US20080169222A1 - Removel Of Hydrocarbons From Particulate Solids - Google Patents

Removel Of Hydrocarbons From Particulate Solids Download PDF

Info

Publication number
US20080169222A1
US20080169222A1 US11/574,530 US57453007A US2008169222A1 US 20080169222 A1 US20080169222 A1 US 20080169222A1 US 57453007 A US57453007 A US 57453007A US 2008169222 A1 US2008169222 A1 US 2008169222A1
Authority
US
United States
Prior art keywords
oil
emulsion
bitumen
water
limonene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/574,530
Inventor
Kevin Ophus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EARTH ENERGY RESOURCES Inc
Original Assignee
EARTH ENERGY RESOURCES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EARTH ENERGY RESOURCES Inc filed Critical EARTH ENERGY RESOURCES Inc
Assigned to EARTH ENERGY RESOURCES INC. reassignment EARTH ENERGY RESOURCES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KALMIC VENTURES INC., OPHUS, KEVIN
Publication of US20080169222A1 publication Critical patent/US20080169222A1/en
Priority to US13/622,061 priority Critical patent/US8758601B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • C10G1/047Hot water or cold water extraction processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API

Definitions

  • the present invention relates to a composition and a process for removing hydrocarbons from solid particulate matter.
  • the present invention relates to a composition and process for separating heavy oil or bitumen from sand.
  • the present invention also relates to a plant where the process may be implemented and the light oil product which is recovered.
  • Oil sands also called tar or bitumen sands.
  • Particularly large deposits are known to exist in the Athabasca and Cold Lake regions of Alberta and smaller deposits are found in many areas in the United States including Utah.
  • Oil sands are typically surface mined and the contained bitumen is separated from the sand and recovered using what is commonly referred to as the Clark hot water extraction process.
  • the hot water extraction process is the standard process for recovering bitumen from the sand and other material in which it is bound.
  • the bitumen is then upgraded to obtain a synthetic crude oil.
  • tar sand is first conditioned in large conditioning drums or tumblers with the addition of caustic soda (sodium hydroxide) and hot water at a temperature of about 80° Celsius.
  • caustic soda sodium hydroxide
  • the nature of these tumblers is well known in the art.
  • the tumblers have means for steam injection and further have retarders, lifters and advancers which create violently turbulent flow and positive physical action to break up the tar sand and mix the resultant mixture vigorously to condition the tar sands. This causes the bitumen to be aerated and separated to form a froth.
  • the mixture from the tumblers is screened to separate the larger debris and is passed to a separating cell where settling time is provided to allow the aerated slurry to separate.
  • settling time is provided to allow the aerated slurry to separate.
  • the bitumen froth rises to the surface and the sand particles and sediments fall to the bottom to form a sediment layer.
  • a middle viscous sludge layer termed middlings, contains dispersed clay particles and some trapped bitumen which is not able to rise due to the viscosity of the sludge.
  • the froth is skimmed off for froth treatment and the sediment layer is passed to a tailings pond.
  • the middlings is often fed to a second stage of froth floatation for further bitumen froth recovery. The water/clay residue from this second stage is combined with the sediment layer from the separating cell for disposal in the tailing ponds.
  • This conventional hot water technique is energy intensive in part because of the elevated temperature of the initial hot water. Additionally, the process produces an environmental issue in the form of the tailings byproduct which comprises a mixture of water, sand, silt and fine clay particles. Fast-settling sand particles are used to construct mounds, dikes and other stable deposits. However, the leftover muddy liquid, consisting of slow-settling clay particles and water, are the fine tailings and are difficult to dispose of. Fine tailings take a very long time to settle and are produced in significant volumes. Therefore, tailings management is a significant issue that must be addressed by any plant using a hot water bitumen separation process.
  • the invention may comprise a process for removing heavy oil or bitumen from oil sands and reducing the density of the heavy oil or bitumen, comprising the steps of contacting the oil sands with an aqueous emulsion of a monocyclic terpene to form a mixture, agitating the mixture, allowing the aqueous and hydrocarbon phases to separate, and recovering the hydrocarbon phase.
  • the recommended oil is a light oil having an API density of at least about 22 degrees.
  • the monocyclic terpene preferably comprises d-limonene and is formed into an emulsion with an emulsifying agent which is preferably an anionic surfactant such as an alkyl aryl sulfonate.
  • an emulsifying agent which is preferably an anionic surfactant such as an alkyl aryl sulfonate.
  • the invention may comprise a composition for cleaning heavy oil or bitumen from solid particles, comprising an emulsion of d-limonene and water, stabilized by an emulsifying agent comprising an anionic surfactant.
  • the invention may comprise a plant for processing feedstock comprising oil sand or contaminated soil to separate hydrocarbons from solid particles, comprising:
  • the invention may comprise an oil product produced as a result of the processes described herein.
  • the oil product comprises a mixture of a monocyclic terpene such as d-limonene and a heavy oil or bitumen, substantially free of water and particulate solids.
  • the light oil product has an API density of at least about 22° C.
  • FIG. 1 is a schematic representation of one embodiment of the present invention.
  • FIG. 2 is a graph showing residual hydrocarbon content in the sand.
  • FIG. 3 is a graph showing bitumen recovery.
  • FIG. 4 is a graph showing solids in the water phase.
  • FIG. 5 is a graph showing pentane insolubles (asphaltenes) remaining in the water phase.
  • FIG. 6 is a graph showing asphaltenes in the residual hydrocarbon in the sand.
  • FIG. 7 is a graph showing asphaltene content in the produced oil.
  • FIG. 8 is a graph showing API gravity of the recovered product at different concentrations of the cleaning emulsion.
  • FIG. 9 is a graph showing API gravity of the recovered product at different temperatures.
  • FIG. 10 is a graph showing solids in the water phase.
  • FIG. 11 is a graph showing pentane insolubles (asphaltenes) remaining in the water phase.
  • FIG. 12 is a graph showing residual hydrocarbon content in the sand.
  • FIG. 13 is a graph showing bitumen recovery.
  • FIG. 14 is a graph showing asphaltene content in the residual hydrocarbon in the sand.
  • FIG. 15 is a graph showing asphaltene content in the produced oil.
  • the present invention provides for a process and composition for separating heavy oil and bitumen from solid particulate matter. Additionally, a plant for implementing the process as well as the recovered oil product are described. When describing the present invention, all terms not defined herein have their common art-recognized meanings.
  • the present invention is described herein with reference to cleaning heavy oil or bitumen from oil sands or tar sands.
  • the invention may equally be applicable to removing hydrocarbons from any solid particulate matter and may be useful, for example, in cleaning oil-contaminated soil.
  • an “emulsion” refers to a mixture of two liquids, where droplets of a first liquid are dispersed in a second liquid where it does not dissolve.
  • the particles or droplets may be on a micron scale, or smaller.
  • the dispersed liquid is said to form the disperse phase, while the other liquid is said to form the continuous phase.
  • Oil ranges in density and viscosity.
  • Light oil also called conventional oil, has an API gravity of at least 22° and a viscosity less than 100 centipoise (cP).
  • Heavy oil is an asphaltic, dense (low API gravity), and viscous oil that is chemically characterized by its content of asphaltenes. Although variously defined, the upper limit for heavy oil is generally considered to be about 22° API gravity and a viscosity of greater than 100 cP. Heavy oil includes bitumen, also called tar sands or oil sands, which is yet more dense and viscous. Natural bitumen is oil having a viscosity greater than 10,000 cP.
  • Viscosity is a measure of the fluid's resistance to flow and is expressed in centipoise units. The viscosity of water is 0.89 centipoise and the viscosity of other liquids is calculated by applying the follow formula:
  • Vs Ds ( fts )( Vw )/( Dw )( ftw )
  • Density is a measure of mass per unit volume and is an indicator of yield from distillation. Oil density may be expressed in degrees of API gravity, a standard of the American Petroleum Institute. API gravity is computed as (141.5/spg) ⁇ 131.5, where spg is the specific gravity of the oil at 60° F. API gravity is inversely related to density.
  • the present invention comprises a cleaning emulsion which removes the heavy oil or bitumen from the sand particles and allows it to substantially separate from the water phase.
  • the composition comprises a mixture of water and a terpene, which is preferably a monocyclic terpene such as d-limonene, with an effective amount of an emulsifying agent.
  • the emulsifying agent may preferably be an oil-soluble surfactant.
  • Preferred surfactants include anionic surfactants, including sulfonates, and alkylaryl sulfonates in particular.
  • the surfactant is an alkyl aryl sulfonate marketed by Akzo Nobel Surface Chemistry as Witconate P-1059TM (isopropylamine dodecylbenzenesulfonate).
  • terpene is an unsaturated hydrocarbon obtained from plants.
  • Terpenes include C 10 and C 15 volatile organic compounds derived from plants.
  • Terpenes are empirically regarded as built up from isoprene, a C 5 H 8 diene, and are generally associated with characteristic fragrances.
  • Some terpenes are alcohols such as menthol from peppermint oil, and some terpenes are aldehydes such as citronellal.
  • Limonene commonly refers to a monocyclic compound having the formula C 10 H 16 and the structural formula:
  • This compound's IUPAC name is (R)-4-isoprenyl-1-methylcyclohexene or p-mentha-1,8-diene.
  • the structure shown above is of d-limonene which has a pleasing citrus odor. Its enantiomer 1-limonene has a harsher odor more pronounced of turpentine.
  • the preferred compound for the present invention comprises d-limonene of Brazilian origin. D-limonene is also commonly sourced from Californian or Floridian origin.
  • the emulsion further comprises a defoaming agent to assist in the mixing process.
  • a defoaming agent is available from Guardex PC-O-H 4625.
  • the cleaning emulsion is prepared by adding an aqueous component to the d-limonene, emulsifying agent and anti-foaming agent, resulting in a relatively stable emulsion.
  • the emulsion is an oil-in-water emulsion.
  • the aqueous portion of the composition may be purified, deionized or distilled water, or various other aqueous solutions including those commonly referred to as hard water, chlorine water, or soda water.
  • Hard water comprises water high in dissolved minerals, primarily calcium and magnesium.
  • Chlorine water is a mixture of chlorine and water, where only a part of the chlorine introduced actually goes into solution, the major part reacting chemically with the water to form hydrochloric acid and hypochlorous acid.
  • Soda water comprises a weak solution of sodium bicarbonate.
  • the inventor has found that different aqueous forms may be more suitable than others in specific applications. A person skilled in the art will be able to test and choose an appropriate aqueous component with minimal experimentation. In a preferred embodiment for cleaning oil sands, soda water has been found to be suitable.
  • a batch of the emulsion is prepared with about 40% (v:v) d-limonene, about 0.2% alkyl aryl sulfonate, and about 60% soda water.
  • the water is added to the d-limonene and oil-soluble emulsifying agent with vigorous mixing, resulting in a slightly thickened emulsion, which resembles cow's cream in consistency and colour.
  • the emulsion is sufficiently mixed when a steel shaft is dipped into the emulsion and a visible film is left on the shaft.
  • the mixture may be mixed for about 24 to 48 hours.
  • the proportion of d-limonene in the emulsion may be varied, for example, from about 10% to about 50% by volume.
  • the cleaning composition is used by combining it with the oil sand in an aqueous slurry with agitation.
  • the mixture then separates into oil and water phases, with the solids settling out with the water phase.
  • the disperse phase of d-limonene in the emulsion contacts the sand or soil particles and coalesces with the hydrocarbons bound to the particles.
  • the emulsion in the cleaning composition breaks as a result and the two phases separate.
  • the heavy oil and water associated with the sand or soil particles also separate, with the heavy oil dissolving in the d-limonene.
  • the cleaning composition may be used in a continuous oil sand or soil cleaning process.
  • FIG. 1 illustrates a schematic of a plant designed to implement the cleaning process of the present invention.
  • the oil sand is processed into a small crush ( 10 ), preferably about a 3 ⁇ 4′′ crush, with a crusher or other suitable means and mixed with water to form a slurry in a slurry tank ( 12 ).
  • An effective amount of the cleaning composition is then added and the slurry is vigorously agitated using conventional mixers or mixing pumps (not shown).
  • the slurry is then sent to a first recovery tower ( 14 ) where the phases begin to separate, with the hydrocarbons rising to the surface.
  • the hydrocarbons are skimmed from the surface and removed to an oil storage tank ( 16 ).
  • the aqueous and solids phases may then be sent to a second recovery tower ( 18 ), where further agitation continues the cleaning process.
  • the concentration of the cleaning emulsion may be topped up with the addition of fresh emulsion at this stage.
  • hydrocarbons are recovered from the top of the tower and sent to the oil storage tank.
  • the aqueous phase and solids, substantially free of hydrocarbons, are then sent to a third tower ( 20 ) where the aqueous phase is recovered and disposed of, or recycled in the process.
  • a solids separation unit ( 22 ), such as a shaker or a hydrocyclone, may then be used to collect and dry the sand ( 24 ).
  • the cleaning emulsion may also be used in a batch process, as will be appreciated by those skilled in the art.
  • the process of the present invention has 2 main variables which affect the efficiency of the operation: the concentration of the d-limonene and the temperature of the process. Generally, the higher the temperature and the higher the d-limonene concentration, the better results may be obtained. Therefore, in one embodiment, the process includes use of the cleaning emulsion in a concentration greater than about 4% by volume and at temperatures greater than about 20° C. More preferably, the solvent may be used in a concentration greater than about 6%, and most preferably greater than about 8%. Preferably, the process is operated at a temperature greater than about 30° C. and most preferably greater than about 40° C.
  • the recovered oil product becomes diluted with the d-limonene as a result of the cleaning process and is therefore less viscous and lighter than heavy oil.
  • the actual viscosity and density of the end product is dependent on the feedstock used and the concentration of d-limonene used in the process.
  • the recovered oil product has an API density of at least about 22°, and more preferably greater than about 24°. If necessary, the d-limonene has a boiling point of about 178° C. and may be separated from the recovered oil product by distillation or a similar process.
  • a cleaning emulsion of the present invention was formed from 410 litres of d-limonene mixed with 2 litres of Witconate P-1059TM (Akzo Nobel Surface Chemistry) and about 20 ml of an anti-foaming agent. Approximately 600 litres of water was then added and the mixture agitated between about 24 to 48 hours to form a relatively stable emulsion, similar to cow's cream in colour and consistency.
  • Batch extraction runs were performed using oil sands from Utah to determine effectiveness of the cleaning emulsion in removing the hydrocarbons from the sand. Batch extraction runs at various temperatures and with various concentrations of the solvent were conducted and various data collected. The data indicated the following:

Abstract

A process and composition for removing heavy oil and bitumen from oil sands is disclosed. The composition comprises an emulsion of d-limonene and water, with an anionic surfactant as an emulsifying agent. The emulsion is contacted with an oil sand slurry until the aqueous and hydrocarbon phases separate. The process may take place at temperatures less than about 80° C.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority benefit of U.S. Provisional Patent Application No. 60/511,315 filed Oct. 16, 2003, the contents of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to a composition and a process for removing hydrocarbons from solid particulate matter. In particular, the present invention relates to a composition and process for separating heavy oil or bitumen from sand. The present invention also relates to a plant where the process may be implemented and the light oil product which is recovered.
  • BACKGROUND OF THE INVENTION
  • Considerable oil reserves around the world are locked in the form of oil sands, also called tar or bitumen sands. Particularly large deposits are known to exist in the Athabasca and Cold Lake regions of Alberta and smaller deposits are found in many areas in the United States including Utah. Oil sands are typically surface mined and the contained bitumen is separated from the sand and recovered using what is commonly referred to as the Clark hot water extraction process. The hot water extraction process is the standard process for recovering bitumen from the sand and other material in which it is bound. The bitumen is then upgraded to obtain a synthetic crude oil.
  • In the hot water extraction process using existing extraction facilities, tar sand is first conditioned in large conditioning drums or tumblers with the addition of caustic soda (sodium hydroxide) and hot water at a temperature of about 80° Celsius. The nature of these tumblers is well known in the art. The tumblers have means for steam injection and further have retarders, lifters and advancers which create violently turbulent flow and positive physical action to break up the tar sand and mix the resultant mixture vigorously to condition the tar sands. This causes the bitumen to be aerated and separated to form a froth.
  • The mixture from the tumblers is screened to separate the larger debris and is passed to a separating cell where settling time is provided to allow the aerated slurry to separate. As the mixture settles, the bitumen froth rises to the surface and the sand particles and sediments fall to the bottom to form a sediment layer. A middle viscous sludge layer, termed middlings, contains dispersed clay particles and some trapped bitumen which is not able to rise due to the viscosity of the sludge. The froth is skimmed off for froth treatment and the sediment layer is passed to a tailings pond. The middlings is often fed to a second stage of froth floatation for further bitumen froth recovery. The water/clay residue from this second stage is combined with the sediment layer from the separating cell for disposal in the tailing ponds.
  • This conventional hot water technique is energy intensive in part because of the elevated temperature of the initial hot water. Additionally, the process produces an environmental issue in the form of the tailings byproduct which comprises a mixture of water, sand, silt and fine clay particles. Fast-settling sand particles are used to construct mounds, dikes and other stable deposits. However, the leftover muddy liquid, consisting of slow-settling clay particles and water, are the fine tailings and are difficult to dispose of. Fine tailings take a very long time to settle and are produced in significant volumes. Therefore, tailings management is a significant issue that must be addressed by any plant using a hot water bitumen separation process.
  • Therefore, there is a need in the art for compositions and methods for separating and recovering bitumen from particulate solids which may mitigate the difficulties of the prior art.
  • SUMMARY OF THE INVENTION
  • In one aspect, the invention may comprise a process for removing heavy oil or bitumen from oil sands and reducing the density of the heavy oil or bitumen, comprising the steps of contacting the oil sands with an aqueous emulsion of a monocyclic terpene to form a mixture, agitating the mixture, allowing the aqueous and hydrocarbon phases to separate, and recovering the hydrocarbon phase. Preferably, the recommended oil is a light oil having an API density of at least about 22 degrees.
  • The monocyclic terpene preferably comprises d-limonene and is formed into an emulsion with an emulsifying agent which is preferably an anionic surfactant such as an alkyl aryl sulfonate.
  • In another aspect, the invention may comprise a composition for cleaning heavy oil or bitumen from solid particles, comprising an emulsion of d-limonene and water, stabilized by an emulsifying agent comprising an anionic surfactant.
  • In another aspect, the invention may comprise a plant for processing feedstock comprising oil sand or contaminated soil to separate hydrocarbons from solid particles, comprising:
    • (a) a feed hopper for feeding feedstock into a mixing vessel;
    • (b) the mixing vessel having an inlet for adding a cleaning emulsion as described or claimed herein to the mixing vessel to form a slurry;
    • (c) means for agitating the slurry until the emulsion breaks;
    • (d) an oil skimmer for recovering hydrocarbons;
    • (e) means for recovering the solids, substantially free of hydrocarbons.
      The plant preferably comprises at least one recovery tower for receiving the slurry from the mixing vessel and which comprises the oil skimmer. The plant may further comprise means for recovering the aqueous phase and recycling the aqueous phase into the mixing vessel.
  • In another aspect, the invention may comprise an oil product produced as a result of the processes described herein. In one embodiment, the oil product comprises a mixture of a monocyclic terpene such as d-limonene and a heavy oil or bitumen, substantially free of water and particulate solids. Preferably, the light oil product has an API density of at least about 22° C.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be described by way of an exemplary embodiment with reference to the accompanying simplified, diagrammatic, not-to-scale drawings. In the drawings:
  • FIG. 1 is a schematic representation of one embodiment of the present invention.
  • FIG. 2 is a graph showing residual hydrocarbon content in the sand.
  • FIG. 3 is a graph showing bitumen recovery.
  • FIG. 4 is a graph showing solids in the water phase.
  • FIG. 5 is a graph showing pentane insolubles (asphaltenes) remaining in the water phase.
  • FIG. 6 is a graph showing asphaltenes in the residual hydrocarbon in the sand.
  • FIG. 7 is a graph showing asphaltene content in the produced oil.
  • FIG. 8 is a graph showing API gravity of the recovered product at different concentrations of the cleaning emulsion.
  • FIG. 9 is a graph showing API gravity of the recovered product at different temperatures.
  • FIG. 10 is a graph showing solids in the water phase.
  • FIG. 11 is a graph showing pentane insolubles (asphaltenes) remaining in the water phase.
  • FIG. 12 is a graph showing residual hydrocarbon content in the sand.
  • FIG. 13 is a graph showing bitumen recovery.
  • FIG. 14 is a graph showing asphaltene content in the residual hydrocarbon in the sand.
  • FIG. 15 is a graph showing asphaltene content in the produced oil.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides for a process and composition for separating heavy oil and bitumen from solid particulate matter. Additionally, a plant for implementing the process as well as the recovered oil product are described. When describing the present invention, all terms not defined herein have their common art-recognized meanings.
  • The present invention is described herein with reference to cleaning heavy oil or bitumen from oil sands or tar sands. The invention may equally be applicable to removing hydrocarbons from any solid particulate matter and may be useful, for example, in cleaning oil-contaminated soil.
  • As used herein, an “emulsion” refers to a mixture of two liquids, where droplets of a first liquid are dispersed in a second liquid where it does not dissolve. The particles or droplets may be on a micron scale, or smaller. The dispersed liquid is said to form the disperse phase, while the other liquid is said to form the continuous phase.
  • Oil ranges in density and viscosity. Light oil, also called conventional oil, has an API gravity of at least 22° and a viscosity less than 100 centipoise (cP). Heavy oil is an asphaltic, dense (low API gravity), and viscous oil that is chemically characterized by its content of asphaltenes. Although variously defined, the upper limit for heavy oil is generally considered to be about 22° API gravity and a viscosity of greater than 100 cP. Heavy oil includes bitumen, also called tar sands or oil sands, which is yet more dense and viscous. Natural bitumen is oil having a viscosity greater than 10,000 cP.
  • Viscosity is a measure of the fluid's resistance to flow and is expressed in centipoise units. The viscosity of water is 0.89 centipoise and the viscosity of other liquids is calculated by applying the follow formula:

  • Vs=Ds(fts)(Vw)/(Dw)(ftw)
  • Where:
    • Vs=viscosity of sample
    • Ds=density of sample
    • fts=flow time for sample
    • Vw=viscosity of water=0.89 centipoise (25° C.)
    • Dw=density of water=1 g/mL
    • ftw=flow time for water.
  • Density is a measure of mass per unit volume and is an indicator of yield from distillation. Oil density may be expressed in degrees of API gravity, a standard of the American Petroleum Institute. API gravity is computed as (141.5/spg)−131.5, where spg is the specific gravity of the oil at 60° F. API gravity is inversely related to density.
  • The present invention comprises a cleaning emulsion which removes the heavy oil or bitumen from the sand particles and allows it to substantially separate from the water phase. In one embodiment, the composition comprises a mixture of water and a terpene, which is preferably a monocyclic terpene such as d-limonene, with an effective amount of an emulsifying agent. The emulsifying agent may preferably be an oil-soluble surfactant. Preferred surfactants include anionic surfactants, including sulfonates, and alkylaryl sulfonates in particular. In one specific embodiment, the surfactant is an alkyl aryl sulfonate marketed by Akzo Nobel Surface Chemistry as Witconate P-1059™ (isopropylamine dodecylbenzenesulfonate).
  • As used herein, a “terpene” is an unsaturated hydrocarbon obtained from plants. Terpenes include C10 and C15 volatile organic compounds derived from plants. Terpenes are empirically regarded as built up from isoprene, a C5H8 diene, and are generally associated with characteristic fragrances. Some terpenes are alcohols such as menthol from peppermint oil, and some terpenes are aldehydes such as citronellal. Limonene commonly refers to a monocyclic compound having the formula C10H16 and the structural formula:
  • Figure US20080169222A1-20080717-C00001
  • This compound's IUPAC name is (R)-4-isoprenyl-1-methylcyclohexene or p-mentha-1,8-diene. The structure shown above is of d-limonene which has a pleasing citrus odor. Its enantiomer 1-limonene has a harsher odor more reminiscent of turpentine. The preferred compound for the present invention comprises d-limonene of Brazilian origin. D-limonene is also commonly sourced from Californian or Floridian origin.
  • In a preferred embodiment, the emulsion further comprises a defoaming agent to assist in the mixing process. A suitable anti-foaming agent is available from Guardex PC-O-H 4625.
  • In a preferred embodiment, the cleaning emulsion is prepared by adding an aqueous component to the d-limonene, emulsifying agent and anti-foaming agent, resulting in a relatively stable emulsion. In a preferred embodiment, the emulsion is an oil-in-water emulsion.
  • The aqueous portion of the composition may be purified, deionized or distilled water, or various other aqueous solutions including those commonly referred to as hard water, chlorine water, or soda water. Hard water comprises water high in dissolved minerals, primarily calcium and magnesium. Chlorine water is a mixture of chlorine and water, where only a part of the chlorine introduced actually goes into solution, the major part reacting chemically with the water to form hydrochloric acid and hypochlorous acid. Soda water comprises a weak solution of sodium bicarbonate. The inventor has found that different aqueous forms may be more suitable than others in specific applications. A person skilled in the art will be able to test and choose an appropriate aqueous component with minimal experimentation. In a preferred embodiment for cleaning oil sands, soda water has been found to be suitable.
  • In one embodiment, a batch of the emulsion is prepared with about 40% (v:v) d-limonene, about 0.2% alkyl aryl sulfonate, and about 60% soda water. The water is added to the d-limonene and oil-soluble emulsifying agent with vigorous mixing, resulting in a slightly thickened emulsion, which resembles cow's cream in consistency and colour. In the applicant's experience, the emulsion is sufficiently mixed when a steel shaft is dipped into the emulsion and a visible film is left on the shaft. In one embodiment, the mixture may be mixed for about 24 to 48 hours. The proportion of d-limonene in the emulsion may be varied, for example, from about 10% to about 50% by volume.
  • In use, the cleaning composition is used by combining it with the oil sand in an aqueous slurry with agitation. The mixture then separates into oil and water phases, with the solids settling out with the water phase. Without being restricted to a theory, it is believed that the disperse phase of d-limonene in the emulsion contacts the sand or soil particles and coalesces with the hydrocarbons bound to the particles. The emulsion in the cleaning composition breaks as a result and the two phases separate. During this process, the heavy oil and water associated with the sand or soil particles also separate, with the heavy oil dissolving in the d-limonene.
  • In one embodiment, the cleaning composition may be used in a continuous oil sand or soil cleaning process. FIG. 1 illustrates a schematic of a plant designed to implement the cleaning process of the present invention. The oil sand is processed into a small crush (10), preferably about a ¾″ crush, with a crusher or other suitable means and mixed with water to form a slurry in a slurry tank (12). An effective amount of the cleaning composition is then added and the slurry is vigorously agitated using conventional mixers or mixing pumps (not shown). The slurry is then sent to a first recovery tower (14) where the phases begin to separate, with the hydrocarbons rising to the surface. The hydrocarbons are skimmed from the surface and removed to an oil storage tank (16). The aqueous and solids phases may then be sent to a second recovery tower (18), where further agitation continues the cleaning process. The concentration of the cleaning emulsion may be topped up with the addition of fresh emulsion at this stage. Again, hydrocarbons are recovered from the top of the tower and sent to the oil storage tank. The aqueous phase and solids, substantially free of hydrocarbons, are then sent to a third tower (20) where the aqueous phase is recovered and disposed of, or recycled in the process. A solids separation unit (22), such as a shaker or a hydrocyclone, may then be used to collect and dry the sand (24).
  • The cleaning emulsion may also be used in a batch process, as will be appreciated by those skilled in the art.
  • The process of the present invention has 2 main variables which affect the efficiency of the operation: the concentration of the d-limonene and the temperature of the process. Generally, the higher the temperature and the higher the d-limonene concentration, the better results may be obtained. Therefore, in one embodiment, the process includes use of the cleaning emulsion in a concentration greater than about 4% by volume and at temperatures greater than about 20° C. More preferably, the solvent may be used in a concentration greater than about 6%, and most preferably greater than about 8%. Preferably, the process is operated at a temperature greater than about 30° C. and most preferably greater than about 40° C.
  • The recovered oil product becomes diluted with the d-limonene as a result of the cleaning process and is therefore less viscous and lighter than heavy oil. The actual viscosity and density of the end product is dependent on the feedstock used and the concentration of d-limonene used in the process. In one embodiment, the recovered oil product has an API density of at least about 22°, and more preferably greater than about 24°. If necessary, the d-limonene has a boiling point of about 178° C. and may be separated from the recovered oil product by distillation or a similar process.
  • EXAMPLES
  • The following examples are intended to illustrate embodiments of the claimed invention and not to limit the claimed invention in any manner.
  • 1. Formation of the Cleaning Emulsion
  • A cleaning emulsion of the present invention was formed from 410 litres of d-limonene mixed with 2 litres of Witconate P-1059™ (Akzo Nobel Surface Chemistry) and about 20 ml of an anti-foaming agent. Approximately 600 litres of water was then added and the mixture agitated between about 24 to 48 hours to form a relatively stable emulsion, similar to cow's cream in colour and consistency.
  • 2. Effect of Solvent Concentration
  • Batch extraction runs were performed using oil sands from Utah to determine effectiveness of the cleaning emulsion in removing the hydrocarbons from the sand. Batch extraction runs at various temperatures and with various concentrations of the solvent were conducted and various data collected. The data indicated the following:
    • (a) As shown in FIGS. 2 and 12, there is little difference in the residual hydrocarbon content in the sand between 40 C and 60 C. The hydrocarbon content increases progressively below 40 C and at solvent concentrations below 6%.
    • (b) As shown in FIGS. 3 and 13, there is little difference in bitumen recovery between 40 C and 60 C. Recovery does drop off at lower temperatures and at solvent concentrations below 6%.
    • (c) As shown in FIGS. 4 and 10, solids in the water phase tend to decrease at temperatures greater than 40 C and with a decrease in solvent concentration.
    • (d) As shown in FIGS. 5 and 11, pentane insolubles (asphaltenes) in the water phase rises as the process temperature drops but shows little difference above 40 C;
    • (e) As shown in FIGS. 6 and 14, asphaltene in the hydrocarbon recovered from sand is highest at a solvent concentration of 8% and increases with temperature;
    • (f) As shown in FIGS. 7 and 15, asphaltene in the produced oil tends to increase with increased temperature and at higher solvent concentrations; and
    • (g) As shown in FIGS. 8 and 9, API product density increases with an increase in solvent concentration with no clear effect from varying temperatures.
  • The raw testing data is shown below in the following Tables. References to “catalyst” is a reference to the cleaning emulsion described herein.
  • TABLE 2
    Batch Extraction Run @ 60° C.
    Asphaltane
    in Oil(5) Asphaltane
    Recovered in(6)
    Catalyst Product(6) Water Phase (mg/kg) from Sand Produced Oil
    Mix pH Before(1) pH After(1) Density Pentane Oil in Sand(3) Oil Recovery(4) (dry basis) (dry basis)
    vol % Processing Processing ° API 60/60 F. Solids insolubles (dry basis) wt % (dry basis) wt % wt % wt %
    10 7 7 25.6  161 0.8 0.34 97.90 11.98 13.63
    8 7 7 24.74 233 0.9 0.40 97.58 34.84 11.15
    6 7 7
    Figure US20080169222A1-20080717-C00002
    342 1.8 0.37 97.73 39.09 9.94
    6 7 7
    Figure US20080169222A1-20080717-C00003
    316 1.9 0.41 97.50 43.11 10.19
    Figure US20080169222A1-20080717-C00004
    Emulsion or froth in oil layer starting to form.
  • TABLE 3
    Batch Extraction Run @ 50° C.
    Asphaltane
    in Oil(5) Asphaltane
    Recovered in(6)
    Catalyst Product(6) Water Phase (mg/kg) from Sand Produced Oil
    Mix pH Before(1) pH After(1) Density Pentane Oil in Sand(3) Oil Recovery(4) (dry basis) (dry basis)
    vol % Processing Processing ° API 60/60 F. Solids insolubles (dry basis) wt % (dry basis) wt % wt % wt %
    10 7 7 30.51 193 2.0 0.29 98.22 11.78 12.43
    8 7 7 27.21 242 1.1 0.35 97.86 28.40 11.27
    6 7 7 24.19 313 1.3 0.38 97.65 35.11 8.69
    5 7 7
    Figure US20080169222A1-20080717-C00005
    416 1.5 0.41 97.52 25.95 9.21
    4 7 7
    Figure US20080169222A1-20080717-C00006
    281 1.8 0.67 95.90 19.63 9.65
    Figure US20080169222A1-20080717-C00007
    Heavy froth and emulsion formed in the oil layer. Unable to perform raw density.
  • TABLE 4
    Batch Extraction Run @ 40° C.
    Asphaltane
    in Oil(5) Asphaltane
    Recovered in(6)
    Catalyst Product(6) Water Phase (mg/kg) from Sand Produced Oil
    Mix pH Before(1) pH After(1) Density Pentane Oil in Sand(3) Oil Recovery(4) (dry basis) (dry basis)
    vol % Processing Processing ° API 60/60 F. Solids insolubles (dry basis) wt % (dry basis) wt % wt % wt %
    10 7 7 25.05 257 3.0 0.33 97.99 25.56 11.54
    8 7 7 25.27 254 3.0 0.32 98.07 35.71 11.26
    6 7 7 26.65 226 3.2 0.35 97.87 36.63 11.35
    4 7 7 20   204 7.5 0.64 96.10 30.25 7.80
    3 7 7
    Figure US20080169222A1-20080717-C00008
    470 9.5 1.21 92.55 16.52 9.68
    2 7 7
    Figure US20080169222A1-20080717-C00009
    560 10.0 1.26 92.23 10.44 10.26
    Figure US20080169222A1-20080717-C00010
    Heavy froth and emulsion formed in the oil layer. Unable to perform raw density.
  • TABLE #5
    Batch Extraction Run @ 30° C.
    Asphaltane in Asphaltane
    Oil(5) in(5)
    Catalyst pH pH Product(6) Oil Recovery(4) Recovered from Produced Oil
    Mix Before(1) After(1) Density Water Phase (mg/kg)(2) Oil in Sand(3) (dry basis) Sand (dry basis)
    vol % Processing Processing ° API 60/60 F. Solids Pentane Insolubles (dry basis) wt % wt % (dry basis) wt % wt %
    10 7 7 24.56 305 5.0 1.03 93.64 11.11 10.26
    8 7 7 25.19 390 5.6 1.52 90.62 36.31 9.62
    6 7 7
    Figure US20080169222A1-20080717-C00011
    374 8.9 1.93 88.03 19.36 10.28
    5 7 7
    Figure US20080169222A1-20080717-C00012
    327 14.4 2.68 83.28 13.58 12.44
    Figure US20080169222A1-20080717-C00013
  • TABLE #6
    Batch Extraction Run @ 20° C.
    Asphaltane in Asphaltane
    Oil(5) in(5)
    Catalyst pH pH Product(6) Oil Recovery(4) Recovered from Produced Oil
    Mix Before(1) After(1) Density Water Phase (mg/kg)(2) Oil in Sand(3) (dry basis) Sand (dry basis)
    vol % Processing Processing ° API 60/60 F. Solids Pentane Insolubles (dry basis) wt % wt % (dry basis) wt % wt %
    10 7 7 28.62 377 8.9 2.42 84.93 8.99 10.52
    8 7 7 27.49 393 12.2 2.49 84.45 21.35 9.34
    6 7 7
    Figure US20080169222A1-20080717-C00014
    421 14.0 3.41 78.54 11.00 8.08
    5 7 7
    Figure US20080169222A1-20080717-C00015
    422 24.9 4.15 73.69 10.00 9.18
    4 7 7
    Figure US20080169222A1-20080717-C00016
    486 32.3 5.65 63.58 9.18 9.98
    Figure US20080169222A1-20080717-C00017
  • TABLE #7
    Batch Extraction Run @ 13° C.
    Asphaltane in Asphaltane
    Oil(5) in(5)
    Catalyst pH pH Product(6) Oil Recovery(4) Recovered from Produced Oil
    Mix Before(1) After(1) Density Water Phase (mg/kg)(2) Oil in Sand(3) (dry basis) Sand (dry basis)
    vol % Processing Processing ° API 60/60 F. Solids Pentane Insolubles (dry basis) wt % wt % (dry basis) wt % wt %
    10 7 7
    Figure US20080169222A1-20080717-C00018
    474 16.8 2.95 81.50 6.13 7.74
    8 7 7
    Figure US20080169222A1-20080717-C00019
    463 23.9 3.41 78.53 7.32 7.84
    6 7 7
    Figure US20080169222A1-20080717-C00020
    479 24.8 4.43 71.80 7.57 7.55
    Figure US20080169222A1-20080717-C00021
  • TABLE #8
    Batch Extraction Data for 10% Catalyst Concentration
    Asphaltene
    in Oil(5) Asphaltene
    pH pH Product(6) Oil in Oil Recovered in(6)
    Tempera- Before(1) After(1) Density Water Phase (mg/kg)(2) Sand(3) Recovery(4) from Sand Produced Oil
    ture Process- Process- ° API Pentane (dry basis) (dry basis) (dry basis) (dry basis)
    ° C. ing ing 60/60 F. Solids Insolubles wt % wt % wt % wt %
    60 7 7 25.60 161 0.8 0.34 97.90 11.98 13.63
    50 7 7 30.51 193 2.0 0.29 98.22 11.76 12.43
    40 7 7 25.05 257 3.0 0.33 97.99 25.56 11.54
    30 7 7 24.56 305 5.0 1.03 93.64 11.11 10.26
    20 7 7 28.62 377 8.9 2.42 84.93 8.99 10.52
    13 7 7 27.92 474 16.8 2.95 81.50 6.13 7.74
  • TABLE #9
    Batch Extraction Data for 8% Catalyst Concentration
    Asphaltene
    in Oil(6) Asphaltene
    pH pH Product(6) Oil in Oil Recovered in(5)
    Tempera- Before(1) After(1) Density Water Phase (mg/kg)(2) Sand(3) Recovery(4) from Sand Produced Oil
    ture Process- Process- ° API Pentane (dry basis) (dry basis) (dry basis) (dry basis)
    ° C. ing ing 60/60 F. Solids Insolubles wt % wt % wt % wt %
    60 7 7 24.74 233 0.9 0.4 97.58 34.84 11.15
    50 7 7 27.21 242 1.1 0.35 97.86 28.4 11.27
    40 7 7 25.27 254 3 0.32 98.07 35.71 11.26
    30 7 7 25.19 390 5.6 1.52 90.62 36.31 9.62
    20 7 7 27.49 393 12.2 2.49 84.45 21.35 9.34
    13 7 7 24.88 463 23.9 3.41 78.53 7.32 7.84
  • TABLE #10
    Batch Extraction Data for 6% Catalyst Concentration
    Asphaltene
    in Oil(6) Asphaltene
    pH pH Product(6) Oil in Oil Recovered in(5)
    Tempera- Before(1) After(1) Density Water Phase (mg/kg)(2) Sand(3) Recovery(4) from Sand Produced Oil
    ture Process- Process- ° API Pentane (dry basis) (dry basis) (dry basis) (dry basis)
    ° C. ing ing 60/60 F. Solids Insolubles wt % wt % wt % wt %
    60 7 7 18.87 342 1.8 0.37 97.73 39.09 9.94
    50 7 7 24.19 313 1.3 0.38 97.65 35.11 8.69
    40 7 7 26.65 226 3.2 0.35 97.87 36.63 11.35
    30 7 7 24.32 374 8.9 1.93 88.03 19.36 10.28
    20 7 7 25.46 421 14 3.41 78.54 11 8.08
    13 7 7 −7 479 24.8 4.43 71.8 7.57 7.55
  • As indicated in the tables, there was an incomplete separation of the phases after treatment at certain concentrations of the emulsion and at certain temperatures. Generally, these conditions are not suitable as it is preferred that the oil and water phases completely separate in the process.
  • As will be apparent to those skilled in the art, various modifications, adaptations and variations of the foregoing specific disclosure can be made without departing from the scope of the invention claimed herein. The various features and elements of the described invention may be combined in a manner different from the combinations described or claimed herein, without departing from the scope of the invention.

Claims (19)

What is claimed is:
1. A process for removing heavy oil or bitumen from oil sands and reducing the density of the heavy oil or bitumen, comprising the steps of contacting the oil sands with an aqueous emulsion of a monocyclic terpene to form a mixture, agitating the mixture, allowing the aqueous and hydrocarbon phases to separate, and recovering the hydrocarbon phase having an API density of at least about 22 degrees.
2. The process of claim 1 wherein the monocyclic terpene comprises d-limonene.
3. The process of claim 1 or 2 wherein the emulsion further comprises an emulsifying agent.
4. The process of claim 3 wherein the emulsifying agent comprises an anionic surfactant.
5. The process of claim 4 wherein the anionic surfactant comprises an alkyl aryl sulfonate.
6. The process of claim 5 wherein the emulsion further comprises a defoaming agent.
7. The process of claim 3 wherein the emulsion is a oil-in-water emulsion.
8. The process of claim 2 wherein the emulsion comprises about 40% d-limonene by volume and the mixture comprises at least about 4% emulsion by volume.
9. The process of claim 8 wherein the process is operated at a temperature of greater than 20° C. and less than about 80° C.
10. The process of claim 9 wherein the process is operated at a temperature greater than about 40° C. and less than about 60° C.
11. A composition for cleaning heavy oil or bitumen from solid particles, comprising an emulsion of d-limonene and water, stabilized by an emulsifying agent comprising an anionic surfactant.
12. The composition of claim 11 wherein the anionic surfactant is an alkyl aryl sulfonate.
13. The composition of claim 12 comprising about 40% d-limonene, less than about 1% alkyl aryl sulfonate, and about 60% water or an aqueous solution.
14. The composition of claim 13 wherein the aqueous solution comprises a solution of sodium bicarbonate.
15. A plant for processing feedstock comprising oil sand or contaminated soil to separate hydrocarbons from solid particles, comprising:
(a) a feed hopper for feeding feedstock into a mixing vessel;
(b) an inlet for adding a composition according to claim 11, 12, 13 or 14 to the mixing vessel to form a slurry;
(c) means for agitating the slurry until the emulsion breaks;
(d) an oil skimmer for recovering hydrocarbons;
(e) means for recovering the solids, substantially free of hydrocarbons.
16. The plant of claim 15 further comprising at least one recovery tower for receiving the slurry from the mixing vessel and which comprises the oil skimmer.
17. The plant of claim 16 further comprising means for recovering the aqueous phase and recycling the aqueous phase into the mixing vessel.
18. A hydrocarbon product comprising a monocyclic terpene and a heavy oil or bitumen, said product resulting from the process of any one of claims 1 to 10.
19. The hydrocarbon product of claim 18 wherein the product has an API density of at least about 22 degrees.
US11/574,530 2004-10-15 2004-10-15 Removel Of Hydrocarbons From Particulate Solids Abandoned US20080169222A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/622,061 US8758601B2 (en) 2004-10-15 2012-09-18 Removal of hydrocarbons from particulate solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2004/001826 WO2006039772A2 (en) 2004-10-15 2004-10-15 Removal of hydrocarbons from particulate solids

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/622,061 Division US8758601B2 (en) 2004-10-15 2012-09-18 Removal of hydrocarbons from particulate solids

Publications (1)

Publication Number Publication Date
US20080169222A1 true US20080169222A1 (en) 2008-07-17

Family

ID=36148690

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/574,530 Abandoned US20080169222A1 (en) 2004-10-15 2004-10-15 Removel Of Hydrocarbons From Particulate Solids
US13/622,061 Active US8758601B2 (en) 2004-10-15 2012-09-18 Removal of hydrocarbons from particulate solids

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/622,061 Active US8758601B2 (en) 2004-10-15 2012-09-18 Removal of hydrocarbons from particulate solids

Country Status (3)

Country Link
US (2) US20080169222A1 (en)
CA (1) CA2578873C (en)
WO (1) WO2006039772A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100173806A1 (en) * 2007-09-20 2010-07-08 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials
US20100176033A1 (en) * 2009-01-15 2010-07-15 Rapp Gary L System for removing tar oil from sand and method of extracting oil from sand
US8272442B2 (en) 2007-09-20 2012-09-25 Green Source Energy Llc In situ extraction of hydrocarbons from hydrocarbon-containing materials
WO2012148580A2 (en) * 2011-04-27 2012-11-01 Exxonmobil Upstream Research Company Method of processing a bituminous feed using an emulsion
WO2012158247A1 (en) * 2011-05-18 2012-11-22 Exxonmobil Upstream Research Company Method of processing a bituminous feed by staged addition of a bridging liquid
US8404108B2 (en) 2007-09-20 2013-03-26 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
US20130146506A1 (en) * 2009-05-12 2013-06-13 Honeywell Federal Manufacturing & Technologies,Llc Apparatus and methods for hydrocarbon extraction
US20170190985A1 (en) * 2016-01-04 2017-07-06 TriStar PetroServ, Inc. Composition and Method for Isolation of Paraffinic Hydrocarbons
US20180251689A1 (en) * 2017-03-03 2018-09-06 Exxonmobil Research And Engineering Company Apparatus and methods to remove solids from hydrocarbon streams
US11186783B2 (en) * 2016-01-04 2021-11-30 Hpc Petroserv, Inc. Optimization of a method for isolation of paraffinic hydrocarbons

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ584661A (en) * 2007-09-20 2012-09-28 Green Source Energy Llc Process for extracting hydrocarbons from underground formation using turpentine liquid
WO2009114145A2 (en) * 2008-03-11 2009-09-17 Verutek Technologies, Inc. Ex-situ low-temperature hydrocarbon separation from tar sands
KR101629753B1 (en) * 2009-03-13 2016-06-13 그린 소스 에너지 엘엘씨 Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
IT1395746B1 (en) * 2009-09-18 2012-10-19 Eni Spa PROCEDURE FOR RECOVERY OF OILS FROM A SOLID MATRIX
US20160319181A1 (en) * 2014-02-19 2016-11-03 Halliburton Energy Services, Inc. Clean-up fluid for wellbore particles containing an environmentally-friendly surfactant
US10184084B2 (en) 2014-12-05 2019-01-22 USO (Utah) LLC Oilsands processing using inline agitation and an inclined plate separator
US11559774B2 (en) 2019-12-30 2023-01-24 Marathon Petroleum Company Lp Methods and systems for operating a pump at an efficiency point
US11247184B2 (en) 2019-12-30 2022-02-15 Marathon Petroleum Company Lp Methods and systems for spillback control of in-line mixing of hydrocarbon liquids
CA3103416C (en) 2019-12-30 2022-01-25 Marathon Petroleum Company Lp Methods and systems for inline mixing of hydrocarbon liquids
US11607654B2 (en) 2019-12-30 2023-03-21 Marathon Petroleum Company Lp Methods and systems for in-line mixing of hydrocarbon liquids
US11655940B2 (en) 2021-03-16 2023-05-23 Marathon Petroleum Company Lp Systems and methods for transporting fuel and carbon dioxide in a dual fluid vessel
US11578836B2 (en) 2021-03-16 2023-02-14 Marathon Petroleum Company Lp Scalable greenhouse gas capture systems and methods
US11447877B1 (en) 2021-08-26 2022-09-20 Marathon Petroleum Company Lp Assemblies and methods for monitoring cathodic protection of structures
US11686070B1 (en) 2022-05-04 2023-06-27 Marathon Petroleum Company Lp Systems, methods, and controllers to enhance heavy equipment warning

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722782A (en) * 1983-10-31 1988-02-02 Standard Oil Company Method for solvent treating of tar sands with water displacement
US4822481A (en) * 1986-08-27 1989-04-18 The British Petroleum Company P.L.C. Recovery of heavy oil
US4946597A (en) * 1989-03-24 1990-08-07 Esso Resources Canada Limited Low temperature bitumen recovery process
US4966685A (en) * 1988-09-23 1990-10-30 Hall Jerry B Process for extracting oil from tar sands
US5143598A (en) * 1983-10-31 1992-09-01 Amoco Corporation Methods of tar sand bitumen recovery
US5169518A (en) * 1991-09-09 1992-12-08 The Dow Chemical Company Recovery of petroleum from tar sands
US5316664A (en) * 1986-11-24 1994-05-31 Canadian Occidental Petroleum, Ltd. Process for recovery of hydrocarbons and rejection of sand
US5338368A (en) * 1993-09-22 1994-08-16 Minnesota Mining And Manufacturing Company Method for removing oil or asphalt from inorganic particles having pigment in an outer layer thereof
US5340467A (en) * 1986-11-24 1994-08-23 Canadian Occidental Petroleum Ltd. Process for recovery of hydrocarbons and rejection of sand
US5453133A (en) * 1992-06-09 1995-09-26 National Research Council Of Canada Soil remediation
US5534136A (en) * 1994-12-29 1996-07-09 Rosenbloom; William J. Method and apparatus for the solvent extraction of oil from bitumen containing tar sand
US5634984A (en) * 1993-12-22 1997-06-03 Union Oil Company Of California Method for cleaning an oil-coated substrate
US5645714A (en) * 1994-05-06 1997-07-08 Bitman Resources Inc. Oil sand extraction process
US5681452A (en) * 1995-10-31 1997-10-28 Kirkbride; Chalmer G. Process and apparatus for converting oil shale or tar sands to oil
US5690811A (en) * 1995-10-17 1997-11-25 Mobil Oil Corporation Method for extracting oil from oil-contaminated soil
US5723042A (en) * 1994-05-06 1998-03-03 Bitmin Resources Inc. Oil sand extraction process
US5746909A (en) * 1996-11-06 1998-05-05 Witco Corp Process for extracting tar from tarsand
US5985138A (en) * 1997-06-26 1999-11-16 Geopetrol Equipment Ltd. Tar sands extraction process
US6004455A (en) * 1997-10-08 1999-12-21 Rendall; John S. Solvent-free method and apparatus for removing bituminous oil from oil sands
US6007708A (en) * 1997-10-02 1999-12-28 Alberta Energy Company Ltd. Cold dense slurrying process for extracting bitumen from oil sand
US6074549A (en) * 1998-02-20 2000-06-13 Canadian Environmental Equipment & Engineering Technologies, Inc. Jet pump treatment of heavy oil production sand
US6093689A (en) * 1999-09-20 2000-07-25 Dotolo Research Ltd. Asphalt and heavy oil degreaser
US6153017A (en) * 1998-01-29 2000-11-28 Petrozyme Technologies Inc. Treatment of soil contaminated with oil or oil residues
US6207044B1 (en) * 1996-07-08 2001-03-27 Gary C. Brimhall Solvent extraction of hydrocarbons from inorganic materials and solvent recovery from extracted hydrocarbons
US6211133B1 (en) * 2000-07-25 2001-04-03 Biospan Technology, Inc Bituminous substance removal composition
US6214213B1 (en) * 1995-05-18 2001-04-10 Aec Oil Sands, L.P. Solvent process for bitumen seperation from oil sands froth
US6319395B1 (en) * 1995-10-31 2001-11-20 Chattanooga Corporation Process and apparatus for converting oil shale or tar sands to oil
US6358403B1 (en) * 1999-05-14 2002-03-19 Aec Oil Sands, L.P. Process for recovery of hydrocarbon from tailings
US6358404B1 (en) * 1999-05-13 2002-03-19 Aec Oil Sands, L.P. Method for recovery of hydrocarbon diluent from tailing
US6527960B1 (en) * 1998-02-18 2003-03-04 Canadian Environmental Equipment & Engineering Technologies, Inc. Jet pump treatment of heavy oil production sand
US6576145B2 (en) * 1997-02-27 2003-06-10 Continuum Environmental, Llc Method of separating hydrocarbons from mineral substrates
US6709573B2 (en) * 2002-07-12 2004-03-23 Anthon L. Smith Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110359A (en) 1995-10-17 2000-08-29 Mobil Oil Corporation Method for extracting bitumen from tar sands
US6251290B1 (en) 1997-02-27 2001-06-26 Continuum Environmental, Inc. Method for recovering hydrocarbons from tar sands and oil shales
US6007709A (en) 1997-12-31 1999-12-28 Bhp Minerals International Inc. Extraction of bitumen from bitumen froth generated from tar sands
CA2276944A1 (en) 1998-10-13 2000-04-13 Venanzio Di Tullio A process for the separation and isolation of tars, oils, and inorganic constituents from mined oil bearing sands and a further process for the extraction of natural resins from plant matter and kerogens from oil shale
US20030213747A1 (en) 2002-02-27 2003-11-20 Carbonell Ruben G. Methods and compositions for removing residues and substances from substrates using environmentally friendly solvents

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722782A (en) * 1983-10-31 1988-02-02 Standard Oil Company Method for solvent treating of tar sands with water displacement
US5143598A (en) * 1983-10-31 1992-09-01 Amoco Corporation Methods of tar sand bitumen recovery
US4822481A (en) * 1986-08-27 1989-04-18 The British Petroleum Company P.L.C. Recovery of heavy oil
US5316664A (en) * 1986-11-24 1994-05-31 Canadian Occidental Petroleum, Ltd. Process for recovery of hydrocarbons and rejection of sand
US5340467A (en) * 1986-11-24 1994-08-23 Canadian Occidental Petroleum Ltd. Process for recovery of hydrocarbons and rejection of sand
US4966685A (en) * 1988-09-23 1990-10-30 Hall Jerry B Process for extracting oil from tar sands
US4946597A (en) * 1989-03-24 1990-08-07 Esso Resources Canada Limited Low temperature bitumen recovery process
US5169518A (en) * 1991-09-09 1992-12-08 The Dow Chemical Company Recovery of petroleum from tar sands
US5453133A (en) * 1992-06-09 1995-09-26 National Research Council Of Canada Soil remediation
US5338368A (en) * 1993-09-22 1994-08-16 Minnesota Mining And Manufacturing Company Method for removing oil or asphalt from inorganic particles having pigment in an outer layer thereof
US5723423A (en) * 1993-12-22 1998-03-03 Union Oil Company Of California, Dba Unocal Solvent soaps and methods employing same
US5634984A (en) * 1993-12-22 1997-06-03 Union Oil Company Of California Method for cleaning an oil-coated substrate
US5780407A (en) * 1993-12-22 1998-07-14 Union Oil Company Of California Solvent soaps and methods employing same
US5788781A (en) * 1993-12-22 1998-08-04 Union Oil Company Of California Method for cleaning an oil-coated substrate
US5645714A (en) * 1994-05-06 1997-07-08 Bitman Resources Inc. Oil sand extraction process
US5723042A (en) * 1994-05-06 1998-03-03 Bitmin Resources Inc. Oil sand extraction process
US5534136A (en) * 1994-12-29 1996-07-09 Rosenbloom; William J. Method and apparatus for the solvent extraction of oil from bitumen containing tar sand
US6214213B1 (en) * 1995-05-18 2001-04-10 Aec Oil Sands, L.P. Solvent process for bitumen seperation from oil sands froth
US5690811A (en) * 1995-10-17 1997-11-25 Mobil Oil Corporation Method for extracting oil from oil-contaminated soil
US5681452A (en) * 1995-10-31 1997-10-28 Kirkbride; Chalmer G. Process and apparatus for converting oil shale or tar sands to oil
US6319395B1 (en) * 1995-10-31 2001-11-20 Chattanooga Corporation Process and apparatus for converting oil shale or tar sands to oil
US6207044B1 (en) * 1996-07-08 2001-03-27 Gary C. Brimhall Solvent extraction of hydrocarbons from inorganic materials and solvent recovery from extracted hydrocarbons
US5746909A (en) * 1996-11-06 1998-05-05 Witco Corp Process for extracting tar from tarsand
US6576145B2 (en) * 1997-02-27 2003-06-10 Continuum Environmental, Llc Method of separating hydrocarbons from mineral substrates
US5985138A (en) * 1997-06-26 1999-11-16 Geopetrol Equipment Ltd. Tar sands extraction process
US6007708A (en) * 1997-10-02 1999-12-28 Alberta Energy Company Ltd. Cold dense slurrying process for extracting bitumen from oil sand
US6004455A (en) * 1997-10-08 1999-12-21 Rendall; John S. Solvent-free method and apparatus for removing bituminous oil from oil sands
US6153017A (en) * 1998-01-29 2000-11-28 Petrozyme Technologies Inc. Treatment of soil contaminated with oil or oil residues
US6527960B1 (en) * 1998-02-18 2003-03-04 Canadian Environmental Equipment & Engineering Technologies, Inc. Jet pump treatment of heavy oil production sand
US6074549A (en) * 1998-02-20 2000-06-13 Canadian Environmental Equipment & Engineering Technologies, Inc. Jet pump treatment of heavy oil production sand
US6358404B1 (en) * 1999-05-13 2002-03-19 Aec Oil Sands, L.P. Method for recovery of hydrocarbon diluent from tailing
US6358403B1 (en) * 1999-05-14 2002-03-19 Aec Oil Sands, L.P. Process for recovery of hydrocarbon from tailings
US6093689A (en) * 1999-09-20 2000-07-25 Dotolo Research Ltd. Asphalt and heavy oil degreaser
US6211133B1 (en) * 2000-07-25 2001-04-03 Biospan Technology, Inc Bituminous substance removal composition
US6709573B2 (en) * 2002-07-12 2004-03-23 Anthon L. Smith Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8926832B2 (en) 2007-09-20 2015-01-06 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials
US9416645B2 (en) 2007-09-20 2016-08-16 Green Source Holdings Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
US8101812B2 (en) 2007-09-20 2012-01-24 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials
US8272442B2 (en) 2007-09-20 2012-09-25 Green Source Energy Llc In situ extraction of hydrocarbons from hydrocarbon-containing materials
US8685234B2 (en) 2007-09-20 2014-04-01 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
US20100173806A1 (en) * 2007-09-20 2010-07-08 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials
US8404108B2 (en) 2007-09-20 2013-03-26 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
US8404107B2 (en) 2007-09-20 2013-03-26 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials
US9102864B2 (en) 2007-09-20 2015-08-11 Green Source Holdings Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
US8522876B2 (en) 2007-09-20 2013-09-03 Green Source Energy Llc In situ extraction of hydrocarbons from hydrocarbon-containing materials
US9181468B2 (en) 2007-09-20 2015-11-10 Green Source Holdings Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
US20100176033A1 (en) * 2009-01-15 2010-07-15 Rapp Gary L System for removing tar oil from sand and method of extracting oil from sand
US20130146506A1 (en) * 2009-05-12 2013-06-13 Honeywell Federal Manufacturing & Technologies,Llc Apparatus and methods for hydrocarbon extraction
US9321968B2 (en) * 2009-05-12 2016-04-26 Honeywell Federal Manufacturing & Technologies, Llc Apparatus and methods for hydrocarbon extraction
WO2012148580A2 (en) * 2011-04-27 2012-11-01 Exxonmobil Upstream Research Company Method of processing a bituminous feed using an emulsion
WO2012148580A3 (en) * 2011-04-27 2014-05-01 Exxonmobil Upstream Research Company Method of processing a bituminous feed using an emulsion
WO2012158247A1 (en) * 2011-05-18 2012-11-22 Exxonmobil Upstream Research Company Method of processing a bituminous feed by staged addition of a bridging liquid
US11186783B2 (en) * 2016-01-04 2021-11-30 Hpc Petroserv, Inc. Optimization of a method for isolation of paraffinic hydrocarbons
US11136510B2 (en) 2016-01-04 2021-10-05 Hpc Petroserv, Inc. Composition and method for isolation of paraffinic hydrocarbons
US10179881B2 (en) * 2016-01-04 2019-01-15 TriStar PetroServ, Inc. Composition and method for isolation of paraffinic hydrocarbons
US20170190985A1 (en) * 2016-01-04 2017-07-06 TriStar PetroServ, Inc. Composition and Method for Isolation of Paraffinic Hydrocarbons
US20220081625A1 (en) * 2016-01-04 2022-03-17 Hpc Petroserv, Inc. Optimization of a Method for Isolation of Paraffinic Hydrocarbons
US20180251689A1 (en) * 2017-03-03 2018-09-06 Exxonmobil Research And Engineering Company Apparatus and methods to remove solids from hydrocarbon streams
US11214742B2 (en) * 2017-03-03 2022-01-04 Exxonmobil Research And Engineering Company Apparatus and methods to remove solids from hydrocarbon streams

Also Published As

Publication number Publication date
CA2578873A1 (en) 2006-04-20
US20130062258A1 (en) 2013-03-14
WO2006039772A3 (en) 2007-11-08
US8758601B2 (en) 2014-06-24
CA2578873C (en) 2012-12-11
WO2006039772A2 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US8758601B2 (en) Removal of hydrocarbons from particulate solids
US5985138A (en) Tar sands extraction process
US4929341A (en) Process and system for recovering oil from oil bearing soil such as shale and tar sands and oil produced by such process
US4968412A (en) Solvent and water/surfactant process for removal of bitumen from tar sands contaminated with clay
US20110174695A1 (en) Processes for recycling sag-d process water and cleaning drill cuttings
US4456533A (en) Recovery of bitumen from bituminous oil-in-water emulsions
US9550944B2 (en) Process for the recovery of bitumen from an oil sand
CA2755637A1 (en) Solvent treatment of paraffinic froth treatment underflow
US20020104799A1 (en) Tar sands extraction process
US20140034553A1 (en) Method of Processing a Bituminous Feed Using an Emulsion
US20140262964A1 (en) Method of Processing a Bituminous Feed By Staged Addition of a Bridging Liquid
US4401552A (en) Beneficiation of froth obtained from tar sands sludge
CA2915851C (en) Process for recovering bitumen from oil sands ore with aluminum-containing compounds
US20080121566A1 (en) Surfactant for bitumen separation
US10508241B2 (en) Recovery of hydrocarbon diluent from tailings
CA2860797A1 (en) Composition for recovering bitumen from oil sands
US20150008161A1 (en) Method for reducing rag layer volume in stationary froth treatment
KR20160129604A (en) Apparatus and method for purify soil polluted crude
CA2820040C (en) Method for reducing rag layer volume in stationary froth treatment
CA2568955C (en) Surfactant for bitumen separation
WO2013019332A1 (en) Method of processing a bituminous feed and contaminated water
CA2815048C (en) A method for extracting bitumen from an oil sand stream
CA2845983C (en) Lean froth process for oil sands processing
CA2969872C (en) Recovery of hydrocarbon diluent from tailings
CA2024519C (en) Solvent and water/surfactant process for removal of bitumen from tar sands contaminated with clay

Legal Events

Date Code Title Description
AS Assignment

Owner name: EARTH ENERGY RESOURCES INC., ALBERTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KALMIC VENTURES INC.;OPHUS, KEVIN;REEL/FRAME:020238/0414

Effective date: 20050722

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION