection is a high-speed data connection for mobile devices provided by telecom operators; GPRS is a method to connect to the internet.
  • The navigation device 200 can further complete a data connection with the mobile device, and eventually with the internet and server 302, via existing Bluetooth technology for example, in a known manner, wherein the data protocol can utilize any number of standards, such as the GSRM, the Data Protocol Standard for the GSM standard, for example.
  • The navigation device 200 may include its own mobile phone technology within the navigation device 200 itself (including an antenna for example, wherein the internal antenna of the navigation device 200 can further alternatively be used). The mobile phone technology within the navigation device 200 can include internal components as specified above, and/or can include an insertable card, complete with necessary mobile phone technology and/or an antenna for example. As such, mobile phone technology within the navigation device 200 can similarly establish a network connection between the navigation device 200 and the server 302, via the internet for example, in a manner similar to that of any mobile device.
  • For GRPS phone settings, the Bluetooth enabled device may be used to correctly work with the ever changing spectrum of mobile phone models, manufacturers, etc., model/manufacturer specific settings may be stored on the navigation device 200 for example. The data stored for this information can be updated in a manner discussed in any of the embodiments, previous and subsequent.
  • FIG. 2 further illustrates an operative connection between the processor 210 and an antenna/receiver 250 via connection 255, wherein the antenna/receiver 250 can be a GPS antenna/receiver for example. It will be understood that the antenna and receiver designated by reference numeral 250 are combined schematically for illustration, but that the antenna and receiver may be separately located components, and that the antenna may be a GPS patch antenna or helical antenna for example.
  • Further, it will be understood by one of ordinary skill in the art that the electronic components shown in FIG. 2 are powered by power sources (not shown) in a conventional manner. As will be understood by one of ordinary skill in the art, different configurations of the components shown in FIG. 2 are considered within the scope of the present application. For example, in one embodiment, the components shown in FIG. 2 may be in communication with one another via wired and/or wireless connections and the like. Thus, the scope of the navigation device 200 of the present application includes a portable or handheld navigation device 200.
  • In addition, the portable or handheld navigation device 200 of FIG. 2 can be connected or “docked” in a known manner to a motorized vehicle such as a car or boat for example. Such a navigation device 200 is then removable from the docked location for portable or handheld navigation use.
  • FIG. 3 illustrates an example block diagram of a server 302 and a navigation device 200 of the present application, via a generic communications channel 318, of an embodiment of the present application. The server 302 and a navigation device 200 of the present application can communicate when a connection via communications channel 318 is established between the server 302 and the navigation device 200 (noting that such a connection can be a data connection via mobile device, a direct connection via personal computer via the internet, etc.).
  • The server 302 includes, in addition to other components which may not be illustrated, a processor 304 operatively connected to a memory 306 and further operatively connected, via a wired or wireless connection 314, to a mass data storage device 312. The processor 304 is further operatively connected to transmitter 308 and receiver 310, to transmit and send information to and from navigation device 200 via communications channel 318. The signals sent and received may include data, communication, and/or other propagated signals. The transmitter 308 and receiver 310 may be selected or designed according to the communications requirement and communication technology used in the communication design for the navigation system 200. Further, it should be noted that the functions of transmitter 308 and receiver 310 may be combined into a signal transceiver.
  • Server 302 is further connected to (or includes) a mass storage device 312, noting that the mass storage device 312 may be coupled to the server 302 via communication link 314. The mass storage device 312 contains a store of navigation data and map information, and can again be a separate device from the server 302 or can be incorporated into the server 302.
  • The navigation device 200 is adapted to communicate with the server 302 through communications channel 318, and includes processor, memory, etc. as previously described with regard to FIG. 2, as well as transmitter 320 and receiver 322 to send and receive signals and/or data through the communications channel 318, noting that these devices can further be used to communicate with devices other than server 302. Further, the transmitter 320 and receiver 322 are selected or designed according to communication requirements and communication technology used in the communication design for the navigation device 200 and the functions of the transmitter 320 and receiver 322 may be combined into a single transceiver.
  • Software stored in server memory 306 provides instructions for the processor 304 and allows the server 302 to provide services to the navigation device 200. One service provided by the server 302 involves processing requests from the navigation device 200 and transmitting navigation data from the mass data storage 312 to the navigation device 200. According to at least one embodiment of the present application, another service provided by the server 302 includes processing the navigation data using various algorithms for a desired application and sending the results of these calculations to the navigation device 200.
  • The communication channel 318 generically represents the propagating medium or path that connects the navigation device 200 and the server 302. According to at least one embodiment of the present application, both the server 302 and navigation device 200 include a transmitter for transmitting data through the communication channel and a receiver for receiving data that has been transmitted through the communication channel.
  • The communication channel 318 is not limited to a particular communication technology. Additionally, the communication channel 318 is not limited to a single communication technology; that is, the channel 318 may include several communication links that use a variety of technology. For example, according to at least one embodiment, the communication channel 318 can be adapted to provide a path for electrical, optical, and/or electromagnetic communications, etc. As such, the communication channel 318 includes, but is not limited to, one or a combination of the following: electric circuits, electrical conductors such as wires and coaxial cables, fiber optic cables, converters, radio-frequency (rf) waves, the atmosphere, empty space, etc. Furthermore, according to at least one various embodiment, the communication channel 318 can include intermediate devices such as routers, repeaters, buffers, transmitters, and receivers, for example.
  • In at least one embodiment of the present application, for example, the communication channel 318 includes telephone and computer networks. Furthermore, in at least one embodiment, the communication channel 318 may be capable of accommodating wireless communication such as radio frequency, microwave frequency, infrared communication, etc. Additionally, according to at least one embodiment, the communication channel 318 can accommodate satellite communication.
  • The communication signals transmitted through the communication channel 318 include, but are not limited to, signals as may be required or desired for given communication technology. For example, the signals may be adapted to be used in cellular communication technology such as Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), Global System for Mobile Communications (GSM), etc. Both digital and analogue signals can be transmitted through the communication channel 318. According to at least one embodiment, these signals may be modulated, encrypted and/or compressed signals as may be desirable for the communication technology.
  • The mass data storage 312 includes sufficient memory for the desired navigation applications. Examples of the mass data storage 312 may include magnetic data storage media such as hard drives for example, optical storage media such as CD-Roms for example, charged data storage media such as flash memory for example, molecular memory, etc.
  • According to at least one embodiment of the present application, the server 302 includes a remote server accessible by the navigation device 200 via a wireless channel. According to at least one other embodiment of the application, the server 302 may include a network server located on a local area network (LAN), wide area network (WAN), virtual private network (VPN), etc. Connection to the server can be wired or wireless. The device could host connection itself or use a gateway to access the server.
  • According to at least one embodiment of the present application, the server 302 may include a personal computer such as a desktop or laptop computer, and the communication channel 318 may be a cable connected between the personal computer and the navigation device 200. Alternatively, a personal computer may be connected between the navigation device 200 and the server 302 to establish an internet connection between the server 302 and the navigation device 200. Alternatively, a mobile telephone or other handheld device may establish a wireless connection to the internet, for connecting the navigation device 200 to the server 302 via the internet.
  • The navigation device 200 may be provided with information from the server 302 via information downloads which may be periodically updated upon a user connecting navigation device 200 to the server 302 and/or may be more dynamic upon a more constant or frequent connection being made between the server 302 and navigation device 200 via a wireless mobile connection device and TCP/IP connection for example. For many dynamic calculations, the processor 304 in the server 302 may be used to handle the bulk of the processing needs, however, processor 210 of navigation device 200 can also handle much processing and calculation, oftentimes independent of a connection to a server 302.
  • The mass storage device 312 connected to the server 302 can include volumes more cartographic and route data than that which is able to be maintained on the navigation device 200 itself, including maps, etc. The server 302 may process, for example, the majority of the devices of a navigation device 200 which travel along the route using a set of processing algorithms. Further, the cartographic and route data stored in memory 312 can operate on signals (e.g. GPS signals), originally received by the navigation device 200.
  • As indicated above in FIG. 2 of the application, a navigation device 200 of an embodiment of the present application includes a processor 210, an input device 220, and a display screen 240. In at least one embodiment, the input device 220 and display screen 240 are integrated into an integrated input and display device to enable both input of information (via direct input, menu selection, etc.) and display of information through a touch panel screen, for example. Such a screen may be a touch input LCD screen, for example, as is well known to those of ordinary skill in the art. Further, the navigation device 200 can also include any additional input device 220 and/or any additional output device 240, such as audio input/output devices for example.
  • FIGS. 4A and 4B are perspective views of an actual implementation of an embodiment of the navigation device 200. As shown in FIG. 4A, the navigation device 200 may be a unit that includes an integrated input and display device 290 (a touch panel screen for example) and the other components of FIG. 2 (including but not limited to internal GPS receiver 250, microprocessor 210, a power supply, memory systems 220, etc.).
  • The navigation device 200 may sit on an arm 292, which itself may be secured to a vehicle dashboard/window/etc. using a large suction cup 294. This arm 292 is one example of a docking station to which the navigation device 200 can be docked. As shown in FIG. 4B, the navigation device 200 can be docked or otherwise connected to an arm 292 of the docking station by snap connecting the navigation device 292 to the arm 292 for example (this is only one example, as other known alternatives for connection to a docking station are within the scope of the present application). The navigation device 200 may then be rotatable on the arm 292, as shown by the arrow of FIG. 4B. To release the connection between the navigation device 200 and the docking station, a button on the navigation device 200 may be pressed, for example (this is only one example, as other known alternatives for disconnection to a docking station are within the scope of the present application).
  • According to embodiments of the present application, a navigation device 200 includes a memory 230 to store at least one document; an input device 220 to select at least one document stored in memory; and a network interface 270 to identify at least one other device. The selected at least one document is sent via a personal area network to the at least one other identified device. The personal area network is a short-range wireless network.
  • According to embodiments of the present application, a navigation device 200 includes a network interface 324 to receive at least one document from at least one other device via a personal area network and a memory 230 to store the at least one document. The personal area network is a short-range wireless network.
  • According to embodiments of the present application, a method includes selecting at least one document in a memory associated with a navigation device 200, identifying at least one other device accessible via a personal area network, and sending the at least one selected document via the personal area network to the at least one other identified device in response to a received input. The personal area network is a short-range wireless network.
  • According to embodiments of the present application, a method includes receiving at least one document from at least one other device via a personal area network and storing the at least one document in memory 230 associated with a navigation device. The personal area network is a short-range wireless network.
  • According to embodiments of the present application, a navigation device 200 includes means for storing at least one document; means for selecting at least one document stored in memory, and means for identifying at least one other device, the selected at least one document being sent via a personal area network to the at least one other device. The personal area network is a short-range wireless network.
  • According to embodiments of the present application, a navigation device 200 includes means for receiving at least one document from at least one other device via a personal area network and means for storing the at least one document. The personal area network is a short-range wireless network.
  • According to at least one embodiment of the present application, a method for sharing a document with at least one other device is illustrated in FIG. 5 and referenced generally by numeral 500. The method 500 includes a step 502 of selecting at least one document in a memory and a step 504 of identifying at least one other device accessible via a personal area network. Method 500 also includes a step 506 of sending the at least one selected document via the personal area network to the at least one other identified device.
  • It should be noted that each of the aforementioned aspects of an embodiment of the present application have been described with regard to the method of the present application. However, at least one embodiment of the present application is directed to a navigation device 200, including a memory 230 to store at least one document, an input device 220 to select at least one document stored in memory, and a network interface to identify at least one other device. The selected at least one document is sent via a personal area network to the at least one other identified device. The personal area network is a short-range wireless network. Thus, such a navigation device 200 may be used to perform the various aspects of the method described with regard to FIGS. 5-7, as would be understood by one of ordinary skill in the art. Thus, further explanation is omitted for the sake of brevity.
  • A personal area network is a short-range wireless network. The short-range wireless network provides communication between two or more devices over a relatively small area. The area can be limited to a range of about ten (10) meters, about fifty (50) meters, or about one hundred (100) meters. In another implementation of the present application, a range can include up to about five (5) kilometers. In one implementation of at least one embodiment, the short-range wireless network is a Bluetooth network. In other implementations, the short-range wireless network is one of an ultra-wide bandwidth (UWB) network, IrDA, HomeRF SWAP, WiFi, WiMax, ZigBee, etc. The short-range network is limited to a relatively small area by low-power signal transmission associated with network communication. A short-range wireless network can permit maximum power transmission up to between about 1 milliwatt to about 200 milliwatts.
  • In one implementation of at least one embodiment, identifying the at least one other device can include a navigation device 200 transmitting a search signal through the personal area network. If another device is within the range of the navigation device, the other device responds to the search signal. The other device is identified by the navigation device 200 by its response. Once the navigation device 200 has identified the other device, the navigation device 200 can receive an input via an input device 220 indicating a document be sent to the other devices.
  • When sending a document to the other device, an initial step can include seeking permission from the other device. The other device can respond by accepting or rejecting the document. If the other device rejects the document, the navigation device 200 terminates sending the document and exists to a menu displayed on display device 240 of the navigation device 200. If the other device accepts the document, the document is sent to the other device via the personal area network. While sending the document, a status screen can be shown on the display device 240.
  • In one implementation of at least one embodiment, a navigation device 200 can receive an input to an input device 220 for selecting one of the other devices identified by the navigation device 200. When a navigation device 200 transmits a search signal through the personal area network, more than one other device on the personal area network can respond the search signal. If a navigation device 200 receives a response from more than one other device, a user can provide an input to an input device 240 to select one or more of the other devices before sending a document. As a result, a user of a navigation device 200 can exclude certain other devices on a personal area network from receiving a document sent by the navigation device 200.
  • In another embodiment, a user of a navigation device 200 can also select one or more documents to be sent via a personal area network. The navigation device 200 can include a plurality of documents stored in memory 230 associated with the navigation device 200. A user can select one or more of these documents to send via the personal area network. The document can include at least one of an image document, an audio document, a video document, an address book document, and a movie document. Additionally, the document can be a point of interest entry, a rich content document, a symbol, an icon, a ring tone, and/or a color scheme stored in memory 230 associated with the navigation device 200.
  • According to one aspect of the present application, a navigation device 200 can receive a document from another device via a personal area network. The navigation device 200 includes a network interface 270 to a document from another device and a memory 230 for storing the document. The personal area network is the short-range wireless network. A method accordingly to another aspect of the present application is illustrated in FIG. 6 and generally referenced by numeral 600. The method 600 includes a step 602 of receiving a document from another device via a personal area network and a step 604 of storing the document in memory associated with the navigation device. The personal area network is a short-range wireless network.
  • It should be noted that each of the aforementioned aspects of an embodiment of the present application have been described with regard to the method of the present application. However, at least one embodiment of the present application is directed to a navigation device 200, including a network interface to receive at least one document from at least one other device via a personal area network and a memory 230 to store the at least one document. The personal area network is a short-range wireless network. Thus, such a navigation device 200 may be used to perform the various aspects of the method described with regard to FIGS. 5-7, as would be understood by one of ordinary skill in the art. Thus, further explanation is omitted for the sake of brevity.
  • In one implementation of at least one embodiment, receiving the document from another device can includes checking memory 230 associated with a navigation device 200 to ensure sufficient memory capacity is available to store the document. If insufficient memory is available, the navigation device 200 can reject reception of the document. In addition to memory capacity, the navigation device 200 can also check the type of document to be received by the navigation device 200. A navigation device 200 may not support a particular type of document. Thus, the navigation device may be adapted to reject a document of the particular type. For example, one embodiment of a navigation device 200 may not be able to recognize a video document. When the navigation device 200 receives an indication a video document is to be received, the navigation device 200 can reject reception of the video document. The navigation device 200 displays a reception failure message on a displays device 240.
  • Apart from the document type and memory requirements of a navigation device 200, a user of the navigation device 200 can also indicate whether to accept or reject a document by providing an input to an input device 220. By accepting the document, the user commands the navigation device 200 to receive the document from the other device. By rejecting or not accepting, the user refuses to receive the document. In a number of implementations, the other device will stop sending a document if the user of the navigation device 200 refuses or does not accept a document.
  • Accordingly to at least one embodiment, the type of documents being received can also be considered in conjunction step 604, storing the at least one file. Based on a type of document, a document can be stored in a specific location or directory in memory 230 associated with the navigation device 200. As stated above, several different types of documents can be sent via a personal area network, such as an image document, an address book document, and/or a video document. When the document is received by the navigation device 200, the document can be stored in a particular directory to ensure the document is readily accessible by an application associated with the type of document. In one example, an audio document can be stored in an mp3 directory. When a user wants to play the audio document, an mp3 application allows the user to ready select a desired audio document stored in the mp3 directory. In another example, image document can be stored in a photo gallery directory. A photo viewing application can be set up such that is only displays images included in the photo gallery directory. Image documents stored elsewhere may not be viewable by the photo viewing application. In other examples, the document can be a rich content document. Rich content documents can be stored in a memory location accessible to a document browser or associated with a point of interest.
  • As described above, a document can be shared, sent and/or received by a navigation device 200. It should be understood that a navigation device capable of one of sharing, sending and receiving a document via a short-range wireless network is within the scope of the present application. Similarly, a navigation device 200 capable of sharing sending and receiving a document via a short-range wireless network is also within the scope of the present application. Furthermore, the other device, referred to above, can be a navigation device. Other device capable of communicating with a short-range network, such as a Bluetooth network, can be the other device. Specifically, the other device can be one or more of a mobile phone, a personal digital assistant, a pager, a computer, and another short-range wireless communication device.
  • According to a further embodiment of the present application, a method of sending and receiving a document via a personal area network is illustrated and referenced 700. The method 700 is illustrated by a number of example displays which are displayed on a navigation device 200. Example display 702 is a menu option display which allows a user of the navigation device 200 to send a document and/or receive a document. To send a document, a user provides an input to an input device 220, as shown on example display 702. The navigation device 200 receives the input and displays example display 704. In example display 704, the navigation device 200 prompts the user to ensure at least one other device is ready to receive a document. In response to the user's input to the input device 220, the navigation device 200 displays example display 706 on a display device 240.
  • Example display 706 indicates to the user that the navigation device 200 is searching for other devices on the personal area network. The navigation device 200 sends a search signal via the personal area network, by a transmitter 320 and/or I/O port 270. When the navigation device 200 has received a response from one or more other devices, the navigation device 200 displays example display 708. As shown, example display 708 indicates to the user the other devices that responded to the search signal transmitted by the navigation device 200. In this example, the at least one other device includes multiple other devices, i.e. three devices. The user can provide an input to the input device 220 of the navigation device 200 indicating which of the other devices are to receive the document sent by the navigation device 200. The input device is integrated into an integrated input and display device 290. The integrated input and display device 290 receives the user selection of at least one of the other devices. If multiple other devices are selected by the user, sending the document includes sending the document to the multiple other devices. When the user provides the input to the integrated input and display device 290, the navigation device 200 displays example displays 710A/B in the integrated input and display device 290.
  • As illustrated, example displays 710A/B allow the user to select one or more documents to send to the other device(s). The user can select the document via a search of documents stored in memory 230 associated with the navigation device 200 or a document browser displayed on the navigation device 200. When the user provides an input to input device 220 to select one or more documents, the navigation device 200 displays an example status display 712. The example status display 712 indicates the status of sending the document. In at least one embodiment, the integrated input and display device 290 indicates the status of sending the document as shown in example display 712. Based on a number of factors, sending the document either succeeds, in which case example display 714 is displayed, or fails, in which case example display 714 is displayed. Subsequently, the navigation device 200 gives the user an option to send another document.
  • To receive a document, a user provides an input to input device 220 as shown in example display 702. The input device can be integrated into an integrated input and display device 290. In response to the input, the navigation device 200 displays example display 718. In example display 718, the navigation device 200 indicates the status of receiving a document. When the status message is displayed on integrated input and display device 290, the navigation device 200 checks memory 230 associated with the navigation device to ensure sufficient memory capacity is available to store the document. If insufficient memory capacity is available, the navigation device 200 displays a received failed message as shown in example display 720. If sufficient memory capacity is available, the navigation device 200 displays example display 722. Example display 722 prompts the user to provide an input to the integrated input and display device 290 to accept or reject a document waiting to be received. If the user rejects or does not accept the document, the navigation device 200 exits to a menu. If the user provides an input indicating an acceptance of the document, the navigation device 200 displays the example status display 724, which indicates the status of receiving the document. Based on a number of factors, receiving the document either succeeds, in which case display 726 is displayed, or fails, in which case display 720 is displayed. Subsequently, the navigation device 200 gives the user an option to send another document.
  • The methods of at least one embodiment expressed above may be implemented as a computer data signal embodied in the carrier wave or propagated signal that represents a sequence of instructions which, when executed by a processor (such as processor 304 of server 302, and/or processor 210 of navigation device 200 for example) causes the processor to perform a respective method. In at least one other embodiment, at least one method provided above may be implemented above as a set of instructions contained on a computer readable or computer accessible medium, such as one of the memory devices previously described, for example, to perform the respective method when executed by a processor or other computer device. In varying embodiments, the medium may be a magnetic medium, electronic medium, optical medium, etc.
  • Even further, any of the aforementioned methods may be embodied in the form of a program. The program may be stored on a computer readable media and is adapted to perform any one of the aforementioned methods when run on a computer device (a device including a processor). Thus, the storage medium or computer readable medium, is adapted to store information and is adapted to interact with a data processing facility or computer device to perform the method of any of the above mentioned embodiments.
  • The storage medium may be a built-in medium installed inside a computer device main body or a removable medium arranged so that it can be separated from the computer device main body. Examples of the built-in medium include, but are not limited to, rewriteable non-volatile memories, such as ROMs and flash memories, and hard disks. Examples of the removable medium include, but are not limited to, optical storage media such as CD-ROMs and DVDs; magneto-optical storage media, such as MOs; magnetism storage media, including but not limited to floppy disks (trademark), cassette tapes, and removable hard disks; media with a built-in rewriteable non-volatile memory, including but not limited to memory cards; and media with a built-in ROM, including but not limited to ROM cassettes; etc. Furthermore, various information regarding stored images, for example, property information, may be stored in any other form, or it may be provided in other ways.
  • As one of ordinary skill in the art will understand upon reading the disclosure, the electronic components of the navigation device 200 and/or the components of the server 302 can be embodied as computer hardware circuitry or as a computer readable program, or as a combination of both.
  • The system and method of embodiments of the present application include software operative on the processor to perform at least one of the methods according to the teachings of the present application. One of ordinary skill in the art will understand, upon reading and comprehending this disclosure, the manner in which a software program can be launched from a computer readable medium in a computer based system to execute the functions found in the software program. One of ordinary skill in the art will further understand the various programming languages which may be employed to create a software program designed to implement and perform at least one of the methods of the present application.
  • The programs can be structured in an object-orientation using an object-oriented language including but not limited to JAVA, Smalltalk, C++, etc., and the programs can be structured in a procedural-orientation using a procedural language including but not limited to COBOL, C, etc. The software components can communicate in any number of ways that are well known to those of ordinary skill in the art, including but not limited to by application of program interfaces (API), interprocess communication techniques, including but not limited to report procedure call (RPC), common object request broker architecture (CORBA), Component Object Model (COM), Distributed Component Object Model (DCOM), Distributed System Object Model (DSOM), and Remote Method Invocation (RMI). However, as will be appreciated by one of ordinary skill in the art upon reading the present application disclosure, the teachings of the present application are not limited to a particular programming language or environment.
  • The above systems, devices, and methods have been described by way of example and not by way of limitation with respect to improving accuracy, processor speed, and ease of user interaction, etc. with a navigation device 200.
  • Further, elements and/or features of different example embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure and appended claims.
  • Still further, any one of the above-described and other example features of the present invention may be embodied in the form of an apparatus, method, system, computer program and computer program product. For example, of the aforementioned methods may be embodied in the form of a system or device, including, but not limited to, any of the structure for performing the methodology illustrated in the drawings.
  • Example embodiments being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

Claims (39)

1. A navigation device for sending a document to at least one other device, the navigation device comprising:
a memory to store at least one document;
an input device to select at least one document stored in memory; and
a network interface to identify at least one other device, the selected at least one document being sent via a personal area network to the at least one other identified device, the personal area network being a short-range wireless network.
2. The navigation device of claim 1 wherein the short-range wireless network is a Bluetooth network
3. The navigation device of claim 2 wherein the short-range includes a range of about 10 meters.
4. The navigation device of claim 1 wherein the at least one other device is one of a navigation device, a mobile phone, a personal digital assistant, a pager, a computer, or another short-range wireless communication device.
5. The navigation device of claim 1 wherein the document includes at least one of an image document, an audio document, a video document, and an address book document.
6. The navigation device of claim 1 wherein the document includes a rich content document.
7. The navigation device of claim 1 wherein the input device is an integrated input and display device, the integrated input and display device to indicate a status of sending the at least one document.
8. The navigation device of claim 1 wherein multiple other devices are identified, the integrated input and display device to receive a user selection of at least one of the multiple other device, and wherein the at least one document is sent to the selected at least one of the multiple other devices.
9. The navigation device of claim 1 wherein the network interface sends a search signal via the personal area network.
10. The navigation device of claim 1 wherein the short-range wireless network is ultra-wideband (UWB) network.
11. A navigation device for receiving a document with at least one other device, the navigation device comprising:
a network interface to receive at least one document from at least one other device via a personal area network; and
a memory to store the at least one document; the personal area network being a short-range wireless network.
12. The navigation device of claim 11 wherein the short-range wireless network is a Bluetooth network.
13. The navigation device of claim 11 further comprising a display device to indicate a status of receiving the document.
14. The navigation device of claim 11 wherein the short-range includes a range of about 50 meters.
15. The navigation device of claim 14 wherein the document includes at least one of an image document, an audio document, a video document, and an address book document
16. The navigation device of claim 11 wherein the network interface responds to a search signal from the at least one other device.
17. The navigation device of claim 11 wherein the at least one other device is one of a navigation device, a mobile phone, a personal digital assistant, a pager, a computer, and another short-range wireless communication device.
18. The navigation device of claim 11 wherein the short-range wireless network is one of an ultra-wideband network, an IrDA, a HomeRF SWAP, a WiFi, a WiMax, and a ZigBee.
19. A method of sharing a document with at least one other device, the method comprising:
selecting at least one document in a memory associated with a navigation device;
identifying at least one other device accessible via a personal area network; and
sending the at least one selected document via the personal area network to the at least one other identified device in response to a received input, the personal area network being a short-range wireless network.
20. The method of claim 19 wherein the short-range wireless network is a Bluetooth network.
21. The method of claim 19 wherein the document includes at least one of an image document, an audio document, a movie document, and an address book document
22. The method of claim 19 further comprising indicating a status of sending the document.
23. The method of claim 19 wherein identifying the at least one other device includes searching for other devices accessible via the personal area network.
24. The method of claim 19 further comprising checking the memory in the navigation device to ensure sufficient memory capacity is available to store the document.
25. A method for receiving a document with at least one other device, the method comprising:
receiving at least one document from at least one other device via a personal area network; and
storing the at least one document in memory associated with a navigation device, the personal area network being a short-range wireless network.
26. The method of claim 25 wherein the short-range wireless network is a Bluetooth network.
27. The method of claim 25 wherein the document is at least one of an audio document, an image document and a video document.
28. The method of claim 25 further comprising responding to a search signal from the at least one other device.
29. The method of claim 25 wherein the at least one other device is one of a navigation device, a mobile phone, a personal digital assistant, and a computer.
30. A navigation device for sharing a document with at least one other device, the navigation device comprising:
means for storing at least one document;
means for selecting at least one document stored in memory; and
means for identifying at least one other device, the selected at least one document being sent via a personal area network to the at least one other device, the personal area network being a short-range wireless network.
31. The navigation device of claim 30 wherein the short-range wireless network is a Bluetooth network.
32. The navigation device of claim 31 wherein the short-range includes a range of about 100 meters.
33. The navigation device of claim 30 wherein the document includes at least one of an image document, an audio document, and a movie document.
33. The navigation device of claim 30 wherein the at least one other device is one of a navigation device, a mobile phone, a personal digital assistant, and a computer.
34. A navigation device for receiving a document with at least one other device, the navigation device comprising:
means for receiving at least one document from at least one other device via a personal area network; and
means for storing the at least one document; the personal area network being a short-range wireless network.
35. The navigation device of claim 34 wherein the short-range wireless network is a Bluetooth network.
36. The navigation device of claim 34 wherein the document includes at least one of an image document, an audio document, and a movie document.
37. The navigation device of claim 36 wherein the short-range includes a range of about 10 meters.
38. The navigation device of claim 34 wherein the at least one other device is one of a navigation device, a mobile phone, a personal digital assistant, and a computer.
US11/907,238 2007-01-10 2007-10-10 Navigation device and method using a personal area network Abandoned US20080207116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/907,238 US20080207116A1 (en) 2007-01-10 2007-10-10 Navigation device and method using a personal area network

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US87959907P 2007-01-10 2007-01-10
US87957707P 2007-01-10 2007-01-10
US87955307P 2007-01-10 2007-01-10
US87952307P 2007-01-10 2007-01-10
US87954907P 2007-01-10 2007-01-10
US11/907,238 US20080207116A1 (en) 2007-01-10 2007-10-10 Navigation device and method using a personal area network

Publications (1)

Publication Number Publication Date
US20080207116A1 true US20080207116A1 (en) 2008-08-28

Family

ID=38924440

Family Applications (9)

Application Number Title Priority Date Filing Date
US11/907,233 Abandoned US20080208447A1 (en) 2007-01-10 2007-10-10 Navigation device and method for providing points of interest
US11/907,229 Abandoned US20080167810A1 (en) 2007-01-10 2007-10-10 Navigation device and method for early instruction output
US11/907,251 Abandoned US20080167799A1 (en) 2007-01-10 2007-10-10 Navigation device and method for quick option access
US11/907,238 Abandoned US20080207116A1 (en) 2007-01-10 2007-10-10 Navigation device and method using a personal area network
US11/907,239 Abandoned US20080168346A1 (en) 2007-01-10 2007-10-10 Navigation device and method for using special characters in a navigation device
US11/907,240 Abandoned US20080228390A1 (en) 2007-01-10 2007-10-10 Navigation device and method for providing regional travel information in a navigation device
US11/907,252 Active 2031-05-16 US8335637B2 (en) 2007-01-10 2007-10-10 Navigation device and method providing a traffic message channel resource
US11/907,232 Abandoned US20100286901A1 (en) 2007-01-10 2007-10-10 Navigation device and method relating to an audible recognition mode
US11/907,253 Active 2028-12-27 US7974777B2 (en) 2007-01-10 2007-10-10 Navigation device and method for using a traffic message channel

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/907,233 Abandoned US20080208447A1 (en) 2007-01-10 2007-10-10 Navigation device and method for providing points of interest
US11/907,229 Abandoned US20080167810A1 (en) 2007-01-10 2007-10-10 Navigation device and method for early instruction output
US11/907,251 Abandoned US20080167799A1 (en) 2007-01-10 2007-10-10 Navigation device and method for quick option access

Family Applications After (5)

Application Number Title Priority Date Filing Date
US11/907,239 Abandoned US20080168346A1 (en) 2007-01-10 2007-10-10 Navigation device and method for using special characters in a navigation device
US11/907,240 Abandoned US20080228390A1 (en) 2007-01-10 2007-10-10 Navigation device and method for providing regional travel information in a navigation device
US11/907,252 Active 2031-05-16 US8335637B2 (en) 2007-01-10 2007-10-10 Navigation device and method providing a traffic message channel resource
US11/907,232 Abandoned US20100286901A1 (en) 2007-01-10 2007-10-10 Navigation device and method relating to an audible recognition mode
US11/907,253 Active 2028-12-27 US7974777B2 (en) 2007-01-10 2007-10-10 Navigation device and method for using a traffic message channel

Country Status (5)

Country Link
US (9) US20080208447A1 (en)
EP (1) EP2102596B1 (en)
JP (1) JP5230652B2 (en)
AU (1) AU2007343335A1 (en)
WO (1) WO2008083862A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080228385A1 (en) * 2007-01-10 2008-09-18 Pieter Geelen Navigation device and method for informational screen display
CN102325371A (en) * 2011-07-26 2012-01-18 范海绍 Wireless sport team positioning and communication system

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005054573A1 (en) * 2005-11-16 2007-05-24 Robert Bosch Gmbh Method for operating a navigation device and a correspondingly designed navigation device
US8510109B2 (en) 2007-08-22 2013-08-13 Canyon Ip Holdings Llc Continuous speech transcription performance indication
AU2007343335A1 (en) * 2007-01-10 2008-07-17 Tomtom International B.V. Method of indicating traffic delays, computer program and navigation system therefor
US7768395B2 (en) 2007-01-19 2010-08-03 Gold Steven K Brand mapping
US9973450B2 (en) 2007-09-17 2018-05-15 Amazon Technologies, Inc. Methods and systems for dynamically updating web service profile information by parsing transcribed message strings
US8302033B2 (en) * 2007-06-22 2012-10-30 Apple Inc. Touch screen device, method, and graphical user interface for providing maps, directions, and location-based information
US7814435B2 (en) * 2007-11-29 2010-10-12 Alpine Electronics, Inc. Method and apparatus for displaying local brand icons for navigation system
JP5034932B2 (en) * 2007-12-26 2012-09-26 ソニー株式会社 Display device, program, and recording medium
US20090171584A1 (en) * 2007-12-31 2009-07-02 Magellan Navigation, Inc. System and Method for Accessing a Navigation System
US20090177987A1 (en) * 2008-01-04 2009-07-09 Prasantha Jayakody Efficient display of objects of interest to a user through a graphical user interface
US8327272B2 (en) 2008-01-06 2012-12-04 Apple Inc. Portable multifunction device, method, and graphical user interface for viewing and managing electronic calendars
DE102008006445A1 (en) * 2008-01-28 2009-08-20 Navigon Ag Method for operating a navigation device
US20090216442A1 (en) * 2008-02-26 2009-08-27 Nokia Corporation Method, apparatus and computer program product for map feature detection
US8417450B2 (en) 2008-03-11 2013-04-09 Microsoft Corporation On-board diagnostics based navigation device for dead reckoning
US8676577B2 (en) * 2008-03-31 2014-03-18 Canyon IP Holdings, LLC Use of metadata to post process speech recognition output
JP4543342B2 (en) * 2008-05-12 2010-09-15 ソニー株式会社 Navigation device and information providing method
CA2720883A1 (en) * 2008-05-29 2009-12-03 Tomtom International B.V. A navigation device and method for altering map information related to audible information
US8527194B2 (en) * 2008-05-29 2013-09-03 Theo Kamalski Portable navigation device, portable electronic communications apparatus, and method of generating radio data system information therefor
CN102047731B (en) * 2008-05-30 2014-01-08 三菱电机株式会社 Navigation system and adaptively-controlled communication system
US20090322558A1 (en) * 2008-06-30 2009-12-31 General Motors Corporation Automatic Alert Playback Upon Recognition of a Paired Peripheral Device
US8249804B2 (en) * 2008-08-20 2012-08-21 Mitac International Corporation Systems and methods for smart city search
TW201017122A (en) * 2008-10-31 2010-05-01 Quantum Digital Comm Technology Corp Intelligent navigation device and control method thereof
US8532926B2 (en) * 2009-02-17 2013-09-10 Mitsubishi Electric Corporation Map information processing device
EP2432482B1 (en) 2009-05-20 2015-04-15 Cardio3 Biosciences S.A. Pharmaceutical composition for the treatment of heart diseases.
US20110029904A1 (en) * 2009-07-30 2011-02-03 Adam Miles Smith Behavior and Appearance of Touch-Optimized User Interface Elements for Controlling Computer Function
US20110099525A1 (en) * 2009-10-28 2011-04-28 Marek Krysiuk Method and apparatus for generating a data enriched visual component
US20110099507A1 (en) * 2009-10-28 2011-04-28 Google Inc. Displaying a collection of interactive elements that trigger actions directed to an item
KR101612789B1 (en) * 2009-12-01 2016-04-18 엘지전자 주식회사 Navigation method of mobile terminal and apparatus thereof
US8862576B2 (en) 2010-01-06 2014-10-14 Apple Inc. Device, method, and graphical user interface for mapping directions between search results
CN102346257A (en) * 2010-07-29 2012-02-08 深圳市凯立德欣软件技术有限公司 Navigation equipment and tunnel navigation method thereof
US20120101721A1 (en) * 2010-10-21 2012-04-26 Telenav, Inc. Navigation system with xpath repetition based field alignment mechanism and method of operation thereof
KR101144388B1 (en) * 2010-11-09 2012-05-10 기아자동차주식회사 Traffic information providing system and apparatus and method thereof
US8686864B2 (en) 2011-01-18 2014-04-01 Marwan Hannon Apparatus, system, and method for detecting the presence of an intoxicated driver and controlling the operation of a vehicle
US8718536B2 (en) 2011-01-18 2014-05-06 Marwan Hannon Apparatus, system, and method for detecting the presence and controlling the operation of mobile devices within a vehicle
US9146126B2 (en) * 2011-01-27 2015-09-29 Here Global B.V. Interactive geographic feature
US8909468B2 (en) * 2011-06-07 2014-12-09 General Motors Llc Route portals
US9087348B2 (en) * 2011-08-11 2015-07-21 GM Global Technology Operations LLC Digital content networking
CN103917848B (en) * 2011-11-10 2016-09-28 三菱电机株式会社 Guider and method
US9635271B2 (en) * 2011-11-17 2017-04-25 GM Global Technology Operations LLC Vision-based scene detection
US9285472B2 (en) 2011-12-06 2016-03-15 L-3 Communications Avionics Systems, Inc. Multi-link transponder for aircraft and method of providing multi-link transponder capability to an aircraft having an existing transponder
US9171327B2 (en) 2012-03-23 2015-10-27 Ebay Inc. Systems and methods for in-vehicle navigated shopping
US9547872B2 (en) 2012-02-22 2017-01-17 Ebay Inc. Systems and methods for providing search results along a corridor
EP2825846A4 (en) * 2012-03-16 2015-12-09 Qoros Automotive Co Ltd Navigation system and method for different mobility modes
US8898014B2 (en) * 2012-07-30 2014-11-25 Telenav, Inc. Navigation system with range based notification enhancement delivery mechanism and method of operation thereof
GB2505891A (en) 2012-09-12 2014-03-19 Tomtom Int Bv Navigation device having a USB port function switching means
GB201218681D0 (en) * 2012-10-17 2012-11-28 Tomtom Int Bv Methods and systems of providing information using a navigation apparatus
GB201218680D0 (en) 2012-10-17 2012-11-28 Tomtom Int Bv Methods and systems of providing information using a navigation apparatus
US9046370B2 (en) 2013-03-06 2015-06-02 Qualcomm Incorporated Methods for providing a navigation route based on network availability and device attributes
US20140336925A1 (en) * 2013-05-09 2014-11-13 Jeremiah Joseph Akin Displaying map icons based on a determined route of travel
US9330136B2 (en) * 2013-10-08 2016-05-03 Toyota Jidosha Kabushiki Kaisha System for proving proactive zone information
KR102160975B1 (en) * 2013-10-30 2020-09-29 삼성전자 주식회사 Method and system providing of location based service to a electronic device
US10963951B2 (en) 2013-11-14 2021-03-30 Ebay Inc. Shopping trip planner
ES2762953T3 (en) 2014-05-15 2020-05-26 Samsung Electronics Co Ltd System to provide personalized information and procedure to provide personalized information
WO2015174764A1 (en) * 2014-05-15 2015-11-19 Samsung Electronics Co., Ltd. System for providing personalized information and method of providing the personalized information
CN103973701B (en) * 2014-05-23 2017-04-12 南京美桥信息科技有限公司 Video retrieval system and method based on internet
US9826496B2 (en) * 2014-07-11 2017-11-21 Telenav, Inc. Navigation system with location mechanism and method of operation thereof
KR102514540B1 (en) 2014-10-20 2023-03-27 톰톰 네비게이션 비.브이. Alternative routes
JP6037468B2 (en) * 2014-11-14 2016-12-07 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Method for notifying that moving body is approaching specific area, and server computer and server computer program therefor
AU2016294604A1 (en) 2015-07-14 2018-03-08 Driving Management Systems, Inc. Detecting the location of a phone using RF wireless and ultrasonic signals
DE102016012500A1 (en) * 2016-10-19 2018-04-19 Texmag Gmbh Vertriebsgesellschaft Method and device for detecting the position of a moving web
US10527449B2 (en) * 2017-04-10 2020-01-07 Microsoft Technology Licensing, Llc Using major route decision points to select traffic cameras for display
CN108874357B (en) * 2018-06-06 2021-09-03 维沃移动通信有限公司 Prompting method and mobile terminal
CN110244337B (en) * 2019-06-14 2023-10-03 北京世纪东方智汇科技股份有限公司 Method and device for positioning target object in tunnel
CN113395462B (en) * 2021-08-17 2021-12-14 腾讯科技(深圳)有限公司 Navigation video generation method, navigation video acquisition method, navigation video generation device, navigation video acquisition device, server, equipment and medium

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018635A1 (en) * 2000-02-28 2001-08-30 Kabushiki Kaisha Toshiba Radio data communication apparatus
US20020030698A1 (en) * 2000-06-09 2002-03-14 Reinhold Baur Electronic organiser
US20020065868A1 (en) * 2000-11-30 2002-05-30 Lunsford E. Michael Method and system for implementing wireless data transfers between a selected group of mobile computing devices
US20030083075A1 (en) * 2001-01-11 2003-05-01 Hideto Miyazaki Radio communication device
US20030151506A1 (en) * 2002-02-11 2003-08-14 Mark Luccketti Method and apparatus for locating missing persons
US20040092230A1 (en) * 2000-12-04 2004-05-13 Hideto Miyazaki Short-range automobile wireless communication device
US20040209655A1 (en) * 2003-04-09 2004-10-21 Yukihiro Kubo Wireless equipment connection system
US20040219881A1 (en) * 2001-07-18 2004-11-04 Wolfgang Kramp Interface
US20050124357A1 (en) * 2003-12-04 2005-06-09 International Business Machines Corporation Method for transmitting address information to a global positioning system from a personal digital assistant or other similar device via a connector
US20050192025A1 (en) * 2002-04-22 2005-09-01 Kaplan Richard D. Method and apparatus for an interactive tour-guide system
US20060075342A1 (en) * 2002-12-18 2006-04-06 Koninklijke Philips Electronics N.V. Handheld pda video accessory
US20060089786A1 (en) * 2004-10-26 2006-04-27 Honeywell International Inc. Personal navigation device for use with portable device
US20060240806A1 (en) * 2001-07-18 2006-10-26 Saban Demirbasa Data security device
US20070016362A1 (en) * 2005-07-14 2007-01-18 Honda Motor Co., Ltd. System and method for synchronizing data for use in a navigation system
US20070032246A1 (en) * 2005-08-03 2007-02-08 Kamilo Feher Air based emergency monitor, multimode communication, control and position finder system
US20070293146A1 (en) * 2006-06-14 2007-12-20 C.S. Consultant Co Satellite navigation converstion device
US20070298812A1 (en) * 2006-06-21 2007-12-27 Singh Munindar P System and method for naming a location based on user-specific information
US20070298813A1 (en) * 2006-06-21 2007-12-27 Singh Munindar P System and method for providing a descriptor for a location to a recipient
US20080097551A1 (en) * 2006-10-24 2008-04-24 Kent Dicks Systems and methods for storage and forwarding of medical data
US20080201658A1 (en) * 2006-06-06 2008-08-21 Ivi Smart Technologies, Inc. Wireless Media Player Device and System, and Method for Operating the Same

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2658538B2 (en) * 1990-09-14 1997-09-30 三菱電機株式会社 RDS receiver
US5454062A (en) * 1991-03-27 1995-09-26 Audio Navigation Systems, Inc. Method for recognizing spoken words
DE4137000C2 (en) * 1991-11-11 1994-06-09 Opel Adam Ag Method for field strength-dependent evaluation of radio information for vehicles
US5448773A (en) * 1992-02-05 1995-09-05 Trimble Navigation Limited Long life portable global position system receiver
EP0580166B1 (en) * 1992-07-23 1999-06-16 Aisin Aw Co., Ltd. Vehicle navigation system
US20020104083A1 (en) * 1992-12-09 2002-08-01 Hendricks John S. Internally targeted advertisements using television delivery systems
JP2809042B2 (en) * 1993-04-13 1998-10-08 松下電器産業株式会社 Travel position display device
US5469370A (en) * 1993-10-29 1995-11-21 Time Warner Entertainment Co., L.P. System and method for controlling play of multiple audio tracks of a software carrier
US5497241A (en) * 1993-10-29 1996-03-05 Time Warner Entertainment Co., L.P. System and method for controlling display of motion picture subtitles in a selected language during play of a software carrier
DE4344173A1 (en) * 1993-12-23 1995-06-29 Philips Patentverwaltung Control unit for an RDS-TMC radio receiver
US6680674B1 (en) * 1994-04-13 2004-01-20 Seiko Instruments Inc. Adaptive geographic mapping in vehicle information systems
US6321158B1 (en) * 1994-06-24 2001-11-20 Delorme Publishing Company Integrated routing/mapping information
JPH08128838A (en) * 1994-11-01 1996-05-21 Fujitsu Ten Ltd Navigation device
DE4442413A1 (en) 1994-11-29 1996-05-30 Bosch Gmbh Robert Procedure for setting up a mobile radio receiver and radio receiver
DE4445582C2 (en) * 1994-12-20 2002-05-29 Deutsche Automobilgesellsch Method and device for outputting traffic disturbance reports in a vehicle
US5737691A (en) * 1995-07-14 1998-04-07 Motorola, Inc. System and method for allocating frequency channels in a two-way messaging network
EP0785537A4 (en) * 1995-08-09 2000-04-19 Toyota Motor Co Ltd Travel plan preparing device
JPH0961179A (en) * 1995-08-22 1997-03-07 Zanavy Informatics:Kk Route guiding apparatus for vehicle
DE19710863A1 (en) 1997-03-15 1998-09-17 Bosch Gmbh Robert Method and receiver for the geographical selection of digitally coded messages
DE19711540A1 (en) 1997-03-20 1998-10-01 Grundig Ag RDS receiver for the evaluation of traffic information
JP3593844B2 (en) 1997-04-24 2004-11-24 ソニー株式会社 Information receiving method, navigation device and automobile
JP3603927B2 (en) * 1997-08-08 2004-12-22 アイシン・エィ・ダブリュ株式会社 Vehicle navigation device and navigation method
US5990890A (en) * 1997-08-25 1999-11-23 Liberate Technologies System for data entry and navigation in a user interface
US6240280B1 (en) 1997-08-26 2001-05-29 Thomson Consumer Electronics Sales Gmbh Selection of traffic capable station by RDS radio while listening to other media
US6154673A (en) * 1997-12-30 2000-11-28 Agilent Technologies, Inc. Multilingual defibrillator
US7257528B1 (en) * 1998-02-13 2007-08-14 Zi Corporation Of Canada, Inc. Method and apparatus for Chinese character text input
JP2000047855A (en) * 1998-05-28 2000-02-18 Sharp Corp Portable electric appliance with telephone function
US6073094A (en) * 1998-06-02 2000-06-06 Motorola Voice compression by phoneme recognition and communication of phoneme indexes and voice features
US5899905A (en) * 1998-10-19 1999-05-04 Third Millennium Engineering Llc Expansion locking vertebral body screw, staple, and rod assembly
US6606082B1 (en) * 1998-11-12 2003-08-12 Microsoft Corporation Navigation graphical interface for small screen devices
US7051360B1 (en) * 1998-11-30 2006-05-23 United Video Properties, Inc. Interactive television program guide with selectable languages
US6208934B1 (en) * 1999-01-19 2001-03-27 Navigation Technologies Corp. Method and system for providing walking instructions with route guidance in a navigation program
JP3449291B2 (en) * 1999-05-14 2003-09-22 株式会社デンソー Map display device
EP1120631B1 (en) * 1999-07-06 2008-12-24 Mitsubishi Denki Kabushiki Kaisha Navigation device
DE19945431A1 (en) * 1999-09-22 2001-04-05 Siemens Ag Method for arranging route information within a road map and navigation device
US7263664B1 (en) * 2000-11-01 2007-08-28 Ita Software, Inc. Graphical user interface for travel planning system
US6587782B1 (en) * 2000-03-14 2003-07-01 Navigation Technologies Corp. Method and system for providing reminders about points of interests while traveling
US6812860B1 (en) * 2000-03-22 2004-11-02 Ford Global Technologies, Llc System and method of providing information to an onboard information device in a vehicle
DE10019681A1 (en) 2000-04-20 2001-10-25 Grundig Ag Device and method for automatic selection of transmitters
JP3979009B2 (en) * 2000-07-07 2007-09-19 株式会社デンソー Control information output device and information system
US6909903B2 (en) 2000-07-20 2005-06-21 3E Technologies International, Inc. Method and system for location-aware wireless mobile devices including mobile user network message interfaces and protocol
US7155061B2 (en) * 2000-08-22 2006-12-26 Microsoft Corporation Method and system for searching for words and phrases in active and stored ink word documents
US6810323B1 (en) * 2000-09-25 2004-10-26 Motorola, Inc. System and method for storing and using information associated with geographic locations of interest to a mobile user
US7039418B2 (en) * 2000-11-16 2006-05-02 Qualcomm Incorporated Position determination in a wireless communication system with detection and compensation for repeaters
JP2002168645A (en) * 2000-11-29 2002-06-14 Sharp Corp Navigation apparatus, and communication base station and system and method for navigation using them
CA2372861A1 (en) * 2001-02-20 2002-08-20 Matsushita Electric Industrial Co., Ltd. Travel direction device and travel warning direction device
US6687613B2 (en) * 2001-05-31 2004-02-03 Alpine Electronics, Inc. Display method and apparatus of navigation system
WO2002102484A1 (en) * 2001-06-15 2002-12-27 Walker Digital, Llc Method and apparatus for planning and customizing a gaming experience
JP4033379B2 (en) * 2001-07-11 2008-01-16 タカタ株式会社 Seat anchor guide anchor
US6640185B2 (en) * 2001-07-21 2003-10-28 Alpine Electronics, Inc. Display method and apparatus for navigation system
US6653825B2 (en) * 2001-11-29 2003-11-25 Theodore G. Munniksma Meter lead holder device
GB0211566D0 (en) * 2002-05-21 2002-06-26 Koninkl Philips Electronics Nv Method and apparatus for providing travel relating information to a user
EP1554645A2 (en) 2002-06-13 2005-07-20 Panasonic Automotive Systems Company Of America Interface for a multifunctional system
US6865480B2 (en) * 2002-06-19 2005-03-08 Alpine Electronics, Inc Display method and apparatus for navigation system
US20030236671A1 (en) * 2002-06-20 2003-12-25 Deere & Company System and method of loadable languages for implement monitoring display
DE10233376A1 (en) * 2002-07-23 2004-02-12 Fendt, Günter Intelligent predictive driver assistance system and/or traffic warning system has ability to predict route to be driven or to attempt to predict route when no route data have been entered
JP4370761B2 (en) * 2002-08-28 2009-11-25 カシオ計算機株式会社 Camera device and message output method
US6810328B2 (en) * 2002-11-23 2004-10-26 Alpine Electronics, Inc Navigation method and system for indicating area-specific traffic information
US8225194B2 (en) * 2003-01-09 2012-07-17 Kaleidescape, Inc. Bookmarks and watchpoints for selection and presentation of media streams
US20070128899A1 (en) * 2003-01-12 2007-06-07 Yaron Mayer System and method for improving the efficiency, comfort, and/or reliability in Operating Systems, such as for example Windows
DE10312502A1 (en) * 2003-03-14 2004-09-23 DDG GESELLSCHAFT FüR VERKEHRSDATEN MBH Process for providing traffic information
ATE526742T1 (en) 2003-05-08 2011-10-15 Harman Becker Automotive Sys BACKGROUND TUNER OF A RADIO RECEIVER FOR RECEIVING TRAFFIC AND TRAVEL INFORMATION AND FOR EXPLORING ALTERNATIVE FREQUENCIES
US20040236504A1 (en) * 2003-05-22 2004-11-25 Bickford Brian L. Vehicle navigation point of interest
US20040243307A1 (en) * 2003-06-02 2004-12-02 Pieter Geelen Personal GPS navigation device
EP1491857A1 (en) * 2003-06-26 2004-12-29 Harman Becker Automotive Systems GmbH Method for assisting navigation and navigation system
US6905091B2 (en) * 2003-07-14 2005-06-14 Supersonic Aerospace International, Llc System and method for controlling the acoustic signature of a device
JPWO2005006609A1 (en) 2003-07-14 2006-08-24 ソニー株式会社 Information processing apparatus, information processing method, and information processing program
US20060100779A1 (en) * 2003-09-02 2006-05-11 Vergin William E Off-board navigational system
US7050903B1 (en) * 2003-09-23 2006-05-23 Navteq North America, Llc Method and system for developing traffic messages
DE10354218A1 (en) * 2003-11-20 2005-06-30 Siemens Ag Method for selecting and preparing traffic information
US7818380B2 (en) * 2003-12-15 2010-10-19 Honda Motor Co., Ltd. Method and system for broadcasting safety messages to a vehicle
JP4388359B2 (en) * 2003-12-17 2009-12-24 株式会社ケンウッド In-vehicle man-machine interface device, method, and program
US7174153B2 (en) * 2003-12-23 2007-02-06 Gregory A Ehlers System and method for providing information to an operator of an emergency response vehicle
US20070156331A1 (en) * 2003-12-26 2007-07-05 Tomohiro Terada Navigation device
US7353109B2 (en) * 2004-02-05 2008-04-01 Alpine Electronics, Inc. Display method and apparatus for navigation system for performing cluster search of objects
JP2005233628A (en) 2004-02-17 2005-09-02 Kenwood Corp Guide route search device, navigation device, and guid route search method
JP4346472B2 (en) * 2004-02-27 2009-10-21 株式会社ザナヴィ・インフォマティクス Traffic information prediction device
JP2005321370A (en) * 2004-04-05 2005-11-17 Sony Corp Navigation system, data processing method and computer program
US7366606B2 (en) * 2004-04-06 2008-04-29 Honda Motor Co., Ltd. Method for refining traffic flow data
US7289904B2 (en) * 2004-04-06 2007-10-30 Honda Motor Co., Ltd. Vehicle navigation system and methods for incorporating user preferences into same
US7389244B2 (en) * 2004-04-16 2008-06-17 Donald Kaplan Method and system for providing travel services
JP2005308543A (en) * 2004-04-21 2005-11-04 Denso Corp Electronic equipment with map display function and program
US20070192711A1 (en) * 2006-02-13 2007-08-16 Research In Motion Limited Method and arrangement for providing a primary actions menu on a handheld communication device
US7672778B1 (en) * 2004-07-20 2010-03-02 Navteq North America, Llc Navigation system with downloaded map data
US7630328B2 (en) * 2004-08-18 2009-12-08 At&T Intellectual Property, I,L.P. SIP-based session control
US7373248B2 (en) * 2004-09-10 2008-05-13 Atx Group, Inc. Systems and methods for off-board voice-automated vehicle navigation
US7643788B2 (en) * 2004-09-22 2010-01-05 Honda Motor Co., Ltd. Method and system for broadcasting data messages to a vehicle
JP2008517305A (en) * 2004-09-27 2008-05-22 コールマン、デーヴィッド Method and apparatus for remote voice over or music production and management
JP2006119120A (en) * 2004-09-27 2006-05-11 Denso Corp Car navigation device
US7430473B2 (en) * 2004-10-01 2008-09-30 Bose Corporation Vehicle navigation display
US7835859B2 (en) * 2004-10-29 2010-11-16 Aol Inc. Determining a route to a destination based on partially completed route
JP2006165667A (en) 2004-12-02 2006-06-22 Denso Corp On-vehicle wireless receiver and program
DE102005042694A1 (en) * 2004-12-30 2006-07-20 Volkswagen Ag Navigation system for e.g. land vehicle, has man-machine interface for inputting geographical figure and keyword characterizing point of interest, and search module searching point of interest in geographical area defined by figure
TW200632621A (en) 2005-03-02 2006-09-16 Mitac Int Corp Connection device and its portable system
DE102005011627A1 (en) 2005-03-09 2006-09-28 Bury Sp.Z.O.O Navigation device for use in motor vehicle, has satellite-navigation antenna attached at antenna input of housing, and plastic deformable metallic bar connected electrically with antenna input and forming part of navigation antenna
DE102005011215B4 (en) 2005-03-09 2006-12-07 Bury Sp.Z.O.O navigation system
US7562049B2 (en) * 2005-03-29 2009-07-14 Honda Motor Co., Ltd. Payment system and method for data broadcasted from a remote location to vehicles
US20060223494A1 (en) * 2005-03-31 2006-10-05 Mazen Chmaytelli Location-based emergency announcements
DE102005018467A1 (en) * 2005-04-21 2006-11-02 Robert Bosch Gmbh Method for target selection in a navigation system
JP4396656B2 (en) * 2005-04-21 2010-01-13 株式会社デンソー Map display apparatus and vehicle navigation apparatus equipped with the apparatus
TW200638294A (en) * 2005-04-22 2006-11-01 Mitac Int Corp Navigation system and method capable of switching to multinational language operating interface
US20060253251A1 (en) * 2005-05-09 2006-11-09 Puranik Nishikant N Method for street name destination address entry using voice
EP1724553A3 (en) 2005-05-17 2009-08-19 Bury Sp.z.o.o Combined navigation and communication device
WO2006123198A1 (en) * 2005-05-20 2006-11-23 Nokia Corporation Method and system for context sensitive presenting of traffic announcements
US7516012B2 (en) * 2005-05-27 2009-04-07 Bury Sp. Z.O.O. Navigation system and method for updating software routines and navigation database information
DE102005029594B4 (en) 2005-06-23 2007-04-05 Bury Sp.Z.O.O Navigation system and method for extracting encrypted transmitted information
DE102005038300A1 (en) 2005-08-12 2007-02-15 Royaltek Company Ltd. Navigation device with GPS and TMC and method thereof
US20070050183A1 (en) * 2005-08-26 2007-03-01 Garmin Ltd. A Cayman Islands Corporation Navigation device with integrated multi-language dictionary and translator
US7366609B2 (en) * 2005-08-29 2008-04-29 Garmin Ltd. Navigation device with control feature limiting access to non-navigation application
KR100735399B1 (en) * 2005-09-23 2007-07-04 삼성전자주식회사 Method and apparatus for handover using interworking with cellular system in digital broadcasting system
JP4506642B2 (en) * 2005-10-31 2010-07-21 株式会社デンソー Route guidance device
GB0523512D0 (en) 2005-11-18 2005-12-28 Applied Generics Ltd Enhancing traffic and navigation information with visual and audio data
GB2434931B (en) 2006-02-01 2009-07-01 Nissan Motor Mfg Traffic information device
US20070202930A1 (en) * 2006-02-27 2007-08-30 Lucent Technologies Inc. Method and system for testing embedded echo canceller in wireless network
US7783471B2 (en) * 2006-03-08 2010-08-24 David Vismans Communication device for emulating a behavior of a navigation device
US20070266239A1 (en) * 2006-03-08 2007-11-15 David Vismans Method for providing a cryptographically signed command
US8204748B2 (en) * 2006-05-02 2012-06-19 Xerox Corporation System and method for providing a textual representation of an audio message to a mobile device
US7881864B2 (en) * 2006-05-31 2011-02-01 Garmin Switzerland Gmbh Method and apparatus for utilizing geographic location information
US20080045236A1 (en) * 2006-08-18 2008-02-21 Georges Nahon Methods and apparatus for gathering and delivering contextual messages in a mobile communication system
KR20080035089A (en) * 2006-10-18 2008-04-23 야후! 인크. Apparatus and method for providing regional information based on location
US20080125964A1 (en) * 2006-11-27 2008-05-29 Carani Sherry L Tracking System and Method with Automatic Map Selector And Geo Fence Defining Features
US20080125965A1 (en) * 2006-11-27 2008-05-29 Carani Sherry L Tracking System and Method with Automatic Map Selector and Geo Fence Defining Features
US20080122691A1 (en) * 2006-11-27 2008-05-29 Carani Sherry L Tracking system and method with multiple time zone selector, dynamic screens and multiple screen presentations
US20080122656A1 (en) * 2006-11-27 2008-05-29 Carani Sherry L Tracking System and Method with Multiple Language Selector, Dynamic Screens and Multiple Screen Presentations
US20080121690A1 (en) * 2006-11-27 2008-05-29 Carani Sherry L Ubiquitous Tracking System and Method
AU2007343396A1 (en) * 2007-01-10 2008-07-17 Tomtom International B.V. A navigation device and method for displaying a rich content document
AU2007343335A1 (en) * 2007-01-10 2008-07-17 Tomtom International B.V. Method of indicating traffic delays, computer program and navigation system therefor
US7668653B2 (en) * 2007-05-31 2010-02-23 Honda Motor Co., Ltd. System and method for selectively filtering and providing event program information

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018635A1 (en) * 2000-02-28 2001-08-30 Kabushiki Kaisha Toshiba Radio data communication apparatus
US20020030698A1 (en) * 2000-06-09 2002-03-14 Reinhold Baur Electronic organiser
US20020065868A1 (en) * 2000-11-30 2002-05-30 Lunsford E. Michael Method and system for implementing wireless data transfers between a selected group of mobile computing devices
US20040092230A1 (en) * 2000-12-04 2004-05-13 Hideto Miyazaki Short-range automobile wireless communication device
US20030083075A1 (en) * 2001-01-11 2003-05-01 Hideto Miyazaki Radio communication device
US20060240806A1 (en) * 2001-07-18 2006-10-26 Saban Demirbasa Data security device
US20040219881A1 (en) * 2001-07-18 2004-11-04 Wolfgang Kramp Interface
US20030151506A1 (en) * 2002-02-11 2003-08-14 Mark Luccketti Method and apparatus for locating missing persons
US20050192025A1 (en) * 2002-04-22 2005-09-01 Kaplan Richard D. Method and apparatus for an interactive tour-guide system
US20060075342A1 (en) * 2002-12-18 2006-04-06 Koninklijke Philips Electronics N.V. Handheld pda video accessory
US20040209655A1 (en) * 2003-04-09 2004-10-21 Yukihiro Kubo Wireless equipment connection system
US20050124357A1 (en) * 2003-12-04 2005-06-09 International Business Machines Corporation Method for transmitting address information to a global positioning system from a personal digital assistant or other similar device via a connector
US20060089786A1 (en) * 2004-10-26 2006-04-27 Honeywell International Inc. Personal navigation device for use with portable device
US20070016362A1 (en) * 2005-07-14 2007-01-18 Honda Motor Co., Ltd. System and method for synchronizing data for use in a navigation system
US20070032246A1 (en) * 2005-08-03 2007-02-08 Kamilo Feher Air based emergency monitor, multimode communication, control and position finder system
US20080201658A1 (en) * 2006-06-06 2008-08-21 Ivi Smart Technologies, Inc. Wireless Media Player Device and System, and Method for Operating the Same
US20070293146A1 (en) * 2006-06-14 2007-12-20 C.S. Consultant Co Satellite navigation converstion device
US20070298812A1 (en) * 2006-06-21 2007-12-27 Singh Munindar P System and method for naming a location based on user-specific information
US20070298813A1 (en) * 2006-06-21 2007-12-27 Singh Munindar P System and method for providing a descriptor for a location to a recipient
US20080097551A1 (en) * 2006-10-24 2008-04-24 Kent Dicks Systems and methods for storage and forwarding of medical data

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080228385A1 (en) * 2007-01-10 2008-09-18 Pieter Geelen Navigation device and method for informational screen display
US8160815B2 (en) 2007-01-10 2012-04-17 Tomtom International B.V. Navigation device and method for informational screen display
CN102325371A (en) * 2011-07-26 2012-01-18 范海绍 Wireless sport team positioning and communication system

Also Published As

Publication number Publication date
US7974777B2 (en) 2011-07-05
JP5230652B2 (en) 2013-07-10
US20080221782A1 (en) 2008-09-11
EP2102596B1 (en) 2018-01-03
JP2010515901A (en) 2010-05-13
US20100286901A1 (en) 2010-11-11
US20080167799A1 (en) 2008-07-10
US20080215236A1 (en) 2008-09-04
US20080208447A1 (en) 2008-08-28
EP2102596A1 (en) 2009-09-23
US20080168346A1 (en) 2008-07-10
WO2008083862A1 (en) 2008-07-17
US20080167810A1 (en) 2008-07-10
AU2007343335A1 (en) 2008-07-17
US20080228390A1 (en) 2008-09-18
US8335637B2 (en) 2012-12-18

Similar Documents

Publication Publication Date Title
US20080207116A1 (en) Navigation device and method using a personal area network
WO2008083760A1 (en) A navigation device and a method using a short-range wireless personal area network
US8160815B2 (en) Navigation device and method for informational screen display
EP2008063B1 (en) A method and device for utilizing a selectable location marker for relational display of point of interest entries
US20110040480A1 (en) Navigation device and method for displaying a static image of an upcoming location along a route of travel

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION