US20080038542A1 - Method for high resolution patterning using soft X-ray, process for preparing nano device using the method - Google Patents

Method for high resolution patterning using soft X-ray, process for preparing nano device using the method Download PDF

Info

Publication number
US20080038542A1
US20080038542A1 US11/717,191 US71719107A US2008038542A1 US 20080038542 A1 US20080038542 A1 US 20080038542A1 US 71719107 A US71719107 A US 71719107A US 2008038542 A1 US2008038542 A1 US 2008038542A1
Authority
US
United States
Prior art keywords
substrate
pattern
soft
nano
molecular layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/717,191
Inventor
Joon Park
Young La
Joong Moon
Bongsoo Kim
Tai Kang
Ki Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pohang University of Science and Technology Foundation POSTECH
Original Assignee
Pohang University of Science and Technology Foundation POSTECH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pohang University of Science and Technology Foundation POSTECH filed Critical Pohang University of Science and Technology Foundation POSTECH
Priority to US11/717,191 priority Critical patent/US20080038542A1/en
Publication of US20080038542A1 publication Critical patent/US20080038542A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/165Monolayers, e.g. Langmuir-Blodgett
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2037Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
    • G03F7/2039X-ray radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0214Biosensors; Chemical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0198Manufacture or treatment of microstructural devices or systems in or on a substrate for making a masking layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/167X-ray
    • Y10S430/168X-ray exposure process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/261In terms of molecular thickness or light wave length

Definitions

  • the present invention relates to a method for high resolution patterning and a process for manufacturing a nano device using the high resolution pattern, and more particularly, to a method for micro- or nano-scale high resolution patterning within a short period of time, and a nano device formed using the method.
  • nano-pattern fabrication is an essential technology of the highest priority in minute-circuit processing for large-capacity semiconductor devices.
  • nano-patterning technology has wide applications, for example, in the bioengineering related field and for biosensors, so its consequence becomes great.
  • R denotes resolution
  • denotes wavelength
  • k 1 is a constant
  • NA denotes the numerical aperture of a lens system.
  • a shorter wavelength of light used results in higher resolution and smaller patterns.
  • a pattern resolution on the order of 500 nm, achieved in the early 1980s by G-line (436 nm) exposure systems using high-pressure mercury lamps, has markedly been reduced to 180 nm recently by the use of 248-nm KrF eximer laser exposure technology, thereby realizing the production of 1-Gb memory semiconductors (Solid State Technol., January 2000).
  • the limitations in the wavelength of usable light, equipment and technology requirements, and the resolution of polymeric photoresist used it is difficult to form nano-scale high-resolution patterns with this method.
  • dip-pen nanolithography which uses an AFM tip as a “nib”, a solid substrate (for example, Au) as “paper”, and molecules with a chemical affinity for the solid substrate as “ink”. Molecules are delivered from the AFM tip to a solid substrate of interest via capillary transport (Science, 1999, 283, 661). Due to the use of elaborately formed sharp tips, dip-pen nanolithography offers a high-resolution, nano-scale pattern of about 5 nm. However, its time-consuming serial pattern drawing processes limit commercialization through mass production.
  • the present invention provides a method for fabricating a high resolution pattern of a desired shape within a short period of time.
  • the present invention provides a substrate with a high resolution pattern.
  • the present invention also provides a method for manufacturing a high-performance and miniaturized semiconductor device using the high resolution pattern.
  • the present invention also provides a method for manufacturing a high-density biochip using the high resolution pattern.
  • the present invention provides a method for high resolution patterning, comprising: (a) forming an aromatic imine monolayer having substituted terminal rings on a substrate; (b) selectively removing the substituents from the aromatic imine monolayer; and (c) hydrolyzing the aromatic imine monolayer.
  • (a) forming the substituted aromatic imine monolayer on the substrate may comprise forming a aminosilylated or aminothiolated self-assembled monolayers on the substrate and processing the surface of the aminosilylated or aminothiolated monolayer with an aromatic aldehyde having a substituted terminal ring.
  • the substituent of the aromatic aldehyde with the substituted terminal ring may be a nitro group or halogen group.
  • the aromatic aldehyde having the substituted terminal ring may be a conjugated or non-conjugated aromatic aldehyde.
  • the non-conjugated aromatic aldehyde with the substituted terminal ring may be a compound of formula (1) below: where X is NO 2 , F, Cl, Br, or I.
  • the conjugated aromatic aldehyde with the substituted terminal ring may be a compound of formula (2), (3), or (4) below:
  • X is NO 2 , F, Cl, Br, or I.
  • the substrate used in the present invention may be a silica or gold substrate.
  • (b) selectively removing the substitutents from the aromatic imine molecular layer may comprise exposing the substrate through a photomask to soft X-rays.
  • the soft X-rays may have a wavelength of 0.3-10 nm at an energy of 40-1,500 eV.
  • the photomask may be a zone plate.
  • the present invention also provides a substrate with a nano-scale pattern featuring alternating height, chemical reactivity, and wettability on sub-100 nm dimensions, the substrate comprising a base plate and a surface layer on the base plate, wherein the surface layer includes a hydrophilic amine molecular layer in a region and a hydrophobic aromatic imine molecular layer in the other region which form the nano-scale pattern together.
  • the present invention also provides a method for manufacturing a semiconductor device with a nano-scale pattern, the method comprising coating a diblock copolymer onto the above substrate having the nano-scale pattern and annealing and etching the substrate coated with the diblock copolymer.
  • the diblock copolymer may be poly(stylene-block-methylmethacrylate).
  • the present invention also provides a biochip fabricated by immobilizing proteins, DNA, or RNA on amine groups previously attached to the above nanopatterned substrate according to the present invention.
  • FIG. 1 illustrates a method according to the present invention for forming on a silica substrate an aromatic imine monolayer that is likely to occur selective chemical transformation by soft X-ray irradiation;
  • FIG. 2 illustrates a method according to the present invention for forming on a gold substrate an aromatic imine monolayer that is likely to occur selective chemical transformation by soft X-ray irradiation;
  • FIG. 3 illustrates a process for high resolution patterning according to the present invention into the aromatic imine monolayer using a photomask
  • FIG. 4 is a magnified atomic force microscopic photograph of a pattern formed on the surface of a substrate in Example 1 according to the present invention
  • FIG. 5 is a magnified atomic force microscopic photograph of a pattern formed on the surface of a substrate in Example 2 according to the present invention.
  • FIG. 6 is an atomic force microscopic photograph of a pattern formed in Example 4 according to the present invention by irradiation with soft X-rays of 500 eV;
  • FIG. 7A is a magnified atomic force microscopic photograph at a scale of 22 ⁇ m ⁇ 22 ⁇ m of a pattern formed in Example 4 by irradiation with soft X-rays of 800 eV;
  • FIG. 7B is a magnified atomic force microscopic photograph at a scale of 2 ⁇ m ⁇ 2 ⁇ m of the pattern formed in Example 4 by irradiation with soft X-rays of 800 eV.
  • the substituents are selectively cleaved from the aromatic imine molecular layer by soft X-rays irradiation (having a wavelength of 0.1-10 nm at an energy of 40-1,500 eV), which is accompanied by chemical changes in the molecular layer, thereby resulting in a high-resolution pattern.
  • the aromatic aldehyde compound that provides the substituents to be selectively cleaved may be a nitro-substituted or halogen atom-substituted benzaldehyde having formula (1) below or conjugated aromatic aldehyde.
  • X is NO 2 , F, Cl, Br, or I.
  • Suitable conjugated aromatic aldehydes include any aldehyde compound having one terminal substituted with a nitro group or halogen atom and the other terminal capable of forming an imine bond by condensation with the amine group on the surface of the substrate.
  • the compounds having formulae (2), (3), and (4) below capable of binding to amine groups on the substrate surface at a high density and inducing a great pattern height difference are preferred.
  • X is NO 2 , F, Cl, Br, or I.
  • the amine groups in the aminosilyated or aminothiolated monolayer on the surface of a silica substrate or gold substrate are reacted with the aromatic aldehyde compound by heating in ethanolic solution under an inert gas atmosphere, so that the aromatic imine molecular layer is formed on the substrate.
  • the aromatic imine molecular layer is irradiated with soft X-rays
  • the substituents on the terminal ring of the aromatic imine monolayer which may be nitro groups or halogen group atoms
  • the imine bonds on the surface of the molecular layer are transformed into non-hydrolyzable chemical species, thereby resulting in a new molecular layer.
  • a surface region of the substrate from which the substituents have been cleaved shows hydrophobic property.
  • a substrate on which the aromatic imine molecular layer will be formed is washed and dried.
  • the clean substrate was immersed into a solution (20 mL) containing a silane coupling agents under nitrogen atmosphere, and placed in the solution for 6 h.
  • Any amino silane compound producing no acidic byproduct for example, (3-aminopropyl)diethoxymethylsilane, may be used without limitations.
  • An example of solvent for dissolving the amino silane compound may be toluene.
  • Any kind of substrate, for example, a silica substrate, a gold substrate, etc. may be used in the present invention without limitations. When a gold substrate is used, it is preferable to treat the gold substrate with an alkane thiol compound having an amine group at its terminal.
  • the substrate is washed with a solvent and dried.
  • the amino-silylated substrate is immersed and heated in an ethanolic solution of a nitro- or halogen-substituted aromatic aldehyde compound under an inert gas atmosphere.
  • the heating temperature may range from 20° C. to 100° C., and the heating time may range from 1 hour to 20 hours.
  • the substrate is washed with an organic solvent.
  • FIG. 2 Another embodiment of a substrate with an aromatic imine molecular layer according to the present invention is illustrated in FIG. 2 .
  • the substrate of FIG. 2 is prepared in a similar manner as in the previous embodiment described with reference to FIG. 1 , except that a gold substrate and an amino thiol compound are used instead of the silica substrate and the amino silane compound, respectively.
  • An example of the amino thiol compound used in the present embodiment to form a monomolecular layer may be 3-aminopropanethiol. Ethanol may be used as a solvent for dissolving the amino thiol compound.
  • a substrate with an aromatic imine molecular layer as shown in FIGS. 1 and 2 is dried in a vacuum and fixed to a metallic sample holder.
  • a photomask having a desired feature size and shape is placed on the substrate with a separation gap of about 1-10 ⁇ m. If the separation gap between the photomask and the substrate is greater than 10 ⁇ m, it is difficult to form a pattern having a feature size of 200 nm or less due to light diffraction effects. If the separation gap between the photomask and the substrate is less than 1 ⁇ m, the surface of the substrate may be unnecessarily contaminated, and the photomask is highly likely to be broken.
  • the substrate with the aromatic imine molecular layer fixed to the sample holder and covered with the photomask is placed into an ultra-high vacuum chamber.
  • the ultra high vacuum chamber is evacuated to 10 ⁇ 8 torr or less, soft X-rays are perpendicularly radiated onto the surface of the substrate.
  • the soft X-rays may have a range of wavelengths from 0.3 nm (equivalent to 1500 eV) to 10 nm (equivalent to 40 eV).
  • the duration of soft X-ray irradiation is determined to be long enough for the nitro group or halogen atom on the outermost molecular surface of the substrate to be cleaved and separated out.
  • the duration of soft X-ray irradiation may be varied according to the structure of the aromatic imine molecular layer bound to the surface of the substrate and the kind of substituents of the molecular layer. If the wavelength of the soft X-rays is shorter than 0.3 nm, the molecular layer is indiscriminately destroyed. If the wavelength of the soft X-rays is longer than 10 nm, undesirably the substituents cannot be selectively cleaved from the aromatic imine molecular layer.
  • the substrate with the aromatic imine molecular layer exposed to the soft X-rays is drawn out of the ultra-high vacuum chamber, the substrate is immersed in pure deionized water and hydrolyzed at a temperature of 20-80° C. for, preferably, about 1-10 hours.
  • the substrate after the hydrolysis is washed with an organic solvent and dried in a vacuum.
  • a pattern of an organic molecular layer can be formed on the substrate, as shown in FIG. 3 .
  • the nitro group or halogen atom is selectively cleaved, which is accompanied by chemical transformation of the imine bond to be resistant to hydrolysis, thereby resulting in a hydrophobic surface having the aromatic ring.
  • the imine bond is hydrolyzed so that hydrophilic amine groups are generated on the surface of the substrate.
  • the irradiated and non-irradiated regions of the organic molecular layer pattern have a height difference equal to the dimension of the aromatic ring and can be visualized using atomic force microscopy (AFM).
  • AFM atomic force microscopy
  • a substrate with a nano-scale pattern according to the present invention can be used as a base substrate in manufacturing highly-integrated semiconductor circuits.
  • the nano-scale pattern of alternate hydrophobic and hydrophilic regions on the substrate is coated with a diblock copolymer, the height to which the diblock copolymer piles up differs by hundreds of nanometers between the separate hydrophobic and hydrophilic regions.
  • the substrate is immersed in an appropriate etchant, the high and low regions on the substrate are etched to different degrees, thereby transferring the nano-scale pattern into the substrate.
  • a diblock copolymer for example, poly(styrene-block-polymethylmethacrylate)
  • a diblock copolymer for example, poly(styrene-block-polymethylmethacrylate)
  • PMMA polymethylmethacrylate
  • PS polystyrene
  • PS polystyrene
  • the substrate with the diblock copolymer thin film is thermally treated at a high temperature, a molecular rearrangement occurs, and the symmetric wetting and asymmetric wetting regions become to have a quantized thickness of nL 0 and (n+1/2)L 0 , respectively, wherein L 0 represents the thickness of a repeating unit, i.e., PS-PMMA, in the planar layer structure.
  • L 0 represents the thickness of a repeating unit, i.e., PS-PMMA, in the planar layer structure.
  • a hole is generated, s. while, in a region where the initial thickness is thicker than a quantized thickness after the thermal treatment, an island is formed. In result, the height contrast of the pattern is amplified.
  • etching When the substrate that has been thermally treated is subject to etching, a portion of the organic molecular layer on the surface of the substrate is removed to provide a semiconductor device with a nano-scale pattern.
  • Types of etching which can be used include any common etching applied in the manufacture of semiconductor devices, for example, using a mixture of KCN and KOH solutions or a HF solution as an etchant.
  • a semiconductor device manufactured with a nano-patterning system according to the present invention as described above can overcome a feature size limit of 130 nm (or 90 nm), which is known to be the highest resolution that can be achieved using currently practical semiconductor manufacturing processes.
  • a nano-scale high resolution pattern according to the present invention has a hydrophilic portion with amine groups that can readily bind to enzymes or other functional substances, it can be applied to biosensors and various material-related fields.
  • the hydrophilicity and hydrophobicity of the pattern can be easily controlled on a nano-scale, the advantage of the pattern is the greatest when used for high density protein chips.
  • a region of highly reactive and hydrophilic amine groups serves as a reaction site to which biomolecules, such as proteins, DNA, or RNA can selectively bind.
  • a hydrophobic region of the high resolution pattern which is alternated with the hydrophilic region, serves as a barrier for different kinds of biomolecules to diffuse without being mixed. Therefore, a nano-scale high resolution pattern formed according to the present invention can be applied to a surface of a substrate in order to form an array of various kinds of biomolecules on the surface through biomolecular interactions. Therefore, the nano-scale high resolution pattern according to the present invention is considered to greatly contribute to the production of high-integrated, high-throughput, miniature biochips.
  • biochips are manufactured by immobilizing biomolecules on a substrate directly or via linker molecules.
  • a protein chip with antibody molecules can be manufactured by immobilizing the antibody molecules on a solid substrate through chemical interactions with amine groups previously attached to the surface of the solid substrate.
  • a cleaned silica substrate was dried in a vacuum of about 20 mtorr.
  • a round-bottom flask was charged with a solution of (3-aminopropyl)diethoxymethylsilane in toluene (10 ⁇ 3 M) under a nitrogen atmosphere.
  • the dried silica substrate was immersed in that solution and reacted at room temperature for silylation.
  • the substrate was washed with toluene, dried in an oven at 120° C. for 30 minutes, and cooled to room temperature.
  • the cooled substrate was washed by ultrasonication in toluene, a solvent mixture of toluene and methanol in 1:1 by volume, and then methanol for 3 minutes each, and dried in a vacuum.
  • the amino-silylated silica substrate was immersed in a solution of 20 mg of 4-nitrobenzaldehyde in 25 mL of ethanol for 6 hours in a nitrogen atmosphere for condensation. At this time, the reaction temperature was maintained at 50° C.
  • the substrate after the reaction was washed with excess methanol and by ultrasonication in methanol and then ethanol for 1 minute each, and dried in a vacuum.
  • the resulting 4-nitrobenzealdimine molecular layer on the silica substrate was cut to a size of 1 cm ⁇ 1 cm, fixed to an aluminum sample holder, covered with a photomask with a separation gap of 5 ⁇ m between the molecular layer and the photomask, and placed into a ultra-high vacuum chamber.
  • the ultra-high vacuum chamber was evacuated to 10 ⁇ 8 torr or less, soft X-rays of 500 eV were perpendicularly radiated onto the substrate for 6.5 hours.
  • the photomask used was a transmission electron microscopic (TEM) grid of a 1000-mesh size (G-1000HS, Energy Beam Sciences Inc.)
  • TEM transmission electron microscopic
  • G-1000HS 1000-mesh size
  • PEEM photoemission electron microscopy
  • the substrate After being drawn out of the ultra-high vacuum chamber, the substrate was immersed in a mixture of 3 mL of pure deionized water and 1 mL of ethanol at 50° C. for 6 hours for hydrolysis. The substrate after the hydrolysis was washed by ultrasonication in a mixture of deionized water and ethanol and then acetone for 3 minutes each, and dried in a vacuum.
  • the resulting pattern on the substrate was confined using atomic force microscopy. The result is shown in FIG. 4 .
  • a substrate with a pattern was manufactured in the same manner as in Example 1, except that a gold substrate instead of the silica substrate and 3-aminopropanethiol instead of the (3-aminopropyl)diethoxymethylsilane were used for amino-thiolation.
  • a cleaned gold substrate was immersed in a solution of 3-aminopropanethiol in ethanol (10 mM) and reacted for 3 hours in a nitrogen atmosphere for the amino-thiolation.
  • the substrate after the amino-thiolation was washed with an organic solvent and dried in a vacuum.
  • An aromatic imine molecular layer was formed on the substrate in the same manner as in Example 1, except that 4-nitrocinnamaldehyde instead of the 4-nitrobenzaldehyde was used.
  • soft X-rays of 500 eV were radiated onto the substrate for 4.5 hours until 80% of the nitro group was removed from the terminal ring in the aromatic imine molecular layer. Hydrolysis was carried out according to Example 1.
  • a substrate with a pattern was manufactured in the same manner as in Example 1, except that a zone plate, consisting of engraved gold concentric circles with varying linewidth from hundreds of nanometers to tens of nanometers on silicon nitride membrane, was used as a photomask.
  • a zone plate with a minimum feature size of 80 nm in the outer-zone was used as the photomask.
  • the transmittance of soft X-rays through the silicon nitride membrane reduces to about 50%. For this reason, the soft X-rays were radiated for about 24 hours, which is double the duration of X-ray irradiation in Example 1.
  • the soft X-rays were radiated at both 500 eV and 800 eV energy levels.
  • a substrate with a pattern was manufactured in the same manner as in Example 1, except that 4-nitrocinnamaldehyde instead of the 4-nitrobenzaldehyde was used, and a zone plate instead of the TEM grid was used as the photomask.
  • the soft X-rays were radiated at both 500 eV and 800 eV energy levels. For the reason described in Example 4, the duration of soft X-ray irradiation was extended to about 10 hours for each energy level.
  • a 2% diluted solution by weight of a symmetric poly(stylene-block-methylmethacrylate) copolymer (available from Polymer Source Inc.) in toluene was coated onto the silica substrate with the nano-pattern manufactured in Example 1 using spin coating at 2,500-3,000 rpm.
  • the resulting polymer thin film was thermally treated in a vacuum oven at 180° C. for 24 hours.
  • the substrate after the thermal treatment was immersed in an alkaline solution of 0.01 M KCN and 2M KOH containing CN ⁇ ions and stirred continuously to manufacture a semiconductor device with a nano-scale pattern.
  • the silica substrate with the nano-pattern manufactured in Example 1 was reacted with succinimidyl 4-maleimido butyrate (SMB) to immobilize linker molecules thereon.
  • SMB succinimidyl 4-maleimido butyrate
  • SMB was initially dissolved in a DMF solvent and diluted ten fold with sodium hydrogen carbonate buffer (50 mM, pH 8.5) to a concentration of 20 mM.
  • 3′-SH-15mer-Cy3-5′ was dissolved in a spotting solution (10 mM HEPES, 5 mM EDTA, pH 6.6), followed by an addition of DMSO (40% by volume).
  • the spotting solution mixture was spotted on the substrate on which the linker molecules had been immobilized, using a pin-type spotting instrument for microarrays and left at room temperature and a humidity of 70-75% for 3 hours to manufacture a biochip.
  • the thickness of the aminosilyated or the aminothiolated monolayers and the density of amine groups on the surface of the molecular layer were measured.
  • the thickness of the molecular layer ranged from 8 ⁇ to 10 ⁇ , and the surface density of amine groups was about 3.5 amines/nm 2 .
  • the thickness increased by 4-6 ⁇ and 6-8 ⁇ , respectively.
  • the substrate with the pattern manufactured in Example 1 was analyzed using atomic force microscopy (AFM), as shown in FIG. 4 .
  • the photograph of FIG. 4 at a scale of 10 ⁇ m ⁇ 10 ⁇ m shows a region of the substrate where TEM grid patterns of a 5- ⁇ m width intersect.
  • outer regions of the intersection appear bright.
  • the bright regions are believed to be higher than the level of the intersection by about 4 ⁇ .
  • the bright regions were irradiated with light through the TEM grid used as the photomask, so that the nitro group was selectively cleaved and chemical transformation of the imine group occurred in those regions to be resistant to hydrolysis, thereby resulting in a hydrophobic surface having aromatic rings.
  • the height of the irradiated regions was greater than that of the non-irradiated region where the 5- ⁇ m grid patterns intersect to shield light, by a degree equal to the dimension of the aromatic ring.
  • the gold substrate with the pattern manufactured in Example 2 was also analyzed using AFM. As a result, a similar pattern to that shown in FIG. 4 was observed on the surface of the gold substrate.
  • FIG. 5 is an AFM photograph of the pattern formed on the substrate in Example 3.
  • the soft X-ray irradiated region and non-irradiated regions (corresponding to the intersection of 5- ⁇ m grid patterns) have a height difference equal to the dimension of the aromatic ring.
  • 4-nitrocinnamaldehyde having an alkene bond (—CH 2 ⁇ CH 2 —)
  • the pattern formed in Example 3 showed a height difference of about 6 ⁇ , which is greater than in Example 1.
  • FIGS. 6 and 7 are AFM photographs of patterns formed on substrates in Example 4.
  • FIG. 6 shows an edge region of 5 ⁇ m ⁇ 5 ⁇ m in the pattern formed by irradiation with soft X-rays of 500 eV through the zone plate.
  • the pattern has a feature size of about 150-300 nm and becomes narrower from right toward left.
  • a line with a feature size of 80 nm was observed at a region further to the left.
  • Bright and dark regions of the pattern shown in FIG. 6 had a height difference of about 7 ⁇ .
  • FIGS. 7A and 7B are AFM photographs of a pattern formed on a substrate by irradiation with soft X-rays of 800 eV through the zone plate.
  • FIG. 7A shows an inner-zone of the zone-plate imaged surfaces at a scale of 22 ⁇ m ⁇ 22 ⁇ m. A partial concentric pattern with a smaller feature size toward a lower part of the photograph is apparent.
  • FIG. 7B shows an outer-zone of the pattern magnified to 2 ⁇ m ⁇ 2 ⁇ m.
  • a left portion of the photograph shown in FIG. 2B is a non-pattern region that is unblocked by the zone plate, and a right portion is an outermost pattern region having pattern lines. As expected, a 80-nm pattern line was apparently patterned into the substrate.
  • the results of the AFM analysis confirms that surface patterning on a scale of a few nanometers can be achieved using the nano-scale patterning method according to the present invention with a higher resolution mask.
  • a desired nano-scale high resolution pattern having alternate hydrophilic and hydrophobic regions can be formed on a surface of a substrate within a short period of time.
  • the substrate with such a nano-scale high resolution pattern is greatly useful as a base substrate that is accompanied by coating with a copolymer and selective surface etching in the semiconductor material field. Due to the reactive hydrophilic amine groups in the pattern, binding with enzymes or various functional substances can be controlled on a nano-scale. Therefore, nano-scale high resolution patterning according to the present invention can greatly contribute to the development of highly-integrated biochips or miniaturized biosensors.

Abstract

A method for nano-scale high resolution patterning of self-assembled monolayer using soft X-rays is provided. The method involves forming an aromatic imine molecular layer having substitutents at its terminal rings on a substrate, selectively cleaving bonds to the substituents of the aromatic imine molecular layer, and hydrolyzing the aromatic imine molecular layer.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a method for high resolution patterning and a process for manufacturing a nano device using the high resolution pattern, and more particularly, to a method for micro- or nano-scale high resolution patterning within a short period of time, and a nano device formed using the method.
  • 2. Description of the Related Art
  • With recent advances in the semiconductor industry and the need for highly-integrated semiconductor devices, nano- or micro-fabrication technologies for minute patterning attract more and more attention.
  • As is expected by many experts that nanotechnology will be one of the leading technologies in the 21st century, nano-pattern fabrication is an essential technology of the highest priority in minute-circuit processing for large-capacity semiconductor devices. In addition, nano-patterning technology has wide applications, for example, in the bioengineering related field and for biosensors, so its consequence becomes great.
  • So far, surface patterning has been achieved by photolithography employing deep UV radiation and polymer-photoresists, leading to stunning advances in the semiconductor industry for the last decade.
  • Pattern resolution in photolithography is determined according to Rayleigh's equation, R=k1λ/NA, where R denotes resolution, λ denotes wavelength, k1 is a constant, and NA denotes the numerical aperture of a lens system. A shorter wavelength of light used results in higher resolution and smaller patterns. A pattern resolution on the order of 500 nm, achieved in the early 1980s by G-line (436 nm) exposure systems using high-pressure mercury lamps, has markedly been reduced to 180 nm recently by the use of 248-nm KrF eximer laser exposure technology, thereby realizing the production of 1-Gb memory semiconductors (Solid State Technol., January 2000). However, due to the limitations in the wavelength of usable light, equipment and technology requirements, and the resolution of polymeric photoresist used, it is difficult to form nano-scale high-resolution patterns with this method.
  • For higher pattern resolutions, many attempts have been made since 1990, for example, using self-assembled monolayers as a new photoresist, instead of polymers used in conventional photolithography, and using light of a short wavelength. In addition, new patterning technologies for self-assembled monolayers, for example, soft lithography or scanning probe lithography using tips of AFM and STM have been introduced.
  • In the early 1990s, Whitesides, a professor at Harvard University, termed surface patterning using an elastomeric stamp or mold to ink a solid substrate with the help of molecular self-assembly, not using light or high energy particles, as “soft lithography” and reported many research results (Appl. Phys. Lett., 1993, 63, 2002). A representative example is concerned with microcontact printing (μCP) involving stamping surfactant molecules, for example, alkanethiol, in a surface area with a polydimethylsiloxane (PDMS) elastomer stamp to form patterns of self-assembled monolayers only on the stamping area. This microcontact printing enables speedy and economical consecutive patternings. However, this technique has some problems to be solved, such as inaccurate registration (<1 μm) due to the deformation of an elastomeric stamp, incompatibility with current integrated circuit (IC) processes, etc.
  • Recently, Mirkin et al. have developed “dip-pen” nanolithography (DPN) which uses an AFM tip as a “nib”, a solid substrate (for example, Au) as “paper”, and molecules with a chemical affinity for the solid substrate as “ink”. Molecules are delivered from the AFM tip to a solid substrate of interest via capillary transport (Science, 1999, 283, 661). Due to the use of elaborately formed sharp tips, dip-pen nanolithography offers a high-resolution, nano-scale pattern of about 5 nm. However, its time-consuming serial pattern drawing processes limit commercialization through mass production.
  • SUMMARY OF THE INVENTION
  • Therefore, the present invention provides a method for fabricating a high resolution pattern of a desired shape within a short period of time.
  • The present invention provides a substrate with a high resolution pattern.
  • The present invention also provides a method for manufacturing a high-performance and miniaturized semiconductor device using the high resolution pattern.
  • The present invention also provides a method for manufacturing a high-density biochip using the high resolution pattern.
  • The present invention provides a method for high resolution patterning, comprising: (a) forming an aromatic imine monolayer having substituted terminal rings on a substrate; (b) selectively removing the substituents from the aromatic imine monolayer; and (c) hydrolyzing the aromatic imine monolayer.
  • In an embodiment of the method according to the present invention, (a) forming the substituted aromatic imine monolayer on the substrate may comprise forming a aminosilylated or aminothiolated self-assembled monolayers on the substrate and processing the surface of the aminosilylated or aminothiolated monolayer with an aromatic aldehyde having a substituted terminal ring.
  • The substituent of the aromatic aldehyde with the substituted terminal ring may be a nitro group or halogen group.
  • The aromatic aldehyde having the substituted terminal ring may be a conjugated or non-conjugated aromatic aldehyde. The non-conjugated aromatic aldehyde with the substituted terminal ring may be a compound of formula (1) below:
    Figure US20080038542A1-20080214-C00001

    where X is NO2, F, Cl, Br, or I. The conjugated aromatic aldehyde with the substituted terminal ring may be a compound of formula (2), (3), or (4) below:
    Figure US20080038542A1-20080214-C00002
  • In formulae (2), (3), and (4) above, X is NO2, F, Cl, Br, or I.
  • The substrate used in the present invention may be a silica or gold substrate.
  • In another embodiment of the high resolution patterning method according to the present invention, (b) selectively removing the substitutents from the aromatic imine molecular layer may comprise exposing the substrate through a photomask to soft X-rays. In this case, the soft X-rays may have a wavelength of 0.3-10 nm at an energy of 40-1,500 eV. The photomask may be a zone plate.
  • The present invention also provides a substrate with a nano-scale pattern featuring alternating height, chemical reactivity, and wettability on sub-100 nm dimensions, the substrate comprising a base plate and a surface layer on the base plate, wherein the surface layer includes a hydrophilic amine molecular layer in a region and a hydrophobic aromatic imine molecular layer in the other region which form the nano-scale pattern together.
  • The present invention also provides a method for manufacturing a semiconductor device with a nano-scale pattern, the method comprising coating a diblock copolymer onto the above substrate having the nano-scale pattern and annealing and etching the substrate coated with the diblock copolymer. The diblock copolymer may be poly(stylene-block-methylmethacrylate).
  • The present invention also provides a biochip fabricated by immobilizing proteins, DNA, or RNA on amine groups previously attached to the above nanopatterned substrate according to the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other features and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
  • FIG. 1 illustrates a method according to the present invention for forming on a silica substrate an aromatic imine monolayer that is likely to occur selective chemical transformation by soft X-ray irradiation;
  • FIG. 2 illustrates a method according to the present invention for forming on a gold substrate an aromatic imine monolayer that is likely to occur selective chemical transformation by soft X-ray irradiation;
  • FIG. 3 illustrates a process for high resolution patterning according to the present invention into the aromatic imine monolayer using a photomask;
  • FIG. 4 is a magnified atomic force microscopic photograph of a pattern formed on the surface of a substrate in Example 1 according to the present invention;
  • FIG. 5 is a magnified atomic force microscopic photograph of a pattern formed on the surface of a substrate in Example 2 according to the present invention;
  • FIG. 6 is an atomic force microscopic photograph of a pattern formed in Example 4 according to the present invention by irradiation with soft X-rays of 500 eV;
  • FIG. 7A is a magnified atomic force microscopic photograph at a scale of 22 μm×22 μm of a pattern formed in Example 4 by irradiation with soft X-rays of 800 eV; and
  • FIG. 7B is a magnified atomic force microscopic photograph at a scale of 2 μm×2 μm of the pattern formed in Example 4 by irradiation with soft X-rays of 800 eV.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, the present invention will be described below in detail. According to the present invention, after forming an aromatic imine monolayer having substitutents at its terminal rings by reacting amine groups in an aminosilyated or aminothiolated monolayer previously formed on the substrate with an aromatic aldehyde compound having various substitutents, the substituents are selectively cleaved from the aromatic imine molecular layer by soft X-rays irradiation (having a wavelength of 0.1-10 nm at an energy of 40-1,500 eV), which is accompanied by chemical changes in the molecular layer, thereby resulting in a high-resolution pattern.
  • The aromatic aldehyde compound that provides the substituents to be selectively cleaved may be a nitro-substituted or halogen atom-substituted benzaldehyde having formula (1) below or conjugated aromatic aldehyde.
    Figure US20080038542A1-20080214-C00003

    where X is NO2, F, Cl, Br, or I.
  • Suitable conjugated aromatic aldehydes include any aldehyde compound having one terminal substituted with a nitro group or halogen atom and the other terminal capable of forming an imine bond by condensation with the amine group on the surface of the substrate. However, the compounds having formulae (2), (3), and (4) below capable of binding to amine groups on the substrate surface at a high density and inducing a great pattern height difference are preferred.
    Figure US20080038542A1-20080214-C00004

    In formulae (2), (3), and (4) above, X is NO2, F, Cl, Br, or I.
  • As described above, the amine groups in the aminosilyated or aminothiolated monolayer on the surface of a silica substrate or gold substrate are reacted with the aromatic aldehyde compound by heating in ethanolic solution under an inert gas atmosphere, so that the aromatic imine molecular layer is formed on the substrate.
  • When the aromatic imine monolayer is heated in pure deionized water, imine bonds are hydrolyzed to separate the aromatic aldehyde from the amino silane molecular or amino thiol molecular layer on the substrate. As a result, the hydrophilic amine groups are exposed on the surface of the substrate.
  • However, once the aromatic imine molecular layer is irradiated with soft X-rays, the substituents on the terminal ring of the aromatic imine monolayer, which may be nitro groups or halogen group atoms, are selectively cleaved, and the imine bonds on the surface of the molecular layer are transformed into non-hydrolyzable chemical species, thereby resulting in a new molecular layer. At this time, a surface region of the substrate from which the substituents have been cleaved shows hydrophobic property.
  • As described above, when soft X-ray irradiation onto the substituted aromatic imine monolayer through an appropriately designed photomask is followed by hydrolysis in deionized water, an irradiated region of the molecular layer that is not hydrolyzed becomes to have a hydrophobic surface having the aromatic ring, whereas a non-irradiated region of the molecular layer where the imine groups are hydrolyzed becomes to have a hydrophilic surface having the amine group. As a result, a desired high-resolution pattern of alternate hydrophilic and hydrophobic regions can be formed on the surface of the substrate.
  • Hereinafter, a method for forming a nano-scale high resolution pattern on a substrate according to the present invention will be described with reference to the appended drawings.
  • Initially, a method for forming an aromatic imine monolayer using aminosilylated substrates will be described. A substrate on which the aromatic imine molecular layer will be formed is washed and dried. The clean substrate was immersed into a solution (20 mL) containing a silane coupling agents under nitrogen atmosphere, and placed in the solution for 6 h. Any amino silane compound producing no acidic byproduct, for example, (3-aminopropyl)diethoxymethylsilane, may be used without limitations. An example of solvent for dissolving the amino silane compound may be toluene. Any kind of substrate, for example, a silica substrate, a gold substrate, etc., may be used in the present invention without limitations. When a gold substrate is used, it is preferable to treat the gold substrate with an alkane thiol compound having an amine group at its terminal.
  • When the above amino silylation is completed, the substrate is washed with a solvent and dried.
  • The amino-silylated substrate is immersed and heated in an ethanolic solution of a nitro- or halogen-substituted aromatic aldehyde compound under an inert gas atmosphere. The heating temperature may range from 20° C. to 100° C., and the heating time may range from 1 hour to 20 hours. After the reaction is completed, the substrate is washed with an organic solvent.
  • Through the above-described processes a substrate with the aromatic imine molecular layer, as shown in FIG. 1, can be obtained.
  • Another embodiment of a substrate with an aromatic imine molecular layer according to the present invention is illustrated in FIG. 2. The substrate of FIG. 2 is prepared in a similar manner as in the previous embodiment described with reference to FIG. 1, except that a gold substrate and an amino thiol compound are used instead of the silica substrate and the amino silane compound, respectively. An example of the amino thiol compound used in the present embodiment to form a monomolecular layer may be 3-aminopropanethiol. Ethanol may be used as a solvent for dissolving the amino thiol compound.
  • A substrate with an aromatic imine molecular layer as shown in FIGS. 1 and 2 is dried in a vacuum and fixed to a metallic sample holder. A photomask having a desired feature size and shape is placed on the substrate with a separation gap of about 1-10 μm. If the separation gap between the photomask and the substrate is greater than 10 μm, it is difficult to form a pattern having a feature size of 200 nm or less due to light diffraction effects. If the separation gap between the photomask and the substrate is less than 1 μm, the surface of the substrate may be unnecessarily contaminated, and the photomask is highly likely to be broken.
  • The substrate with the aromatic imine molecular layer fixed to the sample holder and covered with the photomask is placed into an ultra-high vacuum chamber. When the ultra high vacuum chamber is evacuated to 10−8 torr or less, soft X-rays are perpendicularly radiated onto the surface of the substrate. The soft X-rays may have a range of wavelengths from 0.3 nm (equivalent to 1500 eV) to 10 nm (equivalent to 40 eV). The duration of soft X-ray irradiation is determined to be long enough for the nitro group or halogen atom on the outermost molecular surface of the substrate to be cleaved and separated out. The duration of soft X-ray irradiation may be varied according to the structure of the aromatic imine molecular layer bound to the surface of the substrate and the kind of substituents of the molecular layer. If the wavelength of the soft X-rays is shorter than 0.3 nm, the molecular layer is indiscriminately destroyed. If the wavelength of the soft X-rays is longer than 10 nm, undesirably the substituents cannot be selectively cleaved from the aromatic imine molecular layer.
  • After the substrate with the aromatic imine molecular layer exposed to the soft X-rays is drawn out of the ultra-high vacuum chamber, the substrate is immersed in pure deionized water and hydrolyzed at a temperature of 20-80° C. for, preferably, about 1-10 hours. The substrate after the hydrolysis is washed with an organic solvent and dried in a vacuum.
  • Through the above-described processes, a pattern of an organic molecular layer can be formed on the substrate, as shown in FIG. 3.
  • Referring to FIG. 3. in a soft X-ray irradiated region of the organic molecular layer, the nitro group or halogen atom is selectively cleaved, which is accompanied by chemical transformation of the imine bond to be resistant to hydrolysis, thereby resulting in a hydrophobic surface having the aromatic ring. In a non-irradiated region of the organic molecular layer, the imine bond is hydrolyzed so that hydrophilic amine groups are generated on the surface of the substrate. As a result, the irradiated and non-irradiated regions of the organic molecular layer pattern have a height difference equal to the dimension of the aromatic ring and can be visualized using atomic force microscopy (AFM).
  • A substrate with a nano-scale pattern according to the present invention can be used as a base substrate in manufacturing highly-integrated semiconductor circuits. In particular, when the nano-scale pattern of alternate hydrophobic and hydrophilic regions on the substrate is coated with a diblock copolymer, the height to which the diblock copolymer piles up differs by hundreds of nanometers between the separate hydrophobic and hydrophilic regions. When the substrate is immersed in an appropriate etchant, the high and low regions on the substrate are etched to different degrees, thereby transferring the nano-scale pattern into the substrate.
  • In particular, a diblock copolymer, for example, poly(styrene-block-polymethylmethacrylate), is coated onto the substrate with the nano-scale pattern formed according to the present invention in a planar structure using, for example, spin coating. On the hydrophilic region of the substrate, polymethylmethacrylate (PMMA) is first arranged, and polystyrene (PS), PS, PMMA, PMMA and PS are sequentially piled thereon, with the upper and outermost layer of PS having a low surface free energy, leading to an asymmetric wetting of the surface. Meanwhile, on the hydrophobic region of the substrate, PS is first arranged, and PMMA, PMMA, and PS are sequentially piled thereon, leading to a symmetric wetting of the surface.
  • When the substrate with the diblock copolymer thin film is thermally treated at a high temperature, a molecular rearrangement occurs, and the symmetric wetting and asymmetric wetting regions become to have a quantized thickness of nL0 and (n+1/2)L0, respectively, wherein L0 represents the thickness of a repeating unit, i.e., PS-PMMA, in the planar layer structure. In a region where the initial thickness is thinner than a quantized thickness after the thermal treatment, a hole is generated, s. while, in a region where the initial thickness is thicker than a quantized thickness after the thermal treatment, an island is formed. In result, the height contrast of the pattern is amplified.
  • When the substrate that has been thermally treated is subject to etching, a portion of the organic molecular layer on the surface of the substrate is removed to provide a semiconductor device with a nano-scale pattern. Types of etching which can be used include any common etching applied in the manufacture of semiconductor devices, for example, using a mixture of KCN and KOH solutions or a HF solution as an etchant.
  • A semiconductor device manufactured with a nano-patterning system according to the present invention as described above can overcome a feature size limit of 130 nm (or 90 nm), which is known to be the highest resolution that can be achieved using currently practical semiconductor manufacturing processes.
  • Since a nano-scale high resolution pattern according to the present invention has a hydrophilic portion with amine groups that can readily bind to enzymes or other functional substances, it can be applied to biosensors and various material-related fields. In particular, since the hydrophilicity and hydrophobicity of the pattern can be easily controlled on a nano-scale, the advantage of the pattern is the greatest when used for high density protein chips.
  • In a nano-scale high resolution pattern formed by the method according to the present invention, a region of highly reactive and hydrophilic amine groups serves as a reaction site to which biomolecules, such as proteins, DNA, or RNA can selectively bind. Also, a hydrophobic region of the high resolution pattern, which is alternated with the hydrophilic region, serves as a barrier for different kinds of biomolecules to diffuse without being mixed. Therefore, a nano-scale high resolution pattern formed according to the present invention can be applied to a surface of a substrate in order to form an array of various kinds of biomolecules on the surface through biomolecular interactions. Therefore, the nano-scale high resolution pattern according to the present invention is considered to greatly contribute to the production of high-integrated, high-throughput, miniature biochips.
  • In general, biochips are manufactured by immobilizing biomolecules on a substrate directly or via linker molecules. For example, a protein chip with antibody molecules can be manufactured by immobilizing the antibody molecules on a solid substrate through chemical interactions with amine groups previously attached to the surface of the solid substrate.
  • The present invention will be described more fully with reference to the accompanying drawings, in which examples of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as being limited to the examples set fourth herein; rather these examples are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.
  • EXAMPLE 1
  • Initially, a cleaned silica substrate was dried in a vacuum of about 20 mtorr. A round-bottom flask was charged with a solution of (3-aminopropyl)diethoxymethylsilane in toluene (10−3M) under a nitrogen atmosphere. The dried silica substrate was immersed in that solution and reacted at room temperature for silylation.
  • After the silylation was completed, the substrate was washed with toluene, dried in an oven at 120° C. for 30 minutes, and cooled to room temperature. The cooled substrate was washed by ultrasonication in toluene, a solvent mixture of toluene and methanol in 1:1 by volume, and then methanol for 3 minutes each, and dried in a vacuum.
  • Next, the amino-silylated silica substrate was immersed in a solution of 20 mg of 4-nitrobenzaldehyde in 25 mL of ethanol for 6 hours in a nitrogen atmosphere for condensation. At this time, the reaction temperature was maintained at 50° C.
  • The substrate after the reaction was washed with excess methanol and by ultrasonication in methanol and then ethanol for 1 minute each, and dried in a vacuum.
  • The resulting 4-nitrobenzealdimine molecular layer on the silica substrate was cut to a size of 1 cm×1 cm, fixed to an aluminum sample holder, covered with a photomask with a separation gap of 5 μm between the molecular layer and the photomask, and placed into a ultra-high vacuum chamber. When the ultra-high vacuum chamber was evacuated to 10−8 torr or less, soft X-rays of 500 eV were perpendicularly radiated onto the substrate for 6.5 hours. The photomask used was a transmission electron microscopic (TEM) grid of a 1000-mesh size (G-1000HS, Energy Beam Sciences Inc.) The soft X-ray irradiation was performed on a 4B1 photoemission electron microscopy (PEEM) beam line of Pohang Accelerator Laboratory in Korea.
  • After being drawn out of the ultra-high vacuum chamber, the substrate was immersed in a mixture of 3 mL of pure deionized water and 1 mL of ethanol at 50° C. for 6 hours for hydrolysis. The substrate after the hydrolysis was washed by ultrasonication in a mixture of deionized water and ethanol and then acetone for 3 minutes each, and dried in a vacuum.
  • The resulting pattern on the substrate was confined using atomic force microscopy. The result is shown in FIG. 4.
  • EXAMPLE 2
  • A substrate with a pattern was manufactured in the same manner as in Example 1, except that a gold substrate instead of the silica substrate and 3-aminopropanethiol instead of the (3-aminopropyl)diethoxymethylsilane were used for amino-thiolation. A cleaned gold substrate was immersed in a solution of 3-aminopropanethiol in ethanol (10 mM) and reacted for 3 hours in a nitrogen atmosphere for the amino-thiolation. The substrate after the amino-thiolation was washed with an organic solvent and dried in a vacuum.
  • EXAMPLE 3
  • An aromatic imine molecular layer was formed on the substrate in the same manner as in Example 1, except that 4-nitrocinnamaldehyde instead of the 4-nitrobenzaldehyde was used. In patterning, soft X-rays of 500 eV were radiated onto the substrate for 4.5 hours until 80% of the nitro group was removed from the terminal ring in the aromatic imine molecular layer. Hydrolysis was carried out according to Example 1.
  • EXAMPLE 4
  • A substrate with a pattern was manufactured in the same manner as in Example 1, except that a zone plate, consisting of engraved gold concentric circles with varying linewidth from hundreds of nanometers to tens of nanometers on silicon nitride membrane, was used as a photomask. In the present example, a zone plate with a minimum feature size of 80 nm in the outer-zone was used as the photomask. When such a zone plate is used as a photomask, the transmittance of soft X-rays through the silicon nitride membrane reduces to about 50%. For this reason, the soft X-rays were radiated for about 24 hours, which is double the duration of X-ray irradiation in Example 1. The soft X-rays were radiated at both 500 eV and 800 eV energy levels.
  • EXAMPLE 5
  • A substrate with a pattern was manufactured in the same manner as in Example 1, except that 4-nitrocinnamaldehyde instead of the 4-nitrobenzaldehyde was used, and a zone plate instead of the TEM grid was used as the photomask. The soft X-rays were radiated at both 500 eV and 800 eV energy levels. For the reason described in Example 4, the duration of soft X-ray irradiation was extended to about 10 hours for each energy level.
  • EXAMPLE 6
  • A 2% diluted solution by weight of a symmetric poly(stylene-block-methylmethacrylate) copolymer (available from Polymer Source Inc.) in toluene was coated onto the silica substrate with the nano-pattern manufactured in Example 1 using spin coating at 2,500-3,000 rpm. The resulting polymer thin film was thermally treated in a vacuum oven at 180° C. for 24 hours. The substrate after the thermal treatment was immersed in an alkaline solution of 0.01 M KCN and 2M KOH containing CN ions and stirred continuously to manufacture a semiconductor device with a nano-scale pattern.
  • EXAMPLE 7
  • The silica substrate with the nano-pattern manufactured in Example 1 was reacted with succinimidyl 4-maleimido butyrate (SMB) to immobilize linker molecules thereon. For the immobilization, SMB was initially dissolved in a DMF solvent and diluted ten fold with sodium hydrogen carbonate buffer (50 mM, pH 8.5) to a concentration of 20 mM. 3′-SH-15mer-Cy3-5′ was dissolved in a spotting solution (10 mM HEPES, 5 mM EDTA, pH 6.6), followed by an addition of DMSO (40% by volume). The spotting solution mixture was spotted on the substrate on which the linker molecules had been immobilized, using a pin-type spotting instrument for microarrays and left at room temperature and a humidity of 70-75% for 3 hours to manufacture a biochip.
  • EXPERIMENTAL EXAMPLE 1 Thickness and Surface Density Measurements
  • Before reaction with the aromatic aldehyde compound in the above examples, the thickness of the aminosilyated or the aminothiolated monolayers and the density of amine groups on the surface of the molecular layer were measured. As a result, the thickness of the molecular layer ranged from 8 Å to 10 Å, and the surface density of amine groups was about 3.5 amines/nm2. After the condensation of the aminosilylated monolayer with 4-nitrobenzaldehyde and 4-nitrocinnamaldehyde, the thickness increased by 4-6 Å and 6-8 Å, respectively.
  • EXPERIMENTAL EXAMPLE 2 Atomic Fore Microscopic Analysis
  • The substrate with the pattern manufactured in Example 1 was analyzed using atomic force microscopy (AFM), as shown in FIG. 4. The photograph of FIG. 4 at a scale of 10 μm×10 μm shows a region of the substrate where TEM grid patterns of a 5-μm width intersect. In FIG. 4, outer regions of the intersection appear bright. The bright regions are believed to be higher than the level of the intersection by about 4 Å. In particular, the bright regions were irradiated with light through the TEM grid used as the photomask, so that the nitro group was selectively cleaved and chemical transformation of the imine group occurred in those regions to be resistant to hydrolysis, thereby resulting in a hydrophobic surface having aromatic rings. As a result, the height of the irradiated regions was greater than that of the non-irradiated region where the 5-μm grid patterns intersect to shield light, by a degree equal to the dimension of the aromatic ring.
  • The gold substrate with the pattern manufactured in Example 2 was also analyzed using AFM. As a result, a similar pattern to that shown in FIG. 4 was observed on the surface of the gold substrate.
  • FIG. 5 is an AFM photograph of the pattern formed on the substrate in Example 3. Apparently, the soft X-ray irradiated region and non-irradiated regions (corresponding to the intersection of 5-μm grid patterns) have a height difference equal to the dimension of the aromatic ring. Since 4-nitrocinnamaldehyde having an alkene bond (—CH2═CH2—), which is not present in the 4-nitrobenzealdehyde used in Example 1, was used in Example 3, the pattern formed in Example 3 showed a height difference of about 6 Å, which is greater than in Example 1.
  • FIGS. 6 and 7 are AFM photographs of patterns formed on substrates in Example 4. FIG. 6 shows an edge region of 5 μm×5 μm in the pattern formed by irradiation with soft X-rays of 500 eV through the zone plate. The pattern has a feature size of about 150-300 nm and becomes narrower from right toward left. A line with a feature size of 80 nm was observed at a region further to the left. Bright and dark regions of the pattern shown in FIG. 6 had a height difference of about 7 Å.
  • FIGS. 7A and 7B are AFM photographs of a pattern formed on a substrate by irradiation with soft X-rays of 800 eV through the zone plate. FIG. 7A shows an inner-zone of the zone-plate imaged surfaces at a scale of 22 μm×22 μm. A partial concentric pattern with a smaller feature size toward a lower part of the photograph is apparent. FIG. 7B shows an outer-zone of the pattern magnified to 2 μm×2 μm. A left portion of the photograph shown in FIG. 2B is a non-pattern region that is unblocked by the zone plate, and a right portion is an outermost pattern region having pattern lines. As expected, a 80-nm pattern line was apparently patterned into the substrate.
  • The results of the AFM analysis confirms that surface patterning on a scale of a few nanometers can be achieved using the nano-scale patterning method according to the present invention with a higher resolution mask.
  • According to the present invention, a desired nano-scale high resolution pattern having alternate hydrophilic and hydrophobic regions can be formed on a surface of a substrate within a short period of time. The substrate with such a nano-scale high resolution pattern is greatly useful as a base substrate that is accompanied by coating with a copolymer and selective surface etching in the semiconductor material field. Due to the reactive hydrophilic amine groups in the pattern, binding with enzymes or various functional substances can be controlled on a nano-scale. Therefore, nano-scale high resolution patterning according to the present invention can greatly contribute to the development of highly-integrated biochips or miniaturized biosensors.
  • While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.

Claims (8)

1-9. (canceled)
10. A substrate with a nano-scale pattern of a predetermined shape, the substrate comprising:
a base plate; and
a surface layer on the base plate, the surface layer including a hydrophilic amine monolayer in a region and a hydrophobic aromatic imine monolayer in the other region which form the nano-scale pattern together.
11. A method for manufacturing a semiconductor device, the method comprising:
coating a diblock copolymer onto the substrate of claim 10; and
thermally processing (annealing) and etching the substrate coated with the diblock copolymer.
12. The method of claim 11, wherein the diblock copolymer is poly(stylene-block-methylmethacrylate).
13. A biochip comprising:
the substrate of claim 10; and
biomolecules bound to amine groups of the hydrophilic amine molecular layer.
14. The biochip of claim 13, wherein the biomolecules are proteins, DNA, or RNA.
15. A substrate comprising:
a base plate; and
a surface layer in the base plate wherein the surface layer is produced according to claim 1.
16. The substrate according to claim 10, wherein the hydrophilic amine monolayer and the hydrophobic imine monolayer are alternatively positioned in the substrate.
US11/717,191 2001-09-12 2007-03-13 Method for high resolution patterning using soft X-ray, process for preparing nano device using the method Abandoned US20080038542A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/717,191 US20080038542A1 (en) 2001-09-12 2007-03-13 Method for high resolution patterning using soft X-ray, process for preparing nano device using the method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR2001-56221 2001-09-12
KR10-2001-0056221A KR100473799B1 (en) 2001-09-12 2001-09-12 Method for nano-scale patterning
PCT/KR2002/001714 WO2003023517A1 (en) 2001-09-12 2002-09-12 Method for high resolution patterning using soft x-ray, process for preparing nano device using the method
US10/489,411 US7267932B2 (en) 2001-09-12 2002-09-12 Method for high resolution patterning using soft X-ray, process for preparing nano device using the same method
US11/717,191 US20080038542A1 (en) 2001-09-12 2007-03-13 Method for high resolution patterning using soft X-ray, process for preparing nano device using the method

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2002/001714 Continuation WO2003023517A1 (en) 2001-09-12 2002-09-12 Method for high resolution patterning using soft x-ray, process for preparing nano device using the method
US10/489,411 Continuation US7267932B2 (en) 2001-09-12 2002-09-12 Method for high resolution patterning using soft X-ray, process for preparing nano device using the same method

Publications (1)

Publication Number Publication Date
US20080038542A1 true US20080038542A1 (en) 2008-02-14

Family

ID=19714207

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/489,411 Expired - Fee Related US7267932B2 (en) 2001-09-12 2002-09-12 Method for high resolution patterning using soft X-ray, process for preparing nano device using the same method
US11/717,191 Abandoned US20080038542A1 (en) 2001-09-12 2007-03-13 Method for high resolution patterning using soft X-ray, process for preparing nano device using the method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/489,411 Expired - Fee Related US7267932B2 (en) 2001-09-12 2002-09-12 Method for high resolution patterning using soft X-ray, process for preparing nano device using the same method

Country Status (5)

Country Link
US (2) US7267932B2 (en)
EP (1) EP1428074A4 (en)
JP (1) JP4032104B2 (en)
KR (1) KR100473799B1 (en)
WO (1) WO2003023517A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986488B2 (en) 2010-07-28 2015-03-24 Kabushiki Kaisha Toshiba Pattern formation method and polymer alloy base material
US11175307B1 (en) 2020-08-28 2021-11-16 Globalfoundries U.S. Inc. Conductive atomic force microscopy system with enhanced sensitivity and methods of using such a system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835534B2 (en) * 2000-10-27 2004-12-28 The Penn State Research Foundation Chemical functionalization nanolithography
KR100473800B1 (en) * 2001-09-12 2005-03-07 학교법인 포항공과대학교 Method for high resolution patterning by low energy electron beam
KR100965373B1 (en) * 2003-06-10 2010-06-22 삼성전자주식회사 Photosensitive Metal Nanoparticle and Method of forming Conductive Pattern by using the same
DE10328811B4 (en) 2003-06-20 2005-12-29 Infineon Technologies Ag A compound for forming a self-assembling monolayer, a layered structure, a semiconductor device having a layered structure and a method for producing a layered structure
WO2006052104A1 (en) * 2004-11-12 2006-05-18 Seoul National University Industry Foundation Method for aligning or assembling nano-structure on solid surface
US8133534B2 (en) 2004-11-22 2012-03-13 Wisconsin Alumni Research Foundation Methods and compositions for forming patterns with isolated or discrete features using block copolymer materials
EP1827717A4 (en) 2004-11-22 2011-11-23 Wisconsin Alumni Res Found Methods and compositions for forming aperiodic patterned copolymer films
US8168284B2 (en) 2005-10-06 2012-05-01 Wisconsin Alumni Research Foundation Fabrication of complex three-dimensional structures based on directed assembly of self-assembling materials on activated two-dimensional templates
US8618221B2 (en) 2005-10-14 2013-12-31 Wisconsin Alumni Research Foundation Directed assembly of triblock copolymers
KR100888886B1 (en) * 2007-09-27 2009-03-17 포항공과대학교 산학협력단 Patterning method using monoatomic molecule
US9183870B2 (en) 2007-12-07 2015-11-10 Wisconsin Alumni Research Foundation Density multiplication and improved lithography by directed block copolymer assembly
KR100968546B1 (en) 2008-06-19 2010-07-08 한국전자통신연구원 A pattern forming method of biosensor substrate and a biosensor using the same
US9299381B2 (en) 2011-02-07 2016-03-29 Wisconsin Alumni Research Foundation Solvent annealing block copolymers on patterned substrates
WO2013040483A1 (en) 2011-09-15 2013-03-21 Wisconsin Alumni Research Foundation Directed assembly of block copolymer films between a chemically patterned surface and a second surface
US9372398B2 (en) 2012-03-02 2016-06-21 Wisconsin Alumni Research Foundation Patterning in the directed assembly of block copolymers using triblock or multiblock copolymers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079600A (en) * 1987-03-06 1992-01-07 Schnur Joel M High resolution patterning on solid substrates
US5389496A (en) * 1987-03-06 1995-02-14 Rohm And Haas Company Processes and compositions for electroless metallization
US5648201A (en) * 1991-04-25 1997-07-15 The United Sates Of America As Represented By The Secretary Of The Navy Efficient chemistry for selective modification and metallization of substrates
US5736257A (en) * 1995-04-25 1998-04-07 Us Navy Photoactivatable polymers for producing patterned biomolecular assemblies

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156918A (en) * 1991-03-28 1992-10-20 Northwestern University Self-assembled super lattices
JPH05202483A (en) * 1991-04-25 1993-08-10 Shipley Co Inc Method and composition for electroless metallization
US5378502A (en) * 1992-09-09 1995-01-03 U.S. Philips Corporation Method of chemically modifying a surface in accordance with a pattern
US5998099A (en) * 1996-03-08 1999-12-07 Lucent Technologies Inc. Energy-sensitive resist material and a process for device fabrication using an energy-sensitive resist material
US6436615B1 (en) * 1999-06-25 2002-08-20 The United States Of America As Represented By The Secretary Of The Navy Methods and materials for selective modification of photopatterned polymer films
KR100345690B1 (en) * 2000-03-24 2002-07-27 학교법인 포항공과대학교 Method for forming molecular layer with high amines group density on substrate
KR100473800B1 (en) * 2001-09-12 2005-03-07 학교법인 포항공과대학교 Method for high resolution patterning by low energy electron beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079600A (en) * 1987-03-06 1992-01-07 Schnur Joel M High resolution patterning on solid substrates
US5389496A (en) * 1987-03-06 1995-02-14 Rohm And Haas Company Processes and compositions for electroless metallization
US5648201A (en) * 1991-04-25 1997-07-15 The United Sates Of America As Represented By The Secretary Of The Navy Efficient chemistry for selective modification and metallization of substrates
US5736257A (en) * 1995-04-25 1998-04-07 Us Navy Photoactivatable polymers for producing patterned biomolecular assemblies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986488B2 (en) 2010-07-28 2015-03-24 Kabushiki Kaisha Toshiba Pattern formation method and polymer alloy base material
US11175307B1 (en) 2020-08-28 2021-11-16 Globalfoundries U.S. Inc. Conductive atomic force microscopy system with enhanced sensitivity and methods of using such a system

Also Published As

Publication number Publication date
EP1428074A4 (en) 2008-02-13
WO2003023517A1 (en) 2003-03-20
EP1428074A1 (en) 2004-06-16
KR100473799B1 (en) 2005-03-07
US7267932B2 (en) 2007-09-11
JP4032104B2 (en) 2008-01-16
US20040241590A1 (en) 2004-12-02
KR20030023191A (en) 2003-03-19
JP2005502916A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US20080038542A1 (en) Method for high resolution patterning using soft X-ray, process for preparing nano device using the method
Wilbur et al. Microcontact printing of self-assembled monolayers: applications in microfabrication
US20040241582A1 (en) Method for high resolution patterning using low-energy electron beam, process for preparing nano device using the method
US20020084429A1 (en) Electron-beam patterning of functionalized self-assembled monolayers
Xu et al. Polymer-pen chemical lift-off lithography
US8841239B2 (en) Patterned nanosubstrates made by directed self assembly of amphiphilic molecules
Woodson et al. Functional nanostructures from surface chemistry patterning
US7384872B2 (en) Method of producing substrate having patterned organosilane layer and method of using the substrate having the patterned organosilane layer
US8092899B2 (en) Method of activating a silicon surface for subsequent patterning of molecules onto said surface
Sun et al. Photopatterning of self-assembled monolayers at 244 nm and applications to the fabrication of functional microstructures and nanostructures
KR100429910B1 (en) Method for high resolution patterning of by low energy electron beam
US20050048411A1 (en) Methods of patterning a monolayer
Zhang et al. Production of nanopatterns by a combination of electron beam lithography and a self-assembled monolayer for an antibody nanoarray
Niwa et al. Formation of micro and nanoscale patterns of monolayer templates for position selective immobilization of oligonucleotide using ultraviolet and electron beam lithography
Fetterly et al. Vapor-phase nanopatterning of aminosilanes with electron beam lithography: understanding and minimizing background functionalization
KR100549104B1 (en) Method for fabricating a bionanoarray with sub-10 nanometer feature size
JP2008527722A (en) Supporting substrate indexed topographically
Rahman et al. Fabrication of gold dots for DNA based nano-sensors
JP2005142175A (en) Method of forming pattern on surface of article by means of positive microcontact printing
Zhu et al. Electron beam lithography on nonplanar and irregular surfaces
Jung et al. Pattern formation through selective chemical transformation of self-assembled benzaldimine monolayer by soft X-ray irradiation
Zoller Nano-Structured Substrates for Single Cell Proteomics
Chen Photopolymerization and selective self-assembly of gold colloids on polymers
Jung et al. Development of Nano-sized Protein Arrays using Block Copolymer Self-Assemblies
US20120171431A1 (en) Method for the creation of complex structures on a micrometric or nanometric scale, and the complex structure thus obtained

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION