US20070191522A1 - Aqueous emulsion polymer - Google Patents

Aqueous emulsion polymer Download PDF

Info

Publication number
US20070191522A1
US20070191522A1 US11/651,181 US65118107A US2007191522A1 US 20070191522 A1 US20070191522 A1 US 20070191522A1 US 65118107 A US65118107 A US 65118107A US 2007191522 A1 US2007191522 A1 US 2007191522A1
Authority
US
United States
Prior art keywords
metal
polymer
composition
containing crosslinkable
aqueous composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/651,181
Other versions
US7807739B2 (en
Inventor
Frederick Peter Obst
Michelle Anne Toth
Timothy Grant Wood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Co
Original Assignee
Rohm and Haas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Co filed Critical Rohm and Haas Co
Priority to US11/651,181 priority Critical patent/US7807739B2/en
Publication of US20070191522A1 publication Critical patent/US20070191522A1/en
Assigned to ROHM AND HAAS COMPANY reassignment ROHM AND HAAS COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OBST, FREDERICK PETER, TOTH, MICHELLE ANNE, WOOD, TIMOTHY GRANT
Application granted granted Critical
Publication of US7807739B2 publication Critical patent/US7807739B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/064Copolymers with monomers not covered by C08L33/06 containing anhydride, COOH or COOM groups, with M being metal or onium-cation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters

Definitions

  • This invention generally relates to aqueous emulsion polymers.
  • the present invention relates to an aqueous polymer/epoxysilane blend that provides one-pack stability and desirable resistance properties.
  • Mar, print and block resistance all offer various ways to measure the surface toughness of a film.
  • the mar resistance test focuses on the ability of a film to resist scratches.
  • Print resistance implies that a film will avoid having something of weight imprinted on its surface if the item rests on the film.
  • the block resistance test determines if a film is sticky. For example, when two coated surfaces are put in contact with one another, they may become stuck together or come apart easily.
  • Two-pack waterborne systems may meet some performance needs of coating applications, but have the disadvantage of pot life concerns, or specifically, how long the product would be usable and functional after it is charged with a crosslinking agent.
  • This invention is based on a three-part blend of epoxysilane with two different polymers that enables one-pack stability and a technology that yields high performance and highly resistant coatings.
  • the invention is “1-K stable,” meaning that it possesses heat-age and shelf-age stability and will not undergo viscosity increase or phase separation over time.
  • the invention also provides improved overall resistance properties, i.e., chemical, stain, mar, print, and block resistance.
  • the invention differs from other epoxysilane/polymer blends in that it has a dual-crosslinking technology built into the blend. Additionally, not only does the epoxysilane offer crosslinking, but one of the polymers offers mixed-metal crosslinking as well.
  • One aspect of the invention includes an aqueous composition
  • a metal-containing crosslinkable polymer having at least one ethylenically unsaturated monomer and a metal agent, an acrylic polymer, and an epoxysilane.
  • the metal-containing crosslinkable polymer has a glass transition temperature (“Tg”) of 10-40° C.
  • the acrylic polymer has a Tg of 30-100° C.
  • Another aspect of the invention includes a method for preparing a coated substrate, comprising providing an aqueous composition with a metal-containing crosslinkable polymer having at least one ethylenically unsaturated monomer and a metal agent, an acrylic polymer, and an epoxysilane; applying the aqueous composition to a substrate; and drying the aqueous composition applied to the substrate to provide the coated substrate.
  • the metal-containing crosslinkable polymer has a Tg of 10-40° C.
  • the acrylic polymer has a Tg of 30-100° C.
  • the invention provides a three-component blend of two aqueous polymers with different compositions and epoxysilane.
  • This three-component blend aqueous composition provides exceptional crosslinking, while being stable in such a way as not to gel or lose performance over a significant period of time.
  • the three components include a metal-containing crosslinkable polymer, an acrylic polymer and an epoxysilane.
  • the first component is a metal-containing crosslinkable polymer having at least one ethylenically unsaturated monomer and a metal agent.
  • This component has the properties of quick dry and early hardness and mar resistance.
  • Crosslinking monomers with a metal provides a polymer with a rigid structure.
  • One or more metal agents may be added during the polymerization process or added after the polymerization process.
  • the mixed-metal crosslinking is achieved through an acrylic emulsion or an acrylic copolymer composition with a post addition of the metal agent.
  • Suitable metal agents include zirconium, zinc, potassium, barium, tin, tungsten, calcium, magnesium, aluminum, iron, cobalt, nickel and copper.
  • Preferred metal agents are zinc and potassium.
  • Exemplary ethylenically unsaturated monomers include, for example, (meth)acrylic ester monomers including methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, methyl methacrylate, butyl methacrylate, isodecyl methacrylate, lauryl methacrylate; hydroxyethyl(meth)acrylate and hydroxypropyl(meth)acrylate; (meth)acrylamide; (meth)acrylonitrile; styrene and substituted styrenes; butadiene; vinyl acetate, vinyl butyrate and other vinyl esters; and vinyl monomers such as ethylene, vinyl chloride, vinylidene chloride.
  • (meth)acrylic ester monomers including methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexy
  • Preferred ethylenically unsaturated monomers include butyl acrylate, styrene, methyl methacrylate, and/or methacrylic acid.
  • the metal-containing crosslinkable polymer comprises 20-50% butyl acrylate, 5-20% methyl methacrylate, 5-50% styrene, and 5-20% methacrylic acid, based on the total weight of the metal-containing crosslinkable polymer.
  • the metal agent may be added in the range of 0.1-10%, based on the weight of the metal-containing crosslinkable polymer with a preferred range of 1-8% and a most preferred range of 1.5-6%, based on the weight of the metal-containing crosslinkable polymer.
  • the Tg of the metal-containing crosslinkable polymer is in the range of 5-50° C., more preferably, the Tg is 10-40° C. and most preferably, the Tg is 15-30° C.
  • the Tg is calculated by using the Fox equation (T. G. Fox, Bull. Am. Physics Soc., Volume 1, Issue No. 3, page 123(1956)). For copolymers comprising more than two different monomer types, the calculation may be expressed as:
  • Tg,(Mi) glass transition temperature of the homopolymer of Mi.
  • the metal-containing crosslinkable polymer also has a relatively high acid number, with a range of 25-130, a preferred range of 50-120 and a most preferred range of 60-110.
  • the acid number is used to quantify the amount of acid present in a substance. It is the quantity of base, expressed in milligrams of potassium hydroxide, that is required to neutralize the acidic constituents in 1 gram of the substance.
  • the second component is an acrylic polymer comprising, as polymerized units, at least one ethylenically unsaturated nonionic acrylic monomer.
  • the ethylenically unsaturated nonionic acrylic monomers include, for example, (meth)acrylic ester monomers including methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, methyl methacrylate, butyl methacrylate, isodecyl methacrylate, lauryl methacrylate, and hydroxyalkyl(meth)acrylate monomers, such as 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, 1-methyl-2-hydroxyethyl methacrylate, 2-hydroxy-propyl acrylate, 1-methyl-2-hydroxyethyl acrylate, 2-hydroxybutyl
  • ethylenically unsaturated nonionic monomers which may be incorporated into the emulsion polymer, include vinylaromatic compounds, such as styrene, ⁇ -methylstyrene, p-methylstyrene, ethylvinylbenzene, vinylnaphthalene, vinylxylenes, and vinyltoluenes; vinyl acetate, vinyl butyrate and other vinyl esters; and vinyl monomers, such as vinyl chloride, vinyl toluene, vinyl benzophenone, and vinylidene chloride.
  • vinylaromatic compounds such as styrene, ⁇ -methylstyrene, p-methylstyrene, ethylvinylbenzene, vinylnaphthalene, vinylxylenes, and vinyltoluenes
  • vinyl acetate, vinyl butyrate and other vinyl esters vinyl monomers, such as vinyl chloride, vinyl toluene, vinyl benzophenone,
  • Ethylenically unsaturated nonionic acrylic monomers also include acrylamides and alkyl-substituted acrylamides, such as acrylamide, methacrylamide, N-tert-butylacrylamide and N-methyl(meth)acrylamide; and hydroxyl-substituted acrylamides, such as methylolacrylamide and beta-hydroxyalkylamides.
  • Preferred ethylenically unsaturated nonionic acrylic monomers include butyl acrylate, butyl methacrylate, methyl methacrylate, and/or methacrylic acid.
  • the acrylic polymer comprises 0-15% butyl acrylate, 0-60% butyl methacrylate, 15-60% methyl methacrylate, and 0-15% methacrylic acid, based on the weight of the acrylic polymer.
  • the Tg of the acrylic polymer is in the range of 30-100° C., with a preferred range of 35-90° C. and a most preferred range of 40-80° C.
  • the acrylic polymer also has a relatively low acid number, with a preferred range of 2-30, a more preferred range of 5-25, and a most preferred range of 10-25.
  • the metal-containing crosslinkable polymer and the acrylic polymer are blended with one another at a ratio of from 0.25:1 to 1:0.25, with a preferred range of from 0.5:1 to 1:0.5.
  • the Tg's of the metal-containing crosslinkable polymer and the acrylic polymer differ by over 25° C. and their acid numbers differ by over 50 units.
  • the third component is an epoxysilane.
  • exemplary epoxysilanes may be found in U.S. Pat. Nos. 5,714,532 and 6,127,462.
  • Epoxysilanes possess dual chemical functionality, wherein the epoxy groups are reactive with carboxyl or amino moieties on the polymer and the alkoxysilyl groups crosslink after hydrolysis by condensing with each other.
  • the addition of the epoxysilane provides additional ammonia resistance.
  • the preferred range for the level of epoxysilane is 0.01-6%, based on total solids weight of the aqueous composition and the most preferred level is 0.05-4%, based on total solids weight of the aqueous composition.
  • anionic, cationic or nonionic surfactants may be used to stabilize the aqueous composition by providing colloidal stability.
  • An additional surfactant may be added to the blend for increased stability, in particular, by giving it longer shelf-life or make it more heat-age stable.
  • Suitable surfactants include those listed in McCutcheon's 2002 Volume 1: Emulsifiers and Detergents, North American Edition, The Manufacturing Confectioner Publishing Co. (2002).
  • a preferred surfactant comprises a polyethoxylate surfactant. The surfactant may be added in the range of 0-5% of the total weight of the blend weight of the crosslinking and acrylic polymers, with the preferred range of 0.1-3%.
  • the most preferred practice is to blend the acrylic polymer with the metal-containing crosslinkable polymer, where the acrylic polymer is added to the metal-containing crosslinkable polymer in a mixing vessel.
  • the surfactant is then added to the blend and agitated.
  • the epoxysilane is added to the blend. Alternate orders of addition are acceptable as well.
  • the aqueous composition may also contain other additives, such as pigments, colorants, extenders, emulsifiers, fillers, anti-migration aids, curing agents, hydrophobizing agents, plasticizers, surfactants, salts, buffers, pH adjustment agents such as bases and acids, biocides, mildewcide, wetting agents, defoamers, dispersants, dyes, water miscible organic solvents, anti-freeze agents, anti-oxidants, corrosion inhibitors, adhesion promoters, waxes, accelerators, mar aids, thickeners, flattening agents, and crosslinking agents.
  • additives such as pigments, colorants, extenders, emulsifiers, fillers, anti-migration aids, curing agents, hydrophobizing agents, plasticizers, surfactants, salts, buffers, pH adjustment agents such as bases and acids, biocides, mildewcide, wetting agents, defoamers, dispersants, dyes, water miscible organic
  • the aqueous composition comprises:
  • exemplary coalescents include ethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, and propylene glycol monobutyl ether;
  • exemplary plasticizers include Paraplex® WP-1 from Rohm and Haas Company, Philadelphia, Pa.
  • exemplary thickeners include associative thickeners, such as hydrophobically modified alkali soluble emulsions (Acrysol® RM-5, Acrysol® TT-615 from Rohm and Haas Company) and hydrophobically modified urethane thickeners (Acrysol RM-8W, Acrysol® RM-12W, Acrysol® RM-2020 from Rohm and Haas Company); exemplary mar aids include Michem® Emulsion 39235 from Michelman, Inc., Cincinnati, Ohio, and Tego® Glide 410 from Degussa Corporation, Parsippany, N.J.; exemplary wetting agents include Surfynol® 104DPM and Surfynol® 104E from Air Products, Allentown, Pa.; exemplary defoamers include Tego® Foamex 805 and BYK 028 from Degussa Corporation; exemplary flattening agents include Bermasilk MK from Berg
  • exemplary waxes include Michem® Emulsion 39235 from Michelman, Inc., UltraLube® D-865 from Drew Industrial, Boonton, N.J., and Michem®Shield 251 from Michelman, Inc.
  • Michem® Emulsion 39235 from Michelman, Inc.
  • UltraLube® D-865 from Drew Industrial, Boonton, N.J.
  • Michem®Shield 251 from Michelman, Inc.
  • these examples are only exemplary and any other additives may be added to the aqueous composition.
  • the aqueous composition may be used to prepare a coated substrate by applying the aqueous composition to a substrate and drying the aqueous composition applied to the substrate.
  • a coating with this aqueous composition yields very high appearance and resistance performance, including chemical resistance against items such as 10% ammonia, while maintaining a stable environment without the issues of pot-life.
  • the aqueous composition is suitable on various substrates and for many applications, including joinery primers and topcoats, metal coatings, plastic coatings, masonry coatings, floor polishes, paper coatings, composite coatings and wood coatings.
  • the blend is used for interior wood applications and more preferably, wooden or composite kitchen cabinet topcoats.
  • aqueous compositions may be applied onto a substrate including, for example, brushing, rolling, drawdown, dipping, with a knife or trowel, curtain coating, and spraying methods, such as, for example, air-atomized spray, air-assisted spray, airless spray, high volume low pressure spray, and air-assisted airless spray.
  • spraying methods such as, for example, air-atomized spray, air-assisted spray, airless spray, high volume low pressure spray, and air-assisted airless spray.
  • the aqueous composition is applied onto a substrate as a single coat or multiple coats. After application, the applied aqueous composition is typically allowed to dry at ambient conditions or alternatively dried by the application of heat to provide a dry coating.
  • Polymer A was added 10 g of deionized water.
  • Polymer A was Rhoplex® EP-6060.
  • Polymer B was Rhoplex® CL-106.
  • 20 g of a nonionic, octylphenol ethoxylate surfactant and an additional 15 g of deionized water was added.
  • 14.22 g of Glycidoxypropylmethyldiethoxysilane was added and mixed thoroughly.
  • the aqueous polymer blend of Example 1 contained 39% weight solids and a pH of 8.5.
  • the aqueous composition of Comparative A was prepared according to the process of Example 1 except that neither Polymer B nor the surfactant was added.
  • the aqueous composition of Comparative A contained 38% weight solids and had a pH of 8.4.
  • the aqueous composition of Comparative B was prepared according to the process of Example 1 except that the Glycidoxypropylmethyldiethoxysilane was not added.
  • the aqueous composition of Comparative B contained 39% weight solids and had a pH of 8.5.
  • a semi-gloss topcoat was prepared
  • the aqueous coating had a solids level of 33.9 weight % and a pH of 8.6.
  • Example 2 and Comparative D in the heat-aged stability test, no gel was formed upon heat-aging and there was no performance loss.
  • Comparative C no gel was formed but there was a significant decrease in performance after heat-aging. Therefore, Example 2 and Comparative D were labeled as stable; whereas Comparative C failed the stability test.
  • Example 2 and Comparatives C and D performed similarly, except Example 2 showed an advantage in 10% ammonia resistance, as compared to the other two topcoats.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

An aqueous composition for coating substrates comprising a blend of a metal-containing crosslinkable polymer, acrylic polymer, and an epoxysilane and method therefore.

Description

  • This invention generally relates to aqueous emulsion polymers. In particular, the present invention relates to an aqueous polymer/epoxysilane blend that provides one-pack stability and desirable resistance properties.
  • In many coatings applications, especially those that are factory-applied, there is a need for one-component waterborne systems (“1-K”) that have performance comparable to that of the solventborne two-pack (“2-K”) systems. Traditional 2-K solventborne systems are becoming less desirable as the need to reduce volatile organic chemicals (“VOCs”), and especially hazardous air pollutants, rises.
  • Particular performance needs include chemical and stain resistance, as well as mar, print and block resistance. Mar, print and block resistance all offer various ways to measure the surface toughness of a film. The mar resistance test focuses on the ability of a film to resist scratches. Print resistance implies that a film will avoid having something of weight imprinted on its surface if the item rests on the film. Lastly, the block resistance test determines if a film is sticky. For example, when two coated surfaces are put in contact with one another, they may become stuck together or come apart easily.
  • Two-pack waterborne systems may meet some performance needs of coating applications, but have the disadvantage of pot life concerns, or specifically, how long the product would be usable and functional after it is charged with a crosslinking agent. There are waterborne systems that are 1-K, but they typically are unable to meet the performance requirements of 2-K coating applications.
  • An approach to providing stability is disclosed in U.S. Pat. No. 5,714,532, which describes how adding a silane emulsion to polymer can provide a stable system with improved performance, particularly solvent resistance tested with methyl ethyl ketone rubs, over a polymer without silane. However, it does not teach blends of two different polymers, each offering its own set of performance properties, in addition to the blend with epoxysilane.
  • An approach to providing the desired resistance properties above is disclosed in U.S. Pat. No. 5,100,955, which combines acid-functional polymers with epoxysilane for a resistant polymer. However, it does not utilize mixed-metal crosslinking and epoxysilane crosslinking to obtain improved mar, chemical stain, block and humidity resistance.
  • This invention is based on a three-part blend of epoxysilane with two different polymers that enables one-pack stability and a technology that yields high performance and highly resistant coatings. The invention is “1-K stable,” meaning that it possesses heat-age and shelf-age stability and will not undergo viscosity increase or phase separation over time. The invention also provides improved overall resistance properties, i.e., chemical, stain, mar, print, and block resistance. The invention differs from other epoxysilane/polymer blends in that it has a dual-crosslinking technology built into the blend. Additionally, not only does the epoxysilane offer crosslinking, but one of the polymers offers mixed-metal crosslinking as well.
  • One aspect of the invention includes an aqueous composition comprising a metal-containing crosslinkable polymer having at least one ethylenically unsaturated monomer and a metal agent, an acrylic polymer, and an epoxysilane. The metal-containing crosslinkable polymer has a glass transition temperature (“Tg”) of 10-40° C., and the acrylic polymer has a Tg of 30-100° C.
  • Another aspect of the invention includes a method for preparing a coated substrate, comprising providing an aqueous composition with a metal-containing crosslinkable polymer having at least one ethylenically unsaturated monomer and a metal agent, an acrylic polymer, and an epoxysilane; applying the aqueous composition to a substrate; and drying the aqueous composition applied to the substrate to provide the coated substrate. The metal-containing crosslinkable polymer has a Tg of 10-40° C., and the acrylic polymer has a Tg of 30-100° C.
  • In particular, the invention provides a three-component blend of two aqueous polymers with different compositions and epoxysilane. This three-component blend aqueous composition provides exceptional crosslinking, while being stable in such a way as not to gel or lose performance over a significant period of time. The three components include a metal-containing crosslinkable polymer, an acrylic polymer and an epoxysilane.
  • The first component is a metal-containing crosslinkable polymer having at least one ethylenically unsaturated monomer and a metal agent. This component has the properties of quick dry and early hardness and mar resistance. Crosslinking monomers with a metal provides a polymer with a rigid structure. One or more metal agents may be added during the polymerization process or added after the polymerization process. Preferably, the mixed-metal crosslinking is achieved through an acrylic emulsion or an acrylic copolymer composition with a post addition of the metal agent. Suitable metal agents include zirconium, zinc, potassium, barium, tin, tungsten, calcium, magnesium, aluminum, iron, cobalt, nickel and copper. Preferred metal agents are zinc and potassium.
  • Exemplary ethylenically unsaturated monomers include, for example, (meth)acrylic ester monomers including methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, methyl methacrylate, butyl methacrylate, isodecyl methacrylate, lauryl methacrylate; hydroxyethyl(meth)acrylate and hydroxypropyl(meth)acrylate; (meth)acrylamide; (meth)acrylonitrile; styrene and substituted styrenes; butadiene; vinyl acetate, vinyl butyrate and other vinyl esters; and vinyl monomers such as ethylene, vinyl chloride, vinylidene chloride. The use of the term “(meth)” followed by another term such as acrylate or acrylamide, as used throughout the disclosure, refers to both acrylates or acrylamides and methacrylates and methacrylamides, respectively.
  • Preferred ethylenically unsaturated monomers include butyl acrylate, styrene, methyl methacrylate, and/or methacrylic acid. In a preferred embodiment, the metal-containing crosslinkable polymer comprises 20-50% butyl acrylate, 5-20% methyl methacrylate, 5-50% styrene, and 5-20% methacrylic acid, based on the total weight of the metal-containing crosslinkable polymer. The metal agent may be added in the range of 0.1-10%, based on the weight of the metal-containing crosslinkable polymer with a preferred range of 1-8% and a most preferred range of 1.5-6%, based on the weight of the metal-containing crosslinkable polymer.
  • The Tg of the metal-containing crosslinkable polymer is in the range of 5-50° C., more preferably, the Tg is 10-40° C. and most preferably, the Tg is 15-30° C. In each instance, the Tg is calculated by using the Fox equation (T. G. Fox, Bull. Am. Physics Soc., Volume 1, Issue No. 3, page 123(1956)). For copolymers comprising more than two different monomer types, the calculation may be expressed as:

  • 1/Tg=Σ[w(Mi)/Tg,(Mi)],
  • where w(Mi) is the weight fraction of each monomer, and Tg,(Mi) the glass transition temperature of the homopolymer of Mi. For example, for calculating the Tg of a copolymer of monomers M1 and M2,

  • 1/Tg(calc.)=w(M1)/Tg(M1)+w(M2)/Tg(M2), wherein
    • Tg(calc.) is the glass transition temperature calculated for the copolymer;
    • w(M1) is the weight fraction of monomer M1 in the copolymer;
    • w(M2) is the weight fraction of monomer M2 in the copolymer;
    • Tg(M1) is the glass transition temperature of the homopolymer of M1; and
    • Tg(M2) is the glass transition temperature of the homopolymer of M2, where all temperatures are in Kelvin (K).
      The metal in the metal-containing crosslinkable polymer has not effect on the Tg of that polymer. The Tgs of homopolymers may be found in “Polymer Handbook,” 4th edition edited by J. Brandrup, E. H. Immergut, and E. A. Grulke, Wiley-Interscience Publishers (1999).
  • The metal-containing crosslinkable polymer also has a relatively high acid number, with a range of 25-130, a preferred range of 50-120 and a most preferred range of 60-110. The acid number is used to quantify the amount of acid present in a substance. It is the quantity of base, expressed in milligrams of potassium hydroxide, that is required to neutralize the acidic constituents in 1 gram of the substance.
  • The second component is an acrylic polymer comprising, as polymerized units, at least one ethylenically unsaturated nonionic acrylic monomer. This second component provides ammonia resistance and stability. The ethylenically unsaturated nonionic acrylic monomers include, for example, (meth)acrylic ester monomers including methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, methyl methacrylate, butyl methacrylate, isodecyl methacrylate, lauryl methacrylate, and hydroxyalkyl(meth)acrylate monomers, such as 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, 1-methyl-2-hydroxyethyl methacrylate, 2-hydroxy-propyl acrylate, 1-methyl-2-hydroxyethyl acrylate, 2-hydroxybutyl methacrylate and 2-hydroxybutyl acrylate. Other ethylenically unsaturated nonionic monomers, which may be incorporated into the emulsion polymer, include vinylaromatic compounds, such as styrene, α-methylstyrene, p-methylstyrene, ethylvinylbenzene, vinylnaphthalene, vinylxylenes, and vinyltoluenes; vinyl acetate, vinyl butyrate and other vinyl esters; and vinyl monomers, such as vinyl chloride, vinyl toluene, vinyl benzophenone, and vinylidene chloride.
  • Ethylenically unsaturated nonionic acrylic monomers also include acrylamides and alkyl-substituted acrylamides, such as acrylamide, methacrylamide, N-tert-butylacrylamide and N-methyl(meth)acrylamide; and hydroxyl-substituted acrylamides, such as methylolacrylamide and beta-hydroxyalkylamides.
  • Preferred ethylenically unsaturated nonionic acrylic monomers include butyl acrylate, butyl methacrylate, methyl methacrylate, and/or methacrylic acid. In a preferred embodiment, the acrylic polymer comprises 0-15% butyl acrylate, 0-60% butyl methacrylate, 15-60% methyl methacrylate, and 0-15% methacrylic acid, based on the weight of the acrylic polymer.
  • The Tg of the acrylic polymer is in the range of 30-100° C., with a preferred range of 35-90° C. and a most preferred range of 40-80° C. The acrylic polymer also has a relatively low acid number, with a preferred range of 2-30, a more preferred range of 5-25, and a most preferred range of 10-25. The metal-containing crosslinkable polymer and the acrylic polymer are blended with one another at a ratio of from 0.25:1 to 1:0.25, with a preferred range of from 0.5:1 to 1:0.5. In a preferred embodiment, the Tg's of the metal-containing crosslinkable polymer and the acrylic polymer differ by over 25° C. and their acid numbers differ by over 50 units.
  • The third component is an epoxysilane. Exemplary epoxysilanes may be found in U.S. Pat. Nos. 5,714,532 and 6,127,462. Epoxysilanes possess dual chemical functionality, wherein the epoxy groups are reactive with carboxyl or amino moieties on the polymer and the alkoxysilyl groups crosslink after hydrolysis by condensing with each other. The addition of the epoxysilane provides additional ammonia resistance. The preferred range for the level of epoxysilane is 0.01-6%, based on total solids weight of the aqueous composition and the most preferred level is 0.05-4%, based on total solids weight of the aqueous composition.
  • In addition, anionic, cationic or nonionic surfactants may be used to stabilize the aqueous composition by providing colloidal stability. An additional surfactant may be added to the blend for increased stability, in particular, by giving it longer shelf-life or make it more heat-age stable. Suitable surfactants include those listed in McCutcheon's 2002 Volume 1: Emulsifiers and Detergents, North American Edition, The Manufacturing Confectioner Publishing Co. (2002). A preferred surfactant comprises a polyethoxylate surfactant. The surfactant may be added in the range of 0-5% of the total weight of the blend weight of the crosslinking and acrylic polymers, with the preferred range of 0.1-3%. The most preferred practice is to blend the acrylic polymer with the metal-containing crosslinkable polymer, where the acrylic polymer is added to the metal-containing crosslinkable polymer in a mixing vessel. The surfactant is then added to the blend and agitated. Lastly, the epoxysilane is added to the blend. Alternate orders of addition are acceptable as well.
  • The aqueous composition may also contain other additives, such as pigments, colorants, extenders, emulsifiers, fillers, anti-migration aids, curing agents, hydrophobizing agents, plasticizers, surfactants, salts, buffers, pH adjustment agents such as bases and acids, biocides, mildewcide, wetting agents, defoamers, dispersants, dyes, water miscible organic solvents, anti-freeze agents, anti-oxidants, corrosion inhibitors, adhesion promoters, waxes, accelerators, mar aids, thickeners, flattening agents, and crosslinking agents.
  • For example, in one embodiment, the aqueous composition comprises:
  • Material Percent by Weight
    Metal-containing crosslinkable polymer, acrylic 50–90
    polymer, epoxysilane
    Premix (add to above)
    Coalescent  5–20
    Plasticizer 0–6
    Water  0–20
    Thickener  0–10
    Mar Aid 0–5
    Wetting agent 0–3
    Defoamer 0–3
    Flatting agent  0–10
    Wax 0–5
    Total weight % 100%
  • In this embodiment, exemplary coalescents include ethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, and propylene glycol monobutyl ether; exemplary plasticizers include Paraplex® WP-1 from Rohm and Haas Company, Philadelphia, Pa. and KP-140 from FMC Corporation, Philadelphia, Pa.; exemplary thickeners include associative thickeners, such as hydrophobically modified alkali soluble emulsions (Acrysol® RM-5, Acrysol® TT-615 from Rohm and Haas Company) and hydrophobically modified urethane thickeners (Acrysol RM-8W, Acrysol® RM-12W, Acrysol® RM-2020 from Rohm and Haas Company); exemplary mar aids include Michem® Emulsion 39235 from Michelman, Inc., Cincinnati, Ohio, and Tego® Glide 410 from Degussa Corporation, Parsippany, N.J.; exemplary wetting agents include Surfynol® 104DPM and Surfynol® 104E from Air Products, Allentown, Pa.; exemplary defoamers include Tego® Foamex 805 and BYK 028 from Degussa Corporation; exemplary flattening agents include Bermasilk MK from Bergen Materials Corp., Elfers, Fla. and Syloid® 7000 from Grace Davison, Columbia, Md.; and exemplary waxes include Michem® Emulsion 39235 from Michelman, Inc., UltraLube® D-865 from Drew Industrial, Boonton, N.J., and Michem®Shield 251 from Michelman, Inc. However, these examples are only exemplary and any other additives may be added to the aqueous composition.
  • The aqueous composition may be used to prepare a coated substrate by applying the aqueous composition to a substrate and drying the aqueous composition applied to the substrate. A coating with this aqueous composition yields very high appearance and resistance performance, including chemical resistance against items such as 10% ammonia, while maintaining a stable environment without the issues of pot-life.
  • The aqueous composition is suitable on various substrates and for many applications, including joinery primers and topcoats, metal coatings, plastic coatings, masonry coatings, floor polishes, paper coatings, composite coatings and wood coatings. Preferably, the blend is used for interior wood applications and more preferably, wooden or composite kitchen cabinet topcoats.
  • Various techniques may be employed to apply the aqueous composition onto a substrate including, for example, brushing, rolling, drawdown, dipping, with a knife or trowel, curtain coating, and spraying methods, such as, for example, air-atomized spray, air-assisted spray, airless spray, high volume low pressure spray, and air-assisted airless spray. The aqueous composition is applied onto a substrate as a single coat or multiple coats. After application, the applied aqueous composition is typically allowed to dry at ambient conditions or alternatively dried by the application of heat to provide a dry coating.
  • The following examples are presented to illustrate the invention. In the examples, the following abbreviations have been used:
    • BA is Butyl Acrylate;
    • MMA is Methyl Methacrylate;
    • MAA is Methacrylic Acid;
    • STY is styrene; and
    • oz is ounce(s);
    • mls is milliliters.
    Test Methods
    • Heat-aged stability test: The heat-aged stability was tested by filling a 4 oz glass container with the formulated material and placing it in the oven at 120° F. (49° C.) for 14 days. Any gelling of the sample was noted and the performance of the formulations before and after heat-ageing was compared for each sample.
    • Mar Resistance: Mar resistance was determined by running the ends of a fingernail or a tongue depressor over the finish in a back and forth motion. The amount of scratching or indentations on the coating determined the level of marring. No visible scratches would imply excellent mar resistance (rated 10); whereas many deep scratches or destruction of the film would imply very poor mar resistance (rated 1). Testing was done on unstained maple panels that were coated with two coats of formulated topcoat. The panels were allowed to air dry for 30 minutes between coats. After the second coat was applied, the panels were allowed to cure in ambient temperatures for 14 days.
    • Print Resistance: 5 wet mls were drawn down on black glass and allowed to air dry overnight (16 hours) to form a film. A two-inch square (41.6 cm2) of cheesecloth was placed on the film and then a 1 square-inch (6.45 cm2) circular leather disk was placed on top of the cheesecloth. A one-pound (0.45 kg) weight was placed on the leather disk. The weight remained on the film for sixteen hours and was then removed. The panel was then inspected for any indentations in the film from the cheesecloth. The test was repeated with a two-pound (0.9 kg) weight.
    • Humidity Resistance: Maple panels were coated with the two coats of the experimental coatings and allowed to air dry for 14 days. The panels were then placed in a humidity chamber for 4 days. After being subjected to the conditions in the humidity chamber (100° F.(38° C.)/100% relative humidity), the panels were removed and mar resistance was tested. General appearance (blistering, cracking, flaking, etc.) was also noted after humidity testing.
    • Edgesoak (KCMA) Resistance: (reference the ANS/KCMA Standard A161.1-2000) For the Edgesoak Resistance test, two coats of the experimental coatings were applied to an unstained, solid oak panel, air drying the first coat for one hour before sanding and applying the second coat. The panels were completely coated, including the back and all edges, and then aged for ten days before testing. A ½% solution (by weight) of Palmolive® liquid dish soap in water was prepared. #8 cellulose sponges were placed in a level tank and the tank was filled with the soap water to one-half inch (1.27 cm) below the top level of the sponges. The end grain section of each panel was placed onto the sponges for 24 hours. After the 24 hours, the panels were removed and rated for discoloration, checking, blistering, whitening or other film failure. The test was also repeated on the side grain of the panels.
    • Chemical and stain tests: These tests were conducted on maple panels that were sealed with a waterborne acrylic sealer and then topcoated with either Example 2 or one of the Comparative topcoats. Four to five wet mls of the sealer was spray-applied, allowed to air dry for 20 minutes and then sanded using a 240 grit stearated sandpaper. Then, the topcoat was spray-applied, also to four to five wet mls. The panels cured at room temperature for ten days. After the ten days, both one hour and 16 hour chemical and stain spot tests were done. A small absorbent disk was laid on the panel and one of several chemicals or stains was used to saturate the disk. Chemical and stains tested included: 50% ethanol, isopropanol, butyl acetate, acetone, water, hot coffee, Formula 409® cleaner, 7% ammonia and red ink. A watch glass then covered the saturated disk for either one or sixteen hours. After the allotted time, the watch glasses were removed, as well as the disk, if it did not adhere to the panel surface. The panels were wiped with a wet cloth and then dried. Any discoloration or damage to the surface as a result of the chemical or stain was noted.
    • Spot test for 10% ammonia: Both a 2 and 3 minute spot test for 10% ammonia on each of the panels, prepared in the same manner as the other spot tests, except for the duration of the test, were conducted. In all cases, spots were evaluated on a 1-10 scale (10=no change of the surface, 1=complete film deterioration).
    • Appearance: For gloss and clarity, 5 ml wet drawdowns were made with the experimental coatings on black glass. The samples were allowed to air dry for 16 hours at room temperature. The samples were visually compared for clarity vs. haziness and the gloss of the film was noted. For warmth, the coatings were applied to oak and maple panels and allowed to air dry for 16 hours. The color of the panel was noted. If the coating brought out the red/orange color of the wood, the sample rated high for warmth. If the panel looked washed out or gray in color, the sample rated low for warmth. To determine yellowing, clear coatings were sprayed out on previously coated, white panels. The panels were allowed to air dry for 16 hours and then they were evaluated visually both in daylight and under black light for potential yellowing. The potential yellowing of films is directly related to a white-purplish glow when exposed to black light.
    EXAMPLES Example 1 Preparation of Aqueous Composition of the Invention
  • At room temperature, 2500 g of Polymer A was added 10 g of deionized water. Polymer A was Rhoplex® EP-6060. To this blend, 1100 g of Polymer B and another 10 g of deionized water were added. Polymer B was Rhoplex® CL-106. To that mixture, 20 g of a nonionic, octylphenol ethoxylate surfactant and an additional 15 g of deionized water was added. Once the blend was complete and thoroughly mixed, 14.22 g of Glycidoxypropylmethyldiethoxysilane was added and mixed thoroughly. The aqueous polymer blend of Example 1 contained 39% weight solids and a pH of 8.5.
  • Comparative A Preparation of Comparative Aqueous Emulsion Polymer
  • The aqueous composition of Comparative A was prepared according to the process of Example 1 except that neither Polymer B nor the surfactant was added. The aqueous composition of Comparative A contained 38% weight solids and had a pH of 8.4.
  • Comparative B Preparation of Comparative Aqueous Emulsion Polymer
  • The aqueous composition of Comparative B was prepared according to the process of Example 1 except that the Glycidoxypropylmethyldiethoxysilane was not added. The aqueous composition of Comparative B contained 39% weight solids and had a pH of 8.5.
  • Example 2 Aqueous Coating Using Example 1
  • A semi-gloss topcoat was prepared
  • TABLE 1
    Semi-Gloss Topcoat
    Material Percent by Weight
    Example 1 77.8
    Premix (add to above)
    Coalescent 9.0
    Plasticizer 1.7
    Water 6.7
    Thickener 0.5
    Mar Aid 1.0
    Wetting agent 0.8
    Defoamer 0.5
    Flatting agent 1.0
    Wax 1.0
    Total weight % 100%
    Coalescent: ethylene glycol monobutyl ether and dipropylene glycol monobutyl ether, Plasticizer:
    Paraplex WP-1
    Thickener: Acrysol RM-825
    Mar Aid: Tego 410
    Wetting agent: Surfynol 104 DPM and BYK 346
    Defoamer: BYK 028
    Flattening agent: Bermasilk MK
    Wax: Michem Emulsion 39235.
  • The aqueous coating had a solids level of 33.9 weight % and a pH of 8.6.
  • TABLE 2
    Aqueous Emulsion
    Sample Formulation Polymer
    Example 2 SG topcoat in Table 1 Example 1
    Comparative C SG topcoat in Table 1 Comparative A
    Comparative D SG topcoat in Table 1 Comparative B
  • TABLE 3
    Performance Evaluation of SG Topcoats
    Property Example 2 Comparative C Comparative D
    Heat-aged stability Stable Failed Stable
    Resistance
    Mar 8 8 8
    Print 5 5 5
    Humidity 9 8 7
    Edgesoak (KCMA) 10 10 10
    Chemical and Stain
    Resistance
    10% ammonia resistance 8 7 4
    1 hour chemical (average) 8 8 7
    16 hour chemical (average) 6 6 5
    Appearance
    Gloss 7 7 7
    Clarity 8 9 8
    Warmth 6 6 6
    Yellowing 9 9 9
  • Chemical and stain tests included: for 1 hour: 50% ethanol, isopropanol, butyl acetate, and acetone; and for 16 hour: water, hot coffee, 50% ethanol, Formula 409® cleaner, isopropanol, 7% ammonia, and red ink.
  • With Example 2 and Comparative D, in the heat-aged stability test, no gel was formed upon heat-aging and there was no performance loss. For Comparative C, no gel was formed but there was a significant decrease in performance after heat-aging. Therefore, Example 2 and Comparative D were labeled as stable; whereas Comparative C failed the stability test.
  • In spot tests, Example 2 and Comparatives C and D performed similarly, except Example 2 showed an advantage in 10% ammonia resistance, as compared to the other two topcoats.

Claims (10)

1. An aqueous composition comprising:
a metal-containing crosslinkable polymer having at least one ethylenically unsaturated monomer and a metal agent, the metal-containing crosslinkable polymer having a Tg of 10-40° C.;
an acrylic polymer, the acrylic polymer having a Tg of 30-100° C.; and
an epoxysilane.
2. The composition of claim 1 further comprising a surfactant.
3. The composition of claim 1 wherein the metal agent comprises at least one of zirconium, zinc, potassium, barium, tin, tungsten, calcium, magnesium, aluminum, iron, cobalt, nickel and copper.
4. The composition of claim 1 wherein the epoxysilane comprises 0.1-8 weight %, based on total solids weight of the aqueous composition.
5. The composition of claim 1 wherein the metal-containing crosslinkable polymer and acrylic polymer comprise a ratio of 0.25:1 to 1:0.25.
6. The composition of claim 1 wherein the metal-containing crosslinkable polymer comprises at least one of butyl acrylate, styrene, methyl methacrylate, and methacrylic acid and the acrylic polymer comprises at least one of butyl acrylate, butyl methacrylate, methyl methacrylate, and methacrylic acid
7. The composition of claim 1 wherein the metal-containing crosslinkable polymer comprises an acid number of 25-130 and the acrylic polymer comprises an acid number of 2-30.
8. A coated substrate comprising the composition of claim 1.
9. A method for preparing a coated substrate, comprising the steps of:
providing an aqueous composition comprising: a metal-containing crosslinkable polymer having at least one ethylenically unsaturated monomer and a metal agent, the metal-containing crosslinkable polymer having a Tg of 10-40° C.; an acrylic polymer, the acrylic polymer having a Tg of 30-100° C.; and an epoxysilane;
applying the aqueous composition to a substrate; and
drying the aqueous composition applied to the substrate to provide the coated substrate.
10. The method of claim 9 wherein the providing comprises
mixing the acrylic with the metal-containing crosslinkable polymer in a mixing vessel to form a mixture;
adding a surfactant to the mixture;
agitating the mixture; and
blending the epoxysilane with the mixture.
US11/651,181 2006-02-14 2007-01-09 Aqueous emulsion polymer Expired - Fee Related US7807739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/651,181 US7807739B2 (en) 2006-02-14 2007-01-09 Aqueous emulsion polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77300206P 2006-02-14 2006-02-14
US11/651,181 US7807739B2 (en) 2006-02-14 2007-01-09 Aqueous emulsion polymer

Publications (2)

Publication Number Publication Date
US20070191522A1 true US20070191522A1 (en) 2007-08-16
US7807739B2 US7807739B2 (en) 2010-10-05

Family

ID=38283934

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/651,181 Expired - Fee Related US7807739B2 (en) 2006-02-14 2007-01-09 Aqueous emulsion polymer

Country Status (5)

Country Link
US (1) US7807739B2 (en)
EP (1) EP1829926A3 (en)
CN (1) CN101020727B (en)
AU (1) AU2007200587A1 (en)
BR (1) BRPI0700254A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120164467A1 (en) * 2010-12-28 2012-06-28 Sobczak Jeffrey J Aqueous coating composition, method for providing a coating and cementitious substrate coated therewith
US20160194511A1 (en) * 2013-09-18 2016-07-07 Rohm And Haas Company Aqueous coating composition
US20210324114A1 (en) * 2018-10-24 2021-10-21 Dow Global Technologies Llc Aqueous dispersion and aqueous coating composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI521032B (en) * 2012-06-28 2016-02-11 羅門哈斯公司 Wet glue
ES2688532T3 (en) 2013-01-18 2018-11-05 Basf Se Acrylic dispersion based coating compositions
CN103409065B (en) * 2013-09-02 2016-03-02 亚士漆(上海)有限公司 The coating process of fire resistant latex paint and fire resistant latex paint
CN106574134A (en) 2014-08-20 2017-04-19 太阳化学公司 Printing inks and coating compositions for polyethylene coated board
WO2018075487A1 (en) 2016-10-20 2018-04-26 Sun Chemical Corporation Water-based inks for shrink and non-shrink polymeric films
CN114002422B (en) * 2021-10-15 2024-03-29 乐凯医疗科技有限公司 Multi-layer membrane dry chemical reagent tablet for biochemical analysis

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861515A (en) * 1986-12-26 1989-08-29 Tsuyoshi Minamisawa Polyester composition
US4959417A (en) * 1987-04-22 1990-09-25 Nippon Paint Co., Ltd. Composite acrylic resin particles
US4990572A (en) * 1986-04-18 1991-02-05 Nippon Paint Co., Ltd. Composite resin particles and preparation thereof
US5079313A (en) * 1988-11-16 1992-01-07 Sunstar Giken Kabushiki Kaisha Polymer dispersing agent and epoxy resin composition
US5100955A (en) * 1985-09-10 1992-03-31 Dsm Resins B.V. Composition based on an aqueous dispersion of an addition polymer
US5319018A (en) * 1991-04-23 1994-06-07 Rohm And Haas Company Transition metal crosslinking of acid-containing polymers
US5714532A (en) * 1995-04-12 1998-02-03 Osi Specialties, Inc. Composition of epoxysilane emulsion additives in water based reactive polymer dispersions and methods of preparation
US6127462A (en) * 1995-04-12 2000-10-03 Osi Specialities, Inc. Compositions of epoxysilane and reactive polymer with cure catalyst and methods of preparation
US6174977B1 (en) * 1998-10-26 2001-01-16 Toyo Ink Mfg. Co., Ltd. Cold curable resin composition and base material coated with the same
US20020019457A1 (en) * 2000-06-28 2002-02-14 Mitsubishi Rayon Co., Ltd. Metal-containing monomer dissolved mixture, metal-containing resin and antifouling paint composition
US6369139B1 (en) * 1995-04-12 2002-04-09 Crompton Corporation Compositions of epoxysilane emulsion additives in waterbased reactive polymer dispersions and methods of preparation
US20020115763A1 (en) * 1998-11-23 2002-08-22 Robinson Gregory Frantz Coating compositions and coatings formed therefrom
US20030134949A1 (en) * 2001-07-17 2003-07-17 Brown Ward Thomas Wear-resistant coating composition and method for producing a coating
US6730733B2 (en) * 2000-03-09 2004-05-04 Avecia Limited Aqueous polymer compositions
US20050014879A1 (en) * 2003-02-10 2005-01-20 Yutaka Moroishi Pressure sensitive adhesive composition for optical members, pressure sensitive adhesive layer for optical members, pressure sensitive adhesive optical member and image display

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU742196B2 (en) 1997-01-18 2001-12-20 Rohm And Haas Company Coating compositions

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100955A (en) * 1985-09-10 1992-03-31 Dsm Resins B.V. Composition based on an aqueous dispersion of an addition polymer
US4990572A (en) * 1986-04-18 1991-02-05 Nippon Paint Co., Ltd. Composite resin particles and preparation thereof
US4861515A (en) * 1986-12-26 1989-08-29 Tsuyoshi Minamisawa Polyester composition
US4959417A (en) * 1987-04-22 1990-09-25 Nippon Paint Co., Ltd. Composite acrylic resin particles
US5079313A (en) * 1988-11-16 1992-01-07 Sunstar Giken Kabushiki Kaisha Polymer dispersing agent and epoxy resin composition
US5319018A (en) * 1991-04-23 1994-06-07 Rohm And Haas Company Transition metal crosslinking of acid-containing polymers
US5714532A (en) * 1995-04-12 1998-02-03 Osi Specialties, Inc. Composition of epoxysilane emulsion additives in water based reactive polymer dispersions and methods of preparation
US6127462A (en) * 1995-04-12 2000-10-03 Osi Specialities, Inc. Compositions of epoxysilane and reactive polymer with cure catalyst and methods of preparation
US6369139B1 (en) * 1995-04-12 2002-04-09 Crompton Corporation Compositions of epoxysilane emulsion additives in waterbased reactive polymer dispersions and methods of preparation
US6174977B1 (en) * 1998-10-26 2001-01-16 Toyo Ink Mfg. Co., Ltd. Cold curable resin composition and base material coated with the same
US20020115763A1 (en) * 1998-11-23 2002-08-22 Robinson Gregory Frantz Coating compositions and coatings formed therefrom
US6730733B2 (en) * 2000-03-09 2004-05-04 Avecia Limited Aqueous polymer compositions
US20020019457A1 (en) * 2000-06-28 2002-02-14 Mitsubishi Rayon Co., Ltd. Metal-containing monomer dissolved mixture, metal-containing resin and antifouling paint composition
US20030134949A1 (en) * 2001-07-17 2003-07-17 Brown Ward Thomas Wear-resistant coating composition and method for producing a coating
US20050014879A1 (en) * 2003-02-10 2005-01-20 Yutaka Moroishi Pressure sensitive adhesive composition for optical members, pressure sensitive adhesive layer for optical members, pressure sensitive adhesive optical member and image display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120164467A1 (en) * 2010-12-28 2012-06-28 Sobczak Jeffrey J Aqueous coating composition, method for providing a coating and cementitious substrate coated therewith
US9528029B2 (en) * 2010-12-28 2016-12-27 Rohm And Haas Company Aqueous coating composition, method for providing a coating and cementitious substrate coated therewith
US20160194511A1 (en) * 2013-09-18 2016-07-07 Rohm And Haas Company Aqueous coating composition
US20210324114A1 (en) * 2018-10-24 2021-10-21 Dow Global Technologies Llc Aqueous dispersion and aqueous coating composition

Also Published As

Publication number Publication date
EP1829926A2 (en) 2007-09-05
AU2007200587A1 (en) 2007-08-30
BRPI0700254A (en) 2008-02-19
CN101020727A (en) 2007-08-22
EP1829926A3 (en) 2008-10-15
US7807739B2 (en) 2010-10-05
CN101020727B (en) 2014-12-24

Similar Documents

Publication Publication Date Title
US7807739B2 (en) Aqueous emulsion polymer
US20070148357A1 (en) Fast Hardening Aqueous Coating Composition
EP3167020B1 (en) Sequentially polymerized hybrid latex
EP2115076A2 (en) Peel-coat compositions
JPH04189874A (en) Resin composition for coating
AU2013363141B2 (en) Coatings for use in high humidity conditions
AU2019221451B2 (en) Scuff resistant and chip resistant architectural compositions
JP5775800B2 (en) One-part cold crosslinking aqueous coating composition
JP5232566B2 (en) Water-based coating material
US3580972A (en) Coating composition of a mixture of a vinyl ester of an aliphatic acid-carboxylic acid copolymer and a terpolymer of a vinyl ester of an aliphatic acid,a carboxylic acid ester and a carboxylic acid
CN101722703B (en) Blocking and stain resistant surface treated articles and methods for making
JP4498756B2 (en) Emulsion paint composition
JP3338690B2 (en) Two-part coating composition
JP5397970B2 (en) Resin composition for plastic paint, paint for plastic and laminate thereof
JP2011162676A (en) Emulsion resin-based coating material
JPS63268708A (en) Aqueous dispersion-type resin composition
JP5858296B2 (en) Resin composition for plastic paint, paint for plastic and laminate thereof
JPH11323242A (en) Coating composition for finish coat for outer plates in cars and coating process therefor
JPH08325508A (en) Water-based coating material composition
US20230088454A1 (en) Floor finishing compositions with enhanced durability, methods of making and using thereof
JP2022135257A (en) Synthetic resin emulsion, aqueous coating composition containing the same, and coating method using the aqueous coating composition
JPS5855990B2 (en) Suiseinetsukoseihifukuzaisoseibutsu
JPH02160878A (en) Stock solution composition for airsol paint
JPH03179067A (en) Coating composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROHM AND HAAS COMPANY, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OBST, FREDERICK PETER;TOTH, MICHELLE ANNE;WOOD, TIMOTHY GRANT;REEL/FRAME:024904/0548

Effective date: 20060705

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20221005