US20070081857A1 - Four parts manhole enabling an easy install and height adjustment - Google Patents

Four parts manhole enabling an easy install and height adjustment Download PDF

Info

Publication number
US20070081857A1
US20070081857A1 US11/245,810 US24581005A US2007081857A1 US 20070081857 A1 US20070081857 A1 US 20070081857A1 US 24581005 A US24581005 A US 24581005A US 2007081857 A1 US2007081857 A1 US 2007081857A1
Authority
US
United States
Prior art keywords
manhole
pipe
band shape
blades
arc band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/245,810
Inventor
Jung Yoon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/245,810 priority Critical patent/US20070081857A1/en
Publication of US20070081857A1 publication Critical patent/US20070081857A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/12Manhole shafts; Other inspection or access chambers; Accessories therefor
    • E02D29/14Covers for manholes or the like; Frames for covers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/12Manhole shafts; Other inspection or access chambers; Accessories therefor
    • E02D29/124Shaft entirely made of synthetic material

Definitions

  • manhole is comprised of one main steel pipe and one cover.
  • the position of the manhole cover from the base of the pavement or from the outer surface of the huge construction of a sewage line is fixed.
  • due to the severe weather conditions such as extreme temperature change and rains there develop creeks between the manholes and the road surface surrounding them. Those creeks are not only very dangerous for cars and pedestrians passing by the area.
  • Most local authorities spend lots of their budget to cover up those creeks. The best way is to pave the whole road of that area and paint the lines. But, as the pavements are repeated, the surface of the road reaches well above the cover of the manhole. To avoid such situation, road workers must dig out the whole manhole structure and re-install it based on the new surface of the road.
  • height adjustable manholes and manhole covers are introduced. Most of those height adjustable manholes utilize screw type support and/or male screw threads developed on the outer surface of the inner pipe combined with female screw threads developed on the inner surface of the outer pipe or support.
  • the structure of the manhole of current application enables an easy installation and easy adjustment of the height of the manhole cover from the basin structure of sewage treatment system buried underground.
  • U.S. Pat. No. 6,698,973 and 6,179,518 to Suatac illustrates an adjustable manhole cover frame assembly suitable for mounting on a manhole basin upper section has an outer ring, capable of resting on the top surface of the upper section, and an inner ring engaging the outer ring by screw threads and having support for a manhole cover. It is like screw cap.
  • U.S. Pat. No. 6,311,433 to Zdroik illustrates an adjustable manhole/catch basin structure includes a mounting base, adjustable tube, and protection sleeve.
  • the adjustable manhole ( 1 ) is installable only onto a concrete lateral ( 100 ) by fixing the position with mortar ( 102 ).
  • U.S. Pat. No. 5,095,667 to Ryan, et al. illustrates a telescopic manhole or storm drain installation includes a riser assembly provided with an upper section and adjacent lower section the former of which comprises a side wall defining an inverted frustoconical configuration while the latter provides a vertically disposed member having external threads cooperating with a stationary threaded collar.
  • U.S. Pat. No. 4,075,796 to Cuozzo illustrates a manhole consists primarily of a cast and internally threaded main body, which receives a cast and internally threaded sleeve, which may be raised to different pavement levels by means of a removable spanner wrench.
  • It includes a pair of diametrically opposed and slidable locking plates, which have pin means on the underside for being received within openings on the upper interior of the sleeve, and the upper portion of the plates projects outwards of the sleeve, so as to lock the sleeve and cover within the main body, thus preventing rotation thereof, the plates when the sleeve is lowered or elevated, serving as a means of rendering the sleeve and cover stationary at various pavement levels.
  • U.S. Pat. No. 3,629,981 to Mc Caffery illustrates an adjustable height assembly for supporting a cover over a subterranean access opening wherein a cylindrical frame structure having interior coaxial acme threads is adopted to be permanently located in non-rotatable submerged position.
  • U.S. Pat. No. 3,533,199 to Pickett illustrates a manhole structure comprising a first substantially cylindrical frame member adapted to be disposed underground structure and a second substantially cylindrical frame member adjustably and telecopy disposed with respect to the first frame member adapted to extend upwardly an adjustable distance to the surface of the ground.
  • None of the prior art teaches to provide a height adjustable manhole system that enables an easy installation and height adjustment without utilizing screw threads system shown in the present application.
  • the manhole of current application is comprised of an outer-manhole pipe, an inner-manhole pie, a manhole cover, and a support pipe.
  • Three concave arc band shape blades are horizontally located along the inner surface of the outer-manhole pipe in one layer. Five layers of concave arc shape blades, placed with same distance, are aligned to form three vertical columns of blades.
  • Three convex arc band shape blades are horizontally located along the outer surface of the inner manhole pipe. Five layers of convex arc shape blades, placed with same distance, are aligned to form three vertical columns of blades. Size of all the arc band blades is the same. The size of the space between the two neighboring concave blades is the same as the size of a convex blade.
  • the inner-manhole pipe When a space between the two neighboring concave blade is occupied by a convex blade, the inner-manhole pipe can move vertically freely. Once a desired vertical position of the inner-manhole pipe is reached, workers turn the inner-manhole pipe horizontally 60 degrees and put down the pipe. Then the concave and convex arc shape blades overlap each other. To separate the two pipes, lift up the inner-pipe slightly, turn 60 degrees horizontally and pull up the inner-pipe. The support pipe is engaged between the top flange of the inner-manhole pipe and top end of the outer manhole pipe to hold and support the distance between them.
  • the structure of the manhole of current application enables an easy installation and easy adjustment of the height of the manhole cover from the basin structure of sewage treatment system.
  • FIG. 1 is a perspective view of a height adjustable manhole of the current application.
  • FIG. 2 is a perspective view of a manhole cover with handle cam lock for the height adjustable manhole of the current application.
  • FIG. 3 is a perspective view of a handle cam lock of the manhole cover when handle is in upward position and is in down position.
  • FIG. 4 is a perspective view of an inner-manhole pipe equipped with a flange.
  • FIG. 5 is a perspective view of a section ‘A’ in FIG. 1 , showing arrangement of the convex arc band shape blades.
  • FIG. 6 is a perspective view of the outer- manhole pipe showing the inner surface of the pipe.
  • FIG. 7 is a perspective view of a section ‘B’ in FIG. 6 , showing arrangement of the concave arc band shape blades.
  • FIG. 8 is a perspective view of a support pipe.
  • FIG. 9 is a perspective view of the support pipe installed on the outer- manhole pipe.
  • FIG. 10 is a vertical cross sectional view of the height adjustable manhole of the current application assembled.
  • FIG. 1 is a perspective view of a height adjustable manhole ( 1 ) of the current application.
  • the manhole ( 1 ) is comprised of an outer-manhole pipe ( 2 ), an inner-manhole pipe ( 3 ), a manhole cover ( 4 ), and a support pipe ( 5 ).
  • FIG. 2 is a perspective view of a manhole cover ( 4 ) with handle cam lock ( 6 ) for the height adjustable manhole ( 1 ) of the current application.
  • FIG. 3 is a perspective view of a cam lock ( 6 ) of the manhole cover ( 4 ).
  • FIG. 4 is a perspective view of an inner- manhole pipe ( 3 ) equipped with a flange ( 7 ). The flange ( 7 ) has an opening ( 8 ) to receive cam shaft ( 9 ).
  • the cam shaft ( 9 ) is placed in down part of the cylindrical cam hole ( 11 ) due to the shape of cam ( 12 ).
  • the camshaft ( 9 ) is placed in the upper part of the cam hole ( 11 ).
  • FIG. 4 and FIG. 5 show the inner-manhole pipe and the arrangement of convex arc band shape blades ( 14 ).
  • the arc band shape blades are prepared from annular plates of same size.
  • the inner diameter of the annular plate is equal to the outer diameter of the inner-manhole pipe ( 3 ) and outer diameter of the annular plate is 1 mm smaller than the inner diameter of the outer-manhole pipe ( 2 ).
  • Each annular plate is divided into six pieces of same size. On a circular plane, center of each piece of the convex arc band shape blade ( 14 ) locates 60 degrees apart from the neighboring blade's ( 14 ′) center.
  • a small protrusion ( 14 - 1 ) is developed at the center of the lower surface of each convex arc band shape blades ( 14 ).
  • three pieces of convex arc band shape blades ( 14 ) are horizontally located along the outer surface of the inner manhole pipe ( 3 ) in one layer.
  • Each blade ( 14 ) is located with same space ( 15 ) from the neighboring blade.
  • the size and shape of the space between the neighboring blades ( 14 ) are same as the blade.
  • Three to five layers of convex arc shape blades ( 14 ), placed with same distance ( 16 ), are aligned to form three vertical columns ( 17 ) of blades. Size of all the arc band blades is the same.
  • the size of the space ( 15 ) between the two neighboring convex blades is the same as the size of a convex blade.
  • the inner-manhole pipe can move vertically freely.
  • FIG. 6 is a perspective view of the outer-manhole pipe showing the inner surface of the pipe.
  • FIG. 7 is a perspective view of a section ‘B’ in FIG. 6 , showing arrangement of the concave arc band shape blades.
  • the inner diameter of the annular plate is 1 mm larger than the outer diameter of the inner-manhole pipe ( 3 ) and outer diameter of the annular plate is equal to the inner diameter of the outer-manhole pipe ( 2 ).
  • center of each piece of the concave arc band shape blade ( 18 ) locates 60 degrees apart from the neighboring blade's ( 18 ′) center. As shown in FIG. 6 and FIG.
  • three pieces of concave arc band shape blades ( 18 ) are horizontally located along the inner surface of the outer manhole pipe ( 2 ) in one layer.
  • a groove ( 18 - 1 ) to guide the protrusion ( 14 - 1 ) of the convex arc band shape blade ( 14 ) is developed along the upper surface of each concave arc band shape blade ( 18 ) and a dimple ( 18 - 2 ) of the similar size of the protrusion ( 14 - 1 ) is developed at the center of the groove ( 18 - 1 ) to hold the position of the protrusion ( 14 - 1 ) when the arc shape blades of the inner-manhole pipe and outer manhole pipe are overlapped.
  • Each blade ( 18 ) is located with same space ( 19 ) from the neighboring blade.
  • the size and shape of the space ( 19 ) between the neighboring concave arc shape blades ( 18 ) are same as the blade.
  • Three to five layers of concave arc shape blades ( 18 ), placed with same space ( 19 ), are aligned to form three vertical columns ( 20 ) of concave arc shape blades.
  • the size of the space ( 19 ) between the two neighboring concave blades ( 18 ) is the same as the size of a convex blade.
  • FIG. 8 is a perspective view of a support pipe ( 5 ) for the manhole ( 1 ) of the current application.
  • the support pipe ( 5 ) is comprised of two equal hemi-pipe ( 25 ).
  • One end of each hemi-pipes ( 25 ) are connected by two male connectors ( 26 ) and two female connectors ( 27 ) developed on each other hemi-pipe.
  • the other ends of the hemi-pipes ( 25 ) are connected by a key ( 28 ) and key hole ( 29 ).
  • FIG. 9 is a perspective view of the support pipe ( 5 ) installed on the outer-manhole pipe ( 2 ).
  • the height ( 24 ) of the support pipe ( 5 ) is tailored to the distance between the top of the outer-manhole pipe ( 2 ) and the bottom of the manhole cover ( 4 ).
  • the role of this support pipe ( 5 ) is preventing soil from getting into the space between the top of the outer-manhole pipe ( 2 ) and the bottom of the manhole cover ( 4 ) to stick between the concave arc band shape blade ( 18 ) of the outer-manhole pipe ( 2 ) and convex arc shape band blades ( 14 ) of the inner-manhole pipe ( 3 ).
  • FIG. 10 is a vertical cross sectional view of the height adjustable manhole ( 1 ) of the current application assembled showing how the four parts are assembled.
  • the outer-manhole pipe ( 2 ) with flange ( 21 ) received the inner-manhole pipe ( 3 ).
  • the concave arc band shape blades ( 18 ) of the outer-manhole pipe ( 2 ) and the convex arc band shape blades ( 14 ) are over-lapped and engaged each other via the protrusion ( 14 - 1 ) of the convex arc band shape blades ( 14 ) and the dimple ( 18 - 2 ) of the concave arc band shape blades ( 18 ).
  • the support pipe ( 5 ) is installed between the top of the outer-manhole pipe ( 2 ) and the bottom of the flange ( 7 ) of the inner-manhole pipe ( 3 ).
  • the handle ( 10 ) of the cam lock of the manhole cover ( 4 ) is in open position.
  • the noble structure of the height adjustable manhole comprised of four major part of the current application an easy installation and height adjustment of a manhole buried on a road surface. Many kind of variation is possible based on this disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Sewage (AREA)

Abstract

A manhole comprised of four parts is provided. The manhole is comprised of an outer-manhole pipe, an inner-manhole pipe, a manhole cover, and a support pipe. Pluralities of concave arc band shape blades are horizontally developed along the inner surface of the outer manhole pipe. Same number of convex arc band shape blades is horizontally developed along the outer surface of the inner manhole pipe. The inner-manhole pipe is inserted into the outer-manhole pipe vertically when the two kinds of arc shape blades aligned to make pass way for each other. When a desired height is reached, workers rotate the inner-manhole pipe 60 degrees horizontally and put down the inner-manhole pipe. Then the two kinds of blades are overlapped and fix the height of the manhole cover. A support pipe, comprised of two pieces of equal hemi-pipe connected one end, is engaged between the top flange of the inner-manhole pipe and top end of the outer manhole pipe to hold and support the distance between them.

Description

    FIELD OF INVENTION
  • Current application is related with a road installing manhole, especially related with an easy installation and height adjustable manhole comprised of four parts.
  • BACKGROUND OF THE INVENTION
  • Most of manhole is comprised of one main steel pipe and one cover. Once the manhole is installed on the street over sewage line and many other facilities for city life, the position of the manhole cover from the base of the pavement or from the outer surface of the huge construction of a sewage line is fixed. However, due to the severe weather conditions such as extreme temperature change and rains, there develop creeks between the manholes and the road surface surrounding them. Those creeks are not only very dangerous for cars and pedestrians passing by the area. Most local authorities spend lots of their budget to cover up those creeks. The best way is to pave the whole road of that area and paint the lines. But, as the pavements are repeated, the surface of the road reaches well above the cover of the manhole. To avoid such situation, road workers must dig out the whole manhole structure and re-install it based on the new surface of the road.
  • Many kinds of height adjustable manholes and manhole covers are introduced. Most of those height adjustable manholes utilize screw type support and/or male screw threads developed on the outer surface of the inner pipe combined with female screw threads developed on the inner surface of the outer pipe or support.
  • However, due to the environment of the places where the manholes are located, it is not an easy procedure to install and re-adjust the height of those screw shape manholes. First of all, the workers must align both of the male and female threads in correct position, engage them and turn the manhole pipe to the desired position. Contaminants, such as sand and metal can stuck between the screw threads make it hard to turn the manhole pipe. Once a manhole is installed on the road, it usually takes at least from couple of months to many years. The moistures from the under ground water and surface water easily corrodes the screw threads and make them stick together. Then it needs extra effort to eliminate the corrodes from the threads.
  • It is purpose of the current application to provide a manhole that can adjust a height from the cover to the road surface without not only digging out the whole structure from the place where it was buried, but also without extra effort of turning the inner manhole until the desired position is reached. The structure of the manhole of current application enables an easy installation and easy adjustment of the height of the manhole cover from the basin structure of sewage treatment system buried underground.
  • DESCRIPTION OF THE PRIOR ART
  • U.S. Pat. No. 6,698,973 and 6,179,518 to Suatac illustrates an adjustable manhole cover frame assembly suitable for mounting on a manhole basin upper section has an outer ring, capable of resting on the top surface of the upper section, and an inner ring engaging the outer ring by screw threads and having support for a manhole cover. It is like screw cap.
  • U.S. Pat. No. 6,311,433 to Zdroik illustrates an adjustable manhole/catch basin structure includes a mounting base, adjustable tube, and protection sleeve. The adjustable manhole (1) is installable only onto a concrete lateral (100) by fixing the position with mortar (102).
  • U.S. Pat. No. 5,095,667 to Ryan, et al. illustrates a telescopic manhole or storm drain installation includes a riser assembly provided with an upper section and adjacent lower section the former of which comprises a side wall defining an inverted frustoconical configuration while the latter provides a vertically disposed member having external threads cooperating with a stationary threaded collar.
  • U.S. Pat. No. 4,075,796 to Cuozzo illustrates a manhole consists primarily of a cast and internally threaded main body, which receives a cast and internally threaded sleeve, which may be raised to different pavement levels by means of a removable spanner wrench. It includes a pair of diametrically opposed and slidable locking plates, which have pin means on the underside for being received within openings on the upper interior of the sleeve, and the upper portion of the plates projects outwards of the sleeve, so as to lock the sleeve and cover within the main body, thus preventing rotation thereof, the plates when the sleeve is lowered or elevated, serving as a means of rendering the sleeve and cover stationary at various pavement levels.
  • U.S. Pat. No. 3,629,981 to Mc Caffery illustrates an adjustable height assembly for supporting a cover over a subterranean access opening wherein a cylindrical frame structure having interior coaxial acme threads is adopted to be permanently located in non-rotatable submerged position.
  • U.S. Pat. No. 3,533,199 to Pickett illustrates a manhole structure comprising a first substantially cylindrical frame member adapted to be disposed underground structure and a second substantially cylindrical frame member adjustably and telecopy disposed with respect to the first frame member adapted to extend upwardly an adjustable distance to the surface of the ground.
  • None of the prior art teaches to provide a height adjustable manhole system that enables an easy installation and height adjustment without utilizing screw threads system shown in the present application.
  • SUMMARY OF THE INVENTION
  • The manhole of current application is comprised of an outer-manhole pipe, an inner-manhole pie, a manhole cover, and a support pipe. Three concave arc band shape blades are horizontally located along the inner surface of the outer-manhole pipe in one layer. Five layers of concave arc shape blades, placed with same distance, are aligned to form three vertical columns of blades. Three convex arc band shape blades are horizontally located along the outer surface of the inner manhole pipe. Five layers of convex arc shape blades, placed with same distance, are aligned to form three vertical columns of blades. Size of all the arc band blades is the same. The size of the space between the two neighboring concave blades is the same as the size of a convex blade. When a space between the two neighboring concave blade is occupied by a convex blade, the inner-manhole pipe can move vertically freely. Once a desired vertical position of the inner-manhole pipe is reached, workers turn the inner-manhole pipe horizontally 60 degrees and put down the pipe. Then the concave and convex arc shape blades overlap each other. To separate the two pipes, lift up the inner-pipe slightly, turn 60 degrees horizontally and pull up the inner-pipe. The support pipe is engaged between the top flange of the inner-manhole pipe and top end of the outer manhole pipe to hold and support the distance between them. The structure of the manhole of current application enables an easy installation and easy adjustment of the height of the manhole cover from the basin structure of sewage treatment system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a height adjustable manhole of the current application.
  • FIG. 2 is a perspective view of a manhole cover with handle cam lock for the height adjustable manhole of the current application.
  • FIG. 3 is a perspective view of a handle cam lock of the manhole cover when handle is in upward position and is in down position.
  • FIG. 4 is a perspective view of an inner-manhole pipe equipped with a flange.
  • FIG. 5 is a perspective view of a section ‘A’ in FIG. 1, showing arrangement of the convex arc band shape blades.
  • FIG. 6 is a perspective view of the outer- manhole pipe showing the inner surface of the pipe.
  • FIG. 7 is a perspective view of a section ‘B’ in FIG. 6, showing arrangement of the concave arc band shape blades.
  • FIG. 8 is a perspective view of a support pipe.
  • FIG. 9 is a perspective view of the support pipe installed on the outer- manhole pipe.
  • FIG. 10 is a vertical cross sectional view of the height adjustable manhole of the current application assembled.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 1 is a perspective view of a height adjustable manhole (1) of the current application. The manhole (1) is comprised of an outer-manhole pipe (2), an inner-manhole pipe (3), a manhole cover (4), and a support pipe (5).
  • FIG. 2 is a perspective view of a manhole cover (4) with handle cam lock (6) for the height adjustable manhole (1) of the current application. FIG. 3 is a perspective view of a cam lock (6) of the manhole cover (4). FIG. 4 is a perspective view of an inner- manhole pipe (3) equipped with a flange (7). The flange (7) has an opening (8) to receive cam shaft (9). When the handle (10) of the cam lock (6) is vertically upward, the cam shaft (9) is placed in down part of the cylindrical cam hole (11) due to the shape of cam (12). When the handle (10) of the cam lock (6) is laid down and inserted into the cam lock box (13), the camshaft (9) is placed in the upper part of the cam hole (11).
  • To close the manhole cover (4), a worker picks up the handle (10) in up right position to the cover (4) and insert the cam shaft (9) through the opening (8). Turn the cover 90 degrees horizontally to move the cam shaft (9), which is now located under the cover (4), to a position perpendicular to the opening (9). Press down the handle (10) into the cam lock box (13). Then the cam shaft (9) moves up ward in the cam hole (11) and lock the manhole cover (4) by adhering the shaft (9) to the underneath side of the flange (7). Rubber packing may be installed between the manhole cover (4) and the flange (7).
  • FIG. 4 and FIG. 5 show the inner-manhole pipe and the arrangement of convex arc band shape blades (14). The arc band shape blades are prepared from annular plates of same size. The inner diameter of the annular plate is equal to the outer diameter of the inner-manhole pipe (3) and outer diameter of the annular plate is 1 mm smaller than the inner diameter of the outer-manhole pipe (2). Each annular plate is divided into six pieces of same size. On a circular plane, center of each piece of the convex arc band shape blade (14) locates 60 degrees apart from the neighboring blade's (14′) center. A small protrusion (14-1) is developed at the center of the lower surface of each convex arc band shape blades (14). As shown in FIG. 4 and FIG. 5, three pieces of convex arc band shape blades (14) are horizontally located along the outer surface of the inner manhole pipe (3) in one layer. Each blade (14) is located with same space (15) from the neighboring blade. The size and shape of the space between the neighboring blades (14) are same as the blade. Three to five layers of convex arc shape blades (14), placed with same distance (16), are aligned to form three vertical columns (17) of blades. Size of all the arc band blades is the same. The size of the space (15) between the two neighboring convex blades is the same as the size of a convex blade. When a space between the two neighboring convex blade is occupied by a concave blade, the inner-manhole pipe can move vertically freely.
  • FIG. 6 is a perspective view of the outer-manhole pipe showing the inner surface of the pipe. FIG. 7 is a perspective view of a section ‘B’ in FIG. 6, showing arrangement of the concave arc band shape blades. The inner diameter of the annular plate is 1 mm larger than the outer diameter of the inner-manhole pipe (3) and outer diameter of the annular plate is equal to the inner diameter of the outer-manhole pipe (2). On a circular plane, center of each piece of the concave arc band shape blade (18) locates 60 degrees apart from the neighboring blade's (18′) center. As shown in FIG. 6 and FIG. 7, three pieces of concave arc band shape blades (18) are horizontally located along the inner surface of the outer manhole pipe (2) in one layer. A groove (18-1) to guide the protrusion (14-1) of the convex arc band shape blade (14) is developed along the upper surface of each concave arc band shape blade (18) and a dimple (18-2) of the similar size of the protrusion (14-1) is developed at the center of the groove (18-1) to hold the position of the protrusion (14-1) when the arc shape blades of the inner-manhole pipe and outer manhole pipe are overlapped.
  • Each blade (18) is located with same space (19) from the neighboring blade. The size and shape of the space (19) between the neighboring concave arc shape blades (18) are same as the blade. Three to five layers of concave arc shape blades (18), placed with same space (19), are aligned to form three vertical columns (20) of concave arc shape blades. The size of the space (19) between the two neighboring concave blades (18) is the same as the size of a convex blade. When a space between the two neighboring concave blade (18) is occupied by a convex blade (14), the inner-manhole pipe can move vertically freely. A flange (21) with pluralities of flange holes (22) is developed at the middle of the outer-manhole pipe (2) along the outer surface thereof to fix the pipe to the ground or to a structure underneath of the manhole (1).
  • When a worker installs a manhole, he/she aligns the blades of the inner-manhole pipe (3) and outer-manhole pipe (2) to be positioned in sequence on an imaginary circular plane that is parallel to the horizontal surface. Then push down the inner-manhole pipe (3) to the depth of desired and rotate the inner-manhole pipe 60 degrees horizontally. The grooves (18-1) developed on the concave arc band shape blades (18) guide the protrusions (14-1) to rotate steadily in a circular motion. In this position, the concave arc band shape blade (18) and convex arc shape band blades (14) overlap each other. The protrusions (14-1) and the dimples (18-2) meet. Push down the inner-manhole pipe (3) to engage the protrusions (14-1) to the dimples (18-2).
  • FIG. 8 is a perspective view of a support pipe (5) for the manhole (1) of the current application. The support pipe (5) is comprised of two equal hemi-pipe (25). One end of each hemi-pipes (25) are connected by two male connectors (26) and two female connectors (27) developed on each other hemi-pipe. The other ends of the hemi-pipes (25) are connected by a key (28) and key hole (29).
  • FIG. 9 is a perspective view of the support pipe (5) installed on the outer-manhole pipe (2). The height (24) of the support pipe (5) is tailored to the distance between the top of the outer-manhole pipe (2) and the bottom of the manhole cover (4). The role of this support pipe (5) is preventing soil from getting into the space between the top of the outer-manhole pipe (2) and the bottom of the manhole cover (4) to stick between the concave arc band shape blade (18) of the outer-manhole pipe (2) and convex arc shape band blades (14) of the inner-manhole pipe (3).
  • FIG. 10 is a vertical cross sectional view of the height adjustable manhole (1) of the current application assembled showing how the four parts are assembled. The outer-manhole pipe (2) with flange (21) received the inner-manhole pipe (3). The concave arc band shape blades (18) of the outer-manhole pipe (2) and the convex arc band shape blades (14) are over-lapped and engaged each other via the protrusion (14-1) of the convex arc band shape blades (14) and the dimple (18-2) of the concave arc band shape blades (18). The support pipe (5) is installed between the top of the outer-manhole pipe (2) and the bottom of the flange (7) of the inner-manhole pipe (3). The handle (10) of the cam lock of the manhole cover (4) is in open position.
  • The noble structure of the height adjustable manhole comprised of four major part of the current application an easy installation and height adjustment of a manhole buried on a road surface. Many kind of variation is possible based on this disclosure.

Claims (3)

1. A height adjustable manhole comprised of;
a manhole cover with handle cam lock that is comprised of a handle, a cam, a cam shaft, and a cam lock box; and
an outer-manhole pipe equipped with pluralities of concave arc band shape blades of same size, whose outer diameter is equal to the inner diameter of the outer pipe and inner diameter is 1 mm larger than the outer diameter of the inner pipe and center of each piece of the concave arc band shape blade locates 60 degrees apart from the neighboring concave arc band shape blade's center and a groove to guide a protrusion of a convex arc band shape blade is developed along the upper surface of each concave arc band shape blade and a dimple of the similar size of the protrusion is developed at the center of the groove to hold the position of the protrusion when the arc shape blades of an inner-manhole pipe and outer manhole pipe are overlapped and a flange with pluralities of flange holes is developed at the middle of outside thereof; and
an inner-manhole pipe equipped with a flange that has an opening to receive the cam shaft and pluralities of convex arc band shape blades of same size, whose inner diameter is equal to the outer diameter of the inner-manhole pipe and outer diameter of the annular plate is 1 mm smaller than the inner diameter of the outer-manhole pipe and center of each piece of the convex arc band shape blade locates 60 degrees apart from the neighboring blade's center and a small protrusion is developed at the center of the lower surface of each convex arc band shape blades; and
a support pipe that is comprised of two equal hemi-pipes, one end of each hemi-pipe is connected by two male connectors and two female connectors developed on each other hemi-pipe and the other ends of the hemi-pipes are connected by a key and a key hole and is installed between the top of the outer-manhole pipe and the bottom of the flange of the inner-manhole pipe.
2. A height adjustable manhole of claim 1, wherein three pieces of convex arc band shape blades of same size are horizontally located along the outer surface of the inner manhole pipe in one layer and three pieces of concave arc band shape blades are horizontally located along the inner surface of the outer manhole pipe in one layer.
3. A height adjustable manhole of claim 1, wherein the inner-manhole pipe move vertically freely when a space between the two neighboring convex arc shape blade is occupied by a concave arc shape blade,
US11/245,810 2005-10-07 2005-10-07 Four parts manhole enabling an easy install and height adjustment Abandoned US20070081857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/245,810 US20070081857A1 (en) 2005-10-07 2005-10-07 Four parts manhole enabling an easy install and height adjustment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/245,810 US20070081857A1 (en) 2005-10-07 2005-10-07 Four parts manhole enabling an easy install and height adjustment

Publications (1)

Publication Number Publication Date
US20070081857A1 true US20070081857A1 (en) 2007-04-12

Family

ID=37911194

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/245,810 Abandoned US20070081857A1 (en) 2005-10-07 2005-10-07 Four parts manhole enabling an easy install and height adjustment

Country Status (1)

Country Link
US (1) US20070081857A1 (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070286676A1 (en) * 2004-11-04 2007-12-13 Auckland Paul R Temporary cover assembly for a void
WO2009092835A1 (en) * 2008-01-22 2009-07-30 Morales Legupin Tomas Adjustable cover for drains
US20090309127A1 (en) * 2008-06-13 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure
US20090309110A1 (en) * 2008-06-16 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure for multi-colored devices
US20100302464A1 (en) * 2009-05-29 2010-12-02 Soraa, Inc. Laser Based Display Method and System
US20110017730A1 (en) * 2009-07-24 2011-01-27 Guillaume Hugo Marquis-Martin Electrical box and stand and method for using same
US20110036019A1 (en) * 2009-08-13 2011-02-17 Liao Yeu-Chuan Multi-purpose adjustable quick expandable installment
US20110056429A1 (en) * 2009-08-21 2011-03-10 Soraa, Inc. Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices
US20110064100A1 (en) * 2009-09-17 2011-03-17 Kaai, Inc. Growth Structures and Method for Forming Laser Diodes on or Off Cut Gallium and Nitrogen Containing Substrates
US20110182056A1 (en) * 2010-06-23 2011-07-28 Soraa, Inc. Quantum Dot Wavelength Conversion for Optical Devices Using Nonpolar or Semipolar Gallium Containing Materials
US20110180781A1 (en) * 2008-06-05 2011-07-28 Soraa, Inc Highly Polarized White Light Source By Combining Blue LED on Semipolar or Nonpolar GaN with Yellow LED on Semipolar or Nonpolar GaN
US8422525B1 (en) 2009-03-28 2013-04-16 Soraa, Inc. Optical device structure using miscut GaN substrates for laser applications
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US8494017B2 (en) 2008-08-04 2013-07-23 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US8524578B1 (en) 2009-05-29 2013-09-03 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US8558265B2 (en) 2008-08-04 2013-10-15 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US8728842B2 (en) 2008-07-14 2014-05-20 Soraa Laser Diode, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US8767787B1 (en) 2008-07-14 2014-07-01 Soraa Laser Diode, Inc. Integrated laser diodes with quality facets on GaN substrates
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US8971368B1 (en) 2012-08-16 2015-03-03 Soraa Laser Diode, Inc. Laser devices having a gallium and nitrogen containing semipolar surface orientation
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US9071039B2 (en) 2009-04-13 2015-06-30 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9099843B1 (en) 2012-07-19 2015-08-04 Soraa Laser Diode, Inc. High operating temperature laser diodes
US9166372B1 (en) 2013-06-28 2015-10-20 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US9209596B1 (en) 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US9318875B1 (en) 2011-01-24 2016-04-19 Soraa Laser Diode, Inc. Color converting element for laser diode
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9362715B2 (en) 2014-02-10 2016-06-07 Soraa Laser Diode, Inc Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US20160177535A1 (en) * 2014-12-18 2016-06-23 1128653 Ontario Ltd. Adjustable manhole cover
US9379525B2 (en) 2014-02-10 2016-06-28 Soraa Laser Diode, Inc. Manufacturable laser diode
US9520695B2 (en) 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US9520697B2 (en) 2014-02-10 2016-12-13 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US9531164B2 (en) 2009-04-13 2016-12-27 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9564736B1 (en) 2014-06-26 2017-02-07 Soraa Laser Diode, Inc. Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US9666677B1 (en) 2014-12-23 2017-05-30 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9871350B2 (en) 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US9927611B2 (en) 2010-03-29 2018-03-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US10903623B2 (en) 2019-05-14 2021-01-26 Soraa Laser Diode, Inc. Method and structure for manufacturable large area gallium and nitrogen containing substrate
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US11053658B2 (en) 2019-09-19 2021-07-06 Trevor Brien Height adjustment mechanism for a manhole assembly and manhole assembly comprising the same
US11228158B2 (en) 2019-05-14 2022-01-18 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US11973308B2 (en) 2020-11-24 2024-04-30 Kyocera Sld Laser, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2490075A (en) * 1946-04-24 1949-12-06 Josam Mfg Company Floor drain fixture
US4174183A (en) * 1977-03-01 1979-11-13 Self-Level Covers Aktiengesellschaft Support frame
US4325405A (en) * 1980-01-24 1982-04-20 Christo C Louis Valve box assembly
US4505814A (en) * 1983-04-18 1985-03-19 Tyler Pipe Adjustably extensible roof drain receptacle
US4536103A (en) * 1982-09-28 1985-08-20 Prescott Everett J Adjustable manhole frame and method of construction and installation
US4666333A (en) * 1985-08-22 1987-05-19 Armstrong Ronald B Manhole casting positioning apparatus
US5555998A (en) * 1994-02-08 1996-09-17 Coppola; Daniel D. Gate valve lid
US5655564A (en) * 1995-02-17 1997-08-12 Gavin; Norman W. Septic system plastic distribution box with integrally fastened seal
US5785409A (en) * 1993-12-29 1998-07-28 Reinert, Sr.; Gary L. Height and azimuth adjustable containers
US6036401A (en) * 1998-04-29 2000-03-14 Morina; John Roadway access device and method of using same
US6527476B1 (en) * 1999-12-02 2003-03-04 Tycom (Us) Inc. Non-sinking manhole assembly for below ground liquid storage tanks
US20030235467A1 (en) * 2002-06-25 2003-12-25 Gamson Edward P. Adjustable manhole installation and method of adjustment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2490075A (en) * 1946-04-24 1949-12-06 Josam Mfg Company Floor drain fixture
US4174183A (en) * 1977-03-01 1979-11-13 Self-Level Covers Aktiengesellschaft Support frame
US4325405A (en) * 1980-01-24 1982-04-20 Christo C Louis Valve box assembly
US4536103A (en) * 1982-09-28 1985-08-20 Prescott Everett J Adjustable manhole frame and method of construction and installation
US4505814A (en) * 1983-04-18 1985-03-19 Tyler Pipe Adjustably extensible roof drain receptacle
US4666333A (en) * 1985-08-22 1987-05-19 Armstrong Ronald B Manhole casting positioning apparatus
US5785409A (en) * 1993-12-29 1998-07-28 Reinert, Sr.; Gary L. Height and azimuth adjustable containers
US5555998A (en) * 1994-02-08 1996-09-17 Coppola; Daniel D. Gate valve lid
US5655564A (en) * 1995-02-17 1997-08-12 Gavin; Norman W. Septic system plastic distribution box with integrally fastened seal
US6036401A (en) * 1998-04-29 2000-03-14 Morina; John Roadway access device and method of using same
US6527476B1 (en) * 1999-12-02 2003-03-04 Tycom (Us) Inc. Non-sinking manhole assembly for below ground liquid storage tanks
US20030235467A1 (en) * 2002-06-25 2003-12-25 Gamson Edward P. Adjustable manhole installation and method of adjustment

Cited By (238)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070286676A1 (en) * 2004-11-04 2007-12-13 Auckland Paul R Temporary cover assembly for a void
WO2009092835A1 (en) * 2008-01-22 2009-07-30 Morales Legupin Tomas Adjustable cover for drains
US20110180781A1 (en) * 2008-06-05 2011-07-28 Soraa, Inc Highly Polarized White Light Source By Combining Blue LED on Semipolar or Nonpolar GaN with Yellow LED on Semipolar or Nonpolar GaN
US20090309127A1 (en) * 2008-06-13 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US20090309110A1 (en) * 2008-06-16 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure for multi-colored devices
US8767787B1 (en) 2008-07-14 2014-07-01 Soraa Laser Diode, Inc. Integrated laser diodes with quality facets on GaN substrates
US9239427B1 (en) 2008-07-14 2016-01-19 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US9711941B1 (en) 2008-07-14 2017-07-18 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8728842B2 (en) 2008-07-14 2014-05-20 Soraa Laser Diode, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US8558265B2 (en) 2008-08-04 2013-10-15 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US8956894B2 (en) 2008-08-04 2015-02-17 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US8494017B2 (en) 2008-08-04 2013-07-23 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
USRE47711E1 (en) 2008-08-04 2019-11-05 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US8422525B1 (en) 2009-03-28 2013-04-16 Soraa, Inc. Optical device structure using miscut GaN substrates for laser applications
US9071039B2 (en) 2009-04-13 2015-06-30 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US10374392B1 (en) 2009-04-13 2019-08-06 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8969113B2 (en) 2009-04-13 2015-03-03 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9356430B2 (en) 2009-04-13 2016-05-31 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9099844B2 (en) 2009-04-13 2015-08-04 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9941665B1 (en) 2009-04-13 2018-04-10 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US10862274B1 (en) 2009-04-13 2020-12-08 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9735547B1 (en) 2009-04-13 2017-08-15 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9722398B2 (en) 2009-04-13 2017-08-01 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US11862937B1 (en) 2009-04-13 2024-01-02 Kyocera Sld Laser, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9553426B1 (en) 2009-04-13 2017-01-24 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9531164B2 (en) 2009-04-13 2016-12-27 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US10862273B1 (en) 2009-04-13 2020-12-08 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US10904506B1 (en) 2009-05-29 2021-01-26 Soraa Laser Diode, Inc. Laser device for white light
US9071772B2 (en) 2009-05-29 2015-06-30 Soraa Laser Diode, Inc. Laser based display method and system
US11016378B2 (en) 2009-05-29 2021-05-25 Kyocera Sld Laser, Inc. Laser light source
US8773598B2 (en) 2009-05-29 2014-07-08 Soraa Laser Diode, Inc. Laser based display method and system
US8575728B1 (en) 2009-05-29 2013-11-05 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US8524578B1 (en) 2009-05-29 2013-09-03 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US8908731B1 (en) 2009-05-29 2014-12-09 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US11088507B1 (en) 2009-05-29 2021-08-10 Kyocera Sld Laser, Inc. Laser source apparatus
US8427590B2 (en) 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US20100302464A1 (en) * 2009-05-29 2010-12-02 Soraa, Inc. Laser Based Display Method and System
US9014229B1 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling method
US9013638B2 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Laser based display method and system
US9019437B2 (en) 2009-05-29 2015-04-28 Soraa Laser Diode, Inc. Laser based display method and system
US10297977B1 (en) 2009-05-29 2019-05-21 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US10205300B1 (en) 2009-05-29 2019-02-12 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US8837546B1 (en) 2009-05-29 2014-09-16 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US11101618B1 (en) 2009-05-29 2021-08-24 Kyocera Sld Laser, Inc. Laser device for dynamic white light
US10084281B1 (en) 2009-05-29 2018-09-25 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US11619871B2 (en) 2009-05-29 2023-04-04 Kyocera Sld Laser, Inc. Laser based display system
US9100590B2 (en) 2009-05-29 2015-08-04 Soraa Laser Diode, Inc. Laser based display method and system
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9829778B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US11796903B2 (en) 2009-05-29 2023-10-24 Kyocera Sld Laser, Inc. Laser based display system
US11817675B1 (en) 2009-05-29 2023-11-14 Kyocera Sld Laser, Inc. Laser device for white light
US20110017730A1 (en) * 2009-07-24 2011-01-27 Guillaume Hugo Marquis-Martin Electrical box and stand and method for using same
US8177086B2 (en) 2009-07-24 2012-05-15 Ipex Technologies Inc. Electrical box and stand and method for using same
US20110036019A1 (en) * 2009-08-13 2011-02-17 Liao Yeu-Chuan Multi-purpose adjustable quick expandable installment
US8382392B2 (en) * 2009-08-13 2013-02-26 Yeu-Chuan LIAO Multi-purpose adjustable quick expandable installment
US20110056429A1 (en) * 2009-08-21 2011-03-10 Soraa, Inc. Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices
US11070031B2 (en) 2009-09-17 2021-07-20 Kyocera Sld Laser, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing surfaces
US9543738B2 (en) 2009-09-17 2017-01-10 Soraa Laser Diode, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing substrates
US10424900B2 (en) 2009-09-17 2019-09-24 Soraa Laser Diode, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing substrates
US20110064100A1 (en) * 2009-09-17 2011-03-17 Kaai, Inc. Growth Structures and Method for Forming Laser Diodes on or Off Cut Gallium and Nitrogen Containing Substrates
US20110064101A1 (en) * 2009-09-17 2011-03-17 Kaai, Inc. Low Voltage Laser Diodes on Gallium and Nitrogen Containing Substrates
US10090644B2 (en) 2009-09-17 2018-10-02 Soraa Laser Diode, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing substrates
US9853420B2 (en) 2009-09-17 2017-12-26 Soraa Laser Diode, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing substrates
US9142935B2 (en) 2009-09-17 2015-09-22 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US8351478B2 (en) 2009-09-17 2013-01-08 Soraa, Inc. Growth structures and method for forming laser diodes on {30-31} or off cut gallium and nitrogen containing substrates
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US9927611B2 (en) 2010-03-29 2018-03-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US9837790B1 (en) 2010-05-17 2017-12-05 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10816801B2 (en) 2010-05-17 2020-10-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US11630307B2 (en) 2010-05-17 2023-04-18 Kyocera Sld Laser, Inc. Wearable laser based display method and system
US9362720B1 (en) 2010-05-17 2016-06-07 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US8848755B1 (en) 2010-05-17 2014-09-30 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10505344B1 (en) 2010-05-17 2019-12-10 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9106049B1 (en) 2010-05-17 2015-08-11 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US11791606B1 (en) 2010-05-17 2023-10-17 Kyocera Sld Laser, Inc. Method and system for providing directional light sources with broad spectrum
US10923878B1 (en) 2010-05-17 2021-02-16 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10122148B1 (en) 2010-05-17 2018-11-06 Soraa Laser Diodide, Inc. Method and system for providing directional light sources with broad spectrum
US20110182056A1 (en) * 2010-06-23 2011-07-28 Soraa, Inc. Quantum Dot Wavelength Conversion for Optical Devices Using Nonpolar or Semipolar Gallium Containing Materials
US9379522B1 (en) 2010-11-05 2016-06-28 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US10283938B1 (en) 2010-11-05 2019-05-07 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US11152765B1 (en) 2010-11-05 2021-10-19 Kyocera Sld Laser, Inc. Strained and strain control regions in optical devices
US10637210B1 (en) 2010-11-05 2020-04-28 Soraa Laser Diode, Inc. Strained and strain control regions in optical devices
US9570888B1 (en) 2010-11-05 2017-02-14 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US11715931B1 (en) 2010-11-05 2023-08-01 Kyocera Sld Laser, Inc. Strained and strain control regions in optical devices
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US9786810B2 (en) 2010-11-09 2017-10-10 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US10655800B2 (en) 2011-01-24 2020-05-19 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9810383B2 (en) 2011-01-24 2017-11-07 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US10247366B2 (en) 2011-01-24 2019-04-02 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9835296B2 (en) 2011-01-24 2017-12-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9318875B1 (en) 2011-01-24 2016-04-19 Soraa Laser Diode, Inc. Color converting element for laser diode
US11543590B2 (en) 2011-01-24 2023-01-03 Kyocera Sld Laser, Inc. Optical module having multiple laser diode devices and a support member
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9371970B2 (en) 2011-01-24 2016-06-21 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US11573374B2 (en) 2011-01-24 2023-02-07 Kyocera Sld Laser, Inc. Gallium and nitrogen containing laser module configured for phosphor pumping
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US9166374B1 (en) 2011-10-13 2015-10-20 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US10069282B1 (en) 2011-10-13 2018-09-04 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US9590392B1 (en) 2011-10-13 2017-03-07 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US11387630B1 (en) 2011-10-13 2022-07-12 Kyocera Sld Laser, Inc. Laser devices using a semipolar plane
US10522976B1 (en) 2011-10-13 2019-12-31 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US11749969B1 (en) 2011-10-13 2023-09-05 Kyocera Sld Laser, Inc. Laser devices using a semipolar plane
US10879674B1 (en) 2011-10-13 2020-12-29 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US11201452B1 (en) 2012-02-17 2021-12-14 Kyocera Sld Laser, Inc. Systems for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US10090638B1 (en) 2012-02-17 2018-10-02 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US11677213B1 (en) 2012-02-17 2023-06-13 Kyocera Sld Laser, Inc. Systems for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US10630050B1 (en) 2012-02-17 2020-04-21 Soraa Laser Diode, Inc. Methods for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US11742631B1 (en) 2012-04-05 2023-08-29 Kyocera Sld Laser, Inc. Facet on a gallium and nitrogen containing laser diode
US11139634B1 (en) 2012-04-05 2021-10-05 Kyocera Sld Laser, Inc. Facet on a gallium and nitrogen containing laser diode
US11121522B1 (en) 2012-04-05 2021-09-14 Kyocera Sld Laser, Inc. Facet on a gallium and nitrogen containing laser diode
US9099843B1 (en) 2012-07-19 2015-08-04 Soraa Laser Diode, Inc. High operating temperature laser diodes
US8971368B1 (en) 2012-08-16 2015-03-03 Soraa Laser Diode, Inc. Laser devices having a gallium and nitrogen containing semipolar surface orientation
US9887517B1 (en) 2013-06-28 2018-02-06 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US11177634B1 (en) 2013-06-28 2021-11-16 Kyocera Sld Laser, Inc. Gallium and nitrogen containing laser device configured on a patterned substrate
US9166372B1 (en) 2013-06-28 2015-10-20 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US10651629B1 (en) 2013-06-28 2020-05-12 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US10186841B1 (en) 2013-06-28 2019-01-22 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US9466949B1 (en) 2013-06-28 2016-10-11 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US11569637B2 (en) 2013-10-18 2023-01-31 Kyocera Sld Laser, Inc. Manufacturable laser diode formed on c-plane gallium and nitrogen material
US9882353B2 (en) 2013-10-18 2018-01-30 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US10439364B2 (en) 2013-10-18 2019-10-08 Soraa Laser Diode, Inc. Manufacturable laser diode formed on c-plane gallium and nitrogen material
US10903625B2 (en) 2013-10-18 2021-01-26 Soraa Laser Diode, Inc. Manufacturable laser diode formed on c-plane gallium and nitrogen material
US9520695B2 (en) 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US9774170B2 (en) 2013-10-18 2017-09-26 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US9869433B1 (en) 2013-12-18 2018-01-16 Soraa Laser Diode, Inc. Color converting element for laser diode
US10274139B1 (en) 2013-12-18 2019-04-30 Soraa Laser Diode, Inc. Patterned color converting element for laser diode
US11649936B1 (en) 2013-12-18 2023-05-16 Kyocera Sld Laser, Inc. Color converting element for laser device
US10627055B1 (en) 2013-12-18 2020-04-21 Soraa Laser Diode, Inc. Color converting device
US9401584B1 (en) 2014-02-07 2016-07-26 Soraa Laser Diode, Inc. Laser diode device with a plurality of gallium and nitrogen containing substrates
US9762032B1 (en) 2014-02-07 2017-09-12 Soraa Laser Diode, Inc. Semiconductor laser diode on tiled gallium containing material
US10044170B1 (en) 2014-02-07 2018-08-07 Soraa Laser Diode, Inc. Semiconductor laser diode on tiled gallium containing material
US9209596B1 (en) 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
US10693279B1 (en) 2014-02-07 2020-06-23 Soraa Laser Diode, Inc. Semiconductor laser diode on tiled gallium containing material
US11342727B1 (en) 2014-02-07 2022-05-24 Kyocera Sld Laser, Inc. Semiconductor laser diode on tiled gallium containing material
US10431958B1 (en) 2014-02-07 2019-10-01 Soraa Laser Diode, Inc. Semiconductor laser diode on tiled gallium containing material
US11710944B2 (en) 2014-02-10 2023-07-25 Kyocera Sld Laser, Inc. Manufacturable RGB laser diode source and system
US9755398B2 (en) 2014-02-10 2017-09-05 Soraa Laser Diode, Inc. Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9379525B2 (en) 2014-02-10 2016-06-28 Soraa Laser Diode, Inc. Manufacturable laser diode
US10141714B2 (en) 2014-02-10 2018-11-27 Soraa Laser Diode, Inc. Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US10749315B2 (en) 2014-02-10 2020-08-18 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US11658456B2 (en) 2014-02-10 2023-05-23 Kyocera Sld Laser, Inc. Manufacturable multi-emitter laser diode
US9520697B2 (en) 2014-02-10 2016-12-13 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US9871350B2 (en) 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US10658810B2 (en) 2014-02-10 2020-05-19 Soraa Laser Diode, Inc. Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US10367334B2 (en) 2014-02-10 2019-07-30 Soraa Laser Diode, Inc. Manufacturable laser diode
US11705689B2 (en) 2014-02-10 2023-07-18 Kyocera Sld Laser, Inc. Gallium and nitrogen bearing dies with improved usage of substrate material
US11139637B2 (en) 2014-02-10 2021-10-05 Kyocera Sld Laser, Inc. Manufacturable RGB laser diode source and system
US11011889B2 (en) 2014-02-10 2021-05-18 Kyocera Sld Laser, Inc. Manufacturable multi-emitter laser diode
US9362715B2 (en) 2014-02-10 2016-06-07 Soraa Laser Diode, Inc Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US11088505B2 (en) 2014-02-10 2021-08-10 Kyocera Sld Laser, Inc. Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US10566767B2 (en) 2014-02-10 2020-02-18 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US10297979B1 (en) 2014-06-26 2019-05-21 Soraa Laser Diode, Inc. Epitaxial growth of cladding regions for a gallium and nitrogen containing laser diode
US9972974B1 (en) 2014-06-26 2018-05-15 Soraa Laser Diode, Inc. Methods for fabricating light emitting devices
US10439365B1 (en) * 2014-06-26 2019-10-08 Soraa Laser Diode, Inc. Epitaxial growth of cladding regions for a gallium and nitrogen containing laser diode
US9564736B1 (en) 2014-06-26 2017-02-07 Soraa Laser Diode, Inc. Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US10720757B1 (en) 2014-11-06 2020-07-21 Soraa Lase Diode, Inc. Method of manufacture for an ultraviolet laser diode
US11387629B1 (en) 2014-11-06 2022-07-12 Kyocera Sld Laser, Inc. Intermediate ultraviolet laser diode device
US9711949B1 (en) 2014-11-06 2017-07-18 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US11862939B1 (en) 2014-11-06 2024-01-02 Kyocera Sld Laser, Inc. Ultraviolet laser diode device
US10193309B1 (en) 2014-11-06 2019-01-29 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US20160177535A1 (en) * 2014-12-18 2016-06-23 1128653 Ontario Ltd. Adjustable manhole cover
US10161100B2 (en) * 2014-12-18 2018-12-25 1128653 Ontario Ltd. Adjustable manhole cover
US10854777B1 (en) 2014-12-23 2020-12-01 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing semiconductor devices
US10854778B1 (en) 2014-12-23 2020-12-01 Soraa Laser Diode, Inc. Manufacturable display based on thin film gallium and nitrogen containing light emitting diodes
US10002928B1 (en) 2014-12-23 2018-06-19 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US10854776B1 (en) 2014-12-23 2020-12-01 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices integrated with silicon electronic devices
US9666677B1 (en) 2014-12-23 2017-05-30 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US10629689B1 (en) 2014-12-23 2020-04-21 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US11955521B1 (en) 2014-12-23 2024-04-09 Kyocera Sld Laser, Inc. Manufacturable thin film gallium and nitrogen containing devices
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US10075688B2 (en) 2015-10-08 2018-09-11 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US10506210B2 (en) 2015-10-08 2019-12-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US11172182B2 (en) 2015-10-08 2021-11-09 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
US11800077B2 (en) 2015-10-08 2023-10-24 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
US11870495B2 (en) 2017-09-28 2024-01-09 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10880005B2 (en) 2017-09-28 2020-12-29 Soraa Laser Diode, Inc. Laser based white light source configured for communication
US11677468B2 (en) 2017-09-28 2023-06-13 Kyocera Sld Laser, Inc. Laser based white light source configured for communication
US11502753B2 (en) 2017-09-28 2022-11-15 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11121772B2 (en) 2017-09-28 2021-09-14 Kyocera Sld Laser, Inc. Smart laser light for a vehicle
US11153011B2 (en) 2017-09-28 2021-10-19 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11277204B2 (en) 2017-09-28 2022-03-15 Kyocera Sld Laser, Inc. Laser based white light source configured for communication
US10873395B2 (en) 2017-09-28 2020-12-22 Soraa Laser Diode, Inc. Smart laser light for communication
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10784960B2 (en) 2017-09-28 2020-09-22 Soraa Laser Diode, Inc. Fiber delivered laser based white light source configured for communication
US11867813B2 (en) 2017-12-13 2024-01-09 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US10338220B1 (en) 2017-12-13 2019-07-02 Soraa Laser Diode, Inc. Integrated lighting and LIDAR system
US11841429B2 (en) 2017-12-13 2023-12-12 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machine applications
US11199628B2 (en) 2017-12-13 2021-12-14 Kyocera Sld Laser, Inc. Distance detecting systems including gallium and nitrogen containing laser diodes
US10345446B2 (en) 2017-12-13 2019-07-09 Soraa Laser Diode, Inc. Integrated laser lighting and LIDAR system
US10649086B2 (en) 2017-12-13 2020-05-12 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US11231499B2 (en) 2017-12-13 2022-01-25 Kyocera Sld Laser, Inc. Distance detecting systems for use in automotive applications including gallium and nitrogen containing laser diodes
US11249189B2 (en) 2017-12-13 2022-02-15 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US11287527B2 (en) 2017-12-13 2022-03-29 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11811189B1 (en) 2018-04-10 2023-11-07 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US11294267B1 (en) 2018-04-10 2022-04-05 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US10809606B1 (en) 2018-04-10 2020-10-20 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11594862B2 (en) 2018-12-21 2023-02-28 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11788699B2 (en) 2018-12-21 2023-10-17 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US11715927B2 (en) 2019-05-14 2023-08-01 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
US11228158B2 (en) 2019-05-14 2022-01-18 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
US11949212B2 (en) 2019-05-14 2024-04-02 Kyocera Sld Laser, Inc. Method for manufacturable large area gallium and nitrogen containing substrate
US10903623B2 (en) 2019-05-14 2021-01-26 Soraa Laser Diode, Inc. Method and structure for manufacturable large area gallium and nitrogen containing substrate
US11649604B2 (en) 2019-09-19 2023-05-16 Trevor Brien Height adjustment mechanism for a manhole assembly and manhole assembly comprising the same
US11053658B2 (en) 2019-09-19 2021-07-06 Trevor Brien Height adjustment mechanism for a manhole assembly and manhole assembly comprising the same
US11973308B2 (en) 2020-11-24 2024-04-30 Kyocera Sld Laser, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package

Similar Documents

Publication Publication Date Title
US20070081857A1 (en) Four parts manhole enabling an easy install and height adjustment
US6457901B1 (en) Adjustable manhole apparatus
US5344253A (en) Adjustable manhole cover
US10954649B2 (en) Floating manhole cover assembly
US9587368B2 (en) Manhole repair bracket
US5318376A (en) Manhole frame
US5899024A (en) Manhole adjustment ring
US20160108601A1 (en) Method and device for installing or renovating a basin
US6953302B1 (en) Adjustment riser for a manhole frame
US8360679B2 (en) Inflow and infiltration cap and seal barrier
US9121157B2 (en) Manhole riser extension assembly
KR100949575B1 (en) Height adjustable manhole cover device
KR101660400B1 (en) Manhole capable of regulating height of cover and construction method thereof
EP3394346B1 (en) Adapter
KR20090049967A (en) A function of manhole
US5735082A (en) Chimney access with floating head
KR200399178Y1 (en) A adjustable ring device of manhole
KR101824838B1 (en) Manhole Lid Assembly
KR20070081729A (en) Height adjustment manhole and its adjustment mechanism
JP4585366B2 (en) Anti-levitation manhole
KR200462762Y1 (en) Assist cover frame for manhole cover assembly
KR100681829B1 (en) Height adjustable manhole structure and construction method thereof
WO2010137972A2 (en) Method and device for asphalting a surface in which a manhole is present
GB2445944A (en) Subterranean anti-subsidence collar for use with a subterranean structure which defines a shaft
KR200431546Y1 (en) Manhole for height adjustment and its adjustment mechanism

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION