Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20070156226 A1
Publication typeApplication
Application numberUS 11/685,339
Publication date5 Jul 2007
Filing date13 Mar 2007
Priority date3 Dec 2001
Also published asCA2469127A1, EP1460975A2, EP1460975A4, US7905913, US8016871, US20030135266, US20070088422, US20070100424, US20080234798, US20100004729, WO2003047651A2, WO2003047651A3
Publication number11685339, 685339, US 2007/0156226 A1, US 2007/156226 A1, US 20070156226 A1, US 20070156226A1, US 2007156226 A1, US 2007156226A1, US-A1-20070156226, US-A1-2007156226, US2007/0156226A1, US2007/156226A1, US20070156226 A1, US20070156226A1, US2007156226 A1, US2007156226A1
InventorsSunmi Chew, Bernard Andreas, Hanson Gifford, Ron French, Mark Deem, Allan Will
Original AssigneeXtent, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus and methods for delivery of multiple distributed stents
US 20070156226 A1
Abstract
Blood vessels and other body lumens are stented using multiple, discreet stent structures. Stent structures may be balloon expandable or self-expanding and are delivered by a delivery catheter which is repositioned to spaced-apart delivery sights. By coating the stents with particular biologically active substances, hyperplasia within and between the implanted stents can be inhibited. An exemplary delivery catheter comprises a catheter body having both a pusher rod for advancing the stents relative to a sheath and a reciprocatable delivery catheter for implanting the stents.
Images(19)
Previous page
Next page
Claims(41)
1. A method for stenting extended lengths of a body lumen, said method comprising:
introducing a catheter carrying a plurality of radially expansible prostheses to a stenotic lesion within said body lumen, wherein said prostheses are arranged end-to-end and covered by a sheath;
retracting the sheath by a first distance to uncover a first multiplicity of the prostheses, wherein the uncovered prostheses do not expand during retraction; and
radially expanding each of said first multiplicity of uncovered prostheses simultaneously at a first location within said stenotic lesion while at least one other prosthesis is retained on the catheter, said first multiplicity of prostheses engaging a wall of the body lumen with sufficient radial force to maintain patency thereof, said prostheses being spaced apart from each other after expansion by a distance small enough to inhibit hyperplasia therebetween.
2. A method as in claim 1, further comprising inflating a balloon within said prostheses to effect expansion.
3. A method as in claim 2, wherein inflating comprises inflating a balloon disposed both under said prostheses to be expanded and under at least some prostheses which remain under the sheath, wherein inflation of the balloon under the sheath is constrained by the sheath to prevent expansion of the at least some prostheses.
4. A method as in claim 2, further comprising engaging a proximal end of the plurality of prostheses with a pusher tube to axially restrain the prostheses as the sheath is retracted.
5. A method as in claim 4, further comprising engaging one of the prostheses with a valve member coupled with the distal end of the sheath.
6. A method as in claim 5, further including retracting the sheath and the pusher tube to separate prostheses proximal to the valve member from the first multiplicity of prostheses.
7. A method as in claim 6, wherein separating comprises inflating a balloon disposed under said first multiplicity of prostheses.
8. A method as in claim 1, further comprising heating the uncovered prostheses to effect expansion.
9. A method as in claim 8, wherein heating comprises directing a heated medium through the catheter to the uncovered prostheses.
10. A method as in claim 8, wherein heating comprises energizing a heating element positioned adjacent to the uncovered prostheses.
11. A method as in claim 8, further comprising engaging a proximal end of the plurality of prostheses with a pusher tube to axially restrain the prostheses as the sheath is retracted.
12. A method as in claim 1, wherein said prostheses are resilient and radially constrained within the sheath, wherein the prostheses radially expand as the sheath is retracted.
13. A method as in claim 12, further comprising engaging a proximal end of the plurality of prostheses with a pusher tube to axially restrain the prostheses as the sheath is retracted.
14. A method as in claim 1, further comprising repositioning the catheter and further retracting the sheath by a second distance to uncover a second multiplicity of prostheses, said second multiplicity of uncovered prostheses radially expanding at a second location within said target site.
15. A method as in claim 1, wherein the body lumen is a blood vessel.
16. A method as in claim 1, wherein the prostheses have at least one agent disposed thereon.
17. A method as in claim 16, wherein the agent inhibits hyperplasia.
18. A method as in claim 17, wherein the agent is biologically active.
19. A method as in claim 18, wherein the biologically active agent is selected from the group consisting of anti-neoplastic drugs such as paclitaxel, methotrexate, and batimastal; antibiotics such as doxycycline, tetracycline, rapamycin, and actinomycin; immunosuppressants such as dexamethasone and methyl prednisolone; nitric oxide sources such as nitroprussides; estrogen; and estradiols.
20. A method as in claim 17, wherein the agent is biologically inert.
21. A method as in claim 20, wherein the biologically inert agent is selected from the group consisting of collagen, polyethylene glycol (PEG), polyglycolic acids (PGA), ceramic material, platinum and gold.
22. A method for stenting extended lengths of a body lumen, said method comprising:
introducing a catheter carrying at least three discrete stents;
releasing at least a first stent from the catheter at a first location in the body lumen;
repositioning the catheter;
releasing at least a second stent from the catheter at a second location, wherein at least a third stent from the catheter is released and radially expanded simultaneously with one of said first or second stent, the third stent being spaced apart from the first or second stent after release by a distance which is small enough to inhibit hyperplasia therebetween said first, second, and third stents engaging a wall of the body lumen with sufficient radial force to maintain patency thereof.
23. A method as in claim 22, wherein the catheter carries at least four discrete stents, further comprising repositioning the catheter and releasing at least a fourth stent at a fourth location.
24. A method as in claim 23, wherein the catheter carries at least five discrete stents, further comprising repositioning the catheter and releasing at least a fifth stent at a fifth location.
25. A method as in claim 22, wherein the body lumen comprises a blood vessel.
26. A method as in claim 25, wherein the stents are released at locations which span a length of at least 3 mm in the blood vessel.
27. A method as in claim 25, where at least two stents are positioned on opposite sides of an opening in the blood vessel to a side branch.
28. A method as in claim 22, wherein releasing the stents comprises expanding a balloon within the stents.
29. A method as in claim 22, wherein releasing the stents comprises releasing the stents from constraint and allowing the stents to self-expand.
30. A method as in claim 22, wherein the stents have at least one agent disposed thereon.
31. A method as in claim 30, wherein the agent inhibits hyperplasia.
32. A method as in claim 30, wherein the agent is biologically active.
33. A method as in claim 32, wherein the biologically active agent is selected from the group consisting of anti-neoplastic drugs such as paclitaxel, methotrexate, and batimastal; antibiotics such as doxycycline, tetracycline, rapamycin, and actinomycin; immunosuppressants such as dexamethasone and methyl prednisolone; nitric oxide sources such as nitroprussides; estrogen; and estradiols.
34. A method as in claim 30, wherein the agent is biologically inert.
35. A method as in claim 34, the biologically inert agent is selected from the group consisting of collagen, PEG, PGA, ceramic material, platinum and gold.
36. A method as in claim 16, wherein the agent is disposed in a bioresorbable material formed on or within the prostheses.
37. A method as in claim 36, wherein the bioresorbable material is selected from the group consisting of polyethylene glycol, collagen, gelatin, polyglocolic acids, and polylactic acids.
38. A method as in claim 30, wherein the agent is disposed in a bioresorbable material formed on or within the prostheses.
39. A method as in claim 38, wherein the bioresorbable material is selected from the group consisting of polyethylene glycol, collagen, gelatin, polyglycolic acids, and polylactic acids.
40. The method of claim 1, wherein the distance between adjacent prostheses after expansion in the body lumen is no more than about 1 mm.
41. The method of claim 22, wherein the distance between the third stent and the first or second stent after expansion is no more than about 1 mm.
Description
    CROSS-REFERENCES TO RELATED APPLICATIONS
  • [0001]
    The present application is a divisional of U.S. patent application Ser. No. 10/306,813 (Attorney Docket No. 021629-000320US), filed Nov. 27, 2002, which was a non-provisional of U.S. patent application Ser. No. 60/336,967 (Attorney Docket No. 021629-000300) filed Dec. 3, 2001, and is also a non-provisional of U.S. patent application Ser. No. 60/364,389 (Attorney Docket No. 021629-000310) filed on Mar. 13, 2002, the full disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates generally to medical devices and methods. More particularly, the present invention relates to apparatus and methods for independently delivering a plurality of luminal prostheses within a body lumen, such as a blood vessel.
  • [0004]
    Coronary artery disease is the leading cause of death and morbidity in the United States and Western society. In particular, atherosclerosis in the coronary arteries can cause myocardial infarction, commonly referred to as a heart attack, which can be immediately fatal or, even if survived, can cause damage to the heart which can incapacitate the patient.
  • [0005]
    While coronary artery bypass surgery can be an effective treatment for stenosed arteries resulting from atherosclerosis or other causes, it is a highly invasive, costly procedure, which typically requires substantial hospital and recovery time. Percutaneous transluminal coronary angioplasty, commonly referred to as balloon angioplasty, is less invasive, less traumatic, and significantly less expensive than bypass surgery. Heretofore, however, balloon angioplasty has not been considered as effective a treatment as bypass surgery. The effectiveness of balloon angioplasty, however, has improved significantly with the introduction of stenting which involves the placement of a scaffold structure within the artery which has been treated by balloon angioplasty. The stent inhibits abrupt reclosure of the artery and has some benefit in inhibiting subsequent restenosis resulting from hyperplasia. Recently, experimental trials have demonstrated that the coating of stents using anti-proliferative drugs, such as paclitaxel, can significantly reduce the occurrence of hyperplasia in angioplasty treated coronary arteries which have been stented with the coated stents.
  • [0006]
    While the combination of balloon angioplasty with drug-coated stents holds great promise, significant challenges still remain. Of particular interest to the present invention, the treatment of extended or disseminated disease within an artery remains problematic. Most stents have a fixed length, typically in the range from 10 mm to 30 mm, and the placement of multiple stents to treat disease over a longer length requires the suggestive use of balloon stent delivery catheters. Moreover, it can be difficult to stent an angioplasty-treated region of a blood vessel with the optimum stent length.
  • [0007]
    For these reasons, it would be desirable to provide improved stents, stent delivery systems, stenting methods, and the like, for the treatment of patients having coronary artery disease, as well as other occlusive diseases of the vasculature. In particular, it would be desirable to provide stents, delivery systems, and methods for the treatment of disseminated and variable length stenotic regions within the vasculature. For example, it would be desirable to provide a practical method which permits a physician to optimize the length of the treated vessel which is stented according to the nature of the disease. More specifically, it would be desirable to provide apparatus, systems, and methods for facilitating the delivery of multiple stents and other prostheses to blood vessels or other target body lumens. Such apparatus, systems, and methods should be suitable for delivery of individual stents or prostheses having very short lengths, typically as short as 3 mm or shorter, at multiple contiguous and non-contiguous locations within a body lumen for optimized treatment thereof. At least some of these objectives will be met by the inventions described hereinafter.
  • [0008]
    2. Description of the Background Art
  • [0009]
    U.S. Pat. No. 6,258,117 B1 describes a stent having multiple sections connected by separable or frangible connecting regions. Optionally, the connecting regions are severed after the stent structure has been implanted in the blood vessel. U.S. Pat. Nos. 5,571,086; 5,776,141; and 6,143,016 describe an expandable sleeve for placement over a balloon catheter for the delivery of one or two stent structures to the vasculature. U.S. Pat. No. 5,697,948 describes a catheter for delivering stents covered by a sheath.
  • BRIEF SUMMARY OF THE INVENTION
  • [0010]
    The present invention provides methods and apparatus for prosthesis placement, such as stenting of body lumens, typically blood vessels, and more typically coronary arteries. The methods and systems will also find significant use in the peripheral vasculature, the cerebral vasculature, and in other ducts, such as the biliary duct, the fallopian tubes, and the like. The terms “stent” and “stenting” are defined to include any of the wide variety of expandable prostheses and scaffolds which are designed to be intraluminally introduced to a treatment site and expanded in situ to apply a radially outward force against the inner wall of the body lumen at that site. Stents and prostheses commonly comprise an open lattice structure, typically formed from a malleable or elastic metal. When formed from a malleable metal, the stents will typically be expanded by a balloon which causes plastic deformation of the lattice so that it remains opened after deployment. When formed from an elastic metal, including super elastic metals such as nickel-titanium alloys, the lattice structures will usually be radially constrained when delivered and deployed by releasing the structures from such radial constraint so that they “self-expand” at the target site. When the stent or lattice structures are covered with a fabric or polymeric membrane covering, they are commonly referred to as grafts. Grafts may be used for the treatment of aneurysms or other conditions which require placement of a non-permeable or semi-permeable barrier at the treatment site. The terms “prosthesis” and “prostheses” refer broadly to all radially expansible stents, grafts, and other scaffold-like structures which are intended for deployment within body lumens.
  • [0011]
    The stents and prostheses of the present invention may have any of a variety of common constructions, including helical structures, counterwound helical structures, expandable diamond structures, serpentine structures, or the like. Such conventional stent structures are well described in the patent and medical literature. Specific examples of suitable stent structures are described in the following U.S. patents, the full disclosures of which are incorporated herein by reference: U.S. Pat. Nos.: 6,315,794; 5,980,552; 5,836,964; 5,527,354; 5,421,955; 4,886,062; and 4,776,337, the full disclosures of which are incorporated herein by reference. Preferred structures are described herein with reference to FIGS. 4 and 5.
  • [0012]
    According to the present invention, the stents which are deployed may have a length of 1 mm or greater, usually 2 mm or greater, and typically of 3 mm or greater, usually being in the range from 1 mm to 100 mm, typically from 2 mm to 50 mm, more typically from 2 mm to 25 mm, and usually from 3 mm to 20 mm. The use of such short stent lengths is advantageous since multiple stents are to be employed.
  • [0013]
    The methods and apparatus of the present invention will provide for the deployment of a plurality of stents or other prostheses, usually including at least two stents, from a common stent delivery catheter. Usually, the number of delivered stents will be in the range from 2 to 50, typically from 3 to 30, and most typically from 5 to 25. As more stents are placed on the delivery catheter, the individual stent length will often be somewhat less, although this is not necessarily the case in all instances. The multiple prostheses may be deployed individually or in groups of two or more at single or multiple spaced-apart locations in the body lumen or lumens.
  • [0014]
    In a first aspect of the present invention, a method for stenting an extended length of a body lumen comprises introducing a catheter carrying a plurality of, usually at least two, discrete stents to the body lumen. Usually, the introduction is percutaneous and, in the case of intravascular delivery, uses a conventional introduction technique, such as the Seldinger technique. After reaching a target location, at least a first stent is released from the catheter at that first location. The catheter is then repositioned to a second location, and at least a second stent is released from the catheter at the second location. The catheter is then repositioned to a third location, and at least a third stent is released from the catheter at the third location
  • [0015]
    In addition to deploying stents and other prostheses at spaced-apart locations within a blood vessel or other body lumen, the methods and apparatus in the present invention can be used for delivering one, two, three, or more discrete stents or other prosthetic segments contiguously at a single location within the body lumen. In this way, the length of the prosthesis which is implanted can be selected and modified to accommodate the length of the vessel to be treated. It will be appreciated that with systems which carry 10, 20, 30 or more quite short prostheses or prosthesis segments, the length of the lumen being treated can be tailored very closely from very short to very long with the selectable intervals depending on the length of the prosthesis or prosthesis segment.
  • [0016]
    The deployment steps can, of course, be repeated a sufficient number of times so that all or at least most of the stents carried by the delivery catheter are delivered to and deployed within the body lumen. A particular advantage of this delivery method is that the discrete stents may be distributed along extended lengths of the body lumen, typically in the range from 1 cm to 2 cm, often in the range from 1 cm to 5 cm, and in many instances even longer. Additionally, the stents may be delivered so as to avoid side branches or other regions where placement of the stent is undesirable. Moreover, with the use of drug-coated stents, it may be possible to place the stents apart by discrete distances, typically from one-half to one millimeter (mm), while still achieving vessel patency and hyperplasia inhibition.
  • [0017]
    Releasing of the stents from the catheter may be achieved using a balloon to cause balloon expansion of the stent. Alternatively, release of the stent may be achieved by radially constraining an elastic or self-expanding stent within a lumen of the delivery catheter and selectively advancing the stent from the catheter and/or retracting the catheter from over the stent. In one embodiment, a sheath over the stents includes a valve member, or “stent valve,” which allows stents to be separated so that a balloon can more accurately inflate deployed stents while other stents remain within the sheath.
  • [0018]
    In preferred embodiments, the stents are coated with at least one agent, such as an agent which inhibits hyperplasia. The agent may be biologically active or inert. Particular biologically active agents include anti-neoplastic drugs such as paclitaxel, methotrexate, and batimastal; antibiotics such as doxycycline, tetracycline, rapamycin, and actinomycin; immunosuppressant such as dexamethosone, methyl prednisolone, nitric oxide sources such as nitroprussides; estrogen; estradiols; and the like. Biologically inert agents include polyethylene glycol (PEG), collagen, polyglycolic acids (PGA), ceramic material, titanium, gold and the like.
  • [0019]
    In another aspect, the present invention comprises catheters and apparatus for stenting extended lengths of a body lumen, particularly a blood vessel. The catheters comprise a catheter body having a proximal end and a distal end. At least two discrete stents are carried at or near a distal end of the catheter body. By “discrete,” it is meant that the stents are unconnected and can be deployed from the catheter in an unattached manner. (The delivery of attached prostheses is described below.) Deployment of such discrete stents permits the individual stents to be placed at spaced-apart target locations or immediately adjacently within the blood vessel or other body lumen. The catheters further comprise deployment means for deploying the individual stents from the catheter body. For example, the deployment means may comprise one or more balloons for placement and radial expansion of the stents. Alternatively, the deployment means may comprise a pusher or other device for advancing self-expanding stents from the distal end of the catheter body and/or a sheath for selectively retracting over the stents to permit self-expansion. In exemplary embodiments, the catheters will carry at least two discrete stents, at least five discrete stents, and as many as 30 discrete stents, or in some cases, as many as 30 or more discrete stents.
  • [0020]
    In a particular embodiment, the catheter comprises a single balloon which is reciprocatively mounted within the catheter body and adapted for receiving individual stents thereover. A pusher or other device for successively and controllably loading individual or multiple stents over the balloon is also provided. In this way, the catheter may carry multiple stents and employ the single balloon for positioning and expansion of the stents.
  • [0021]
    In further embodiments, the stents of the present invention are composed at least partly of a bioabsorbable material, such as polyethylene glycol (PEG), collagen, gelatin, polyglycolic acids (PGA), polylactic acids (PLA), and the like. Optionally, one or more bioactive substances are dispersed in the bioabsorbable material such that the bioactive substance will be released over time as the bioabsorbable material degrades. In a particular embodiment, the bioabsorbable material is formed on or within a scaffold composed on a non-bioabsorbable material, typically stainless steel, Nitinol™, or other conventional stent metal material. Other materials, such as gold (e.g., pure or nearly pure gold), platinum, or the like, may also be used.
  • [0022]
    In a further aspect of the present invention, a catheter for delivering a plurality of expansible prostheses to a body lumen comprises a catheter body, a sheath, and a plurality of radially expansible prostheses. The catheter body has a proximal end and a distal end, and the sheath is coaxially disposed over the catheter body with the prostheses positionable in an annular space between the inside of the sheath and the exterior of the catheter body. The sheath is preferably retractable relative to the catheter body so that the prostheses may be advanced beyond a distal end of the sheath. Usually, the catheter will further comprise a pusher tube disposed coaxially over the catheter body and within an interior lumen of the sheath. A distal end of the pusher tube will engage a proximal end of the proximal-most prosthesis so that the pusher tube can be distally advanced relative to the sheath to selectively push or deploy individual prostheses from the sheath. Often, such deployment is achieved by holding the pusher tube and prostheses substantially stationary relative to the body lumen while the sheath is retracted proximally to release or deploy the prostheses. Each of the pusher tube, sheath and catheter body may have a lubricious inner surface and/or a lubricious outer surface.
  • [0023]
    Usually, at least a distal portion of the sheath will have a greater column strength than that of a distal portion of the catheter body. Additionally or alternatively, the pusher tube may also have a greater column strength than a distal portion of a catheter body. By providing column strength in the outer most portion of the catheter, i.e., the sheath, and optionally the pusher tube, the overall column strength of the catheter can be increased with a minimum increase in its diameter or profile. It will be appreciated that low profile catheters are highly advantageous for accessing remote regions of the vasculature, particularly the small coronary and cerebral arteries. Using the preferred constructions of the present invention, catheters having diameters 2 mm or less, and in some instances as low as 1 mm or less, can be achieved. The constructions will, of course, also be suitable for larger diameter catheters for use in the peripheral and other larger blood vessels.
  • [0024]
    The catheter of the present invention will preferably carry at least two prostheses, more preferably carrying at least three prostheses, and often carrying a greater number of prostheses as set forth above in connection with other embodiments. The prostheses will typically be arranged in an end-to-end manner either with or without a physical linkage therebetween. The physical linkage may comprise a frangible component which must be mechanically broken or alternatively may comprise a pair of coupling elements which fit together and which may be separated without any material breakage. Frangible coupling elements will usually comprise a strut, bar, spring, or similar connecting link and will optionally be scored, notched, or otherwise adapted to break along a particular line when a suitable mechanical force is applied. Exemplary separable coupling elements include male and female elements, such as a rod and tube which may be axially separated, a tab and receptacle which may be radially separated, and the like.
  • [0025]
    In a specific embodiment of the catheter, the catheter body may comprise an expansion element, such as an inflatable balloon, near its distal end. The expansion element will be positionable distal to the retractable sheath so that it can be used to regularly expand one or more of the prostheses. For example, the inflatable balloon may have a lubricious outer surface and carry multiple prostheses on its outer surface so that sheath retraction can expose one, two, three, or more of the prostheses. The remaining prostheses will continue to be covered by the sheath. When inflating the balloon, however, only that portion of the balloon and those prostheses carried on the exposed portion of the balloon will be inflated. The remaining (proximal) portion of the balloon will continue to be constrained by the sheath so that neither the balloon nor the prostheses covered by the sheath will be expanded. In this way, any preselected number of the individual prostheses may be expanded at one time, while the remaining prostheses are protected and unexpanded, remaining available for subsequent expansion using the balloon.
  • [0026]
    Alternatively or in addition to the balloon, the catheter body may comprise a heater for selectively heating prostheses which have been advanced distally beyond the sheath. For example, the catheter body may have a lumen for delivering a heated medium, such as heated saline, intravascularly to heat and expand stents or other prostheses formed from suitable heat memory alloys (as described in more detail below). Alternatively, a separate exterior guide catheter or other tube may be used for delivering such a heated medium to effect expansion of the prostheses. As a third alternative, a powered heating element, such as a radio frequency heater, electrical resistance heater, or laser-heated element, may be provided on the catheter body for directly heating the exposed prostheses.
  • [0027]
    For the delivery of individual prostheses or stents which are joined by frangible or breakable links, as discussed above, it will often be desirable to provide a shearing mechanism on the catheter. The shearing mechanism will usually be mechanical, but could also be electrolytic, ultrasonic, or chemical. In the exemplary embodiments, the shearing mechanism comprises a first shearing element on a distal region of the catheter body and a second or mating shearing element on a distal region of the sheath. The prostheses may be advanced from the sheath while the shearing mechanism on the catheter body is distally advanced (leaving a space or opening for prosthesis deployment). After a desired number of prostheses have been deployed, the catheter body may be retracted relative to the sheath in order to close the shearing elements to sever the link(s) between the advanced prostheses and those prostheses which remain within the sheath. In other cases, the shearing mechanism could be an electrode for inducing electrolytic breakage of the link, an ultrasonic transducer for mechanically degrading a susceptible link (i.e. a link having a resonant frequency which corresponds to the ultrasonic transducer), a luminal port for releasing a chemical agent selected to chemically degrade the link, or the like.
  • [0028]
    In a further alternative embodiment, a catheter constructed in accordance with the principles of the present invention comprises a pusher tube, a plurality of radially expansible prostheses arranged end-to-end and extending distally of the distal end of the pusher tube, and a sheath disposed coaxially over the pusher tube and the prostheses. Optionally, but not necessarily, this embodiment will include a catheter body disposed coaxially within the pusher tube and prostheses. By retracting the sheath proximally relative to the pusher tube, individual ones or groups of the prostheses will be exposed and deployed. The catheter body may be used in any of the ways described previously in order to effect or control deployment of the prostheses. Optionally, the pusher tube, the sheath, or both, may have a greater column strength than the catheter body when the catheter body is employed.
  • [0029]
    Systems of detachable expansible prostheses according to the present invention include a plurality of ring-like radially expansible prostheses arranged end-to-end along an elongate axis. At least one pair of coupling elements join each pair of adjacent prostheses, where the coupling elements physically separate without fracture in response to axial tension or differential radial expansion. The coupling elements, however, remain coupled when subjected to axial compression such as may occur as the prostheses are axially advanced within a body lumen or elsewhere. The prostheses may be composed of a malleable material so that they will be expansible in response to an internally applied radially expansive force, such as a balloon expansion force applied by a balloon carried by the catheter body in any of the prior embodiments of the present invention. Alternatively, the prostheses may be composed of a resilient material, such as spring stainless steel, nickel-titanium alloy; or the like, so that they may be “self-expanding,” i.e. expand when released from radial constraint. As a third alternative, the prostheses may be composed of a heat memory alloy, such as a nickel titanium alloy, so that they may be induced to expand upon exposure to a temperature above body temperature. Materials suitable for forming each of these three types of prostheses are well described in the patent and medical literature.
  • [0030]
    In specific examples of the systems, the coupling elements may be male and female so that they decouple upon the application of an axial force. For example, the coupling elements may be a rod and a tube having a central passageway for receiving the rod. Alternatively, the coupling elements may be configured to decouple upon differential radial expansion. For example, a first coupling element may extend from the end of a first prostheses and have an enlarged portion or end. By providing a cut-out in the adjacent prostheses having a periphery which matches the periphery of the extension on the first prostheses, coupling elements can be mated and locked together. The locking will resist axial separation, but permit radial separation when one of the prostheses is radially expanded.
  • [0031]
    The systems of prostheses just described may be preferably employed with any of the catheter delivery systems described previously.
  • [0032]
    The present invention further provides methods for stenting extended lengths of the body lumen, where the methods comprise introducing a catheter carrying a plurality of radially expansible prostheses to a target site within the body lumen. The prostheses are arranged end-to-end and are covered by a sheath. The prostheses are then deployed by retracting the sheath relative to the prostheses by a first preselected distance to uncover a first predetermined number of the prostheses. After retraction of the sheath, a first predetermined number of prostheses, which may be anywhere from one up to the entire number of prostheses being carried, are radially expanded at the target site within the target site of the body lumen.
  • [0033]
    Prosthesis expansion may be achieved in a variety of ways. In a first instance, the prostheses are expanded by inflating a balloon within the particular prosthesis to be expanded. For example, a single balloon may be disposed under all the prostheses, with the sheath retracted to expose only those prostheses to be deployed. When the balloon is expanded, the balloon will expand the exposed prostheses, with expansion of the prostheses which remain covered being restrained by the sheath. By further retracting the sheath, the previously undeployed prostheses may then be deployed. Optionally, the prostheses are advanced (or at least axially restrained relative to the sheath) by a pusher tube which engages a proximal end of the proximal-most prosthesis.
  • [0034]
    As an alternative to balloon expansion, the uncovered prostheses may be expanded by exposure to heat. The heat may be applied by directing a heated medium to the prostheses, directing electrical energy through the prostheses, and/or energizing a heating element positioned adjacent to the uncovered prostheses.
  • [0035]
    In preferred aspects of the methods of the present invention, the body lumen will be a blood vessel, preferably a coronary artery, a cerebral artery, or other small artery. The prostheses will preferably be coated with biologically active or inert agent, such as an agent selected to inhibit hyperplasia, more specifically being any of the particular agents set forth hereinabove.
  • [0036]
    The catheters of the present invention will comprise a number of coaxial components, such as sheaths, pusher tubes, catheter bodies, and the like. While it will often be described that stents or other prostheses are advanced distally from the sheath, such description will apply to sheaths which are retracted proximally relative to the prostheses to effect the release. Thus, all descriptions of direction are meant to be relative.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0037]
    FIG. 1 is a perspective view illustrating a stent delivery catheter constructed in accordance with the principles of the present invention.
  • [0038]
    FIG. 2 is a detailed view of the distal end of the catheter of FIG. 1 with portions broken away.
  • [0039]
    FIGS. 3A-3F illustrate use of the catheter of FIG. 1 for deploying a plurality of stents using balloon expansion.
  • [0040]
    FIG. 4 illustrates an exemplary prosthesis constructed in accordance with the principles of the present invention.
  • [0041]
    FIGS. 5A and 5B illustrate a prosthesis similar to that shown in FIG. 4, but further including coupling elements for permitting detachable coupling of adjacent prostheses.
  • [0042]
    FIG. 5C illustrates a pair of prostheses, as shown in FIGS. 5A and FIG. 5B, joined together by the coupling elements.
  • [0043]
    FIG. 5D illustrates a pair of adjacent prostheses coupled by a modified coupling element.
  • [0044]
    FIGS. 5E and 5F illustrate radial separation of the adjacent prostheses of FIG. 5C.
  • [0045]
    FIGS. 6A and 6B illustrate a second coupling mechanism constructed in accordance with the principles of the present invention.
  • [0046]
    FIG. 7 illustrates a frangible linkage for joining a pair of adjacent prostheses.
  • [0047]
    FIGS. 8A-8C illustrate a catheter and its use for delivering self-expanding prostheses according to the methods of the present invention.
  • [0048]
    FIGS. 9A and 9C illustrate an alternative catheter construction intended for delivering self-expanding prostheses according to the methods of the present invention.
  • [0049]
    FIGS. 10A-10C illustrates use of the catheter for delivering prostheses by a heat-induction method in accordance with the principles of the present invention.
  • [0050]
    FIG. 11 illustrates an alternative catheter construction for delivering multiple prostheses via a heat-induction protocol in accordance with the principles of the present invention.
  • [0051]
    FIGS. 12A-12D illustrate a catheter for delivering multiple prostheses using balloon expansion in accordance with the methods of the present invention.
  • [0052]
    FIGS. 13A-13D illustrate a catheter including a stent valve for delivering multiple prostheses using balloon expansion in accordance with the methods of the present invention.
  • [0053]
    FIG. 14 illustrates an exemplary kit constructed in accordance with the principles of the present invention.
  • DETAILED DESCRIPTION OF THE SPECIFIC EMBODIMENTS
  • [0054]
    Referring now to FIG. 1, the stent delivery catheter 10 comprises a catheter body 12 having a proximal end 14 and a distal end 16. The catheter body is formed from a conventional catheter material, such as braided or coiled stainless steel, a natural or synthetic polymer, including silicone rubber, polyethylene, polyvinylchloride, polyurethane, polyester, polytetrafluoroethylene, nylon, and the like. The body may be formed as a composite having one or more reinforcement layers incorporated within a polymeric shell in order to enhance strength, flexibility, and toughness. For intravascular use, the catheter body will typically have a length in the range from 40 cm to 150 cm, usually being between 40 cm and 120 cm for peripheral blood vessels and between 110 cm and 150 cm for coronary arteries. The outer diameter of the catheter body may vary depending on the intended use, typically being between 3 French and 15 French, usually from 5 French to 9 French.
  • [0055]
    Catheter 10 will include a handle 18 at its proximal end 14. The handle may include a guidewire port 20 and a balloon inflation port 22, as well as a handle grip 24 which advances a pusher shaft whose distal end 26 is shown in FIG. 2. Additionally, the handle permits reciprocation of a catheter delivery balloon 28, also shown in FIG. 2.
  • [0056]
    A plurality of stents 30 are carried in a lumen of the catheter body 12, as shown in FIG. 2. While three stents 30 are shown, it will be appreciated that additional stents may be carried generally within the ranges disclosed above. The illustrated stents comprise a plurality of serpentine ring structures joined by offset struts. It will be appreciated, however, that a wide variety of stent structures could be carried by the catheter 10, generally as described above.
  • [0057]
    Referring now to FIGS. 3A-3F, the distal end 16 of the catheter 10 is advanced to target location 40 within a diseased blood vessel (BV) over a guidewire 42, as illustrated in FIG. 3B. Balloon 28 carries a first of the three stents 30, and is advanced distally from the catheter to deploy the stent within the treatment region 40, as illustrated in FIG. 3B (optionally by retracting the catheter body 12 proximally relative to balloon 28). Once the stent 30 is properly located, the balloon 28 is inflated to deploy the stent (and optionally dilate the treatment region), as illustrated in FIG. 3C.
  • [0058]
    The balloon is then deflated, and retracted back into the distal end of the catheter 16, as illustrated in FIG. 3D. The expanded stent is left in place. The balloon 28 is retracted back to within the second stent 30, as illustrated in FIG. 3E. The second stent has been advanced using the pusher 26 so that it is properly located over the balloon 28, and the distal end of the catheter 16 may then be advanced so that the second stent 30 is located within a second treatment region spaced apart from the first treatment region. As illustrated in FIG. 3F, the treatment regions are adjacent to each other. It will be appreciated, however, that the second treatment region could be spaced a substantial distance from the first treatment region. Deployment of the second stent 30 is then completed in the same manner as described above for the first stent. Similarly, deployment of third, fourth, fifth, and additional stents 30 may be effected in the same manner. In this way, it will be appreciated that relatively lengthy and/or disseminated regions within a blood vessel may be treated.
  • [0059]
    Referring now to FIG. 4, an exemplary prosthesis 50 constructed in accordance with the principles of the present invention is illustrated. The prosthesis has a tubular body 52 having a plurality of axial slots 54, typically formed by laser cutting or chemical etching a tubular stock, such as stainless steel or nickel-titanium hypotube. Prosthesis 50, which may be delivered in groups of two, three, four, or more in accordance with the principles of the present invention, will have a length within the ranges set forth above. The diameter, prior to expansion, will typically be below 2 mm, preferably being below 1 mm, although in some instances much larger diameters can be used. The diameter of the prosthesis 50 upon expansion, of course, will be much greater, typically being at least twice as large, sometimes being at least three times as large, or even larger.
  • [0060]
    Referring now to FIGS. 5A and 5B, a prosthesis 60, similar to prosthesis 50, includes a pair of coupling elements 62 which are received in mating slots 64. FIG. 5B is a “rolled-out” view of the “rolled-out” view of the prosthesis 60 for better illustrating the coupling element 62 and slots 64 of the prosthesis 60.
  • [0061]
    As shown in FIG. 5C, pairs of prosthesis 60 may be joined or coupled by circumferentially aligning the coupling element 62 with the slot 64. Although only a single coupling element 62 and slot 64 is visible in FIG. 5C, it will be appreciated that the second coupling element and slot will be located on the opposite side of the illustrated pair of prostheses.
  • [0062]
    In FIG. 5C, the two prosthesis 60 are abutted directly against each other. Such a configuration is advantageous in that it provides for a substantially continuous stent or graft structure when the pair is expanded together in a body lumen. The structure, however, is disadvantageous in that it does not provide for flexibility at the point where the two prostheses meet. In order to provide for greater flexibility, as shown in FIG. 5D, a coupling element 62′ can have an elongated shank to provide for a desired offset, typically in the range from 0.05 mm to 1 mm, preferably from 0.1 mm to 0.5 mm.
  • [0063]
    Referring now to FIGS. 5E and 5F, axial separation of the prostheses 60 is achieved by differential radial expansion of at least one of the prostheses. For example, when both prostheses 60 are in their unexpanded configurations, as shown in FIG. 5E, the coupling elements 62 are constrained by the slots 64, as previously described. By radially expanding the left-hand prostheses 60, as shown in FIG. 5F, the coupling elements 62 will be moved radially outwardly from the slots so that the two prostheses are no longer axially linked. It will be appreciated, however, that the two prostheses 60 may be radially expanded together (as described in more detail hereinafter) in a manner which preserves the link created by the coupling elements 62 and slots 64 so that combinations of two, three, four, or more prostheses may be delivered simultaneously and, in effect, provide a continuous prosthesis having a length which is some multiple of the length of each individual prostheses 60. The combined prostheses may then be separated from any additional prostheses (which remain in a delivery catheter as described below) by the radial expansion of those prostheses which are to be deployed. In this way, stents, grafts, or other prostheses may be delivered to the body lumen in both different lengths (by properly selecting the number of individual prostheses 60) and at different locations (by releasing individual or multiple prostheses 60 at different portions of the body lumen).
  • [0064]
    Axially separable coupling elements may also be provided, as illustrated in FIGS. 6A and 6B. Each prosthesis 70 includes a pair of male coupling elements 72 at one end and a pair of female coupling elements 74 at the other end. The male coupling elements 72 are typically short rods which extend axially from the periphery of the prosthesis end and the female coupling elements are typically short tubes having hollow interiors which detachably receive the male coupling elements. Thus, the prostheses 70 may be joined in an end-to-end manner, as shown in FIG. 6B. The prostheses are separated by pulling them in an axial direction, as shown by arrow 76, but will remain linked under axial compression as well as when exposed to a substantial bending moment. Thus, the axially separable coupling structures of FIGS. 6A and 6B are advantageous in that they remain linked during deployment of the prostheses 70, even when deployment involves significant bending and radial stress. Separation may be effected by pullback on the delivery catheter in order to disengage the coupling elements 72 and 74.
  • [0065]
    A third approach for detachably coupling adjacent prostheses 80 is illustrated in FIG. 7. Each prosthesis 80 comprises an expansible ring of diamond-shaped members. Other conventional stent or prostheses structures, however, could also be used. The adjacent prostheses 80 are joined by an axial beam 82 which preferably includes a weakened segment 84 near its midpoint. The use of such a joining structure, which will require physical breakage (as opposed to the simple detachment characteristic of the embodiment of FIGS. 5 and 6) is advantageous in that it provides a very strong linkage which permits both the application of axial compression and axial tension without decoupling. The disadvantage of such a linkage is that it usually requires some mechanism or capability to be incorporated in the delivery catheter to permit selective breakage of the couple.
  • [0066]
    Referring now to FIGS. 8A-8C, a catheter 100 suitable for delivering a plurality of self-expanding prostheses 102 will be described. Catheter 100 comprises a sheath 104 having an axial lumen which carries the prostheses 102 near its distal end 106. A pusher tube 108 is also positioned in the lumen and is located proximally of the proximal most prosthesis 102. The individual prostheses 102 may be delivered into a body lumen, typically a blood vessel BV, as illustrated in FIG. 8B. The catheter is introduced over a guidewire GW to a desired target site in the blood vessel BV. When at the target site, a first of the prostheses 102 is deployed by axially advancing the pusher tube 104 so that the line of prostheses 102 is axially advanced, with the distal-most prostheses being released from the distal end 106 of the catheter. As it is released, the distal-most prostheses 102 expands since it is being released from the radial constraint provided by the sheath 104.
  • [0067]
    Catheter 100 of FIGS. 8A-8C is intended for delivering prostheses which abut each other in an end-to-end manner, but which are otherwise unconnected. A catheter 120 intended for releasing self-expanding prostheses 122 which are mechanically linked by frangible coupling elements 124 is illustrated in FIGS. 9A-9C. The prostheses 122 and coupling elements 124 may be similar to the prosthesis structure shown in FIG. 7, or may comprise other linked prosthesis or stent structures, for example as shown in U.S. Pat. No. 6,258,117, the disclosure of which is incorporated herein by reference.
  • [0068]
    Catheter 120 comprises a sheath 126, a pusher tube 128, and a catheter body 130 having a shearing element 132 at its distal end. Conveniently, the pusher tube 128 is coaxially received over a shaft 134 of the catheter body 130. In this way, the pusher tube may be used to axially advance each prosthesis 122 by pushing on the proximal end of the proximal-most prosthesis, as shown in FIG. 9B.
  • [0069]
    The catheter 120 is advanced over a guidewire GW to a desired target site in a blood vessel BV. After reaching the target site, at least a first prosthesis 122 is advanced from the distal end of the sheath so that it radially expands to engage an inner wall of the blood vessel. After the at least one prosthesis 122 is advanced sufficiently far, the frangible coupling elements 124 will reach a shearing element 136, typically a metal ring, disposed at the distal end of the sheath 126. By then axially retracting the catheter body 130, a chamfered surface 138 of the shearing element 132 is engaged against the shearing element 136 in order to shear the links 122, releasing the prosthesis 122, as illustrated in FIG. 9C. After deployment and release of the first prosthesis 122, additional prosthesis 122 may be released adjacent to the first prosthesis or at different, axially spaced-apart locations within the blood vessel.
  • [0070]
    Referring now to FIGS. 10A-10C, a catheter 140 for delivering a plurality of heat expansible prostheses 142 is illustrated. The prostheses 142 are composed of a heat memory alloy, such as a nickel titanium alloy, which has been programmed to remain in an unexpanded configuration when maintained at body temperature or below, and to assume an expanded configuration when exposed to temperatures above body temperature, typically temperatures above 43 C., often above 45 C. The prostheses will have coupling members which anchor successive prostheses 142 together, typically the radially separating anchors illustrated in FIGS. 5A-5F.
  • [0071]
    The catheter 140 includes a sheath 144 and a pusher tube 146. The catheter 140 is advanced to a desired target site within the blood vessel BV over a guidewire GW in a conventional manner. After the distal-most prostheses 142 has been fully advanced from the sheath 144 (usually by retracting the sheath 144 while the prostheses are held stationary relative to the blood vessel BV using the pusher tube 146), as shown in FIG. 10B, it will remain both unexpanded and attached to the next proximal prosthesis 142 which remains within the sheath. It is important that the advanced prosthesis 142 be anchored or tethered to the remaining prostheses since it has not yet been expanded and it would otherwise be lost into the lumen of the blood vessel.
  • [0072]
    After the uncovered prostheses is properly positioned, a heated medium may be introduced through a lumen of the catheter body 148 so that it flows outwardly through the interior of the distal-most prosthesis 142. By properly selecting the temperature of the heated medium, the prosthesis to be deployed can be heated sufficiently to induce radial expansion, as illustrated in FIG. 10C. By positioning the catheter body 148 so that its distal tip is coterminous with the distal tip of the sheath 144, inadvertent heating of the prostheses 142 which remain within the sheath can be avoided. After the prosthesis 142 has radially expanded, it will separate from the coupling elements 148 located on the next prosthesis which remains within the sheath 144. Additional ones or groups of prostheses 142 may then be deployed, either at the same target site or at a different target site axially spaced-apart within the lumen of the blood vessel BV.
  • [0073]
    As illustrated in FIG. 11, instead of using an internal catheter body 148, as illustrated in FIGS. 10A-10C, an external sheath 150 may be used to deliver the heated medium around one or more deployed prostheses 142. Other aspects of the construction of catheter 140 may remain the same. Optionally, if prosthesis is martensitic at body temperature, further radial expansion can be achieved by internal balloon expansion.
  • [0074]
    Referring now to FIGS. 12A-12D, catheter 160 intended for delivery of multiple prostheses 162 by balloon deployment is illustrated. Catheter 160 comprises a sheath 164, pusher tube 166, and a catheter body 168. The catheter body 168 includes an expansible balloon 170 over its distal portion. Individual prostheses 162 are deployed, as illustrated in FIGS. 12B and 12C, by crossing the target area with catheter 160 and then retracting sheath 164. A distal portion of the balloon 170 lies within the distal-most deployed prosthesis 162, as shown in FIG. 12B. The remaining proximal portion of the balloon 170 will, of course, remain within the other prostheses 162 which themselves remain within the sheath 164. The balloon 170 is then inflated, but only the distal portion of the balloon beyond the sheath inflates within the distal prosthesis 162, as illustrated in FIG. 12C. Expansion of the remaining proximal portion of the balloon is prevented by the sheath 164. Similarly, the remaining prostheses 162 remain unexpanded since they remain within the sheath 164. After deployment of prostheses 162, balloon 170 may be deflated and retracted into sheath 164 and remaining prostheses 162.
  • [0075]
    Referring now to FIG. 12D, additional prostheses 162 may be deployed, either at the same target location within the blood vessel or at a different, spaced-apart locations within the blood vessel. Deployment of two prostheses 162 is illustrated. The two prostheses 162 are axially exposed as the sheath is retracted over the stents which are positioned over the uninflated balloon 170. The balloon 170 is then inflated, as illustrated in FIG. 12D, thus expanding the prostheses 162 within the blood vessel BV. It will be appreciated that the catheter 160 could carry many more than the four illustrated prostheses 162, and three, four, five, ten, and even 20 or more individual prostheses could be deployed at one time, with additional single prostheses or groups of prostheses being deployed at different times and/or at different locations within the blood vessel.
  • [0076]
    Referring now to FIGS. 13A-13D, another embodiment of a catheter 180 intended for delivery of multiple prostheses 182 by balloon deployment is illustrated. In this embodiment, catheter 180 comprises a sheath 184 having a valve member 185 at its distal end, a pusher tube 186, and a catheter body 188. The catheter body 188 includes an expansible balloon 190 over its distal portion. To deploy prostheses 182, as illustrated in FIG. 13B, a predetermined number of prostheses 182 is first exposed by retracting sheath 184 proximally (arrows) while holding pusher tube 186 in place. As shown in FIGS. 13B and 13C, valve member 185 may be used to engage a distal end of one of the prostheses 182 and the sheath 184 and the pusher tube may be retracted proximally together (arrows in FIG. 13C) to separate a proximal number of prostheses 182 from a distal number of prostheses 182. The distal portion of the balloon 190 lies within the distal, deployed prostheses 182. The remaining proximal portion of the balloon 190 will remain within the other prostheses 182 which themselves remain within the sheath 184. The balloon 190 is then inflated, as shown in FIG. 13D, but only the distal portion of the balloon inflates within the distal prostheses 182, as illustrated in FIG. 12C. Expansion of the remaining proximal portion of the balloon is prevented by the sheath 184. Similarly, the remaining prostheses 182 remain unexpanded since they remain within the sheath 184.
  • [0077]
    Referring now to FIG. 13D, single or multiple prostheses 182 may be deployed at the same target location within the blood vessel. Additional prostheses 182 may also be deployed at different, spaced-apart locations within the blood vessel. Deployment of two prostheses 182 is illustrated at one location in FIG. 13D. It will be appreciated that the catheter 180 could carry many more than the four illustrated prostheses 182, and three, four, five, ten, and even 20 or more individual prostheses could be deployed at one time, with additional single prostheses or groups of prostheses being deployed at different times and/or at different locations within the blood vessel.
  • [0078]
    Referring now to FIG. 14, kits 200 according to the present invention comprise a catheter 160 (or any other of the illustrated catheters of the present invention) in combination with instructions for use IFU. The instructions for use set forth any of the methods of the present invention, and in particular set forth how the catheter 180 may be used to implant single or multiple prostheses within a blood vessel or other body lumen. The catheter 180 and instructions for use will typically be packaged together, for example within a conventional package 202, such as a box, tube, pouch, tray, or the like. Catheter 160 will typically be maintained in a sterile condition within the package 202. The instructions for use may be provided on a package insert, may be printed in whole or in part on the packaging, or may be provided in other ways, such as electronically over the internet, on an electronic medium, such as a CD, DVD, or the like.
  • [0079]
    The preferred embodiments of the invention are described above in detail for the purpose of setting forth a complete disclosure and for the sake of explanation and clarity. Those skilled in the art will envision other modifications within the scope and sprit of the present disclosure.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4512338 *25 Jan 198323 Apr 1985Balko Alexander BProcess for restoring patency to body vessels
US4564014 *30 Jan 198014 Jan 1986Thomas J. FogartyVariable length dilatation catheter apparatus and method
US4580568 *1 Oct 19848 Apr 1986Cook, IncorporatedPercutaneous endovascular stent and method for insertion thereof
US4681110 *2 Dec 198521 Jul 1987Wiktor Dominik MCatheter arrangement having a blood vessel liner, and method of using it
US4733665 *7 Nov 198529 Mar 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4739762 *3 Nov 198626 Apr 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4988356 *25 Apr 198829 Jan 1991C. R. Bard, Inc.Catheter and guidewire exchange system
US4994066 *7 Oct 198819 Feb 1991Voss Gene AProstatic stent
US4994069 *2 Nov 198819 Feb 1991Target TherapeuticsVaso-occlusion coil and method
US5013318 *31 Jul 19907 May 1991Special Devices IncorporatedMedical instrument for measuring depth of fastener hold in bone
US5092877 *5 Jul 19903 Mar 1992Corvita CorporationRadially expandable endoprosthesis
US5102417 *28 Mar 19887 Apr 1992Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5104404 *20 Jun 199114 Apr 1992Medtronic, Inc.Articulated stent
US5195984 *19 Feb 199123 Mar 1993Expandable Grafts PartnershipExpandable intraluminal graft
US5217495 *13 Nov 19908 Jun 1993United States Surgical CorporationSynthetic semiabsorbable composite yarn
US5226913 *2 Mar 199213 Jul 1993Corvita CorporationMethod of making a radially expandable prosthesis
US5282824 *15 Jun 19921 Feb 1994Cook, IncorporatedPercutaneous stent assembly
US5300085 *27 Jan 19935 Apr 1994Advanced Cardiovascular Systems, Inc.Angioplasty apparatus facilitating rapid exchanges and method
US5312415 *22 Sep 199217 May 1994Target Therapeutics, Inc.Assembly for placement of embolic coils using frictional placement
US5421955 *17 Mar 19946 Jun 1995Advanced Cardiovascular Systems, Inc.Expandable stents and method for making same
US5490837 *2 Mar 199413 Feb 1996Scimed Life Systems, Inc.Single operator exchange catheter having a distal catheter shaft section
US5496346 *25 May 19935 Mar 1996Advanced Cardiovascular Systems, Inc.Reinforced balloon dilatation catheter with slitted exchange sleeve and method
US5501227 *17 Sep 199326 Mar 1996Yock; Paul G.Angioplasty apparatus facilitating rapid exchange and method
US5507768 *6 Jul 199316 Apr 1996Advanced Cardiovascular Systems, Inc.Stent delivery system
US5507771 *24 Apr 199516 Apr 1996Cook IncorporatedStent assembly
US5514093 *19 May 19947 May 1996Scimed Life Systems, Inc.Variable length balloon dilatation catheter
US5514154 *28 Jul 19947 May 1996Advanced Cardiovascular Systems, Inc.Expandable stents
US5527354 *22 Mar 199418 Jun 1996Cook IncorporatedStent formed of half-round wire
US5593412 *2 May 199514 Jan 1997Cordis CorporationStent delivery method and apparatus
US5607444 *9 Jul 19964 Mar 1997Advanced Cardiovascular Systems, Inc.Ostial stent for bifurcations
US5607463 *30 Mar 19934 Mar 1997Medtronic, Inc.Intravascular medical device
US5628775 *20 Feb 199613 May 1997Ep Technologies, Inc.Flexible bond for sleeves enclosing a bendable electrode tip assembly
US5634928 *9 May 19963 Jun 1997Fischell RobertIntegrated dual-function catheter system and method for balloon angioplasty and stent delivery
US5709701 *30 May 199620 Jan 1998Parodi; Juan C.Apparatus for implanting a prothesis within a body passageway
US5722669 *20 Dec 19953 Mar 1998Keeper Co., Ltd.Resin CVJ boot with distinct large and small crest portions
US5723003 *16 Jan 19963 Mar 1998Ultrasonic Sensing And Monitoring SystemsExpandable graft assembly and method of use
US5735869 *26 Oct 19957 Apr 1998Schneider (Europe) A.G.Balloon catheter and stent delivery device
US5749848 *13 Nov 199512 May 1998Cardiovascular Imaging Systems, Inc.Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment
US5749921 *20 Feb 199612 May 1998Medtronic, Inc.Apparatus and methods for compression of endoluminal prostheses
US5755772 *26 Apr 199626 May 1998Medtronic, Inc.Radially expansible vascular prosthesis having reversible and other locking structures
US5755776 *4 Oct 199626 May 1998Al-Saadon; KhalidPermanent expandable intraluminal tubular stent
US5755781 *13 Feb 199726 May 1998Iowa-India Investments Company LimitedEmbodiments of multiple interconnected stents
US5769882 *8 Sep 199523 Jun 1998Medtronic, Inc.Methods and apparatus for conformably sealing prostheses within body lumens
US5772669 *27 Sep 199630 Jun 1998Scimed Life Systems, Inc.Stent deployment catheter with retractable sheath
US5858556 *21 Jan 199712 Jan 1999Uti CorporationMultilayer composite tubular structure and method of making
US5870381 *10 Jul 19969 Feb 1999Matsushita Electric Industrial Co., Ltd.Method for transmitting signals from a plurality of transmitting units and receiving the signals
US5879370 *28 May 19979 Mar 1999Fischell; Robert E.Stent having a multiplicity of undulating longitudinals
US5891190 *6 Jun 19956 Apr 1999Boneau; Michael D.Endovascular support device and method
US5895398 *2 Oct 199620 Apr 1999The Regents Of The University Of CaliforniaMethod of using a clot capture coil
US5899935 *4 Aug 19974 May 1999Schneider (Usa) Inc.Balloon expandable braided stent with restraint
US5902332 *24 Nov 199211 May 1999Expandable Grafts PartnershipExpandable intraluminal graft
US6022359 *13 Jan 19998 Feb 2000Frantzen; John J.Stent delivery system featuring a flexible balloon
US6033434 *7 Jun 19967 Mar 2000Ave Galway LimitedBifurcated endovascular stent and methods for forming and placing
US6039721 *3 Dec 199721 Mar 2000Cordis CorporationMethod and catheter system for delivering medication with an everting balloon catheter
US6042589 *29 May 199828 Mar 2000Medicorp, S.A.Reversible-action endoprosthesis delivery device
US6056722 *18 Sep 19972 May 2000Iowa-India Investments Company Limited Of DouglasDelivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use
US6066155 *18 Sep 199723 May 2000Schneider (Europe) A.G.Captured sleeve and stent delivery device
US6068655 *5 Jun 199730 May 2000Seguin; JacquesEndoprosthesis for vascular bifurcation
US6179878 *14 Oct 199830 Jan 2001Thomas DuerigComposite self expanding stent device having a restraining element
US6187034 *13 Jan 199913 Feb 2001John J. FrantzenSegmented stent for flexible stent delivery system
US6190402 *21 Jun 199620 Feb 2001Musc Foundation For Research DevelopmentInsitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same
US6196995 *30 Sep 19986 Mar 2001Medtronic Ave, Inc.Reinforced edge exchange catheter
US6200337 *18 Nov 199813 Mar 2001Terumo Kabushiki KaishaImplanting stent
US6241691 *8 Jan 19995 Jun 2001Micrus CorporationCoated superelastic stent
US6251132 *20 Oct 199826 Jun 2001Boston Scientific CorporationProsthesis delivery
US6251134 *28 Feb 199926 Jun 2001Inflow Dynamics Inc.Stent with high longitudinal flexibility
US6357104 *6 May 199919 Mar 2002David J. MyersMethod of making an intraluminal stent graft
US6375676 *17 May 199923 Apr 2002Advanced Cardiovascular Systems, Inc.Self-expanding stent with enhanced delivery precision and stent delivery system
US6383171 *12 Oct 19997 May 2002Allan WillMethods and devices for protecting a passageway in a body when advancing devices through the passageway
US6511468 *31 Aug 199928 Jan 2003Micro Therapeutics, Inc.Device and method for controlling injection of liquid embolic composition
US6520987 *25 Aug 199918 Feb 2003Symbiotech Medical, IncExpandable intravascular stent
US6527789 *14 May 19994 Mar 2003Advanced Cardiovascular Systems, Inc.Stent delivery system
US6527799 *20 Aug 20014 Mar 2003Conor Medsystems, Inc.Expandable medical device with ductile hinges
US6529549 *27 Jul 20004 Mar 20032Wire, Inc.System and method for an equalizer-based symbol timing loop
US6555157 *25 Jul 200029 Apr 2003Advanced Cardiovascular Systems, Inc.Method for coating an implantable device and system for performing the method
US6575993 *7 Jun 199510 Jun 2003Paul G. YockAngioplasty apparatus facilitating rapid exchanges
US6582394 *14 Nov 200024 Jun 2003Advanced Cardiovascular Systems, Inc.Stent and catheter assembly and method for treating bifurcated vessels
US6679909 *31 Jul 200120 Jan 2004Advanced Cardiovascular Systems, Inc.Rapid exchange delivery system for self-expanding stent
US6692465 *25 Oct 200217 Feb 2004Advanced Cardiovascular Systems, Inc.Catheter system with catheter and guidewire exchange
US6702843 *12 Apr 20009 Mar 2004Scimed Life Systems, Inc.Stent delivery means with balloon retraction means
US6712827 *16 Apr 200230 Mar 2004Scimed Life Systems, Inc.Stent delivery system
US6712845 *24 Apr 200130 Mar 2004Advanced Cardiovascular Systems, Inc.Coating for a stent and a method of forming the same
US6723071 *4 Jun 200320 Apr 2004Scimed Life Systems, Inc.Rapid exchange stent delivery system and associated components
US6743251 *15 Nov 20001 Jun 2004Scimed Life Systems, Inc.Implantable devices with polymeric detachment junction
US6849084 *31 Dec 20021 Feb 2005Intek Technology L.L.C.Stent delivery system
US20020037358 *18 Oct 200128 Mar 2002Barry James J.Loading and release of water-insoluble drugs
US20030045923 *31 Aug 20016 Mar 2003Mehran BashiriHybrid balloon expandable/self expanding stent
US20030093143 *12 Nov 200215 May 2003Yiju ZhaoMedical device having surface depressions containing nitric oxide releasing compound
US20030097169 *26 Feb 200222 May 2003Brucker Gregory G.Bifurcated stent and delivery system
US20030114912 *20 Aug 200219 Jun 2003Jacques SequinEndoprosthesis deployment system for treating vascular bifurcations
US20030114919 *10 Dec 200119 Jun 2003Mcquiston JessePolymeric stent with metallic rings
US20030114922 *30 Oct 200219 Jun 2003Olympus Optical Co., Ltd.Stent
US20040087965 *1 Nov 20026 May 2004Marc-Alan LevineMethod and apparatus for caged stent delivery
US20040093061 *10 Apr 200313 May 2004Xtent, Inc. A Delaware CorporationApparatus and methods for delivery of multiple distributed stents
US20040093067 *21 Oct 200213 May 2004Israel Henry M.Stent assembly
US20040098081 *8 Aug 200320 May 2004Xtent, Inc.Apparatus and methods for deployment of vascular prostheses
US20050010276 *2 Jul 200413 Jan 2005Xtent, Inc.Apparatus and methods for positioning prostheses for deployment from a catheter
US20050038505 *20 Sep 200417 Feb 2005Sun Biomedical Ltd.Drug-delivery endovascular stent and method of forming the same
US20050133164 *17 Dec 200323 Jun 2005Andreas FischerTemperature controlled hot edge ring assembly for reducing plasma reactor etch rate drift
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US78922731 Sep 200622 Feb 2011Xtent, Inc.Custom length stent apparatus
US789227416 Nov 200622 Feb 2011Xtent, Inc.Apparatus and methods for deployment of vascular prostheses
US79188815 Oct 20065 Apr 2011Xtent, Inc.Stent deployment systems and methods
US793885229 Feb 200810 May 2011Xtent, Inc.Apparatus and methods for delivery of braided prostheses
US801687012 Nov 200713 Sep 2011Xtent, Inc.Apparatus and methods for delivery of variable length stents
US801687110 Jun 200913 Sep 2011Xtent, Inc.Apparatus and methods for delivery of multiple distributed stents
US807078928 Mar 20086 Dec 2011Xtent, Inc.Apparatus and methods for deployment of vascular prostheses
US808004830 Mar 200420 Dec 2011Xtent, Inc.Stent delivery for bifurcated vessels
US808378828 Nov 200627 Dec 2011Xtent, Inc.Apparatus and methods for positioning prostheses for deployment from a catheter
US81778317 Feb 200815 May 2012Xtent, Inc.Stent delivery apparatus and method
US825742710 Jun 20094 Sep 2012J.W. Medical Systems, Ltd.Expandable stent
US828268026 Jun 20099 Oct 2012J. W. Medical Systems Ltd.Multiple independent nested stent structures and methods for their preparation and deployment
US831785923 May 200727 Nov 2012J.W. Medical Systems Ltd.Devices and methods for controlling expandable prostheses during deployment
US84146398 Jul 20089 Apr 2013Boston Scientific Scimed, Inc.Closed-cell flexible stent hybrid
US84603587 Dec 200711 Jun 2013J.W. Medical Systems, Ltd.Rapid exchange interventional devices and methods
US848613222 Mar 200716 Jul 2013J.W. Medical Systems Ltd.Devices and methods for controlling expandable prostheses during deployment
US85742821 Apr 20115 Nov 2013J.W. Medical Systems Ltd.Apparatus and methods for delivery of braided prostheses
US858574710 Dec 200719 Nov 2013J.W. Medical Systems Ltd.Devices and methods for controlling and indicating the length of an interventional element
US865219819 Mar 200718 Feb 2014J.W. Medical Systems Ltd.Apparatus and methods for deployment of linked prosthetic segments
US8658081 *28 Jul 201025 Feb 2014Advanced Cardiovascular Systems, Inc.Methods of fabricating stents with enhanced fracture toughness
US870278128 Feb 201122 Apr 2014J.W. Medical Systems Ltd.Apparatus and methods for delivery of multiple distributed stents
US874096830 Aug 20123 Jun 2014J.W. Medical Systems Ltd.Multiple independent nested stent structures and methods for their preparation and deployment
US876979624 Mar 20118 Jul 2014Advanced Bifurcation Systems, Inc.Selective stent crimping
US879534724 Mar 20115 Aug 2014Advanced Bifurcation Systems, Inc.Methods and systems for treating a bifurcation with provisional side branch stenting
US880834724 Mar 201119 Aug 2014Advanced Bifurcation Systems, Inc.Stent alignment during treatment of a bifurcation
US882156224 Mar 20112 Sep 2014Advanced Bifurcation Systems, Inc.Partially crimped stent
US882807124 Mar 20119 Sep 2014Advanced Bifurcation Systems, Inc.Methods and systems for ostial stenting of a bifurcation
US895639827 Jan 201117 Feb 2015J.W. Medical Systems Ltd.Custom length stent apparatus
US897991724 Mar 201117 Mar 2015Advanced Bifurcation Systems, Inc.System and methods for treating a bifurcation
US898029728 Sep 201017 Mar 2015J.W. Medical Systems Ltd.Thermo-mechanically controlled implants and methods of use
US898636222 May 200924 Mar 2015J.W. Medical Systems Ltd.Devices and methods for controlling expandable prostheses during deployment
US91015036 Mar 200811 Aug 2015J.W. Medical Systems Ltd.Apparatus having variable strut length and methods of use
US919878214 Apr 20141 Dec 2015Abbott Cardiovascular Systems Inc.Manufacturing process for polymeric stents
US921623814 Apr 201422 Dec 2015Abbott Cardiovascular Systems Inc.Implantable medical device having reduced chance of late inflammatory response
US925421012 Mar 20139 Feb 2016Advanced Bifurcation Systems, Inc.Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use
US932687622 Apr 20143 May 2016J.W. Medical Systems Ltd.Apparatus and methods for delivery of multiple distributed stents
US933940415 Jul 201317 May 2016J.W. Medical Systems Ltd.Devices and methods for controlling expandable prostheses during deployment
US936435612 Mar 201314 Jun 2016Advanced Bifurcation System, Inc.System and methods for treating a bifurcation with a fully crimped stent
US945713328 Jan 20154 Oct 2016J.W. Medical Systems Ltd.Thermo-mechanically controlled implants and methods of use
US95171499 Oct 201313 Dec 2016Abbott Cardiovascular Systems Inc.Biodegradable stent with enhanced fracture toughness
US952250321 Nov 201320 Dec 2016Abbott Cardiovascular Systems Inc.Methods of treatment with stents with enhanced fracture toughness
US955492517 Apr 201431 Jan 2017Abbott Cardiovascular Systems Inc.Biodegradable polymeric stents
US956617911 Nov 201314 Feb 2017J.W. Medical Systems Ltd.Devices and methods for controlling and indicating the length of an interventional element
US970044821 Nov 201211 Jul 2017J.W. Medical Systems Ltd.Devices and methods for controlling expandable prostheses during deployment
US97242181 Jul 20148 Aug 2017Advanced Bifurcation Systems, Inc.Methods and systems for ostial stenting of a bifurcation
US973082125 Jun 201415 Aug 2017Advanced Bifurcation Systems, Inc.Methods and systems for treating a bifurcation with provisional side branch stenting
US973742427 Jun 201422 Aug 2017Advanced Bifurcation Systems, Inc.Partially crimped stent
US20040230288 *17 Apr 200218 Nov 2004Rosenthal Arthur L.Medical devices adapted for controlled in vivo structural change after implantation
US20100010619 *8 Jul 200814 Jan 2010Boston Scientific Scimed, Inc.Closed-Cell Flexible Stent Hybrid
US20100289191 *28 Jul 201018 Nov 2010Advanced Cardiovascular Systems, Inc.Methods of fabricating stents with enhanced fracture toughness
Classifications
U.S. Classification623/1.12, 623/1.16, 623/1.11
International ClassificationA61F2/82, H01Q3/26, H04B10/12, A61M25/00, A61F2/00, A61L29/00
Cooperative ClassificationA61F2/95, A61F2002/9155, A61F2210/0033, A61F2002/91541, A61F2002/9583, A61F2/0095, A61F2250/0071, A61F2/91, A61F2002/828, A61F2002/91533, A61F2210/0042, A61F2/966, A61F2002/826, A61F2002/91591, A61F2002/91558, A61F2/915, A61F2/958
European ClassificationA61F2/958, A61F2/915, A61F2/91, A61F2/95, A61F2/966