US20080011059A1 - Measurement of substances in liquids - Google Patents

Measurement of substances in liquids Download PDF

Info

Publication number
US20080011059A1
US20080011059A1 US11/772,714 US77271407A US2008011059A1 US 20080011059 A1 US20080011059 A1 US 20080011059A1 US 77271407 A US77271407 A US 77271407A US 2008011059 A1 US2008011059 A1 US 2008011059A1
Authority
US
United States
Prior art keywords
working sensor
sensor active
active areas
working
test strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/772,714
Inventor
Oliver Davies
Christopher Leach
Manuel Alvarez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LifeScan Scotland Ltd
Original Assignee
Inverness Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32827011&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080011059(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Inverness Medical Ltd filed Critical Inverness Medical Ltd
Priority to US11/772,714 priority Critical patent/US20080011059A1/en
Publication of US20080011059A1 publication Critical patent/US20080011059A1/en
Assigned to INVERNESS MEDICAL LIMITED reassignment INVERNESS MEDICAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALVAREZ-ICAZA, MANUEL, DAVIES, OLIVER W. H., LEACH, CHRISTOPHER P.
Assigned to LIFESCAN SCOTLAND LIMITED reassignment LIFESCAN SCOTLAND LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INVERNESS MEDICAL LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes

Definitions

  • This invention relates to apparatus for measuring the concentration of a substance in a liquid and particularly, but not exclusively, to apparatus for measuring the concentration of glucose in blood.
  • Devices for measuring blood glucose levels are invaluable for diabetics, especially devices that may be used by the sufferers themselves since they may then monitor their own glucose levels and take an appropriate dose of insulin. Correspondingly therefore the accuracy of such devices is very important since an inaccurate reading could lead to the wrong level of insulin being administered which could be very harmful.
  • the general principle is that an electric current is measured between two sensor parts called the working and reference sensor parts respectively.
  • the working sensor part comprises a layer of enzyme reagent, the current being generated by the transfer of electrons from the enzyme substrate, via the enzyme and an electron mediator compound to the surface of a conductive electrode.
  • the current generated is proportional to both the area of the sensor part and also the concentration of glucose in the test sample. Since the area of the working sensor part is supposedly known, the electric current should be proportional to the glucose concentration.
  • the present inventors have realised that as well as incomplete coverage of the working sensor part, inaccurate results can also arise from occasional defects in the production of the test strips for such devices, in the area and/or the thickness of the working sensor part and also from accidental damage to the working sensor part e.g by a user.
  • the only practical way to deal with this problem so far has been to ensure that the printing process used to produce the test strips is as accurate as possible and to rely on adequate quality control.
  • a measuring device having a first working sensor part comprising a working layer which generates an electric current proportional to the concentration of said substance in the sample liquid, a reference sensor part and a second working sensor part comprising a working layer which also generates an electric current proportional to the concentration of said substance in the sample liquid;
  • the measuring device used in this method is novel and inventive in its own right and thus from a second aspect the present invention provides a device for measuring the concentration of a substance in a sample liquid, said device comprising:
  • a first working sensor part comprising a working layer for generating an electric current proportional to the concentration of said substance in the sample liquid
  • a second working sensor part comprising a working layer also for generating an electric current proportional to the concentration of said substance in the sample liquid.
  • the measuring device compares the current generated by two working sensor parts and gives an error indication if they are too dissimilar—i.e. the current at one sensor part differs too greatly from what would be expected from considering the current at the other.
  • this method detect when one of the sensor parts has not been properly covered with sample liquid, but it can also detect if there is a manufacturing defect in either sensor part or if either has been damaged after manufacture, since even with complete coverage of the working sensor parts, an anomalous current will be generated at the affected sensor part such circumstances.
  • the only type of defect or damage which would not necessarily be recognised is one which affected both of the working sensor parts to the same degree.
  • this is logically less likely than a defect affecting a single working sensor part and is thus an improvement over the prior art. In practice such a likelihood is considered to be negligible.
  • the invention is not limited to providing just two working sensor parts and the skilled person could therefore choose to provide three or more working sensor parts to further reduce the probability that they are all affected by an identical defect.
  • the invention provides an arrangement whereby for a given total area of working sensor part and thus a given minimum sample volume, detection of inadequate fill and of defects in the working sensor part provided by separating the area of the working sensor part into two.
  • the present invention provides a test member for measuring the concentration of a substance in a sample liquid comprising:
  • each working sensor part comprising a working layer for generating an electric current proportional to the concentration of said substance in the sample liquid.
  • a reference sensor part is also provided on the substrate.
  • the two working sensor parts may be dissimilar or different potentials may be applied to each sensor part in either of which cases the measuring device is preferably arranged to apply appropriate weights to the measurements returned by one or both working sensor parts to normalise them.
  • the difference parameter could then for example be the simple arithmetic difference between the normalised current values.
  • the working layer of both sensor parts is of the same material and alternatively, but preferably additionally, both working sensor parts have the same area.
  • the two working sensor parts are substantially identical.
  • the measuring device is arranged to apply the same potential to each sensor part. This allows the difference parameter to comprise a direct comparison between the respective currents at the sensor parts in order to determine whether a reliable measurement of the substance concentration can be made.
  • the two working sensor parts may be arranged as convenient within the device, or in accordance with the preferred embodiment, on the test member.
  • the device or test member may be arranged to allow the sample liquid to flow freely over the working sensor parts. More preferably however the sample liquid is constrained to flow substantially unidirectionally across the working sensor parts.
  • the two working sensor parts are arranged one downstream of the other. This makes it possible to ensure that one of the sensor parts will always be completely covered before the other begins to be covered, thus avoiding the possibility, however small, that insufficient sample liquid is applied to cover both sensor parts and furthermore that each sensor part is partially covered by the same amount. It will be appreciated however that if the above-mentioned small risk is deemed acceptable, arrangements in accordance with the invention allow a much greater flexibility in the placement of the sensor parts than in known devices whilst still providing protection against an inadequate volume of sample liquid being used or other incorrect product usage or damage. It is also preferred that both working sensor parts are downstream of the reference sensor part.
  • the threshold used to determine an inaccurate measurement may be chosen as appropriate. Typically a threshold will be chosen empirically as a suitable value will depend on the inherent variability in the manufacturing process, the desired precision of results, etc. To some extent there is a trade-off between the accuracy which may be obtained by setting the threshold low and the proportion of measurements which are disregarded as being too inaccurate. Thus the threshold might advantageously be set at a level for example where no significant harm would be done to a patient relying on the results to administer insulin.
  • the difference parameter may be an absolute value—e.g. of the difference in currents measured at each sensor part, but is preferably dimensionless—e.g. a percentage of one or other of the measured currents.
  • the actual current value used to calculate the concentration of the substance may just be that from one of the working sensor parts, but is preferably a combination thereof, e.g. the sum or mean of the two. This gives the advantage that the maximum effective working area is utilised which further helps to increase the precision of the results obtained.
  • a particularly preferred embodiment of the invention is a device for measuring the concentration of glucose in blood, in which the two working sensor parts and the reference sensor part are provided on a disposable test strip.
  • FIG. 1 shows a substrate for a test strip in accordance with the invention
  • FIG. 2 shows the layout of carbon tracks applied to the substrate
  • FIG. 3 shows the layer of insulation applied to the strip
  • FIG. 4 shows the enzyme reagent layer
  • FIG. 5 shows a layer of hydrophilic film
  • FIG. 6 shows the cover layer of the strip
  • FIG. 7 is a plot of the results obtained without using a method in accordance with the invention.
  • FIG. 8 is a plot similar to FIG. 7 obtained using a method in accordance with the invention.
  • FIG. 1 there is shown an oblong polyester strip 2 which forms the substrate for a test strip for measuring the concentration of glucose in a sample of blood.
  • the substrate 2 is shown in isolation although in practice an array of such strips is cut out from a large master sheet at the end of fabrication.
  • FIG. 2 shows the pattern of carbon ink which is applied to the substrate by screen printing.
  • the layer of carbon comprises four distinct areas which are electrically insulated from one another.
  • the first track 4 forms, at the distal end thereof, an electrode 4 b for a reference/counter sensor part.
  • the track 4 extends lengthwise to form a connecting terminal 4 a at its proximal end.
  • the second and third tracks 6 , 8 form electrodes 6 b , 8 b at their distal ends for two working sensor parts and respective connecting terminals 6 a , 8 a at their proximal ends.
  • the fourth carbon area is simply a connecting bridge 10 which is provided in order to close a circuit in a suitable measuring device in order to turn it on when the test strip has been properly inserted.
  • FIG. 3 shows the next layer to be applied also by screen printing.
  • This is a water insoluble insulating mask 12 which defines a window over the electrodes 6 b , 8 b and which therefore controls the size of the exposed carbon and hence where the enzyme layer 14 ( FIG. 4 ) will come into contact with the carbon electrodes.
  • the size and shape of the window are set so that the two electrodes 6 b , 8 b have a patch of enzyme of exactly the same area printed onto them. This means that for a given potential, each working sensor part will theoretically generate the same electric current in the presence of a sample of blood.
  • a layer of glucose oxidase 14 ( FIG. 4 ) is printed over the mask 12 and thus onto the electrodes 4 b , 6 b , 8 b through the window in the mask to form the reference/counter sensor part and the two working sensor parts respectively.
  • a 150 micron layer of adhesive is then printed onto the strip in the pattern shown in FIG. 5 . This pattern has been enlarged for clarity as compared to the previous Figures.
  • Three separate areas of adhesive 16 a, b, c together define a sample chamber 18 between them.
  • the first section of film has the effect of making the sample chamber 18 into a thin channel which draws liquid into and along it by a capillary action.
  • the final layer is shown in FIG. 7 and is a protective plastic cover tape 22 which has a transparent portion 24 at the distal end. This enables a user to tell instantly if a strip has been used.
  • the test strip is inserted into the meter.
  • the bridge portion 10 completes a circuit in the device and thus automatically turns the device on.
  • the device also has contacts to connect to the terminals 4 a , 6 a , 8 a on the strip.
  • the measuring device applies a potential of 400 mV between the counter/reference sensor part and each of the two working sensor parts via the above-mentioned terminals.
  • a drop of blood is then placed on the distal end of the strip.
  • Capillary action draws the blood along the sample chamber 18 and over the counter/reference sensor part and two working sensor parts.
  • the electric current generated by each working sensor part is measured and the two measurements are compared. If they differ by more than 10% an error message is displayed on the measuring device and the test must be repeated. If they are within 10% of each other however, the two currents are added together in the device and are converted to a glucose level which is displayed on an LCD.
  • the second set of results is significantly more precise, i.e. they display a much lower variation. Furthermore, since in practice the two working sensor parts will only give results consistent with one another if they are both fully covered, the second set of results is also significantly more accurate than the first since it may be safely assumed that the results are only actually given when both working sensor parts are fully covered.
  • the present invention allows the detection and rejection of those tests that have had insufficient sample applied to the test strip i.e those in which the test strip has been incorrectly used.
  • the invention may be used to measure the level of any suitable substance in any liquid, not just glucose in blood.
  • the working sensor parts need not be provided on a test strip but may be part of an integrated device.
  • the difference figure of 10% used in the embodiment described above is purely exemplary and any suitable figure may be chosen.

Abstract

In accordance with the present invention a measuring device compares the current generated by two working sensor active areas and gives an error indication if they are too dissimilar, i.e., the current at one sensor active area differs too greatly from what would be expected from considering the current at the other. Not only can this method detect when one of the sensor parts has not been properly covered with sample liquid, but it can also detect if there is a manufacturing defect in either sensor part or if either has been damaged after manufacture, since even with complete coverage of the working sensor parts, an anomalous current will be generated at the affected sensor part under such circumstances.

Description

  • This invention relates to apparatus for measuring the concentration of a substance in a liquid and particularly, but not exclusively, to apparatus for measuring the concentration of glucose in blood.
  • Devices for measuring blood glucose levels are invaluable for diabetics, especially devices that may be used by the sufferers themselves since they may then monitor their own glucose levels and take an appropriate dose of insulin. Correspondingly therefore the accuracy of such devices is very important since an inaccurate reading could lead to the wrong level of insulin being administered which could be very harmful.
  • It is also the case that in all practical blood glucose measuring systems at least part of the device, i.e. that part which comes into contact with the sample blood, is disposable. This means that it is particularly important that the cost particularly of any disposable parts can be minimised as a user will generally need large numbers of them regularly.
  • Known glucose measuring devices now favour an electrochemical measurement method over old colorimetric methods. The general principle is that an electric current is measured between two sensor parts called the working and reference sensor parts respectively. The working sensor part comprises a layer of enzyme reagent, the current being generated by the transfer of electrons from the enzyme substrate, via the enzyme and an electron mediator compound to the surface of a conductive electrode. The current generated is proportional to both the area of the sensor part and also the concentration of glucose in the test sample. Since the area of the working sensor part is supposedly known, the electric current should be proportional to the glucose concentration.
  • It has been recognised in the art that inaccurate results are obtained if the working sensor part is not fully covered with blood since then its effective area is reduced. Various ways of dealing with this problem have been proposed, two of which are disclosed in U.S. Pat. No. 5,628,890 and U.S. Pat. No. 5,582,697 Both of these methods rely on a unidirectional flow of blood across the surface of the test strip and both initiate the test measurement by detecting the presence of the sample liquid at an electrode or sensor part located downstream of the working sensor part.
  • The problem of insufficient sample liquid being present and thus the working sensor part not being completely covered may of course be reduced by reducing the size of the working sensor part. However a small area for the working sensor part tends to give a greater variability in calibrated results.
  • The present inventors have realised that as well as incomplete coverage of the working sensor part, inaccurate results can also arise from occasional defects in the production of the test strips for such devices, in the area and/or the thickness of the working sensor part and also from accidental damage to the working sensor part e.g by a user. As far as the inventors are aware, the only practical way to deal with this problem so far has been to ensure that the printing process used to produce the test strips is as accurate as possible and to rely on adequate quality control.
  • It is an object of the present invention at least partially to alleviate the above-mentioned disadvantages and when viewed from a first aspect the invention provides a method of measuring the concentration of a substance in a sample liquid comprising the steps of:
  • providing a measuring device having a first working sensor part comprising a working layer which generates an electric current proportional to the concentration of said substance in the sample liquid, a reference sensor part and a second working sensor part comprising a working layer which also generates an electric current proportional to the concentration of said substance in the sample liquid;
  • applying the sample liquid to said measuring device;
  • comparing the electric current generated at each of the working sensor parts to establish a difference parameter; and
  • giving an indication of an error if said difference parameter is greater than a predetermined threshold.
  • Furthermore the measuring device used in this method is novel and inventive in its own right and thus from a second aspect the present invention provides a device for measuring the concentration of a substance in a sample liquid, said device comprising:
  • a reference sensor part,
  • a first working sensor part, comprising a working layer for generating an electric current proportional to the concentration of said substance in the sample liquid; and
  • a second working sensor part comprising a working layer also for generating an electric current proportional to the concentration of said substance in the sample liquid.
  • Thus it will be seen that in accordance with the invention the measuring device compares the current generated by two working sensor parts and gives an error indication if they are too dissimilar—i.e. the current at one sensor part differs too greatly from what would be expected from considering the current at the other. Not only can this method detect when one of the sensor parts has not been properly covered with sample liquid, but it can also detect if there is a manufacturing defect in either sensor part or if either has been damaged after manufacture, since even with complete coverage of the working sensor parts, an anomalous current will be generated at the affected sensor part such circumstances.
  • In accordance with the invention the only type of defect or damage which would not necessarily be recognised is one which affected both of the working sensor parts to the same degree. However, this is logically less likely than a defect affecting a single working sensor part and is thus an improvement over the prior art. In practice such a likelihood is considered to be negligible. In any event the invention is not limited to providing just two working sensor parts and the skilled person could therefore choose to provide three or more working sensor parts to further reduce the probability that they are all affected by an identical defect.
  • Looking at the invention another way, it provides an arrangement whereby for a given total area of working sensor part and thus a given minimum sample volume, detection of inadequate fill and of defects in the working sensor part provided by separating the area of the working sensor part into two.
  • Some or all of the sensor parts may be provided as part of an integrated device. Preferably however at least the working sensor parts are provided on a removable test member. Thus when viewed from a further aspect the present invention provides a test member for measuring the concentration of a substance in a sample liquid comprising:
  • a substrate; and
  • two working sensor parts provided on the substrate, each working sensor part comprising a working layer for generating an electric current proportional to the concentration of said substance in the sample liquid.
  • Preferably a reference sensor part is also provided on the substrate.
  • It will be appreciated by those skilled in the art that effectively what has been provided is a measuring device which is self-testing for proper use, damage and certain manufacturing defects. This is particularly beneficial in the context of a device in which the sensor parts are provided on a separate test member since this may typically be a mass-manufactured test strip, e.g. for measuring blood glucose levels. Since in accordance with the invention a damaged or defective test strip will be recognised, allowing it to be rejected, the accuracy of the final result and thus potentially the safety of a user is no longer solely dependent upon high manufacturing precision. Although it is of course not desirable that a large number of tests is rejected, in many circumstances it is more important that inaccurate results are not given.
  • The two working sensor parts may be dissimilar or different potentials may be applied to each sensor part in either of which cases the measuring device is preferably arranged to apply appropriate weights to the measurements returned by one or both working sensor parts to normalise them. The difference parameter could then for example be the simple arithmetic difference between the normalised current values. Preferably however the working layer of both sensor parts is of the same material and alternatively, but preferably additionally, both working sensor parts have the same area. Thus it is most preferred that the two working sensor parts are substantially identical. It is also preferred that the measuring device is arranged to apply the same potential to each sensor part. This allows the difference parameter to comprise a direct comparison between the respective currents at the sensor parts in order to determine whether a reliable measurement of the substance concentration can be made.
  • The two working sensor parts may be arranged as convenient within the device, or in accordance with the preferred embodiment, on the test member. The device or test member may be arranged to allow the sample liquid to flow freely over the working sensor parts. More preferably however the sample liquid is constrained to flow substantially unidirectionally across the working sensor parts.
  • It is presently preferred that the two working sensor parts are arranged one downstream of the other. This makes it possible to ensure that one of the sensor parts will always be completely covered before the other begins to be covered, thus avoiding the possibility, however small, that insufficient sample liquid is applied to cover both sensor parts and furthermore that each sensor part is partially covered by the same amount. It will be appreciated however that if the above-mentioned small risk is deemed acceptable, arrangements in accordance with the invention allow a much greater flexibility in the placement of the sensor parts than in known devices whilst still providing protection against an inadequate volume of sample liquid being used or other incorrect product usage or damage. It is also preferred that both working sensor parts are downstream of the reference sensor part.
  • The threshold used to determine an inaccurate measurement may be chosen as appropriate. Typically a threshold will be chosen empirically as a suitable value will depend on the inherent variability in the manufacturing process, the desired precision of results, etc. To some extent there is a trade-off between the accuracy which may be obtained by setting the threshold low and the proportion of measurements which are disregarded as being too inaccurate. Thus the threshold might advantageously be set at a level for example where no significant harm would be done to a patient relying on the results to administer insulin.
  • The difference parameter may be an absolute value—e.g. of the difference in currents measured at each sensor part, but is preferably dimensionless—e.g. a percentage of one or other of the measured currents.
  • The actual current value used to calculate the concentration of the substance may just be that from one of the working sensor parts, but is preferably a combination thereof, e.g. the sum or mean of the two. This gives the advantage that the maximum effective working area is utilised which further helps to increase the precision of the results obtained.
  • A particularly preferred embodiment of the invention is a device for measuring the concentration of glucose in blood, in which the two working sensor parts and the reference sensor part are provided on a disposable test strip.
  • A preferred embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
  • FIG. 1 shows a substrate for a test strip in accordance with the invention;
  • FIG. 2 shows the layout of carbon tracks applied to the substrate;
  • FIG. 3 shows the layer of insulation applied to the strip;
  • FIG. 4 shows the enzyme reagent layer;
  • FIG. 5 shows a layer of hydrophilic film;
  • FIG. 6 shows the cover layer of the strip;
  • FIG. 7 is a plot of the results obtained without using a method in accordance with the invention; and
  • FIG. 8 is a plot similar to FIG. 7 obtained using a method in accordance with the invention.
  • Turning to FIG. 1, there is shown an oblong polyester strip 2 which forms the substrate for a test strip for measuring the concentration of glucose in a sample of blood. The substrate 2 is shown in isolation although in practice an array of such strips is cut out from a large master sheet at the end of fabrication.
  • FIG. 2 shows the pattern of carbon ink which is applied to the substrate by screen printing. The layer of carbon comprises four distinct areas which are electrically insulated from one another. The first track 4 forms, at the distal end thereof, an electrode 4 b for a reference/counter sensor part. The track 4 extends lengthwise to form a connecting terminal 4 a at its proximal end. The second and third tracks 6, 8 form electrodes 6 b, 8 b at their distal ends for two working sensor parts and respective connecting terminals 6 a, 8 a at their proximal ends. The fourth carbon area is simply a connecting bridge 10 which is provided in order to close a circuit in a suitable measuring device in order to turn it on when the test strip has been properly inserted.
  • FIG. 3 shows the next layer to be applied also by screen printing. This is a water insoluble insulating mask 12 which defines a window over the electrodes 6 b, 8 b and which therefore controls the size of the exposed carbon and hence where the enzyme layer 14 (FIG. 4) will come into contact with the carbon electrodes. The size and shape of the window are set so that the two electrodes 6 b, 8 b have a patch of enzyme of exactly the same area printed onto them. This means that for a given potential, each working sensor part will theoretically generate the same electric current in the presence of a sample of blood.
  • A layer of glucose oxidase 14 (FIG. 4) is printed over the mask 12 and thus onto the electrodes 4 b, 6 b, 8 b through the window in the mask to form the reference/counter sensor part and the two working sensor parts respectively. A 150 micron layer of adhesive is then printed onto the strip in the pattern shown in FIG. 5. This pattern has been enlarged for clarity as compared to the previous Figures. Three separate areas of adhesive 16 a, b, c together define a sample chamber 18 between them.
  • Two sections of hydrophilic film 20 (FIG. 6) are laminated onto the strip and are held in place by the adhesive 16. The first section of film has the effect of making the sample chamber 18 into a thin channel which draws liquid into and along it by a capillary action. The final layer is shown in FIG. 7 and is a protective plastic cover tape 22 which has a transparent portion 24 at the distal end. This enables a user to tell instantly if a strip has been used.
  • Use of the strip will now be described. The test strip is inserted into the meter. The bridge portion 10 completes a circuit in the device and thus automatically turns the device on. The device also has contacts to connect to the terminals 4 a, 6 a, 8 a on the strip. The measuring device applies a potential of 400 mV between the counter/reference sensor part and each of the two working sensor parts via the above-mentioned terminals.
  • A drop of blood is then placed on the distal end of the strip. Capillary action draws the blood along the sample chamber 18 and over the counter/reference sensor part and two working sensor parts.
  • After a predetermined time the electric current generated by each working sensor part is measured and the two measurements are compared. If they differ by more than 10% an error message is displayed on the measuring device and the test must be repeated. If they are within 10% of each other however, the two currents are added together in the device and are converted to a glucose level which is displayed on an LCD.
  • A comparative experiment was carried out using a strip fabricated as set out above, in order to exemplify the benefits achievable in accordance with the invention. In the experiment drops of blood increasing in volume from 1 to 2 micro litres in steps of 0.2 micro litres and with a constant glucose concentration, were applied to such strips, with each volume being repeated 8 times. The current measured at each working sensor part was measured and recorded. The results are shown in Table 1 appended to this description.
  • For the first part of the test the two currents were simply added together to simulate a single working sensor part having their combined area. These results are plotted in FIG. 8.
  • In the second half of the test the two currents were first compared. Only if they differed by less than 10% were they then added together and put forward as valid results. Values differing by more than 10% were disregarded. The results of this second part of the test are plotted in FIG. 9.
  • It is immediately apparent that the second set of results is significantly more precise, i.e. they display a much lower variation. Furthermore, since in practice the two working sensor parts will only give results consistent with one another if they are both fully covered, the second set of results is also significantly more accurate than the first since it may be safely assumed that the results are only actually given when both working sensor parts are fully covered.
  • Thus is will be seen that in its preferred embodiment the present invention allows the detection and rejection of those tests that have had insufficient sample applied to the test strip i.e those in which the test strip has been incorrectly used.
  • It will be appreciated by those skilled in the art that many variations on what has been described above are possible within the scope of the invention. For example the invention may be used to measure the level of any suitable substance in any liquid, not just glucose in blood. Furthermore, the working sensor parts need not be provided on a test strip but may be part of an integrated device. Also the difference figure of 10% used in the embodiment described above is purely exemplary and any suitable figure may be chosen.
    TABLE 1
    No
    Volume Working 1: Working 2: % Error error
    μL μA μA Difference checked check
    1 7.07 0.00 −706800 7.07
    1 6.94 5.98 −16.2175732 12.92
    1 5.53 0.01 −92050 5.54
    1 6.99 7.09 1.42393909 14.09 14.09
    1 7.34 7.02 −4.59016393 14.35 14.35
    1 7.16 6.79 −5.49742078 13.94 13.94
    1 7.01 3.47 −102.13441 10.48
    1 7.07 5.69 −24.2578605 12.77
    1.2 7.18 4.54 −58.2286847 11.72
    1.2 7.00 6.78 −3.35055351 13.78 13.78
    1.2 7.09 1.79 −297.032475 8.88
    1.2 6.31 0.00 −157550 6.31
    1.2 6.78 6.79 0.11788977 13.56 13.56
    1.2 6.95 6.59 −5.4029443 13.53 13.53
    1.2 6.62 6.28 −5.36795158 12.89 12.89
    1.2 7.23 3.78 −91.2721502 11.01
    1.4 7.16 6.90 −3.76811594 14.06 14.06
    1.4 7.14 6.94 −2.88184438 14.08 14.08
    1.4 7.17 7.02 −2.13675214 14.19 14.19
    1.4 7.02 6.01 −1.5918958 13.93 13.93
    1.4 6.95 6.91 −0.5788712 13.86 13.86
    1.4 6.93 6.88 −0.72674419 13.81 13.81
    1.4 7.09 6.92 −2.4566474 14.01 14.01
    1.4 7.25 7.40 2.02702703 14.65 14.65
    1.6 7.808 6.59 −18.4825493 14.40
    1.6 6.774 6.589 −2.80770982 13.36 13.36
    1.6 6.928 6.904 −0.34762457 13.83 13.83
    1.6 6.892 6.453 −6.80303735 13.35 13.35
    1.6 7.087 7.314 3.10363686 14.40 14.40
    1.6 7.257 6.947 −4.46235785 14.20 14.20
    1.6 6.501 6.306 −3.09229305 12.81 12.81
    1.6 6.811 6.755 −0.82901554 13.57 13.57
    1.8 7.145 6.536 −9.31762546 13.68 13.68
    1.8 7.021 6.612 −6.18572293 13.63 13.63
    1.8 6.917 6.828 −1.30345636 13.75 13.75
    1.8 6.971 6.78 −2.81710914 13.75 13.75
    1.8 7.016 6.941 −1.08053595 13.96 13.96
    1.8 6.977 7.179 2.81376236 14.16 14.16
    1.8 6.946 6.794 −2.23726828 13.74 13.74
    1.8 7.203 7.183 −0.27843519 14.39 14.39
    2 7.145 6.536 −9.31762546 13.68 13.68
    2 7.021 6.621 −6.18572293 13.63 13.63
    2 6.917 6.828 −1.30345636 13.75 13.75
    2 6.971 6.78 −2.81710914 13.75 13.75
    2 7.016 6.941 −1.08053595 13.96 13.96
    2 6.977 7.179 2.81376236 14.16 14.16
    2 6.946 6.794 −2.23726818 13.74 13.74
    2 7.203 7.183 −0.27843519 14.39 14.39

Claims (16)

1-16. (canceled)
17. A disposable test strip for measuring the concentration of a substance in a sample liquid; said device comprising:
a first working sensor active area for generating charge carriers in proportion to the concentration of said substance in the sample liquid, said first working sensor active area being electrically contiguous;
a second working sensor active area downstream from said first working sensor active area also generating charge carriers in proportion to the concentration of said substance in the sample liquid, said second working sensor active area being electrically contiguous, wherein said first and second working sensor active areas are arranged such that, in the absence of an error condition, the quantity of said charge carriers generated by said first working sensor active area are substantially identical to the quantity of said charge carriers generated by said second working sensor active area; and
a reference sensor upstream from said first and second working sensor active areas which reference sensor is a common reference for both the first and second working sensor active areas, said reference sensor and said first and second working sensor parts being arranged such that the sample liquid is constrained to flow substantially unidirectionally across said reference sensor and said first and second working sensor active areas;
18. The disposable test strip claimed in claim 17 arranged such that the sample liquid is constrained to flow substantially unidirectionally.
19. The disposable test strip claimed in claim 17 wherein said working sensor active areas are both provided downstream of the reference sensor part.
20. The disposable test strip claimed in claim 17 wherein said working sensor active areas are provided downstream of one another.
21. The disposable test strip claimed in claim 17 wherein said working sensor active areas are both provided downstream of the reference sensor.
22. The disposable test strip claimed in claim 17 wherein said working sensor active areas are substantially equal.
23. The disposable test strip claimed in claim 17 arranged to measure said currents after a predetermined time following application of the sample.
24. The disposable test strip claimed in claim 17 wherein the substance to be measured is glucose, and each of the working sensor parts generates charge carriers in proportion to the concentration of glucose in the sample liquid wherein.
25. A disposable test strip for measuring the concentration of a substance in a sample liquid comprising:
a base member;
two working sensor active areas provided on the base member a first of said working sensor active areas being arranged upstream of a second of said working sensor active areas; and
a reference sensor upstream from said working sensor active areas which is a common reference for each working sensor active area, each working sensor active area being arranged in use to generate charge carriers in proportion to the concentration of said substance in the sample liquid wherein said two working sensor active areas are arranged such that, in the absence of an error condition, the quantity of said charge carriers generated by a first of said working sensor active areas are substantially identical to the quantity of said charge carriers generated by a second of said working sensor active areas, arranged such that the sample liquid is constrained to flow substantially unidirectionally across said reference electrode and said working sensor active areas.
26. The disposable test strip as claimed in claim 25 arranged such that the sample liquid is constrained to flow substantially unidirectionally across said working sensor active areas.
27. The disposable test strip as claimed in claim 25 wherein said working sensor active areas are provided one downstream of the other.
28. The disposable test strip as claimed in claim 26 wherein said working sensor active areas are both provided downstream of said reference sensor part.
29. The disposable test strip as claimed in claim 26 wherein said working sensor active areas each have the same area.
30. The disposable test strip as claimed in claim 28 wherein said working sensor active areas are substantially identical.
31. The disposable test strip as claimed in claim 26 wherein the substance to be measured is glucose, and each of the working sensor active areas generates charge carriers in proportion to the concentration of glucose in the sample liquid.
US11/772,714 2000-03-08 2007-07-02 Measurement of substances in liquids Abandoned US20080011059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/772,714 US20080011059A1 (en) 2000-03-08 2007-07-02 Measurement of substances in liquids

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/521,163 US6733655B1 (en) 2000-03-08 2000-03-08 Measurement of substances in liquids
GBGB0005564.0A GB0005564D0 (en) 2000-03-08 2000-03-08 Measurjement of substances in liquid
US10/431,140 US7250105B1 (en) 2000-03-08 2003-05-07 Measurement of substances in liquids
US11/772,714 US20080011059A1 (en) 2000-03-08 2007-07-02 Measurement of substances in liquids

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/521,163 Continuation US6733655B1 (en) 2000-03-08 2000-03-08 Measurement of substances in liquids
US10/431,140 Continuation US7250105B1 (en) 2000-03-08 2003-05-07 Measurement of substances in liquids

Publications (1)

Publication Number Publication Date
US20080011059A1 true US20080011059A1 (en) 2008-01-17

Family

ID=32827011

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/521,163 Expired - Lifetime US6733655B1 (en) 2000-03-08 2000-03-08 Measurement of substances in liquids
US10/431,140 Expired - Lifetime US7250105B1 (en) 2000-03-08 2003-05-07 Measurement of substances in liquids
US11/772,714 Abandoned US20080011059A1 (en) 2000-03-08 2007-07-02 Measurement of substances in liquids

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/521,163 Expired - Lifetime US6733655B1 (en) 2000-03-08 2000-03-08 Measurement of substances in liquids
US10/431,140 Expired - Lifetime US7250105B1 (en) 2000-03-08 2003-05-07 Measurement of substances in liquids

Country Status (20)

Country Link
US (3) US6733655B1 (en)
EP (4) EP2261657B1 (en)
JP (1) JP4832695B2 (en)
KR (1) KR100872009B1 (en)
CN (2) CN100383519C (en)
AT (3) ATE542132T1 (en)
AU (3) AU2001237587B2 (en)
CA (1) CA2402139C (en)
CZ (1) CZ20023332A3 (en)
DE (2) DE60114159T2 (en)
DK (2) DK1261868T3 (en)
ES (2) ES2249413T3 (en)
GB (1) GB0005564D0 (en)
HK (2) HK1049696A1 (en)
IL (2) IL151643A0 (en)
MX (1) MXPA02008821A (en)
PL (1) PL364990A1 (en)
PT (1) PT1600773E (en)
RU (1) RU2269779C2 (en)
WO (1) WO2001067099A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090237262A1 (en) * 2008-03-21 2009-09-24 Lifescan Scotland Ltd. Analyte testing method and system
US20100021940A1 (en) * 2006-04-12 2010-01-28 Astrazeneca Ab Method for Determining the Activity of a Protease in a Sample
USD611151S1 (en) 2008-06-10 2010-03-02 Lifescan Scotland, Ltd. Test meter
USD611372S1 (en) 2008-09-19 2010-03-09 Lifescan Scotland Limited Analyte test meter
USD611489S1 (en) 2008-07-25 2010-03-09 Lifescan, Inc. User interface display for a glucose meter
USD611853S1 (en) 2008-03-21 2010-03-16 Lifescan Scotland Limited Analyte test meter
USD612274S1 (en) 2008-01-18 2010-03-23 Lifescan Scotland, Ltd. User interface in an analyte meter
USD612275S1 (en) 2008-03-21 2010-03-23 Lifescan Scotland, Ltd. Analyte test meter
USD615431S1 (en) 2008-03-21 2010-05-11 Lifescan Scotland Limited Analyte test meter
US8936713B2 (en) 2009-12-11 2015-01-20 Lifescan Scotland Limited Fill sufficiency method and system

Families Citing this family (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US6071391A (en) 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6841052B2 (en) 1999-08-02 2005-01-11 Bayer Corporation Electrochemical-sensor design
US7276146B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Electrodes, methods, apparatuses comprising micro-electrode arrays
US20050103624A1 (en) 1999-10-04 2005-05-19 Bhullar Raghbir S. Biosensor and method of making
KR100445489B1 (en) 1999-11-15 2004-08-21 마츠시타 덴끼 산교 가부시키가이샤 Biosensor, method of forming thin-film electrode, and method and apparatus for quantitative determination
US6733655B1 (en) * 2000-03-08 2004-05-11 Oliver W. H. Davies Measurement of substances in liquids
CA2644178C (en) * 2000-03-28 2011-03-01 Diabetes Diagnostics, Inc. Rapid response glucose sensor
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
EP3364187B1 (en) * 2000-11-30 2019-09-18 PHC Holdings Corporation Method of quantifying substrate
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
EP1395185B1 (en) 2001-06-12 2010-10-27 Pelikan Technologies Inc. Electric lancet actuator
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US20030116447A1 (en) 2001-11-16 2003-06-26 Surridge Nigel A. Electrodes, methods, apparatuses comprising micro-electrode arrays
US20030212379A1 (en) * 2002-02-26 2003-11-13 Bylund Adam David Systems and methods for remotely controlling medication infusion and analyte monitoring
CA2419213C (en) * 2002-03-07 2011-06-21 Bayer Healthcare Llc Improved electrical sensor
US20030186446A1 (en) 2002-04-02 2003-10-02 Jerry Pugh Test strip containers and methods of using the same
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7198606B2 (en) 2002-04-19 2007-04-03 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with analyte sensing
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US6946299B2 (en) * 2002-04-25 2005-09-20 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
US6743635B2 (en) * 2002-04-25 2004-06-01 Home Diagnostics, Inc. System and methods for blood glucose sensing
US6964871B2 (en) * 2002-04-25 2005-11-15 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
US20080112852A1 (en) * 2002-04-25 2008-05-15 Neel Gary T Test Strips and System for Measuring Analyte Levels in a Fluid Sample
US7303726B2 (en) 2002-05-09 2007-12-04 Lifescan, Inc. Minimal procedure analyte test system
KR100485671B1 (en) * 2002-09-30 2005-04-27 주식회사 인포피아 A measuring instrument for biosensor
US9017544B2 (en) 2002-10-04 2015-04-28 Roche Diagnostics Operations, Inc. Determining blood glucose in a small volume sample receiving cavity and in a short time period
JP3878993B2 (en) * 2002-10-31 2007-02-07 アークレイ株式会社 Analysis tool
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US20040193202A1 (en) 2003-03-28 2004-09-30 Allen John J. Integrated lance and strip for analyte measurement
EP1628567B1 (en) 2003-05-30 2010-08-04 Pelikan Technologies Inc. Method and apparatus for fluid injection
US7462265B2 (en) * 2003-06-06 2008-12-09 Lifescan, Inc. Reduced volume electrochemical sensor
US20040251132A1 (en) * 2003-06-06 2004-12-16 Leach Christopher Philip Reduced volume strip
ES2490740T3 (en) 2003-06-06 2014-09-04 Sanofi-Aventis Deutschland Gmbh Apparatus for blood fluid sampling and analyte detection
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US7452457B2 (en) 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
ES2683013T3 (en) 2003-06-20 2018-09-24 F. Hoffmann-La Roche Ag Reagent band for test strip
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
GB0314944D0 (en) * 2003-06-26 2003-07-30 Univ Cranfield Electrochemical detector for metabolites in physiological fluids
US6931327B2 (en) 2003-08-01 2005-08-16 Dexcom, Inc. System and methods for processing analyte sensor data
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US8676287B2 (en) 2003-08-01 2014-03-18 Dexcom, Inc. System and methods for processing analyte sensor data
US20070066873A1 (en) 2003-08-22 2007-03-22 Apurv Kamath Systems and methods for processing analyte sensor data
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
EP1671096A4 (en) 2003-09-29 2009-09-16 Pelikan Technologies Inc Method and apparatus for an improved sample capture device
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
CA2544424A1 (en) 2003-10-31 2005-05-19 Lifescan Scotland Limited Electrochemical test strip for reducing the effect of direct interference current
US7655119B2 (en) 2003-10-31 2010-02-02 Lifescan Scotland Limited Meter for use in an improved method of reducing interferences in an electrochemical sensor using two different applied potentials
US7713229B2 (en) * 2003-11-06 2010-05-11 Lifescan, Inc. Drug delivery pen with event notification means
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
ATE480761T1 (en) 2003-12-05 2010-09-15 Dexcom Inc CALIBRATION METHODS FOR A CONTINUOUSLY WORKING ANALYTICAL SENSOR
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8532730B2 (en) 2006-10-04 2013-09-10 Dexcom, Inc. Analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
WO2005065414A2 (en) 2003-12-31 2005-07-21 Pelikan Technologies, Inc. Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
BRPI0507376A (en) 2004-02-06 2007-07-10 Bayer Healthcare Llc oxidizable species as an internal reference for biosensors and method of use
DE102004024432A1 (en) * 2004-05-14 2005-12-08 Tesa Ag Use of a hydrophilic surface film in medical diagnostic strips
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US7569126B2 (en) 2004-06-18 2009-08-04 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
WO2006000505A2 (en) 2004-06-23 2006-01-05 Tesa Ag Medical biosensor by means of which biological liquids are analyzed
US20050284773A1 (en) 2004-06-29 2005-12-29 Allen John J Method of preventing reuse in an analyte measuring system
US20060020192A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
WO2006127694A2 (en) 2004-07-13 2006-11-30 Dexcom, Inc. Analyte sensor
US20060016700A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US7640048B2 (en) 2004-07-13 2009-12-29 Dexcom, Inc. Analyte sensor
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US7713392B2 (en) * 2005-04-15 2010-05-11 Agamatrix, Inc. Test strip coding and quality measurement
US20060243591A1 (en) * 2005-04-28 2006-11-02 Plotkin Elliot V Electrochemical-based analytical test strip with hydrophilicity enhanced metal electrodes
US20060246214A1 (en) * 2005-04-28 2006-11-02 Plotkin Elliot V Method for manufacturing an electrochemical-based analytical test strip with hydrophilicity enhanced metal electrodes
US20070017824A1 (en) * 2005-07-19 2007-01-25 Rippeth John J Biosensor and method of manufacture
ES2717135T3 (en) 2005-07-20 2019-06-19 Ascensia Diabetes Care Holdings Ag Method to signal the user to add an additional sample to a test strip, method to measure the temperature of a sample and methods to determine the concentration of an analyte based on controlled amperometry
KR101577176B1 (en) 2005-09-30 2015-12-14 바이엘 헬스케어 엘엘씨 Gated voltammetry analyte determination
US7429865B2 (en) 2005-10-05 2008-09-30 Roche Diagnostics Operations, Inc. Method and system for error checking an electrochemical sensor
US7468125B2 (en) * 2005-10-17 2008-12-23 Lifescan, Inc. System and method of processing a current sample for calculating a glucose concentration
US8066866B2 (en) 2005-10-17 2011-11-29 Lifescan, Inc. Methods for measuring physiological fluids
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
EP3649925A1 (en) 2006-02-22 2020-05-13 DexCom, Inc. Analyte sensor
EP4218548A1 (en) 2006-03-09 2023-08-02 Dexcom, Inc. Systems and methods for processing analyte sensor data
GB2436616A (en) * 2006-03-29 2007-10-03 Inverness Medical Switzerland Assay device and method
US7738264B2 (en) 2006-03-31 2010-06-15 Lifescan Scotland Ltd. Devices and methods for protecting handheld electronic devices from electrostatic discharge
MX2008014250A (en) * 2006-05-08 2008-11-26 Bayer Healthcare Llc Abnormal output detection system for a biosensor.
US7586590B2 (en) * 2006-05-26 2009-09-08 Lifescan, Scotland, Ltd. Calibration code strip with permutative grey scale calibration pattern
US7589828B2 (en) * 2006-05-26 2009-09-15 Lifescan Scotland Limited System for analyte determination that includes a permutative grey scale calibration pattern
US7474391B2 (en) * 2006-05-26 2009-01-06 Lifescan Scotland Limited Method for determining a test strip calibration code using a calibration strip
US7474390B2 (en) * 2006-05-26 2009-01-06 Lifescan Scotland Limited Test strip with permutative grey scale calibration pattern
US7593097B2 (en) * 2006-05-26 2009-09-22 Lifescan Scotland Limited Method for determining a test strip calibration code for use in a meter
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
WO2008040997A1 (en) 2006-10-05 2008-04-10 Lifescan Scotland Limited A test strip comprising patterned electrodes
ES2375288T3 (en) 2006-10-05 2012-02-28 Lifescan Scotland Limited PROCEDURE TO DETERMINE ANALYTE CONCENTRATIONS CORRECTED WITH HEMATOCRITE.
US9046480B2 (en) 2006-10-05 2015-06-02 Lifescan Scotland Limited Method for determining hematocrit corrected analyte concentrations
EP2957908A1 (en) 2006-10-05 2015-12-23 Lifescan Scotland Limited Methods for determining an analyte concentration using signal processing algorithms
ES2445742T3 (en) 2006-10-05 2014-03-05 Lifescan Scotland Ltd Procedures for determining the presence of a sufficient amount of fluid sample in a test strip
JP5244116B2 (en) 2006-10-24 2013-07-24 バイエル・ヘルスケア・エルエルシー Transient decay current measurement method
US20080124693A1 (en) * 2006-10-26 2008-05-29 Mcevoy Mary System for determining an analyte in a bodily fluid sample that includes a graphics-based step-by-step tutorial module
US20080164142A1 (en) 2006-10-27 2008-07-10 Manuel Alvarez-Icaza Surface treatment of carbon composite material to improve electrochemical properties
TW200823456A (en) * 2006-11-24 2008-06-01 Health & Life Co Ltd Biosensor
DE102007003755A1 (en) 2007-01-19 2008-07-31 Tesa Ag Web-shaped material with a coating that enables a permanent fast spreading or a permanent, very fast transport of liquids
CA2681412A1 (en) 2007-03-26 2008-10-02 Dexcom, Inc. Analyte sensor
DE102007018383A1 (en) 2007-04-17 2008-10-23 Tesa Ag Sheet-like material with hydrophilic and hydrophobic areas and their production
DE102007026998A1 (en) 2007-06-07 2008-12-11 Tesa Ag Hydrophilic coating varnish
US7875461B2 (en) 2007-07-24 2011-01-25 Lifescan Scotland Limited Test strip and connector
EP2183671B1 (en) * 2007-08-29 2018-08-29 Lifescan Scotland Limited A data management system and method
US7943022B2 (en) 2007-09-04 2011-05-17 Lifescan, Inc. Analyte test strip with improved reagent deposition
JP2010525353A (en) * 2007-09-05 2010-07-22 ライフスキャン・スコットランド・リミテッド Strip for electrochemical measurements
ATE431932T1 (en) 2007-09-19 2009-06-15 Hoffmann La Roche MARKING METHOD FOR REJECT MARKING OF TEST ELEMENTS
PL2040072T3 (en) * 2007-09-22 2013-06-28 Hoffmann La Roche Analysis system for measuring the concentration of an analyte in a bodily fluid
WO2009076302A1 (en) 2007-12-10 2009-06-18 Bayer Healthcare Llc Control markers for auto-detection of control solution and methods of use
DE102008006225A1 (en) 2008-01-25 2009-07-30 Tesa Ag Biosensor and its production
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
WO2010049669A1 (en) * 2008-10-27 2010-05-06 Lifescan Scotland Limited Methods and devices for mitigating esd events
US8012428B2 (en) 2008-10-30 2011-09-06 Lifescan Scotland, Ltd. Analytical test strip with minimal fill-error sample viewing window
US20100112612A1 (en) * 2008-10-30 2010-05-06 John William Dilleen Method for determining an analyte using an analytical test strip with a minimal fill-error viewing window
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
EP2228658A1 (en) 2009-03-13 2010-09-15 Roche Diagnostics GmbH Method for producing an analytical consumable
US8025788B2 (en) 2009-04-24 2011-09-27 Lifescan Scotland Limited Method for manufacturing an enzymatic reagent ink
US20100273249A1 (en) 2009-04-24 2010-10-28 Lifescan Scotland Limited Analytical test strips
US20100270152A1 (en) 2009-04-24 2010-10-28 Lifescan Scotland Limited Enzymatic reagent ink
US20110057671A1 (en) * 2009-09-04 2011-03-10 Lifescan Scotland, Ltd. Methods, system and device to identify a type of test strip
TWI440853B (en) * 2009-12-14 2014-06-11 Taidoc Technology Corp Electrochemical biosensing test strip, biosensing meter, system and measuring method for analyte measurement incorporating a hematocrit correction
EP2365329A1 (en) * 2010-03-12 2011-09-14 Hivox Biotek Inc. Method of manufacturing planar bio-test strip and product thereof
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8940141B2 (en) 2010-05-19 2015-01-27 Lifescan Scotland Limited Analytical test strip with an electrode having electrochemically active and inert areas of a predetermined size and distribution
US8239582B2 (en) 2010-05-27 2012-08-07 Cilag Gmbh International Hand-held test meter with disruption avoidance circuitry
US20110290668A1 (en) 2010-05-27 2011-12-01 Lifescan Scotland Limited Analytical test strip with crossroads exposed electrode configuration
US20110315564A1 (en) 2010-06-28 2011-12-29 Cilag Gmbh International Hand-held test meter with deep power conservation mode
ES2628537T3 (en) * 2010-09-28 2017-08-03 Lifescan Scotland Limited Electrochemical glucose measurement method with error detection
US20120199498A1 (en) 2011-02-07 2012-08-09 Manuel Alvarez-Icaza Electrochemical-based analytical test strip with graded enzymatic reagent layer and related methods
EP3575796B1 (en) 2011-04-15 2020-11-11 DexCom, Inc. Advanced analyte sensor calibration and error detection
EP2715330B1 (en) * 2011-05-27 2018-05-23 Lifescan Scotland Limited Peak offset correction for analyte test strip
US20130002266A1 (en) 2011-06-28 2013-01-03 Lifescan, Inc. Hand-held test meter with electromagnetic interference detection circuit
US20130006536A1 (en) 2011-06-28 2013-01-03 Lifescan, Inc. Hand-held test meter with unpowered usb connection detection circuit
US10739337B2 (en) * 2011-08-30 2020-08-11 Board Of Trustees Of Michigan State University Extraction and detection of pathogens using carbohydrate-functionalized biosensors
US8603309B2 (en) 2011-09-12 2013-12-10 Nova Biomedical Corporation Disposable sensor for electrochemical detection of hemoglobin
US20130084591A1 (en) 2011-09-30 2013-04-04 Lifescan Scotland Ltd. Analytical test strip with isolated bodily fluid phase-shift and analyte determination sample chambers
US20130084590A1 (en) 2011-09-30 2013-04-04 Lifescan Scotland Ltd. Analytical test strip with bodily fluid phase-shift measurement electrodes
CN103890583B (en) * 2011-10-06 2016-03-16 认智生物 Utilize the manufacture method of the multiple diagnostic film sensors of serigraphy
KR101367262B1 (en) * 2011-11-11 2014-02-26 주식회사 아이센스 Blood Glucose Sensor and sensing error detecting method using thereof
US9572922B2 (en) 2012-12-21 2017-02-21 Larry Leonard Inventive diabetic systems, tools, kits, and supplies for better diabetic living and mobility
US9903830B2 (en) 2011-12-29 2018-02-27 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip based on sensed physical characteristic(s) of the sample containing the analyte
US20130199942A1 (en) 2012-02-07 2013-08-08 Lifescan Scotland Limited Electrochemical-based analytical test strip with fill-speed configured reagent layer
US11798685B2 (en) 2012-05-15 2023-10-24 James M. Minor Diagnostic methods and devices for controlling acute glycemia
US9465910B2 (en) 2012-05-15 2016-10-11 James Minor Diagnostic methods and devices for monitoring chronic glycemia
US8877023B2 (en) 2012-06-21 2014-11-04 Lifescan Scotland Limited Electrochemical-based analytical test strip with intersecting sample-receiving chambers
US20130341207A1 (en) 2012-06-21 2013-12-26 Lifescan Scotland Limited Analytical test strip with capillary sample-receiving chambers separated by stop junctions
US9128038B2 (en) 2012-06-21 2015-09-08 Lifescan Scotland Limited Analytical test strip with capillary sample-receiving chambers separated by a physical barrier island
GB201218555D0 (en) * 2012-10-16 2012-11-28 Mode Diagnostics Ltd Immunoassay using electrochemical detection
US9211087B2 (en) 2012-10-18 2015-12-15 Animas Corporation Self-contained hand-held test device for single-use
US9157883B2 (en) 2013-03-07 2015-10-13 Lifescan Scotland Limited Methods and systems to determine fill direction and fill error in analyte measurements
US9097659B2 (en) * 2013-03-14 2015-08-04 Bayer Healthcare Llc Maintaining electrode function during manufacture with a protective layer
US10371660B2 (en) 2013-05-17 2019-08-06 Lifescan Ip Holdings, Llc Accurate analyte measurements for electrochemical test strip based on multiple calibration parameters
GB2514846B (en) 2013-06-07 2015-09-30 Lifescan Scotland Ltd Electrochemical-based analytical test strip with a soluble electrochemically-active coating opposite a bare electrode
US9243276B2 (en) * 2013-08-29 2016-01-26 Lifescan Scotland Limited Method and system to determine hematocrit-insensitive glucose values in a fluid sample
US9459231B2 (en) 2013-08-29 2016-10-04 Lifescan Scotland Limited Method and system to determine erroneous measurement signals during a test measurement sequence
US9828621B2 (en) * 2013-09-10 2017-11-28 Lifescan Scotland Limited Anomalous signal error trap for an analyte measurement determined from a specified sampling time derived from a sensed physical characteristic of the sample containing the analyte
US9453812B2 (en) 2014-06-24 2016-09-27 Lifescan Scotland Limited End-fill electrochemical-based analytical test strip with perpendicular intersecting sample-receiving chambers
CN105445341B (en) * 2014-09-12 2018-10-16 达尔生技股份有限公司 The detection method of the test strip exception of electrochemistry
US20160091451A1 (en) 2014-09-25 2016-03-31 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip to determine analyte measurement time based on measured temperature, physical characteristic and estimated analyte value
US20160091450A1 (en) 2014-09-25 2016-03-31 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip to determine analyte measurement time based on measured temperature, physical characteristic and estimated analyte value and their temperature compensated values
CN106990232B (en) * 2016-01-01 2019-05-28 海南欣泰康医药科技有限公司 Blood Kit analysis system and analysis method
CA3061348C (en) 2017-06-08 2023-02-14 F. Hoffmann-La Roche Ag Electrode break detection
US20190094170A1 (en) 2017-09-22 2019-03-28 Cilag Gmbh International Analytical test strip with integrated electrical resistor
CN108132284B (en) * 2017-12-26 2019-11-29 三诺生物传感股份有限公司 A kind of test method of electrochemical sensor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004998A (en) * 1988-12-14 1991-04-02 Horiba, Ltd. Ion-measuring apparatus for use in process
US5120420A (en) * 1988-03-31 1992-06-09 Matsushita Electric Industrial Co., Ltd. Biosensor and a process for preparation thereof
US5234813A (en) * 1989-05-17 1993-08-10 Actimed Laboratories, Inc. Method and device for metering of fluid samples and detection of analytes therein
US5582697A (en) * 1995-03-17 1996-12-10 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
US5628890A (en) * 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US5650062A (en) * 1995-03-17 1997-07-22 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
US5672256A (en) * 1994-12-08 1997-09-30 Lg Semicon Co., Ltd. Multi-electrode biosensor and system and method for manufacturing same
US5786584A (en) * 1995-09-06 1998-07-28 Eli Lilly And Company Vial and cartridge reading device providing audio feedback for a blood glucose monitoring system
US5791344A (en) * 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5820551A (en) * 1983-05-05 1998-10-13 Hill; Hugh Allen Oliver Strip electrode with screen printing
US5837546A (en) * 1993-08-24 1998-11-17 Metrika, Inc. Electronic assay device and method
US6258229B1 (en) * 1999-06-02 2001-07-10 Handani Winarta Disposable sub-microliter volume sensor and method of making
US7250105B1 (en) * 2000-03-08 2007-07-31 Lifescan Scotland Limited Measurement of substances in liquids

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2960265B2 (en) * 1991-10-18 1999-10-06 松下電器産業株式会社 Biosensor and measurement method using the same
US5264103A (en) 1991-10-18 1993-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and a method for measuring a concentration of a substrate in a sample
JP3189416B2 (en) * 1992-09-25 2001-07-16 松下電器産業株式会社 Liquid component measuring device
US5762770A (en) 1994-02-21 1998-06-09 Boehringer Mannheim Corporation Electrochemical biosensor test strip
JP3102627B2 (en) * 1995-03-17 2000-10-23 松下電器産業株式会社 Biosensor, quantitative method and quantitative device using the same
JP3365184B2 (en) * 1996-01-10 2003-01-08 松下電器産業株式会社 Biosensor
US5708247A (en) 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
TW591230B (en) * 1997-10-14 2004-06-11 Bayer Ag Method for improving the accuracy of the semi-quantitative determination of analyte in fluid samples
JP3267933B2 (en) * 1998-01-27 2002-03-25 松下電器産業株式会社 Substrate quantification method
CA2265119C (en) 1998-03-13 2002-12-03 Cygnus, Inc. Biosensor, iontophoretic sampling system, and methods of use thereof
GB2337122B (en) 1998-05-08 2002-11-13 Medisense Inc Test strip
US6287451B1 (en) * 1999-06-02 2001-09-11 Handani Winarta Disposable sensor and method of making

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820551A (en) * 1983-05-05 1998-10-13 Hill; Hugh Allen Oliver Strip electrode with screen printing
US5120420A (en) * 1988-03-31 1992-06-09 Matsushita Electric Industrial Co., Ltd. Biosensor and a process for preparation thereof
US5120420B1 (en) * 1988-03-31 1999-11-09 Matsushita Electric Ind Co Ltd Biosensor and a process for preparation thereof
US5004998A (en) * 1988-12-14 1991-04-02 Horiba, Ltd. Ion-measuring apparatus for use in process
US5234813A (en) * 1989-05-17 1993-08-10 Actimed Laboratories, Inc. Method and device for metering of fluid samples and detection of analytes therein
US5837546A (en) * 1993-08-24 1998-11-17 Metrika, Inc. Electronic assay device and method
US5791344A (en) * 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5672256A (en) * 1994-12-08 1997-09-30 Lg Semicon Co., Ltd. Multi-electrode biosensor and system and method for manufacturing same
US5650062A (en) * 1995-03-17 1997-07-22 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
US5582697A (en) * 1995-03-17 1996-12-10 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
US5786584A (en) * 1995-09-06 1998-07-28 Eli Lilly And Company Vial and cartridge reading device providing audio feedback for a blood glucose monitoring system
US5628890A (en) * 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US6258229B1 (en) * 1999-06-02 2001-07-10 Handani Winarta Disposable sub-microliter volume sensor and method of making
US7250105B1 (en) * 2000-03-08 2007-07-31 Lifescan Scotland Limited Measurement of substances in liquids

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100021940A1 (en) * 2006-04-12 2010-01-28 Astrazeneca Ab Method for Determining the Activity of a Protease in a Sample
USD612274S1 (en) 2008-01-18 2010-03-23 Lifescan Scotland, Ltd. User interface in an analyte meter
USD612279S1 (en) 2008-01-18 2010-03-23 Lifescan Scotland Limited User interface in an analyte meter
USD615431S1 (en) 2008-03-21 2010-05-11 Lifescan Scotland Limited Analyte test meter
USD611853S1 (en) 2008-03-21 2010-03-16 Lifescan Scotland Limited Analyte test meter
USD612275S1 (en) 2008-03-21 2010-03-23 Lifescan Scotland, Ltd. Analyte test meter
US20090237262A1 (en) * 2008-03-21 2009-09-24 Lifescan Scotland Ltd. Analyte testing method and system
US8917184B2 (en) 2008-03-21 2014-12-23 Lifescan Scotland Limited Analyte testing method and system
US9626480B2 (en) 2008-03-21 2017-04-18 Lifescan Scotland Limited Analyte testing method and system
USD611151S1 (en) 2008-06-10 2010-03-02 Lifescan Scotland, Ltd. Test meter
USD611489S1 (en) 2008-07-25 2010-03-09 Lifescan, Inc. User interface display for a glucose meter
USD611372S1 (en) 2008-09-19 2010-03-09 Lifescan Scotland Limited Analyte test meter
US8936713B2 (en) 2009-12-11 2015-01-20 Lifescan Scotland Limited Fill sufficiency method and system
US9335291B2 (en) 2009-12-11 2016-05-10 Lifescan Scotland Limited Fill sufficiency method and system

Also Published As

Publication number Publication date
IL151643A0 (en) 2003-04-10
DK1261868T3 (en) 2005-11-21
CA2402139A1 (en) 2001-09-13
ES2249413T3 (en) 2006-04-01
AU2005218034B2 (en) 2008-11-20
EP1600773B1 (en) 2009-02-25
RU2002126614A (en) 2004-03-27
EP2056107B1 (en) 2012-01-18
EP2261657B1 (en) 2016-10-19
HK1085267A1 (en) 2006-08-18
DE60114159T2 (en) 2006-06-29
ATE542132T1 (en) 2012-02-15
WO2001067099A1 (en) 2001-09-13
KR20070092335A (en) 2007-09-12
EP2056107A3 (en) 2009-07-22
CA2402139C (en) 2011-07-05
MXPA02008821A (en) 2004-10-15
CN1591000A (en) 2005-03-09
CZ20023332A3 (en) 2003-06-18
AU2005218034A1 (en) 2005-10-20
KR100872009B1 (en) 2008-12-05
EP1261868A1 (en) 2002-12-04
EP1261868B1 (en) 2005-10-19
EP1600773A1 (en) 2005-11-30
US6733655B1 (en) 2004-05-11
RU2269779C2 (en) 2006-02-10
EP2056107A2 (en) 2009-05-06
EP2261657A3 (en) 2013-12-04
ATE423969T1 (en) 2009-03-15
GB0005564D0 (en) 2000-05-03
ATE307336T1 (en) 2005-11-15
PT1600773E (en) 2009-04-08
HK1049696A1 (en) 2003-05-23
AU3758701A (en) 2001-09-17
IL151643A (en) 2006-09-05
EP2261657A2 (en) 2010-12-15
US7250105B1 (en) 2007-07-31
PL364990A1 (en) 2004-12-27
DE60114159D1 (en) 2006-03-02
JP4832695B2 (en) 2011-12-07
DK1600773T3 (en) 2009-06-22
DE60137802D1 (en) 2009-04-09
CN100383519C (en) 2008-04-23
JP2003526785A (en) 2003-09-09
CN1193230C (en) 2005-03-16
ES2321416T3 (en) 2009-06-05
CN1426535A (en) 2003-06-25
AU2001237587B2 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
US7250105B1 (en) Measurement of substances in liquids
AU2001237587A1 (en) Measurement of substances in liquids
US6616819B1 (en) Small volume in vitro analyte sensor and methods
US5672256A (en) Multi-electrode biosensor and system and method for manufacturing same
US20090325307A1 (en) Method for manufacturing a strip for use with a multi-input meter
US9632055B2 (en) Auto-coded analyte sensors and apparatus, systems, and methods for detecting same
TW201819637A (en) Capacitive autocoding
US10488360B2 (en) Method of using an electrochemical device
JP4623870B2 (en) Biosensor and method for adjusting measurement sensitivity thereof
KR100795322B1 (en) Measurement of substances in liquids
EP3088880A1 (en) Methods for measuring analyte concentration
WO2008050145A1 (en) Measurement device

Legal Events

Date Code Title Description
AS Assignment

Owner name: INVERNESS MEDICAL LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAVIES, OLIVER W. H.;LEACH, CHRISTOPHER P.;ALVAREZ-ICAZA, MANUEL;REEL/FRAME:020633/0644

Effective date: 20000531

AS Assignment

Owner name: LIFESCAN SCOTLAND LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INVERNESS MEDICAL LIMITED;REEL/FRAME:020655/0847

Effective date: 20080305

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION