US20060253100A1 - Systems and Methods to Treat Pain Locally - Google Patents

Systems and Methods to Treat Pain Locally Download PDF

Info

Publication number
US20060253100A1
US20060253100A1 US11/460,012 US46001206A US2006253100A1 US 20060253100 A1 US20060253100 A1 US 20060253100A1 US 46001206 A US46001206 A US 46001206A US 2006253100 A1 US2006253100 A1 US 2006253100A1
Authority
US
United States
Prior art keywords
pain
nfκb
inhibiting compounds
nfκb inhibiting
administered locally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/460,012
Inventor
Eric Burright
Lisa Shafer
Bill McKay
John Zanella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/972,157 external-priority patent/US20050095246A1/en
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to US11/460,012 priority Critical patent/US20060253100A1/en
Assigned to MEDTRONIC, INC. reassignment MEDTRONIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHAFER, LISA L., BURRIGHT, ERIC N., MCKAY, BILL, ZANELLA, JOHN
Publication of US20060253100A1 publication Critical patent/US20060253100A1/en
Priority to PCT/US2007/071593 priority patent/WO2008014066A1/en
Priority to EP11168573.1A priority patent/EP2363122B1/en
Priority to ES11168573.1T priority patent/ES2480424T3/en
Priority to ES07798778T priority patent/ES2392197T3/en
Priority to CA002658245A priority patent/CA2658245A1/en
Priority to EP07798778A priority patent/EP2043625B1/en
Priority to JP2009521877A priority patent/JP2009544717A/en
Priority to US12/701,261 priority patent/US8969397B2/en
Priority to US14/635,637 priority patent/US20150174104A1/en
Priority to US16/184,089 priority patent/US20190076403A1/en
Priority to US16/184,092 priority patent/US20190083464A1/en
Priority to US16/874,984 priority patent/US20210093612A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41681,3-Diazoles having a nitrogen attached in position 2, e.g. clonidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/401Proline; Derivatives thereof, e.g. captopril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4402Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 2, e.g. pheniramine, bisacodyl
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/498Pyrazines or piperazines ortho- and peri-condensed with carbocyclic ring systems, e.g. quinoxaline, phenazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0085Brain, e.g. brain implants; Spinal cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0069Devices for implanting pellets, e.g. markers or solid medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14276Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2842Pain, e.g. neuropathic pain, psychogenic pain

Definitions

  • the present invention relates to systems and methods for contributing to the local treatment of pain. More specifically, the systems and methods of the present invention contribute to the local treatment of pain by inhibiting the NF ⁇ B family of transcription factors.
  • Acute pain refers to pain experienced when tissue is being damaged or is damaged.
  • Acute pain serves at least two physiologically advantageous purposes. First, it warns of dangerous environmental stimuli (such as hot or sharp objects) by triggering reflexive responses that end contact with the dangerous stimuli. Second, if reflexive responses do not avoid dangerous environmental stimuli effectively, or tissue injury or infection otherwise results, acute pain facilitates recuperative behaviors. For example, acute pain associated with an injury or infection encourages an organism to protect the compromised area from further insult or use while the injury or infection heals. Once the dangerous environmental stimulus is removed, or the injury or infection has resolved, acute pain, having served its physiological purpose, ends.
  • dangerous environmental stimuli such as hot or sharp objects
  • neuropathic pain serves no beneficial purpose. Neuropathic pain results when pain associated with an injury or infection continues in an area once the injury or infection has resolved. The biological basis for this type of pain that exists absent physical injury or infection baffled scientists for many years. Recently, however, evidence has mounted that neuropathic pain is caused, at least in part, by on-going (and unneeded) activation of the immune system after an injury or infection has healed. See, for example, WATKINS & MAIER (2004), PAIN, CLINICAL UPDATES, 1-4.
  • IL-1 ⁇ interleukin-1 beta
  • IL-6 interleukin-6
  • TNF ⁇ tumor necrosis factor alpha
  • pro-inflammatory cytokines heavily involved in orchestrating the immediate and local physiological effects of injury or infection. For instance, once released, pro-inflammatory cytokines promote inflammation (swelling and redness caused by increased blood flow to the area which delivers recruited immune system cells more quickly) and also increased sensitivity to pain (by increasing the excitability and transmission of sensory nerves carrying pain information to the brain). Thus, pro-inflammatory cytokines are involved in the beneficial physiological and recuperative effects of acute pain.
  • Sciatica provides an example of pain that can transition from acute to neuropathic pain.
  • Sciatica refers to pain associated with the sciatic nerve which runs from the lower part of the spinal cord (the lumbar region), down the back of the leg and to the foot.
  • Sciatica generally begins with a herniated disc.
  • the herniated disc itself leads to local immune system activation.
  • the herniated disc also may damage the nerve root by pinching or compressing it, leading to additional immune system activation in the area.
  • the acute pain and immune system activation associated with the injury cease once the damage has been repaired. In those individuals where immune system activation does not abate completely, however, neuropathic pain may result.
  • pro-inflammatory cytokines can provide an effective strategy for treating acute and neuropathic pain. Inhibiting the immune system, however, is problematic as a general treatment because it leaves an individual vulnerable to infection and unable to repair tissue injuries effectively. Thus, treatments that inhibit pro-inflammatory cytokines throughout the body generally are not appropriate except in the most extreme cases of neuropathic pain. Other pain treatments likewise are not effective or appropriate for treating acute or neuropathic pain caused by pro-inflammatory cytokines. For example, narcotics do not treat pain mediated by the pro-inflammatory cytokines because narcotics block opiate receptors, a receptor type not directly involved in many effects of the pro-inflammatory cytokines. A need exists, therefore, for a locally-administered pain treatment that suppresses the actions of the pro-inflammatory cytokines.
  • a protein such as a pro-inflammatory cytokine
  • the cell that will use or secrete the protein must create it.
  • transcription the cell first makes a copy of the protein's gene sequence in the nucleus of the cell (this process is called transcription).
  • Transcription factors are regulatory proteins that initiate the transcription process upon binding with DNA.
  • mRNA messenger RNA
  • Ribosomes read the sequence of the mRNA and create the protein for which it encodes. This process of new protein synthesis is known as translation.
  • a variety of factors affect the rate and efficiency of transcription and translation. One of these factors includes the intracellular regulation of transcription factors.
  • the NF ⁇ B family is one group of transcription factors that plays an essential role in the inflammatory response through transcriptional regulation of a variety of genes encoding pro-inflammatory cytokines (TNF ⁇ , IL-1 ⁇ , IL-6), chemokines (IL-8, MIP1 ⁇ ), inducible effector enzymes (iNOS and COX-2), and other molecules.
  • Pro-inflammatory cytokines that are up-regulated by NF ⁇ B, such as TNF ⁇ and IL-1 ⁇ can also directly activate the NF ⁇ B pathway, thus establishing an autoregulatory loop that can result in chronic inflammation and pain.
  • Activation of NF ⁇ B pathways has been shown to be important in the pathogenesis of many chronic inflammatory diseases including rheumatoid arthritis, inflammatory bowel disease, and osteoarthritis.
  • NF ⁇ B pathway inhibition is an attractive therapeutic strategy for the treatment of inflammatory and pain disorders.
  • Effective NF ⁇ B pathway blockade could result in lower levels of an array of molecules including pro-inflammatory cytokines that contribute to inflammation and pain.
  • NF ⁇ B is also involved in normal cellular physiology, such as mounting an effective immune response, systemic inhibition of this pathway could result in serious side effects. For these reasons, minimizing systemic exposure of animals to NF ⁇ B inhibitory compounds is an important component of a safe therapeutic strategy.
  • Embodiments according to the present invention can treat pain through the local administration of one or more compounds that inhibit the NF ⁇ B pathway. Local administration of these compounds helps to prevent unwanted side effects, such as immunosuppression, associated with systemic drug administration.
  • one embodiment according to the present invention is a method of treating pain comprising administering one or more NF ⁇ B inhibiting compounds locally to a patient in need thereof.
  • the one or more NF ⁇ B inhibiting compounds are selected from the group consisting of sulfasalazine, sulindac, clonidine, helenalin, wedelolactone, pyrollidinedithiocarbamate (PDTC), Calbiochem® IKK-2 inhibitor VI, Calbiochem® IKK inhibitor III (also known as BMS-345541), and combinations thereof.
  • the administering of the one or more NF ⁇ B inhibiting compounds can inhibit the production of one or more pro-inflammatory cytokines selected from the group consisting of interleukin-1 beta (IL-1 ⁇ ), tumor necrosis factor alpha (TNF ⁇ ) and interleukin-6 (IL-6).
  • IL-1 ⁇ interleukin-1 beta
  • TNF ⁇ tumor necrosis factor alpha
  • IL-6 interleukin-6
  • the one or more NF ⁇ B inhibiting compounds can be administered locally to the perispinal region of the lumbar region of a spinal cord or can be administered locally to the epidural space or the intrathecal space of the lumbar region of a spinal cord.
  • These compounds can also be administered locally from an administration route selected from the group consisting of a catheter and drug pump, one or more local injections, polymer release, and combinations thereof.
  • Methods according to the present invention can be used to treat, without limitation, acute pain, neuropathic pain, sciatica and/or radicular pain.
  • the present invention also includes dosing regimens.
  • the dosing regimen comprises one or more NF ⁇ B inhibiting compounds and instructional information that directs the administration of the one or more NF ⁇ B inhibiting compounds for the local treatment of pain.
  • the one or more NF ⁇ B inhibiting compounds directed to be administered are selected from the group consisting of sulfasalazine, sulindac, clonidine, helenalin, wedelolactone, pyrollidinedithiocarbamate (PDTC), Calbiochem® IKK-2 inhibitor VI, Calbiochem® IKK inhibitor III (BMS-345541), and combinations thereof.
  • Instructional information used in accordance with the present invention can direct the one or more NF ⁇ B inhibiting compounds to be administered locally to the perispinal region of the lumbar region of a spinal cord or to be administered locally to the epidural space or the intrathecal space of the lumbar region of a spinal cord.
  • the instructional information can also direct the one or more NF ⁇ B inhibiting compounds to be administered locally from an administration route selected from the group consisting of a catheter and drug pump, one or more local injections, polymer release, and combinations thereof.
  • the instructional information directs the one or more NF ⁇ B inhibiting compounds to be administered for the treatment of acute pain, neuropathic pain, sciatica and/or radicular pain.
  • kits according to the present invention can include one or more of: (i) an administration form generally; (ii) an administration form comprising a catheter and drug pump, (iii) an administration form comprising one or more syringes for local injections, (iv) an administration form comprising compositions adapted for polymer release and (v) combinations thereof.
  • the present invention also includes compositions.
  • the composition comprises one or more NF ⁇ B inhibiting compounds wherein the one or more NF ⁇ B inhibiting compounds are directed to be administered locally for the treatment of pain.
  • the one or more NF ⁇ B inhibiting compounds are selected from the group consisting of sulfasalazine, sulindac, clonidine, helenalin, wedelolactone, pyrollidinedithiocarbamate (PDTC), Calbiochem IKK-2 inhibitor VI, Calbiochem IKK inhibitor III (BMS-345541) and combinations thereof.
  • compositions according to the present invention can be directed to be administered locally to the perispinal region of the lumbar region of a spinal cord or can be directed to be administered locally to the epidural space or the intrathecal space of the lumbar region of a spinal cord.
  • the compositions can also be directed to be administered locally from an administration route selected from the group consisting of a catheter and drug pump, one or more local injections, polymer release and combinations thereof.
  • FIG. 1 depicts a schematic representation of the NF ⁇ B activation pathway.
  • FIGS. 2 and 3 show the effect of the NF ⁇ B inhibitor sulfasalazine on pain sensitivity as measured by paw withdrawal latencies.
  • FIG. 4 shows the effect of the NF ⁇ B inhibitor sulfasalazine on pain sensitivity as measured in a mechanical allodynia paradigm.
  • FIGS. 5A-5B show the effect of additional NF ⁇ B inhibitors on pain sensitivity measured by paw withdrawal latencies and in a mechanical allodynia paradigm.
  • FIG. 6 shows the effect of the NF ⁇ B inhibitor clonidine on pain sensitivity as measured by paw withdrawal latencies.
  • neuropathic pain which occurs in the absence of injury or infection
  • problemsatic pain requiring treatment is believed to be caused at least in part due to local immune activation.
  • the local immune activation is mediated largely by pro-inflammatory cytokines including interleukin-1 beta (“IL-1 ⁇ ”), tumor necrosis factor alpha (“TNF ⁇ ”) and interleukin-6 (“IL-6”).
  • IL-1 ⁇ interleukin-1 beta
  • TNF ⁇ tumor necrosis factor alpha
  • IL-6 interleukin-6
  • Sciatica provides one non-limiting example of pain that can be caused by local pro-inflammatory cytokine activity.
  • inhibiting the actions of pro-inflammatory cytokines can provide an effective strategy for treating pain. Inhibiting the immune system, however, is problematic as a general treatment because it leaves an individual vulnerable to infection and unable to repair tissue injuries effectively. Thus, treatments that systemically inhibit pro-inflammatory cytokines throughout the body are not appropriate except in the most extreme cases.
  • NF ⁇ B pathway inhibition is one attractive therapeutic strategy for the treatment of inflammatory and pain disorders.
  • Effective NF ⁇ B pathway blockade can result in lower levels of an array of molecules including pro-inflammatory cytokines that contribute to inflammation and pain.
  • NF ⁇ B is also involved in normal cellular physiology such as mounting an effective immune response
  • systemic inhibition of the pathway may result in serious side effects.
  • global inhibition of the NF ⁇ B pathway in adult animals can render them susceptible to opportunistic infections.
  • gene targeting studies in mice have shown that complete inactivation of nearly any member of the NF ⁇ B pathway (at least during development) results in significant immune system defects and/or embryonic lethality. For these reasons, minimizing systemic exposure of animals to NF ⁇ B inhibitory compounds is an important component to a safe therapeutic strategy for the treatment of pain.
  • the NF ⁇ B transcription factor family represents a group of structurally related and evolutionarily conserved proteins that includes five members in mammals: Rel (c-Rel), RelA (p65), RelB, NF ⁇ B1 (p50), and NF ⁇ B2 (p52). These molecules form functional transcription factors by complexing into hetero- or homodimers of the NF ⁇ B/Rel protein subunits. The most prevalent form of NF ⁇ B is a heterodimer of the p65 and p50 subunits.
  • NF ⁇ B pathway activation (see FIG. 1 ) is regulated through a series of events.
  • NF ⁇ B is sequestered in the cytoplasm in an inactive form, bound to regulatory proteins called inhibitors of ⁇ B (I ⁇ B).
  • I ⁇ B inhibitors of ⁇ B
  • a variety of stimuli including pro-inflammatory cytokines such as TNF ⁇ and IL-1 ⁇ induce the phosphorylation of the I ⁇ B proteins (I ⁇ B ⁇ and I ⁇ B ⁇ ) at specific NH 2 -terminal serine residues.
  • the phosphorylated I ⁇ B proteins quickly become ubiquinated and degraded by the proteasome.
  • the released NF ⁇ B proteins are then able to translocate to the cell nucleus and induce the transcription of a variety of genes containing their cognate DNA binding recognition sequences.
  • IKK I ⁇ B kinase
  • NEMO NF ⁇ B essential modulator
  • IKK ⁇ NF ⁇ B essential modulator
  • NF ⁇ B inhibitors to treat pain
  • endoneural injections of an NF ⁇ B transcription factor decoy at the site of peripheral injury
  • NF ⁇ B inhibition also results in lower levels of a variety of pro-inflammatory mediators (including TNF ⁇ , IL-1 ⁇ , IL-6, IFN- ⁇ , and iNOS).
  • pro-inflammatory mediators including TNF ⁇ , IL-1 ⁇ , IL-6, IFN- ⁇ , and iNOS.
  • NF ⁇ B inhibitors ODN decoys and pyrrolidine dithiocarbamate (PDTC)
  • CFA Complete Freund's Adjuvant
  • CCI chronic constriction injury
  • vehicle Phosphate Buffered Saline
  • Enbrel® the protein-based TNF ⁇ inhibitor
  • Enbrel® as a positive control
  • sulfasalazine a small molecule inhibitor of NF ⁇ B at a dose of 5 mg/kg or 50 mg/kg.
  • FIG. 2 demonstrates that the protein-based pro-inflammatory cytokine inhibitor Enbrel® is effective to inhibit pain associated with CCI on all test days.
  • NF ⁇ B inhibitors were more effective at inhibiting pain associated with CCI on all test days.
  • animals that received vehicle showed mean paw withdrawal latencies of about 45%, 50% and 53% over baseline on test days 7, 14 and 21 respectively.
  • animals that received Enbrel® showed mean paw withdrawal latencies of about 60%, 63% and 75% over baseline on test days 7, 14 and 21 respectively.
  • sulfasalazine was administered at doses of 5 mg/kg; 1 mg/kg or 0.2 mg/kg.
  • control animals receiving vehicle showed paw withdrawal latencies averaging an increase of about 45%, 41% and 39% over baseline on test days 7, 14 and 21 respectively.
  • Positive control animals receiving the protein-based TNF ⁇ inhibitor, Enbrel® increased paw withdrawal latencies to about 51%, 63% and 62% over baseline on test days 7, 14 and 21 respectively.
  • sulfasalazine was also evaluated using a different sensitivity measure following CCI, namely mechanical (or tactile) allodynia.
  • mechanical allodynia was determined in reaction to probing with von Frey filaments (Stoelting, Wood Dale, Ill.). Mechanical sensitivity was measured on Days 8, 15 and 22 following CCI by determining the median 50% foot withdrawal threshold for von Frey filaments using the up-down method described in Chaplan et al. ( J Neurosci Methods 1994; 54:55) which is incorporated by reference herein for its teachings regarding the up-down method. Rats were placed under a plastic cover (9 ⁇ 9 ⁇ 20 cm) on a metal mesh floor.
  • the area tested was the middle glabrous area between the footpads of the plantar surface of the injured hind paw within the L4 innervation area.
  • the plantar area was touched with a series of 9 von Frey hairs with approximately exponentially incremental bending forces (von Frey values: 3.61, 3.8, 4.0, 4.2, 4.41, 4.6, 4.8, 5.0, and 5.2; equivalent to: 0.41, 0.63, 1.0, 1.58, 2.51, 4.07, 6.31, 10, and 15.8 g).
  • the von Frey hair was presented perpendicular to the plantar surface with sufficient force to cause slight bending and held for approximately 3 to 4 seconds. Abrupt withdrawal of the foot (paw flinching) was recorded as a response.
  • Positive control animals receiving Enbrel® increased paw withdrawal latencies to an average of about 51% over baseline on all three test days.
  • Animals receiving 2 mg/kg sulindac increased latencies to about 65% over baseline on all three test days while those receiving 10 mg/kg increased latencies to about 65%, 81% and 75% over baseline on test days 7, 41 and 21 respectively.
  • Animals receiving 0.02 mg/kg clonidine showed an increase in paw withdrawal latencies over baseline of about 75%-79% on all three test days and those receiving 0.1 mg/kg clonidine showed an increase of about 78%, 60% and 61% over baseline on test days 7, 41 and 21 respectively.
  • This data suggests that NF ⁇ B inhibitors reduce pain sensitivity further suggesting that NF ⁇ B inhibition can provide an effective pain treatment.
  • clonidine can provide an effective pain treatment when administered locally. Dosing of compounds such as clonidine can substantially reduce the systemic exposure of the drug without compromising the efficacy of treatment. In the example given, there was a 25 fold dose reduction without loss of efficacy.
  • the disclosed invention describes the use of a therapeutic agent to block activation of the NF ⁇ B signaling pathway to alleviate pain. Pain is likely reduced by these inhibitors through their effect in reducing levels of pro-inflammatory cytokines and other molecules involved in the inflammation response.
  • the therapeutic agent may be a small molecule inhibitor of NF ⁇ B pathway activation or other effective NF ⁇ B inhibitors.
  • Non-limiting examples of potential therapeutic agents for use in accordance with the present invention can include anti-oxidants that have been shown to inhibit NF ⁇ B, proteasome and protease inhibitors that inhibit NF ⁇ B, and I ⁇ B ⁇ phosphorylation and/or degradation inhibitors.
  • Examples of such compounds include, without limitation, ⁇ -lipoic acid, ⁇ -tocopherol, allicin, 2-amino-1-methyl-6-phenylimidazo[4,5-]pyridine, anetholdithiolthione, apocynin, 5,6,3′,5′-tetramethoxy 7,4′-hydroxyflavone, astaxanthin, benidipine, bis-eugenol, bruguiera gymnorrhiza compounds, butylated hydroxyanisole, cepharanthine, caffeic acid phenethyl ester, carnosol, ⁇ -carotene, carvedilol, catechol derivatives, chlorogenic acid, cocoa polyphenols, curcumin, dehydroepiandrosterone and dehydroepiandrosterone sulfate, dibenzylbutyrolactone lignans, diethyldithiocarbamate, diferoxamine, dihydroisoeugen
  • the presently disclosed invention can be especially beneficial because pain patients treated with protein-based cytokine inhibitors (for example and without limitation, etanercept or infliximab) often have immune responses directed against the recombinant (therapeutic) proteins. In the present invention, it is unlikely that there will be a significant immune response against a small molecule therapeutic compound.
  • protein-based cytokine inhibitors for example and without limitation, etanercept or infliximab
  • the present invention can be used to treat a variety of conditions related to NF ⁇ B activation and pro-inflammatory cytokine responses.
  • embodiments according to the present invention could be used to contribute to the treatment of without limitation, osteoarthritis, alkylosing spondylitis, psoriasis, rheumatoid arthritis (RA), sepsis and degenerative disc disease.
  • implantable medical devices such as, without limitation, stents and stent graft with small molecule NF ⁇ B pathway inhibitors.
  • the therapeutic agents described herein are delivered locally in order to minimize undesirable side effects associated with systemic delivery of the immunosuppressive agents.
  • the therapeutic agents can be delivered through a device consisting of an infusion pump and a catheter.
  • Local sites of delivery can include, but are not limited to the nerve root, the dorsal root ganglion (DRG), and focal sites of inflammation (containing infiltrating inflammatory cells).
  • the distal, delivery end of the catheter can be surgically positioned in the tissue in close proximity to the targeted site (nerve root, DRG, etc). Alternatively, the distal end of the catheter may be positioned to deliver the therapeutic compound into the intrathecal space of the spinal cord.
  • the proximal end of the catheter could remain outside of the patient's body and be attached to an external, refillable pump.
  • the proximal end of the catheter could be attached to a pump implanted subcutaneously within a patient. In this case, the pump would be able to be periodically refilled using transcutaneous syringe injection.
  • the NF ⁇ B inhibitors can be locally delivered by catheter and drug pump systems, delivered by direct local injection or through the use of polymers and/or drug-eluting stents as described in co-pending U.S. patent application Ser. No. 10/972,157 which is incorporated by reference herein.
  • a “controlled administration system” including a direct and local administration system can be used.
  • a controlled administration system can be a depot or a pump system, such as, without limitation, an osmotic pump or an infusion pump.
  • An infusion pump can be implantable and can be, without limitation, a programmable pump, a fixed rate pump, and the like.
  • a catheter can be operably connected to the pump and configured to deliver agents of the present invention to a target tissue region of a subject.
  • a controlled administration system can be a pharmaceutical depot (a pharmaceutical delivery composition) such as, without limitation, a capsule, a microsphere, a particle, a gel, a coating, a matrix, a wafer, a pill, and the like.
  • a depot can comprise a biopolymer.
  • the biopolymer can be a sustained-release biopolymer.
  • the depot can be deposited at or near, generally in close proximity, to a target site.
  • Embodiments of the present invention also can be delivered through the use of liposomes, polyethyleneimine, by iontophoresis, or by incorporation into other vehicles, such as biodegradable or non-biodegradable nanocapsules.
  • the delivery technology drug pump or polymer formulations
  • kits In one embodiment, the kits of the present invention comprise NF ⁇ B inhibitors of the present invention. In another embodiment, a kit of the present invention can contain one or more of the following in a package or container: (1) one or more NF ⁇ B inhibitors of the present invention; (2) one or more pharmaceutically acceptable adjuvants or excipients; (3) one or more vehicles for administration, such as one or more syringes; (4) one or more additional bioactive agents for concurrent or sequential administration; (5) instructions for administration; and/or (6) a catheter and drug pump. Embodiments in which two or more of components (1)-(6) are found in the same container can also be used.
  • the different components of the compositions included can be packaged in separate containers and admixed immediately before use. Such packaging of the components separately can permit long-term storage without losing the active components' functions.
  • the bioactive agents may be (1) packaged separately and admixed separately with appropriate (similar or different) vehicles immediately before use, (2) packaged together and admixed together immediately before use or (3) packaged separately and admixed together immediately before use. If the chosen compounds will remain stable after admixture, however, the admixture need not occur immediately before use but can occur at a time before use, including in one example, minutes, hours, days, months or years before use or in another embodiment at the time of manufacture.
  • compositions included in particular kits of the present invention can be supplied in containers of any sort such that the life of the different components are preserved and are not adsorbed or altered by the materials of the container.
  • sealed glass ampules can contain lyophilized agents or variants or derivatives thereof or other bioactive agents, or buffers that have been packaged under a neutral, non-reacting gas, such as, without limitation, nitrogen.
  • Ampules can consist of any suitable material, such as, without limitation, glass, organic polymers, such as, polycarbonate, polystyrene, etc., ceramic, metal or any other material typically employed to hold similar reagents.
  • suitable containers include, without limitation, simple bottles that may be fabricated from similar substances as ampules, and envelopes, that can comprise foil-lined interiors, such as aluminum or an alloy.
  • Other containers include, without limitation, test tubes, vials, flasks, bottles, syringes, or the like.
  • Containers can have one or more sterile access ports, such as a bottle having a stopper that can be pierced by a hypodermic injection needle.
  • Other containers may have two compartments that are separated by a readily removable membrane that upon removal permits the components to be mixed.
  • Removable membranes may be, without limitation, glass, plastic, rubber, etc.
  • kits can also be supplied with instructional materials. Instructions may be printed on paper or other substrate, and/or may be supplied as an electronic-readable medium, such as a floppy disc, CD-ROM, DVD-ROM, Zip disc, videotape, audiotape, flash memory device, etc. Detailed instructions may not be physically associated with the kit; instead, a user may be directed to an internet web site specified by the manufacturer or distributor of the kit, or supplied as electronic mail.

Abstract

Disclosed herein are systems and methods for contributing to the local treatment of pain. More specifically, the disclosed systems and methods contribute to the local treatment pain by inhibiting the NFκB family of transcription factors.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 10/972,157 filed on Oct. 22, 2004 which is incorporated by reference herein in its entirety for all purposes.
  • FIELD OF THE INVENTION
  • The present invention relates to systems and methods for contributing to the local treatment of pain. More specifically, the systems and methods of the present invention contribute to the local treatment of pain by inhibiting the NFκB family of transcription factors.
  • BACKGROUND OF THE INVENTION
  • Pain can be divided into two types: acute pain and neuropathic pain. Acute pain refers to pain experienced when tissue is being damaged or is damaged. Acute pain serves at least two physiologically advantageous purposes. First, it warns of dangerous environmental stimuli (such as hot or sharp objects) by triggering reflexive responses that end contact with the dangerous stimuli. Second, if reflexive responses do not avoid dangerous environmental stimuli effectively, or tissue injury or infection otherwise results, acute pain facilitates recuperative behaviors. For example, acute pain associated with an injury or infection encourages an organism to protect the compromised area from further insult or use while the injury or infection heals. Once the dangerous environmental stimulus is removed, or the injury or infection has resolved, acute pain, having served its physiological purpose, ends.
  • As contrasted to acute pain, neuropathic pain serves no beneficial purpose. Neuropathic pain results when pain associated with an injury or infection continues in an area once the injury or infection has resolved. The biological basis for this type of pain that exists absent physical injury or infection baffled scientists for many years. Recently, however, evidence has mounted that neuropathic pain is caused, at least in part, by on-going (and unneeded) activation of the immune system after an injury or infection has healed. See, for example, WATKINS & MAIER (2004), PAIN, CLINICAL UPDATES, 1-4.
  • Local immune system activation begins when damaged cells secrete signals that recruit immune system cells to the area. One type of recruited immune system cell is the macrophage. Macrophages release interleukin-1 beta (“IL-1β”), interleukin-6 (“IL-6”) and tumor necrosis factor alpha (“TNFα”), pro-inflammatory cytokines heavily involved in orchestrating the immediate and local physiological effects of injury or infection. For instance, once released, pro-inflammatory cytokines promote inflammation (swelling and redness caused by increased blood flow to the area which delivers recruited immune system cells more quickly) and also increased sensitivity to pain (by increasing the excitability and transmission of sensory nerves carrying pain information to the brain). Thus, pro-inflammatory cytokines are involved in the beneficial physiological and recuperative effects of acute pain.
  • Normally after an injury or infection heals, the local immune system response ceases, inflammation recedes and the increased sensitivity to pain abates. In some individuals, however, signals that terminate the immune system response are not effective entirely and pro-inflammatory cytokine activity in the area remains active. In these individuals, sensory nerves carrying pain information to the brain remain sensitized in the absence of injury or infection and the individuals can experience neuropathic pain.
  • Sciatica provides an example of pain that can transition from acute to neuropathic pain. Sciatica refers to pain associated with the sciatic nerve which runs from the lower part of the spinal cord (the lumbar region), down the back of the leg and to the foot. Sciatica generally begins with a herniated disc. The herniated disc itself leads to local immune system activation. The herniated disc also may damage the nerve root by pinching or compressing it, leading to additional immune system activation in the area. In most individuals, the acute pain and immune system activation associated with the injury cease once the damage has been repaired. In those individuals where immune system activation does not abate completely, however, neuropathic pain may result.
  • As the foregoing suggests, inhibiting the actions of pro-inflammatory cytokines can provide an effective strategy for treating acute and neuropathic pain. Inhibiting the immune system, however, is problematic as a general treatment because it leaves an individual vulnerable to infection and unable to repair tissue injuries effectively. Thus, treatments that inhibit pro-inflammatory cytokines throughout the body generally are not appropriate except in the most extreme cases of neuropathic pain. Other pain treatments likewise are not effective or appropriate for treating acute or neuropathic pain caused by pro-inflammatory cytokines. For example, narcotics do not treat pain mediated by the pro-inflammatory cytokines because narcotics block opiate receptors, a receptor type not directly involved in many effects of the pro-inflammatory cytokines. A need exists, therefore, for a locally-administered pain treatment that suppresses the actions of the pro-inflammatory cytokines.
  • Generally, for a protein such as a pro-inflammatory cytokine to exert an effect, the cell that will use or secrete the protein must create it. To create a protein the cell first makes a copy of the protein's gene sequence in the nucleus of the cell (this process is called transcription). Transcription factors are regulatory proteins that initiate the transcription process upon binding with DNA. Following transcription, the newly made copy of the gene sequence that encodes for the protein (called messenger RNA (“mRNA”)) leaves the nucleus and is trafficked to a region of the cell containing ribosomes. Ribosomes read the sequence of the mRNA and create the protein for which it encodes. This process of new protein synthesis is known as translation. A variety of factors affect the rate and efficiency of transcription and translation. One of these factors includes the intracellular regulation of transcription factors.
  • The NFκB family is one group of transcription factors that plays an essential role in the inflammatory response through transcriptional regulation of a variety of genes encoding pro-inflammatory cytokines (TNFα, IL-1β, IL-6), chemokines (IL-8, MIP1α), inducible effector enzymes (iNOS and COX-2), and other molecules. Pro-inflammatory cytokines that are up-regulated by NFκB, such as TNFα and IL-1β, can also directly activate the NFκB pathway, thus establishing an autoregulatory loop that can result in chronic inflammation and pain. Activation of NFκB pathways has been shown to be important in the pathogenesis of many chronic inflammatory diseases including rheumatoid arthritis, inflammatory bowel disease, and osteoarthritis.
  • Thus, NFκB pathway inhibition is an attractive therapeutic strategy for the treatment of inflammatory and pain disorders. Effective NFκB pathway blockade could result in lower levels of an array of molecules including pro-inflammatory cytokines that contribute to inflammation and pain. However, because NFκB is also involved in normal cellular physiology, such as mounting an effective immune response, systemic inhibition of this pathway could result in serious side effects. For these reasons, minimizing systemic exposure of animals to NFκB inhibitory compounds is an important component of a safe therapeutic strategy.
  • SUMMARY OF THE INVENTION
  • Embodiments according to the present invention can treat pain through the local administration of one or more compounds that inhibit the NFκB pathway. Local administration of these compounds helps to prevent unwanted side effects, such as immunosuppression, associated with systemic drug administration.
  • Specifically, one embodiment according to the present invention is a method of treating pain comprising administering one or more NFκB inhibiting compounds locally to a patient in need thereof. In specific embodiments, the one or more NFκB inhibiting compounds are selected from the group consisting of sulfasalazine, sulindac, clonidine, helenalin, wedelolactone, pyrollidinedithiocarbamate (PDTC), Calbiochem® IKK-2 inhibitor VI, Calbiochem® IKK inhibitor III (also known as BMS-345541), and combinations thereof. The administering of the one or more NFκB inhibiting compounds can inhibit the production of one or more pro-inflammatory cytokines selected from the group consisting of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6).
  • In accordance with the present invention, the one or more NFκB inhibiting compounds can be administered locally to the perispinal region of the lumbar region of a spinal cord or can be administered locally to the epidural space or the intrathecal space of the lumbar region of a spinal cord. These compounds can also be administered locally from an administration route selected from the group consisting of a catheter and drug pump, one or more local injections, polymer release, and combinations thereof.
  • Methods according to the present invention can be used to treat, without limitation, acute pain, neuropathic pain, sciatica and/or radicular pain.
  • The present invention also includes dosing regimens. In one dosing regimen according to the present invention, the dosing regimen comprises one or more NFκB inhibiting compounds and instructional information that directs the administration of the one or more NFκB inhibiting compounds for the local treatment of pain. In certain embodiments of the dosing regimens, the one or more NFκB inhibiting compounds directed to be administered are selected from the group consisting of sulfasalazine, sulindac, clonidine, helenalin, wedelolactone, pyrollidinedithiocarbamate (PDTC), Calbiochem® IKK-2 inhibitor VI, Calbiochem® IKK inhibitor III (BMS-345541), and combinations thereof.
  • Instructional information used in accordance with the present invention can direct the one or more NFκB inhibiting compounds to be administered locally to the perispinal region of the lumbar region of a spinal cord or to be administered locally to the epidural space or the intrathecal space of the lumbar region of a spinal cord. The instructional information can also direct the one or more NFκB inhibiting compounds to be administered locally from an administration route selected from the group consisting of a catheter and drug pump, one or more local injections, polymer release, and combinations thereof.
  • In another embodiment of the dosing regimens according to the present invention, the instructional information directs the one or more NFκB inhibiting compounds to be administered for the treatment of acute pain, neuropathic pain, sciatica and/or radicular pain.
  • In another embodiment of the dosing regimens, the dosing regimen is part of a kit used for the treatment of pain. Kits according to the present invention can include one or more of: (i) an administration form generally; (ii) an administration form comprising a catheter and drug pump, (iii) an administration form comprising one or more syringes for local injections, (iv) an administration form comprising compositions adapted for polymer release and (v) combinations thereof.
  • The present invention also includes compositions. In one embodiment of the compositions according to the present invention, the composition comprises one or more NFκB inhibiting compounds wherein the one or more NFκB inhibiting compounds are directed to be administered locally for the treatment of pain. In another embodiment of the compositions, the one or more NFκB inhibiting compounds are selected from the group consisting of sulfasalazine, sulindac, clonidine, helenalin, wedelolactone, pyrollidinedithiocarbamate (PDTC), Calbiochem IKK-2 inhibitor VI, Calbiochem IKK inhibitor III (BMS-345541) and combinations thereof.
  • Compositions according to the present invention can be directed to be administered locally to the perispinal region of the lumbar region of a spinal cord or can be directed to be administered locally to the epidural space or the intrathecal space of the lumbar region of a spinal cord. The compositions can also be directed to be administered locally from an administration route selected from the group consisting of a catheter and drug pump, one or more local injections, polymer release and combinations thereof.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 depicts a schematic representation of the NFκB activation pathway.
  • FIGS. 2 and 3 show the effect of the NFκB inhibitor sulfasalazine on pain sensitivity as measured by paw withdrawal latencies.
  • FIG. 4 shows the effect of the NFκB inhibitor sulfasalazine on pain sensitivity as measured in a mechanical allodynia paradigm.
  • FIGS. 5A-5B show the effect of additional NFκB inhibitors on pain sensitivity measured by paw withdrawal latencies and in a mechanical allodynia paradigm.
  • FIG. 6 shows the effect of the NFκB inhibitor clonidine on pain sensitivity as measured by paw withdrawal latencies.
  • DETAILED DESCRIPTION
  • While the sensation of pain can serve beneficial purposes, in many instances, such as neuropathic pain (which occurs in the absence of injury or infection) it does not and is highly undesirable. Problematic pain requiring treatment is believed to be caused at least in part due to local immune activation. The local immune activation is mediated largely by pro-inflammatory cytokines including interleukin-1 beta (“IL-1β”), tumor necrosis factor alpha (“TNFα”) and interleukin-6 (“IL-6”). Sciatica provides one non-limiting example of pain that can be caused by local pro-inflammatory cytokine activity.
  • As the foregoing suggests, inhibiting the actions of pro-inflammatory cytokines can provide an effective strategy for treating pain. Inhibiting the immune system, however, is problematic as a general treatment because it leaves an individual vulnerable to infection and unable to repair tissue injuries effectively. Thus, treatments that systemically inhibit pro-inflammatory cytokines throughout the body are not appropriate except in the most extreme cases.
  • For a protein such as a pro-inflammatory cytokine to exert an effect, the cell that will use or secrete the protein must create it. Thus, one avenue to inhibit the local actions of pro-inflammatory cytokines is to inhibit intracellular mechanisms that lead to their production and release. The NFκB family is the primary group of transcription factors that plays an essential role in regulating the transcription of genes encoding pro-inflammatory cytokines (TNFα, IL-1β, IL-6), chemokines (IL-8, MIP1α), inducible effector enzymes (iNOS and COX-2), and other molecules. Thus, NFκB pathway inhibition is one attractive therapeutic strategy for the treatment of inflammatory and pain disorders. Effective NFκB pathway blockade can result in lower levels of an array of molecules including pro-inflammatory cytokines that contribute to inflammation and pain. However, because NFκB is also involved in normal cellular physiology such as mounting an effective immune response, systemic inhibition of the pathway may result in serious side effects. For example global inhibition of the NFκB pathway in adult animals can render them susceptible to opportunistic infections. Further, gene targeting studies in mice have shown that complete inactivation of nearly any member of the NFκB pathway (at least during development) results in significant immune system defects and/or embryonic lethality. For these reasons, minimizing systemic exposure of animals to NFκB inhibitory compounds is an important component to a safe therapeutic strategy for the treatment of pain.
  • The NFκB transcription factor family represents a group of structurally related and evolutionarily conserved proteins that includes five members in mammals: Rel (c-Rel), RelA (p65), RelB, NFκB1 (p50), and NFκB2 (p52). These molecules form functional transcription factors by complexing into hetero- or homodimers of the NFκB/Rel protein subunits. The most prevalent form of NFκB is a heterodimer of the p65 and p50 subunits.
  • NFκB pathway activation (see FIG. 1) is regulated through a series of events. In unstimulated cells, NFκB is sequestered in the cytoplasm in an inactive form, bound to regulatory proteins called inhibitors of κB (IκB). A variety of stimuli including pro-inflammatory cytokines such as TNFα and IL-1β induce the phosphorylation of the IκB proteins (IκBα and IκBβ) at specific NH2-terminal serine residues. The phosphorylated IκB proteins quickly become ubiquinated and degraded by the proteasome. The released NFκB proteins are then able to translocate to the cell nucleus and induce the transcription of a variety of genes containing their cognate DNA binding recognition sequences.
  • A key step in NFκB activation described in the preceding paragraph is the phosphorylation of the IκB proteins. This phosphorylation event is mediated by a specific protein complex known as IκB kinase (IKK). IKK is composed of two catalytic subunits IKKα and IKKβ, and a regulatory subunit named NFκB essential modulator (NEMO) or IKKγ. Cells deficient in either IKKα or IKKβ retain some inducible NFκB activity suggesting their distinct roles in NFκB pathway activation. Conversely, in cells lacking IKKγ, NFκB activation is completely blocked upon the induction of a variety of stimuli (including TNFα, IL-1, and lipopolysaccharide (LPS) exposure).
  • Regarding the use of NFκB inhibitors to treat pain, endoneural injections of an NFκB transcription factor decoy (at the site of peripheral injury) have been shown to significantly reduce thermal hyperalgesia in a rat model of neuropathic pain. In this model NFκB inhibition also results in lower levels of a variety of pro-inflammatory mediators (including TNFα, IL-1β, IL-6, IFN-γ, and iNOS). Sakaue et al., (Neuroreport. 2001, 12(10):2079). Spinal administration of NFκB inhibitors (ODN decoys and pyrrolidine dithiocarbamate (PDTC)) have also been shown to significantly reduce mechanical allodynia and thermal hyperalgesia in the Complete Freund's Adjuvant (CFA) inflammatory pain model. Lee et al., (Euro J. Neurosci. 2004, 19:3375). Further, Tegeder et al., (J Neurosci. 2004, 24(7):1637) have reported that a specific IKK-β inhibitor (S1627) reduces hyperalgesia in inflammatory and neuropathic pain models (zymosan-induced paw inflammation) in rats. In addition, this inhibitor also reduces tactile allodynia in the chronic constriction injury model (CCI) of neuropathic pain. These studies demonstrate the efficacy of NFκB pathway blockade in the treatment of inflammatory and neuropathic pain.
  • Co-pending application publication number US2005/0095246Apb 1 (“the '246 application”) to which this application claims priority and which is incorporated by reference fully herein describes techniques to treat neurological disorders by attenuating the production of pro-inflammatory mediators. The '246 application describes the use of devices such as pumps/catheters and polymer-based drug depots for the local (peripheral, intrathecal, intraparenchymal) delivery of inhibitors of pro-inflammatory mediators (including members of the NFκB pathway; IKK-α, β, and γ) to treat inflammatory disorders. Embodiments described in the present application stem from these initial disclosures and also provide novel compounds to locally inhibit NFκB in the local treatment of pain through the local administration of these compounds.
  • EXAMPLES
  • The behavioral animal model of chronic constriction injury (“CCI”) was chosen to evaluate the efficacy of NFκB inhibitors as a pain treatment. This model may mimic pain associated with sciatica in humans. To induce CCI, each animal was anesthetized by intraperitoneal (“i.p.”) injection of sodium pentobarbital at a dose of 60 mg/kg body weight. The animal's right common sciatic nerve was exposed and freed from adherent tissue at mid-thigh by separating the muscle (biceps femoris) by blunt dissection. Four loose ligatures were placed 1 mm apart, using chromic gut (4-0 absorbable suture, Jorgensen Laboratories Inc., Loveland, Colo.).
  • Example 1
  • Animals were randomly assigned to treatment groups and administered control or test compounds as follows: animals received either vehicle (Phosphate Buffered Saline; PBS), the protein-based TNFα inhibitor, Enbrel® as a positive control (3 mg/kg Immunex Corp., Seattle, Wash.) or sulfasalazine, a small molecule inhibitor of NFκB at a dose of 5 mg/kg or 50 mg/kg.
  • Animal behavioral testing was conducted on Days 7, 14 and 21 after CCI. In the thermal hyperalgesia test, animals were placed in the clear plastic chamber of a plantar analgesia instrument and allowed to acclimate to the environment for 15 minutes. After the acclimation period, a radiant (heat) beam source stimulus was applied to the CCI hind paw of each animal. The heat source device was set at an intensity of 50, and a maximum latency period of 15 seconds was set to prevent tissue damage according to the recommendations of the instrument manufacturer. If a paw withdrawal occurred within the 15 second period, an automated control interrupted both the stimulus and timer, turning off the radiant beam and recording the latency of time to paw withdrawal. Data was analyzed using a one-way analysis of variance at each test day.
  • FIG. 2 demonstrates that the protein-based pro-inflammatory cytokine inhibitor Enbrel® is effective to inhibit pain associated with CCI on all test days. NFκB inhibitors, however, were more effective at inhibiting pain associated with CCI on all test days. Specifically, animals that received vehicle showed mean paw withdrawal latencies of about 45%, 50% and 53% over baseline on test days 7, 14 and 21 respectively. Animals that received Enbrel® showed mean paw withdrawal latencies of about 60%, 63% and 75% over baseline on test days 7, 14 and 21 respectively. Animals receiving 5 mg/kg sulfasalazine showed mean paw withdrawal latencies of about 80%, 83% and 87% over baseline while those receiving 50 mg/kg showed mean paw withdrawal latencies of about 74%, 79% and 83% over baseline on test days 7, 14 and 21 respectively. This data demonstrates that NFκB inhibition can provide an effective mechanism to decrease pain sensitivity.
  • Example 2
  • In a subsequent study, additional lower doses of sulfasalazine were evaluated for their effectiveness as a pain treatment using the CCI model. Specifically, the same methods as described above were used except that sulfasalazine was administered at doses of 5 mg/kg; 1 mg/kg or 0.2 mg/kg. As can be seen in FIG. 3, control animals receiving vehicle showed paw withdrawal latencies averaging an increase of about 45%, 41% and 39% over baseline on test days 7, 14 and 21 respectively. Positive control animals receiving the protein-based TNFα inhibitor, Enbrel® increased paw withdrawal latencies to about 51%, 63% and 62% over baseline on test days 7, 14 and 21 respectively. Again, however, all doses of sulfasalazine increased paw withdrawal latencies on all test days even further (to an average of between about 65% to about 85% over baseline measures on all test days), again suggesting that sulfasalazine and NFκB inhibition can provide an effective pain treatment. Indeed, this data suggests that sulfasalazine can provide a more effective pain treatment than protein-based inhibitors such as Enbrel®.
  • Example 3
  • The ability of sulfasalazine to inhibit pain was also evaluated using a different sensitivity measure following CCI, namely mechanical (or tactile) allodynia. In this study, mechanical allodynia was determined in reaction to probing with von Frey filaments (Stoelting, Wood Dale, Ill.). Mechanical sensitivity was measured on Days 8, 15 and 22 following CCI by determining the median 50% foot withdrawal threshold for von Frey filaments using the up-down method described in Chaplan et al. (J Neurosci Methods 1994; 54:55) which is incorporated by reference herein for its teachings regarding the up-down method. Rats were placed under a plastic cover (9×9×20 cm) on a metal mesh floor. The area tested was the middle glabrous area between the footpads of the plantar surface of the injured hind paw within the L4 innervation area. The plantar area was touched with a series of 9 von Frey hairs with approximately exponentially incremental bending forces (von Frey values: 3.61, 3.8, 4.0, 4.2, 4.41, 4.6, 4.8, 5.0, and 5.2; equivalent to: 0.41, 0.63, 1.0, 1.58, 2.51, 4.07, 6.31, 10, and 15.8 g). The von Frey hair was presented perpendicular to the plantar surface with sufficient force to cause slight bending and held for approximately 3 to 4 seconds. Abrupt withdrawal of the foot (paw flinching) was recorded as a response. Any rat showing a mechanical threshold of more than 3.24 g was eliminated from the study. As can be seen in FIG. 4, Enbrel® and sulfasalazine both decreased sensitivity in this paradigm when compared to controls, further suggesting that sulfasalazine and NFκB inhibition can provide an effective pain treatment when administered at appropriate dosages.
  • Example 4
  • Next, the ability of other NFκB inhibitors to decrease pain sensitivity in the paw withdrawal and mechanical allodynia paradigms following CCI were evaluated. In this study, the previously described methods for CCI, paw withdrawal and mechanical allodynia testing were followed except that animals received vehicle control; 3 mg/kg Enbrel® as a positive control; 20 mg/kg or 100 mg/kg pyrollidinedithiocarbamate (PDTC); 2 mg/kg or 10 mg/kg sulindac; or 0.02 mg/kg or 0.1 mg/kg clonidine. As can be seen in FIG. 5A, vehicle controls showed average paw withdrawal latencies of about 41% over baseline on all three test days. Positive control animals receiving Enbrel® increased paw withdrawal latencies to an average of about 51% over baseline on all three test days. Animals receiving 2 mg/kg sulindac increased latencies to about 65% over baseline on all three test days while those receiving 10 mg/kg increased latencies to about 65%, 81% and 75% over baseline on test days 7, 41 and 21 respectively. Animals receiving 0.02 mg/kg clonidine showed an increase in paw withdrawal latencies over baseline of about 75%-79% on all three test days and those receiving 0.1 mg/kg clonidine showed an increase of about 78%, 60% and 61% over baseline on test days 7, 41 and 21 respectively. This data suggests that NFκB inhibitors reduce pain sensitivity further suggesting that NFκB inhibition can provide an effective pain treatment. Interestingly, in this study, while PDTC did increase paw withdrawal latencies over control levels, this compound was not as effective at reducing pain sensitivity as other NFκB inhibiting compounds. This result could be a function of dose or administration route. Indeed, animals receiving 100 mg/kg PDTC were removed from the study following the second day of testing due to drug toxicity.
  • In the mechanical allodynia test, as can be seen in FIG. 5B, all NFκB inhibitors, (with the potential exception of PDTC), decreased pain sensitivity when compared to control animals receiving vehicle or Enbrel®. Both doses of sulindac and the higher dose (0.1 mg/kg) of clonidine most significantly decreased pain sensitivity. These compounds decreased pain sensitivity on days 8, 15 and 22 respectively as follows: sulindac (2 mg/kg): about 66%, 50% and 35%; sulindac (10 mg/kg): about 68%, 58% and 60%; clonidine (0.1 mg/kg): about 58%, 20% and 48%. Animals receiving vehicle or Enbrel® showed increases between about 19% and 25%. Again, while PDTC showed some effect in decreasing pain sensitivity, the effect was not as strong as that seen with sulindac or clonidine. Further, while the low dose of clonidine decreased sensitivity, it did not show as strong as an effect in the mechanical allodynia test. This result may indicate that the higher dose of clonidine is a more appropriate dose for its use in the treatment of pain.
  • Example 5
  • Following the previous experiment, the effect of local doses of clonidine on pain sensitivity was explored. Animals were administered vehicle or test substances through a subcutaneously implanted Alzet pump. Again, the previously described methods for CCI and paw withdrawal latency measurements were followed except that in the presently described experiment animals received either vehicle control; 1 μg/hour Enbrel® as a positive control; 0.01 μg/hour clonidine; 0.05 μg/hour clonidine; or 0.25 μg/hour clonidine. As can be seen in FIG. 6, vehicle controls showed average paw withdrawal latencies of about 39%, 43% and 47% over baseline on test days 7, 14 and 21 respectively. Animals receiving Enbrel® showed paw withdrawal latencies of about 45%, 60% and 71% over baseline on test days 7, 14 and 21 respectively. Animals receiving 0.01 μg/hour clonidine showed paw withdrawal latencies of about 60%, 64% and 79% over baseline on test days 7, 14 and 21 respectively. Animals receiving 0.05 μg/hour clonidine showed paw withdrawal latencies of about 68%, 64% and 83% over baseline on test days 7, 14 and 21 respectively. Animals receiving 0.25 μg/hour clonidine showed paw withdrawal latencies of about 63%, 70% and 82% over baseline on test days 7, 14 and 21 respectively. In this study, all doses of clonidine caused significant increases in paw withdrawal latencies on all three test days. Therefore, these results further suggest that clonidine can provide an effective pain treatment when administered locally. Dosing of compounds such as clonidine can substantially reduce the systemic exposure of the drug without compromising the efficacy of treatment. In the example given, there was a 25 fold dose reduction without loss of efficacy.
  • The disclosed invention describes the use of a therapeutic agent to block activation of the NFκB signaling pathway to alleviate pain. Pain is likely reduced by these inhibitors through their effect in reducing levels of pro-inflammatory cytokines and other molecules involved in the inflammation response. The therapeutic agent may be a small molecule inhibitor of NFκB pathway activation or other effective NFκB inhibitors. Non-limiting examples of potential therapeutic agents for use in accordance with the present invention can include anti-oxidants that have been shown to inhibit NFκB, proteasome and protease inhibitors that inhibit NFκB, and IκBα phosphorylation and/or degradation inhibitors. Examples of such compounds include, without limitation, α-lipoic acid, α-tocopherol, allicin, 2-amino-1-methyl-6-phenylimidazo[4,5-]pyridine, anetholdithiolthione, apocynin, 5,6,3′,5′-tetramethoxy 7,4′-hydroxyflavone, astaxanthin, benidipine, bis-eugenol, bruguiera gymnorrhiza compounds, butylated hydroxyanisole, cepharanthine, caffeic acid phenethyl ester, carnosol, β-carotene, carvedilol, catechol derivatives, chlorogenic acid, cocoa polyphenols, curcumin, dehydroepiandrosterone and dehydroepiandrosterone sulfate, dibenzylbutyrolactone lignans, diethyldithiocarbamate, diferoxamine, dihydroisoeugenol, dihydrolipoic acid, dilazep+fenofibric acid, dimethyldithiocarbamates, dimethylsulfoxide, disulfiram, ebselen, edaravone, epc-k1, epigallocatechin-3-gallate, ergothioneine, ethylene glycol tetraacetic acid, flavonoids (crataegus; boerhaavia diffusa root; xanthohumol), γ-glutamylcysteine synthetase, ganoderma lucidum polysaccharides, garcinol, ginkgo biloba extract, hematein, 23-hydroxyursolic acid, iron tetrakis, isovitexin, kangen-karyu extract, I-cysteine, lacidipine, lazaroids, lupeol, magnolol, maltol, manganese superoxide dismutase, extract of the stem bark of mangifera indica I, melatonin, mulberry anthocyanins, n-acetyl-I-cysteine, nacyselyn, nordihydroguaiaritic acid, ochnaflavone, orthophenanthroline, hydroquinone, tert-butyl hydroquinone, phenylarsine oxide, phyllanthus urinaria, pyrrolinedithiocarbamate, quercetin (low concentrations), redox factor 1, rotenone, roxithromycin, s-allyl-cysteine, sauchinone, spironolactone, strawberry extracts, taxifolin, tempol, tepoxaline, vitamin C, vitamin B6, vitamin E derivatives, α-torphryl succinate, α-torphryl acetate, 2,2,5,7,8-pentamethyl-6-hydroxychromane, yakuchinone α and β, n-acetyl-leucinyl-leucynil-norleucynal, n-acetyl-leucinyl-leucynil-methional, carbobenzoxyl-leucinyl-leucynil-norvalinal, carbobenzoxyl-leucinyl-leucynil-leucynal, lactacystine, β-lactone, boronic acid peptide, ubiquitin ligase inhibitors, bortezomib, salinosporamide α, cyclosporin α, tacrolimus, deoxyspergualin, 15 deoxyspergualin, analogs of 15-deoxyspergualin, n-acetyl-dl-phenylalanine-β-naphthylester, n-benzoyl I-tyrosine-ethylester, 3,4-dichloroisocoumarin, diisopropyl fluorophosphate, n-α-tosyl-I-phenylalanine chloromethyl ketone, n-α-tosyl-I-lysine chloromethyl ketone, desloratadine, salmeterol, fluticasone propionate, protein-bound polysaccharide from basidiomycetes, calagualine, golli bg21, npm-alk oncoprotein, Iy29, Iy30, Iy294002, evodiamine, rituximab, kinase suppressor of ras, pefabloc, rocaglamides, betaine, tnap, geldanamycin, grape seed proanthocyanidins, pomegranate fruit extract, tetrandine, 4(2′-aminoethyl)amino-1,8-dimethylimidazo(1,2-α) quinoxaline, 2-amino-3-cyano-4-aryl-6-(2-hydroxy-phenyl)pyridine derivatives, acrolein, anandamide, as602868, cobrotoxin, dihydroxyphenylethanol, herbimycin α, inhibitor 22, isorhapontigenin, manumycin α, mlb120, nitric oxide, nitric oxide donating aspirin, thienopyridine, acetyl-boswellic acids, β-carboline, cyl-19s, cyl-26z, synthetic α-methylene-γ-butyrolactone derivatives, 2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl nicotinonitrile, plant compound α, flavopiridol, cyclopentones, jesterone dimmer, ps-1145, 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides, 1′ acetoxychavicol acetate, apigenin, cardamomin, synthetic triterpenoid, chs 828 (anticancer drug), diosgenin, furonaphthoquinone, guggulsterone, heparin-binding epidermal growth factor-like growth factor, falcarindol, hepatocyte growth factor, honokiol, hypoestoxide, γ-mangostin, garcinone β, kahweol, kava derivatives, ml120b, mx781 (retinoid antagonist), n-acetylcysteine, nitrosylcobalamin (vitamin B12 analog), non-steroidal anti-inflammatory drugs (NSAIDs), hepatits c virus ns5b, pan1 (aka nalp2 or pypaf2), n-(4-hydroxyphenyl) retinamide, sulforaphane, phenylisothiocyanate, survanta, piceatannol, 5-hydroxy-2-methyl-1,4-naphthoquinone, pten (tumor suppressor), theaflavin, tilianin, zerumbone, silibinin, sulfasalazine, sulfasalazine analogs, rosmarinic acid, staurosporine, γ tocotrienol, wedelolactone, betulinic acid, ursolic acid, thalidomide, interleukin-10, mollusum contagiosum virus mc159 protein, monochloramine, glycine chloramine, anethole, anti-thrombin III, artemisia vestita, aspirin, sodium salicylate, azidothymidine, baoganning, e3((4-methylphenyl)-sulfonyl)-2-propenenitrile, e3((4-t-butylphenyl)-sulfonyl)-2-propenenitrile, benzyl isothiocyanate, cyanidin 3-o-glucoside, cyanidin 3-o-(2(g)-xylosylrutinoside, cyanidin 3-o-rutinoside, buddlejasaponin IV, cacospongionolide β, carbon monoxide, carboplatin, cardamonin, chorionic gonadotropin, cycloepoxydon, 1-hydroxy-2-hydroxymethyl-3-pent-1-enylbenzene, decursin, dexanabinol, digitoxin, diterpenes (synthetic), docosahexaenoic acid, extensively oxidized low density lipoprotein, 4-hydroxynonenal, fragile histidine triad protein, gabexate mesilate, [6]-gingerol, casparol, imatanib, glossogyne tenuifolia, ibuprofen, indirubin-3′-oxime, interferon-α, licorice extracts, methotrexate, nafamostat mesilate, oleandrin, omega 3 fatty acids, panduratin α, petrosaspongiolide m, pinosylvin, plagius flosculosus extract polyacetylene spiroketal, phytic acid, prostaglandin α1, 20(s)-protopanaxatriol, rengyolone, rottlerin, saikosaponin-d, saline (low Na+ istonic), salvia miltiorrhizae water-soluble extract, pseudochelerythrine, 13-methyl-[1,3]-benzodioxolo-[5,6-c]-1,3-dioxolo-4,5 phenanthridinium), scoparone, silymarin, socs1, statins, sulindac, thi 52 (1-naphthylethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline), 1,2,4-thiadiazolidine derivatives, vesnarinone, xanthoangelol d, yc-1, yopj, acetaminophen, activated protein c, alachlor, α-melanocyte-stimulating hormone, amentoflavone, artemisia capillaris thunb extract, artemisia iwayomogi extract, I-ascorbic acid, antrodia camphorate, aucubin, baicalein, β-lapachone, blackberry extract, buchang-tang, capsaicin, catalposide, core protein of hepatitis c virus, cyclolinteinone, diamide, dihydroarteanniun, dobutamine, e-73 (cycloheximide analog), ecabet sodium, emodin, ephedrae herba, equol, erbstatin, estrogen, ethacrynic acid, fosfomycin, fungal gliotoxin, gamisanghyulyunbueum, genistein, genipin, glabridin, glimepiride, glucosamine sulfate, glutamine, gumiganghwaltang, heat shock protein-70, hypochlorite, interleukin-13, isomallotochromanol, isomallotochromene, vaccinia virus protein, kochia scoparia fruit, leflunomide metabolite, losartin, 5′-methylthioadenosine, momordin I, morinda officinalis extract, murr1 gene product, neurofibromatosis-2 protein, u0126, penetratin, pervanadate, β-phenylethyl and 8-methylsulphinyloctyl isothiocyanates, phenytoin, platycodin saponins, polymyxin β, poncirus trifoliata fruit extract, probiotics, pituitary adenylate cyclase-activating polypeptide, prostaglandin 15-deoxy-delta(12,14)-pgj(2), resiniferatoxin, sabaeksan, saccharomyces boulardii anti-inflammatory factor, sesquiterpene lactones (parthenolide; ergolide; guaianolides), st2 (interleukin-1-like receptor secreted form), thiopental, tipifarnib, titanium, tnp-470, stinging nettle (urtica dioica) plant extracts, trichomomas vaginalis infection, triglyceride-rich lipoproteins, ursodeoxycholic acid, xanthium strumarium I, vasoactive intestinal peptide, HIV-1 vpu protein, epoxyquinone a monomer, ro106-9920, conophylline, mol 294, perrilyl alcohol, mast205, rhein, 15-deoxy-prostaglandin j(2), antrodia camphorata extract, β-amyloid protein, surfactant protein α, dq 65-79 (aa 65-79 of the α helix of the -chain of the class II HLA molecule dqa03011), c5a, glucocorticoids (dexamethasone, prednisone, methylprednisolone), interleukin-10, interleukin-11, α-pinene, vitamin D, fox1j, dioxin, agastache rugosa leaf extract, alginic acid, astragaloside iv, atorvastatin, blue honeysuckle extract, n(1)-benzyl-4-methylbenzene-1,2-diamine, buthus martensi karsch extract, canine distemper virus protein, carbaryl, celastrol, chiisanoside, dehydroxymethylepoxyquinomicin, dipyridamole, diltiazem, eriocalyxin β, estrogen enhanced transcript, gangliosides, glucorticoid-induced leucine zipper protein, harpagophytum procumbens extracts, heat shock protein 72, hirsutenone, indole-3-carbinol, jm34 (benzamide derivative), 6-hydroxy-7-methoxychroman-2-carboxylic acid phenylamide, leptomycin β, levamisole, 2-(4-morpholynl) ethyl butyrate hydrochloride, nls cell permeable peptides, 2′,8″-biapigenin, nucling, o,o′-bismyristoyl thiamine disulfide, oregonin, 1,2,3,4,6-penta-o-galloyl-β-d-glucose, platycodi radix extract, phallacidin, piperine, pitavastatin, pn-50, rela peptides (p1 and p6), retinoic acid receptor-related orphan receptor-α, rhubarb aqueous extract, rolipram, salvia miltiorrhoza bunge extract, sc236 (a selective cox-2 inhibitor), selenomethionine, sophorae radix extract, sopoongsan, sphondin, younggaechulgam-tang, zud protein, zas3 protein, clarithromycin, fluvastatin, leflunomide, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine, serratamolide, moxifloxacin, sorbus commixta cortex, cantharidin, cornus officinalis extract, neomycin, omapatrilat, enalapril, cgs 25462, onconase, paeoniflorin, rapamycin, sargassum hemiphyllum methanol extract, shenfu, tripterygium polyglycosides, triflusal, hepatoma protein, andrographolide, melittin, 1′-acetoxychavicol acetate, 2-acetylaminofluorene, actinodaphine, adiponectin, nicotinamide, 3-aminobenzamide, 7-amino-4-methylcoumarin, amrinone, angiopoietin-1, anthocyanins, sequiterpene lactones, artemisinin, atrial natriuretic peptide, atrovastat, avra protein, baicalein, benfotiamine, β-catenin, biliverdin, bisphenol α, bovine serum albumin, brazilian, bromelain, calcium/calmodulin-dependent kinase kinase, calcitriol, campthothecin, sutherlandia frutescens, caprofin, capsiate, carbocisteine, cat's claw bark, maca, celecoxib, germcitabine, cheongyeolsaseuptang, chitosan, ciclosporin, cinnamaldehyde, 2-methoxycinnamaldehyde, 2- hydroxycinnamaldehyde, guaianolide 8-deoxylactucin, chlorophyllin, chondrotin sulfate proteoglycan degradation product, clarithromycin, cloricromene, commerical peritoneal dialysis solution, compound K, 6-hydroxy-7-methoxychroman-2-carboxylic acid phenylamide, cryptotanshinone, cyanoguanidine, cytochalasin d, da-9201 (from black rice), danshenshu, decoy oligonucleotides, diarylheptanoid 7-(4′-hydroxy-3′-methoxyphenyl)-1-phenylhept-4-en-3-one, α-difluoromethylornithine, dim/13c, diterpenoids from isodon rubescens or liverwort jungermannia, 4,10-dichloropyrido[5,6:4,5]thieno[3,2-d′:3,2- d]-1, 2, 3-ditriazine, e3330, ent-kaurane diterpenoids, epinastine hydrochloride, epoxyquinol α, erythromycin, evans blue, fenoldopam, fexofenadine hydrochloride, fibrates, fk778, flunixin meglumine, flurbiprofen, fomes fomentarius methanol extracts, fucoidan, glycoprotein-120, gallic acid, ganoderma lucidum, homeobox protein, geranylgeraniol, ghrelin, ginkgolide β, glycyrrhizin, halofuginone, helenalin, herbal compound 861, HIV-1 resistance factor, hydroxyethyl starch, hydroxyethylpuerarin, hypercapnic acidosis, hypericin, interleukin 4, IKB-like proteins, imd-0354, insulin-like growth factor binding protein-3,jsh-21 (n1-benzyl-4-methylbenzene-1,2-diamine), kamebakaurin, kaposi's sarcoma-associated herpesvirus k1 protein, ketamine, kt-90 (morphine synthetic derivative), linoleic acid, lithospermi radix, lovastatin, macrolide antibiotics, mercaptopyrazine, 2-methoxyestradiol, 6 (methylsulfinyl)hexyl isothiocyanate, metals (chromium, cadmium, gold, lead, mercury, zinc, arsenic), mevinolin, monomethylfumarate, moxifloxacin, myricetin, myxoma virus mnf, ndpp1, n-ethyl-maleimide, naringen, nicorandil, nicotine, nilvadipine, nitrosoglutathione, extracts of ochna macrocalyx bark, leucine-rich effector proteins of salmonella & shigella, omega-3 fatty acids oridonin 1,2,3,4,6-penta-o-galloyl-beta-d-glucose, interferon inducible protein, p21 (recombinant), peptide nucleic acid-DNA decoys, pentoxifylline (1-(5′-oxohexyl) 3,7-dimetylxanthine, peptide yy, pepluanone, perindopril, 6(5h)-phenanthridinone and benzamide, phenyl-n-tert-butylnitrone, phyllanthus amarus extracts, protein inhibitor of activatated stat1, pioglitazone, pirfenidone, polyozellin, prenylbisabolane 3, pro-opiomelanocortin, prostaglandin e2, protein-bound polysaccharide, pypaf1 protein, pyridine n-oxide derivatives, pyrithione, quinadril, quinic acid, raf kinase inhibitor protein, rapamycin, raloxifene, raxofelast, rebamipide, rhus verniciflua stokes fruits 36 kda glycoprotein, ribavirin, rifamides, ritonavir, rosiglitazone, sanggenon c, santonin diacetoxy acetal derivative, secretory leucoprotease inhibitor, n-(p-coumaroyl) serotonin, sesamin, simvastatin, sinomenine, sirt1 deacetylase overexpression, siva-1, sm-7368, solana nigrum I, 150 kda glycoprotein, sun c8079, tanacetum larvatum extract, tansinones, taurine+niacine, thiazolidinedione mcc-555, trichostatin α, triclosan plus cetylpyridinium chloride, triptolide, tyrphostin ag-126, uteroglobin, vascular endothelial growth factor, verapamil, withaferin α, 5,7-dihydroxy-8-methoxyflavone, xylitol, yan-gan-wan, yin-chen-hao, yucca schidigera extract, amp-activated protein kinase, apc0576, artemisia sylvatica, bsasm, bifodobacteria, bupleurum fruticosum phenylpropanoids, ebv protein, chromene derivatives, dehydroevodiamine, 4′-demethyl-6-methoxypodophyllotoxin, ethyl 2-[(3-methyl-2,5-dioxo(3-pyrrol inyl))amino]-4-(trifluoromethyl) pyrimidine-5-carboxylate, cycloprodigiosin hycrochloride, dimethylfumarate, fructus benincasae recens extract, glucocorticoids (dexametasone, prednisone, methylprednisolone), gypenoside xlix, histidine, HIV-1 protease inhibitors (nelfinavir, ritonavir, or saquinavir), 4-methyl- -(3-phenyl-propyl)-benzene-1,2-diamine, kwei ling ko, ligusticum chuanxiong hort root, nobiletin, NF□B repression factors, phenethylisothiocyanate, 4-phenylcoumarins, phomol, pias3, pranlukast, psychosine, quinazolines, resveratrol, ro31-8220, saucerneol d and saucerneol e, sb203580, tranilast, 3,4,5-trimethoxy-4′-fluorochalcone, uncaria tomentosum plant extract, mesalamine, mesuol, pertussis toxin binding protein, 9-aminoacridine derivatives (including the antimalaria drug quinacrine), adenosine and cyclic amp, 17-allylamino-17-demethoxygeldanamycin, 6-aminoquinazoline derivatives, luteolin, manassantins α and β, paromyxovirus sh gene products, qingkailing, shuanghuanglian, smilax bockii warb extract, tetracyclic a, tetrathiomolybdate, trilinolein, troglitazone, witheringia solanacea leaf extracts, wortmannin, α-zearalenol, antithrombin, rifampicin, and mangiferin (see http://people.bu.edu/gilmore/nf-kb/inhibitors/index.html which is incorporated by reference herein for a list of potential inhibitors). The presently disclosed invention can be especially beneficial because pain patients treated with protein-based cytokine inhibitors (for example and without limitation, etanercept or infliximab) often have immune responses directed against the recombinant (therapeutic) proteins. In the present invention, it is unlikely that there will be a significant immune response against a small molecule therapeutic compound.
  • The present invention can be used to treat a variety of conditions related to NFκB activation and pro-inflammatory cytokine responses. For example, embodiments according to the present invention could be used to contribute to the treatment of without limitation, osteoarthritis, alkylosing spondylitis, psoriasis, rheumatoid arthritis (RA), sepsis and degenerative disc disease. Further, it may be beneficial to coat implantable medical devices such as, without limitation, stents and stent graft with small molecule NF□B pathway inhibitors.
  • In one embodiment according to the present invention, the therapeutic agents described herein are delivered locally in order to minimize undesirable side effects associated with systemic delivery of the immunosuppressive agents. When delivered to local sites containing cells that have a responsive NFκB pathway, the therapeutic agents can be delivered through a device consisting of an infusion pump and a catheter. Local sites of delivery can include, but are not limited to the nerve root, the dorsal root ganglion (DRG), and focal sites of inflammation (containing infiltrating inflammatory cells). The distal, delivery end of the catheter can be surgically positioned in the tissue in close proximity to the targeted site (nerve root, DRG, etc). Alternatively, the distal end of the catheter may be positioned to deliver the therapeutic compound into the intrathecal space of the spinal cord. For acute therapeutic compound delivery, the proximal end of the catheter could remain outside of the patient's body and be attached to an external, refillable pump. For chronic administration of the compound, the proximal end of the catheter could be attached to a pump implanted subcutaneously within a patient. In this case, the pump would be able to be periodically refilled using transcutaneous syringe injection.
  • The NFκB inhibitors can be locally delivered by catheter and drug pump systems, delivered by direct local injection or through the use of polymers and/or drug-eluting stents as described in co-pending U.S. patent application Ser. No. 10/972,157 which is incorporated by reference herein. In one embodiment, a “controlled administration system” including a direct and local administration system can be used. A controlled administration system can be a depot or a pump system, such as, without limitation, an osmotic pump or an infusion pump. An infusion pump can be implantable and can be, without limitation, a programmable pump, a fixed rate pump, and the like. A catheter can be operably connected to the pump and configured to deliver agents of the present invention to a target tissue region of a subject. A controlled administration system can be a pharmaceutical depot (a pharmaceutical delivery composition) such as, without limitation, a capsule, a microsphere, a particle, a gel, a coating, a matrix, a wafer, a pill, and the like. A depot can comprise a biopolymer. The biopolymer can be a sustained-release biopolymer. The depot can be deposited at or near, generally in close proximity, to a target site. Embodiments of the present invention also can be delivered through the use of liposomes, polyethyleneimine, by iontophoresis, or by incorporation into other vehicles, such as biodegradable or non-biodegradable nanocapsules. The delivery technology (drug pump or polymer formulations) can also be useful for the delivery of small molecules directed against other gene targets for other clinical indications.
  • The present invention also includes kits. In one embodiment, the kits of the present invention comprise NFκB inhibitors of the present invention. In another embodiment, a kit of the present invention can contain one or more of the following in a package or container: (1) one or more NFκB inhibitors of the present invention; (2) one or more pharmaceutically acceptable adjuvants or excipients; (3) one or more vehicles for administration, such as one or more syringes; (4) one or more additional bioactive agents for concurrent or sequential administration; (5) instructions for administration; and/or (6) a catheter and drug pump. Embodiments in which two or more of components (1)-(6) are found in the same container can also be used.
  • When a kit is supplied, the different components of the compositions included can be packaged in separate containers and admixed immediately before use. Such packaging of the components separately can permit long-term storage without losing the active components' functions. When more than one bioactive agent is included in a particular kit, the bioactive agents may be (1) packaged separately and admixed separately with appropriate (similar or different) vehicles immediately before use, (2) packaged together and admixed together immediately before use or (3) packaged separately and admixed together immediately before use. If the chosen compounds will remain stable after admixture, however, the admixture need not occur immediately before use but can occur at a time before use, including in one example, minutes, hours, days, months or years before use or in another embodiment at the time of manufacture.
  • The compositions included in particular kits of the present invention can be supplied in containers of any sort such that the life of the different components are preserved and are not adsorbed or altered by the materials of the container. For example, sealed glass ampules can contain lyophilized agents or variants or derivatives thereof or other bioactive agents, or buffers that have been packaged under a neutral, non-reacting gas, such as, without limitation, nitrogen. Ampules can consist of any suitable material, such as, without limitation, glass, organic polymers, such as, polycarbonate, polystyrene, etc., ceramic, metal or any other material typically employed to hold similar reagents. Other examples of suitable containers include, without limitation, simple bottles that may be fabricated from similar substances as ampules, and envelopes, that can comprise foil-lined interiors, such as aluminum or an alloy. Other containers include, without limitation, test tubes, vials, flasks, bottles, syringes, or the like. Containers can have one or more sterile access ports, such as a bottle having a stopper that can be pierced by a hypodermic injection needle. Other containers may have two compartments that are separated by a readily removable membrane that upon removal permits the components to be mixed. Removable membranes may be, without limitation, glass, plastic, rubber, etc.
  • As stated earlier, kits can also be supplied with instructional materials. Instructions may be printed on paper or other substrate, and/or may be supplied as an electronic-readable medium, such as a floppy disc, CD-ROM, DVD-ROM, Zip disc, videotape, audiotape, flash memory device, etc. Detailed instructions may not be physically associated with the kit; instead, a user may be directed to an internet web site specified by the manufacturer or distributor of the kit, or supplied as electronic mail.
  • The terms “a” and “an” and “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
  • Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
  • Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these certain embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
  • Furthermore, numerous references have been made to patents and printed publications throughout this specification. Each of the above cited references and printed publications are herein individually incorporated by reference in their entirety.
  • In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

Claims (20)

1. A method of treating pain comprising:
administering one or more NFκB inhibiting compounds locally to a patient in need thereof.
2. A method according to claim 1 wherein said one or more NFκB inhibiting compounds are selected from the group consisting of sulfasalazine, sulindac, clonidine, helenalin, wedelolactone, pyrollidinedithiocarbamate (PDTC), Calbiochem IKK-2 inhibitor VI, Calbiochem IKK inhibitor III (BMS-345541), and combinations thereof.
3. A method according to claim 1 wherein said administering of said one or more NFκB inhibiting compounds inhibits the production of one or more pro-inflammatory cytokines selected from the group consisting of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6).
4. A method according to claim 1 wherein said one or more NFκB inhibiting compounds are administered locally to the perispinal region of the lumbar region of a spinal cord or are administered locally to the epidural space or the intrathecal space of the lumbar region of a spinal cord.
5. A method according to claim 1 wherein said one or more NFκB inhibiting compounds are administered locally from an administration route selected from the group consisting of a catheter and drug pump, one or more local injections, polymer release, and combinations thereof.
6. A method according to claim 1 wherein said pain is acute or neuropathic.
7. A method according to claim 1 wherein said pain is sciatica or radicular pain.
8. A dosing regimen comprising one or more NFκB inhibiting compounds and instructional information that directs the administration of said one or more NFκB inhibiting compounds for the local treatment of pain.
9. A dosing regimen according to claim 8 wherein said one or more NFκB inhibiting compounds are selected from the group consisting of sulfasalazine, sulindac, clonidine, helenalin, wedelolactone, pyrollidinedithiocarbamate (PDTC), Calbiochem IKK-2 inhibitor VI, Calbiochem IKK inhibitor III (BMS-345541), and combinations thereof.
10. A dosing regimen according to claim 8 wherein said instructional information directs said one or more NFκB inhibiting compounds to be administered locally to the perispinal region of the lumbar region of a spinal cord or to be administered locally to the epidural space or the intrathecal space of the lumbar region of a spinal cord.
11. A dosing regimen according to claim 8 wherein said instructional information directs said one or more NFκB inhibiting compounds to be administered locally from an administration route selected from the group consisting of a catheter and drug pump, one or more local injections, polymer release, and combinations thereof.
12. A dosing regimen according to claim 8 wherein said instructional information directs said one or more NFκB inhibiting compounds to be administered for the treatment of acute or neuropathic pain.
13. A dosing regimen according to claim 8 wherein said instructional information directs said one or more NFκB inhibiting compounds to be administered for the treatment of sciatica or radicular pain.
14. A dosing regimen according to claim 8 wherein said dosing regimen is part of a kit used for the treatment of pain.
15. A kit according to claim 14 wherein said kit further comprises an administration form.
16. A kit according to claim 15 wherein said administration form is selected from the group consisting of a catheter and drug pump, one or more syringes for local injections, compositions adapted for polymer release, and combinations thereof.
17. A composition comprising one or more NFκB inhibiting compounds wherein said compound is directed to be administered locally for the treatment of pain.
18. A composition according to claim 17 wherein said one or more NFκB inhibiting compounds are selected from the group consisting of sulfasalazine, sulindac, clonidine, helenalin, wedelolactone, pyrollidinedithiocarbamate (PDTC), Calbiochem IKK-2 inhibitor VI, Calbiochem IKK inhibitor III (BMS-345541), and combinations thereof.
19. A composition according to claim 17 wherein said one or more NFκB inhibiting compounds are directed to be administered locally to the perispinal region of the lumbar region of a spinal cord or are directed to be administered locally to the epidural space or the intrathecal space of the lumbar region of a spinal cord.
20. A composition according to claim 17 wherein said composition comprising one or more NFκB inhibiting compounds is directed to be administered locally from an administration route selected from the group consisting of a catheter and drug pump, one or more local injections, polymer release, and combinations thereof.
US11/460,012 2004-10-22 2006-07-26 Systems and Methods to Treat Pain Locally Abandoned US20060253100A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US11/460,012 US20060253100A1 (en) 2004-10-22 2006-07-26 Systems and Methods to Treat Pain Locally
JP2009521877A JP2009544717A (en) 2006-07-26 2007-06-19 NFκB inhibitor for locally treating pain
EP07798778A EP2043625B1 (en) 2006-07-26 2007-06-19 Nfkappab inhibitors to treat pain locally
CA002658245A CA2658245A1 (en) 2006-07-26 2007-06-19 Systems and methods to treat pain locally
ES07798778T ES2392197T3 (en) 2006-07-26 2007-06-19 NFKA / PPAB inhibitors to treat pain locally
EP11168573.1A EP2363122B1 (en) 2006-07-26 2007-06-19 Implant pellet comprising clonidine to treat pain locally
ES11168573.1T ES2480424T3 (en) 2006-07-26 2007-06-19 Systems and methods to treat pain locally
PCT/US2007/071593 WO2008014066A1 (en) 2006-07-26 2007-06-19 Nfkappab inhibitors to treat pain locally
US12/701,261 US8969397B2 (en) 2004-10-22 2010-02-05 Systems and methods to treat pain locally
US14/635,637 US20150174104A1 (en) 2004-10-22 2015-03-02 Systems and methods to treat pain locally
US16/184,089 US20190076403A1 (en) 2004-10-22 2018-11-08 Systems and methods to treat pain locally
US16/184,092 US20190083464A1 (en) 2006-07-26 2018-11-08 Systems and methods to treat pain locally
US16/874,984 US20210093612A1 (en) 2004-10-22 2020-05-15 Systems and methods to treat pain locally

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/972,157 US20050095246A1 (en) 2003-10-24 2004-10-22 Techniques to treat neurological disorders by attenuating the production of pro-inflammatory mediators
US11/460,012 US20060253100A1 (en) 2004-10-22 2006-07-26 Systems and Methods to Treat Pain Locally

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/972,157 Continuation-In-Part US20050095246A1 (en) 2003-10-24 2004-10-22 Techniques to treat neurological disorders by attenuating the production of pro-inflammatory mediators

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/701,261 Continuation US8969397B2 (en) 2004-10-22 2010-02-05 Systems and methods to treat pain locally

Publications (1)

Publication Number Publication Date
US20060253100A1 true US20060253100A1 (en) 2006-11-09

Family

ID=38590647

Family Applications (6)

Application Number Title Priority Date Filing Date
US11/460,012 Abandoned US20060253100A1 (en) 2004-10-22 2006-07-26 Systems and Methods to Treat Pain Locally
US12/701,261 Active 2025-07-14 US8969397B2 (en) 2004-10-22 2010-02-05 Systems and methods to treat pain locally
US14/635,637 Abandoned US20150174104A1 (en) 2004-10-22 2015-03-02 Systems and methods to treat pain locally
US16/184,089 Abandoned US20190076403A1 (en) 2004-10-22 2018-11-08 Systems and methods to treat pain locally
US16/184,092 Abandoned US20190083464A1 (en) 2006-07-26 2018-11-08 Systems and methods to treat pain locally
US16/874,984 Abandoned US20210093612A1 (en) 2004-10-22 2020-05-15 Systems and methods to treat pain locally

Family Applications After (5)

Application Number Title Priority Date Filing Date
US12/701,261 Active 2025-07-14 US8969397B2 (en) 2004-10-22 2010-02-05 Systems and methods to treat pain locally
US14/635,637 Abandoned US20150174104A1 (en) 2004-10-22 2015-03-02 Systems and methods to treat pain locally
US16/184,089 Abandoned US20190076403A1 (en) 2004-10-22 2018-11-08 Systems and methods to treat pain locally
US16/184,092 Abandoned US20190083464A1 (en) 2006-07-26 2018-11-08 Systems and methods to treat pain locally
US16/874,984 Abandoned US20210093612A1 (en) 2004-10-22 2020-05-15 Systems and methods to treat pain locally

Country Status (6)

Country Link
US (6) US20060253100A1 (en)
EP (2) EP2363122B1 (en)
JP (1) JP2009544717A (en)
CA (1) CA2658245A1 (en)
ES (2) ES2392197T3 (en)
WO (1) WO2008014066A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070104711A1 (en) * 1998-09-25 2007-05-10 Kjell Olmarker Use of certain drugs for treating nerve root injury
US20070116787A1 (en) * 2005-11-21 2007-05-24 Chih-Jung Yao Cancer treatment
US20070287991A1 (en) * 2006-06-08 2007-12-13 Mckay William F Devices and methods for detection of markers of axial pain with or without radiculopathy
US20090112177A1 (en) * 2007-10-31 2009-04-30 Warsaw Orthopedic, Inc. Implantable Device And Method for Delivering Drug Depots To A Site Beneath the Skin
US20090131908A1 (en) * 2007-11-20 2009-05-21 Warsaw Orthopedic, Inc. Devices and methods for delivering drug depots to a site beneath the skin
US20090220624A1 (en) * 2006-03-16 2009-09-03 Nicholas John Larkins Compositions comprising apocynin, ginkgo and ginger and uses thereof
US20090239868A1 (en) * 2007-10-23 2009-09-24 Institute Of Medical Molecular Design, Inc. Inhibitor of pai-1 production
WO2009129210A2 (en) * 2008-04-18 2009-10-22 Medtronic, Inc. Compositions and methods for treating post-operative pain using clonidine and bupivacaine
US20090264531A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Sulindac formulations in a biodegradable material
US20090263443A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedics, Inc. Methods for treating post-operative effects such as spasticity and shivering with clondine
US20090263453A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Methods and Compositions for Treating Pain Comprising a Statin
WO2009149191A2 (en) 2008-06-03 2009-12-10 University Of Rochester Methods of treating inflammatory intestinal disease and managing symptoms thereof
US20100106136A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug delivery device with sliding cartridge
US20100106133A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug cartridge for delivering a drug depot comprising a bulking agent and/or cover
US20100106132A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug cartridge for delivering a drug depot comprising superior and inferior covers
US20100137369A1 (en) * 2008-12-01 2010-06-03 Medtronic, Inc. Flowable pharmaceutical depot
CN101879151A (en) * 2010-07-15 2010-11-10 南昌大学 Application of emodin in preparing medicaments for treating P2X3 mediated neuropathic pains/nerve system diseases
US20110091372A1 (en) * 2009-09-01 2011-04-21 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
US20110091463A1 (en) * 2009-10-15 2011-04-21 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
US20120148504A1 (en) * 2010-12-09 2012-06-14 Indus Biotech Private Limited Complex of garcinol, cyclodextrin and method thereof
US8722855B2 (en) 2009-10-28 2014-05-13 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US8735546B2 (en) 2010-08-03 2014-05-27 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US8822645B2 (en) 2008-07-08 2014-09-02 Abbvie Inc. Prostaglandin E2 dual variable domain immunoglobulins and uses thereof
US8877221B2 (en) 2010-10-27 2014-11-04 Warsaw Orthopedic, Inc. Osteoconductive matrices comprising calcium phosphate particles and statins and methods of using the same
US20140336162A1 (en) * 2007-06-19 2014-11-13 Warsaw Orthopedic, Inc. Locally administrated low doses of corticosteroids
US8987418B2 (en) 2013-03-15 2015-03-24 Abbvie Inc. Dual specific binding proteins directed against IL-1β and/or IL-17
US9029508B2 (en) 2008-04-29 2015-05-12 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US9035027B2 (en) 2008-06-03 2015-05-19 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US9033912B2 (en) 2012-03-28 2015-05-19 Warsaw Orthopedic, Inc. Drug delivery system
US9046513B2 (en) 2010-08-26 2015-06-02 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US9045551B2 (en) 2012-11-01 2015-06-02 Abbvie Inc. Anti-DLL4/VEGF dual variable domain immunoglobulin and uses thereof
US9107983B2 (en) 2010-10-27 2015-08-18 Warsaw Orthopedic, Inc. Osteoconductive matrices comprising statins
US9109026B2 (en) 2008-06-03 2015-08-18 Abbvie, Inc. Dual variable domain immunoglobulins and uses thereof
US9120870B2 (en) 2011-12-30 2015-09-01 Abbvie Inc. Dual specific binding proteins directed against IL-13 and IL-17
US9308190B2 (en) 2011-06-06 2016-04-12 Warsaw Orthopedic, Inc. Methods and compositions to enhance bone growth comprising a statin
US9764122B2 (en) 2014-07-25 2017-09-19 Warsaw Orthopedic, Inc. Drug delivery device and methods having an occluding member
US9775978B2 (en) 2014-07-25 2017-10-03 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
USD802755S1 (en) 2016-06-23 2017-11-14 Warsaw Orthopedic, Inc. Drug pellet cartridge
US9840554B2 (en) 2015-06-15 2017-12-12 Abbvie Inc. Antibodies against platelet-derived growth factor (PDGF)
USD809652S1 (en) 2014-07-25 2018-02-06 Warsaw Orthopedic, Inc. Drug delivery device
US9901684B2 (en) 2013-10-17 2018-02-27 Warsaw Orthopedic, Inc. Drug delivery device with retaining member
US10093733B2 (en) 2014-12-11 2018-10-09 Abbvie Inc. LRP-8 binding dual variable domain immunoglobulin proteins
CN109589331A (en) * 2019-02-19 2019-04-09 刘晓双 A kind of external drug and application thereof inhibiting Postoperative Intravenous thrombosis
US10434261B2 (en) 2016-11-08 2019-10-08 Warsaw Orthopedic, Inc. Drug pellet delivery system and method
CN111153971A (en) * 2018-11-07 2020-05-15 上海医药集团股份有限公司 Isodon glaucocalyx glycoprotein XPS5-1, and preparation method and application thereof
CN111153972A (en) * 2018-11-07 2020-05-15 上海医药集团股份有限公司 Isodon glaucocalyx glycoprotein XPS10-1, and preparation method and application thereof
US10653619B2 (en) 2009-03-23 2020-05-19 Medtronic, Inc. Drug depots for treatment of pain and inflammation
USRE48948E1 (en) * 2008-04-18 2022-03-01 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable polymer
CN114159425A (en) * 2021-12-21 2022-03-11 宁夏医科大学 Application of nobiletin in preparation of medicine for treating neuropathic pain
CN115381953A (en) * 2022-10-14 2022-11-25 天津医科大学总医院 Application of Zip1 in inhibition of remifentanil-induced hyperalgesia
US11759614B2 (en) 2015-11-23 2023-09-19 Warsaw Orthopedic, Inc. Enhanced stylet for drug depot injector

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420114B2 (en) * 2008-04-18 2013-04-16 Warsaw Orthopedic, Inc. Alpha and beta adrenergic receptor agonists for treatment of pain and / or inflammation
US8946277B2 (en) 2008-04-18 2015-02-03 Warsaw Orthopedic, Inc. Clonidine formulations in a biodegradable polymer carrier
US9610243B2 (en) 2008-04-18 2017-04-04 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable polymer
US9132119B2 (en) * 2008-04-18 2015-09-15 Medtronic, Inc. Clonidine formulation in a polyorthoester carrier
US8956641B2 (en) * 2008-04-18 2015-02-17 Warsaw Orthopedic, Inc. Alpha adrenergic receptor agonists for treatment of inflammatory diseases
US9072727B2 (en) * 2008-04-18 2015-07-07 Warsaw Orthopedic, Inc. Alpha adrenergic receptor agonists for treatment of degenerative disc disease
US8557273B2 (en) * 2008-04-18 2013-10-15 Medtronic, Inc. Medical devices and methods including polymers having biologically active agents therein
US8629172B2 (en) 2008-04-18 2014-01-14 Warsaw Orthopedic, Inc. Methods and compositions for treating post-operative pain comprising clonidine
US20090264489A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Method for Treating Acute Pain with a Formulated Drug Depot in Combination with a Liquid Formulation
US8889173B2 (en) 2008-04-18 2014-11-18 Warsaw Orthopedic, Inc. Alpha adrenergic receptor agonists for treatment of pain and/or inflammation
US20090264478A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Sulfasalazine formulations in a biodegradable polymer carrier
EP2165706A1 (en) * 2008-09-18 2010-03-24 BioAlliance Pharma Treating Inflammatory Pain in Mucosa of the Oral Cavity Using Mucosal Prolonged Release Bioadhesive Therapeutic Carriers.
US20110097375A1 (en) * 2009-10-26 2011-04-28 Warsaw Orthopedic, Inc. Formulation for preventing or reducing bleeding at a surgical site
JP5791879B2 (en) * 2010-06-22 2015-10-07 三省製薬株式会社 NF-κB activation inhibitor and pore care agent
US9511018B2 (en) * 2012-04-05 2016-12-06 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable matrix
AU2013323528B2 (en) * 2012-09-27 2016-11-10 The Children's Medical Center Corporation Compounds for the treatment of obesity and methods of use thereof
US9066853B2 (en) * 2013-01-15 2015-06-30 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable fiber
CA2978869C (en) 2015-03-09 2023-09-19 Immune Modulation, Inc. Hypoestoxide, derivatives, related compounds, and agonists thereof for treatment or prevention of neurodegenerative diseases
JP2020536955A (en) 2017-10-06 2020-12-17 ファウンドリー セラピューティクス, インコーポレイテッド Implantable depot for controlled release of therapeutic agent

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692147A (en) * 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
US5711316A (en) * 1996-04-30 1998-01-27 Medtronic, Inc. Method of treating movement disorders by brain infusion
US5801188A (en) * 1997-01-08 1998-09-01 Medtronic Inc. Clonidine therapy enhancement
US5978702A (en) * 1996-05-13 1999-11-02 Medtronic, Inc. Techniques of treating epilepsy by brain stimulation and drug infusion
US6093180A (en) * 1995-04-28 2000-07-25 Medtronic, Inc. Intraparenchymal infusion catheter system
US6180355B1 (en) * 1998-05-07 2001-01-30 University Of Maryland, Baltimore Method for diagnosing and treating chronic pelvic pain syndrome
US20020071822A1 (en) * 2000-07-27 2002-06-13 Uhrich Kathryn E. Therapeutic polyesters and polyamides
US20030049256A1 (en) * 1999-02-24 2003-03-13 Tobinick Edward Lewis Cytokine antagonists for neurological and neuropsychiatric disorders
US20030077641A1 (en) * 1998-03-11 2003-04-24 Laskowitz Daniel T. Methods of suppressing microglial activation and systemic inflammatory responses
US20030119017A1 (en) * 2001-04-05 2003-06-26 Mcswiggen James A. Enzymatic nucleic acid treatment of diseases or conditions related to levels of IKK-gamma and PKR
US6596747B2 (en) * 1998-10-29 2003-07-22 Bristol-Myers Squibb Company Compounds derived from an amine nucleus and pharmaceutical compositions comprising same
US6594880B2 (en) * 1995-04-28 2003-07-22 Medtronic, Inc. Intraparenchymal infusion catheter system
US20030157061A1 (en) * 2001-12-05 2003-08-21 Pharmacia Corporation Combinations of a cyclooxygenase-2 selective inhibitor and a TNFalpha antagonist and therapeutic uses therefor
US20030175793A1 (en) * 1998-11-25 2003-09-18 Bennett C. Frank Antisense modulation of NF-kappa-B p65 subunit expression
US20030185826A1 (en) * 1999-02-24 2003-10-02 Tobinick Edward L. Cytokine antagonists for the treatment of localized disorders
US20040034357A1 (en) * 1999-08-03 2004-02-19 University Of Massachusetts, A Massachusetts Corporation Controlled release implantable devices
US20040052384A1 (en) * 2002-09-18 2004-03-18 Ashley James Patrick Noise suppression
US20040235364A1 (en) * 2003-05-20 2004-11-25 Yazaki Corporation Electrical connector and terminal holder
US20050058696A1 (en) * 2003-09-12 2005-03-17 Allergan, Inc. Methods and compositions for the treatment of pain and other alpha 2 adrenergic-mediated conditions
US20050075701A1 (en) * 2003-10-01 2005-04-07 Medtronic, Inc. Device and method for attenuating an immune response
US20050090549A1 (en) * 2003-10-23 2005-04-28 Medtronic, Inc. Intrathecal gabapentin for treatment of pain
US20050095246A1 (en) * 2003-10-24 2005-05-05 Medtronic, Inc. Techniques to treat neurological disorders by attenuating the production of pro-inflammatory mediators
US6902910B2 (en) * 1997-01-28 2005-06-07 Human Genome Sciences, Inc. Death domain containing receptor 4
US20050129731A1 (en) * 2003-11-03 2005-06-16 Roland Horres Biocompatible, biostable coating of medical surfaces
US20050182009A1 (en) * 2001-05-18 2005-08-18 Sirna Therapeutics, Inc. RNA interference mediated inhibition of NF-Kappa B / REL-A gene expression using short interfering nucleic acid (siNA)
US20050197312A1 (en) * 2004-03-03 2005-09-08 Kevin Fitzgerald Transcription factor RNA interference reagents and methods of use thereof
US20050209513A1 (en) * 2004-03-16 2005-09-22 Heruth Kenneth T Collecting sleep quality information via a medical device
US20060280797A1 (en) * 2005-04-25 2006-12-14 Shoichet Molly S Blends of temperature sensitive and anionic polymers for drug delivery
US7964585B2 (en) * 2006-03-14 2011-06-21 Case Western Reserve University Composition and method of treating peripheral neuropathy

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293539A (en) 1979-09-12 1981-10-06 Eli Lilly And Company Controlled release formulations and method of treatment
EP2275089A1 (en) 1993-11-19 2011-01-19 Alkermes Controlled Therapeutics, Inc. Preparation of biodegradable microparticles containing a biologically active agent
CA2212165A1 (en) * 1995-02-10 1996-08-15 Matthew A. Bergan Method and device for administering analgesics
HUP9700322A3 (en) * 1995-06-09 2001-03-28 Euro Celtique Sa Formulations and methods for providing prolonged local anesthesia
US6143728A (en) 1996-11-15 2000-11-07 The Picower Institute For Medical Research Guanylhydrazones useful for treating diseases associated with T cell activation
DE19716713A1 (en) 1997-04-21 1998-10-22 Paz Arzneimittelentwicklung Medicines containing ibuprofenthioester as inhibitors of Nf-kappaB-dependent formation of mediators of inflammation and pain
US7205280B2 (en) 1998-03-11 2007-04-17 Cognosci, Inc. Methods of suppressing microglial activation
JP2004537497A (en) 2000-11-08 2004-12-16 ザ ジェネラル ホスピタル コーポレーション Methods for inhibiting pain
US20020168360A1 (en) 2001-03-02 2002-11-14 Christine Dingivan Methods of preventing or treating inflammatory or autoimmune disorders by administering integrin alphanubeta3 antagonists in combination with other prophylactic or therapeutic agents
AU2002255805B2 (en) 2001-03-15 2005-03-24 North Shore Long Island Jewish Research Institute Method of using pyruvate and/or its derivatives for the treatment of cytokine-mediated inflammatory conditions
SE0101258D0 (en) 2001-04-06 2001-04-06 A & Science Invest Ab Treatment of low back pain and whiplash associated disorder
US6632217B2 (en) 2001-04-19 2003-10-14 Microsolutions, Inc. Implantable osmotic pump
WO2003070897A2 (en) 2002-02-20 2003-08-28 Ribozyme Pharmaceuticals, Incorporated RNA INTERFERENCE MEDIATED INHIBITION OF TNF AND TNF RECEPTOR SUPERFAMILY GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
CA2817619A1 (en) 2001-06-08 2002-12-08 Abbott Laboratories (Bermuda) Ltd. Methods of administering anti-tnf.alpha. antibodies
AU2003207708A1 (en) 2002-02-20 2003-09-09 Sirna Therapeutics, Inc. Rna interference mediated inhibition of map kinase genes
AU2003217747A1 (en) 2002-02-26 2003-09-09 North Shore-Long Island Jewish Research Insitute Inhibition of inflammatory cytokine production by stimulation of brain muscarinic receptors
WO2003083061A2 (en) 2002-03-26 2003-10-09 Centocor, Inc. Anti-tnf antibodies, compositions, methods and uses
US7345078B2 (en) 2002-05-31 2008-03-18 The Board Of Trustees Of Michigan State University NF-κB inhibitors and uses thereof
US20040005569A1 (en) 2002-07-02 2004-01-08 Isis Pharmaceuticals Inc. Antisense modulation of NF-kappa-B p50 subunit expression
US7166641B2 (en) * 2002-10-02 2007-01-23 Yung Shin Pharmaceutical Industrial Co., Ltd. Pharmaceutically acceptable salts containing local anesthetic and anti-inflammatory activities and methods for preparing the same
CA2503841A1 (en) * 2002-10-28 2004-05-13 Polymerix Corporation Therapeutic compositions
EP1462111A1 (en) 2003-03-28 2004-09-29 Universiteit Utrecht Holding B.V. Composition for inducing immunotolerance
US20040265364A1 (en) * 2003-06-25 2004-12-30 Binnur Ozturk Neuropathy cream
US20050026979A1 (en) * 2003-07-31 2005-02-03 Maha Ghazzi Methods for treating inflammation and inflammation-associated diseases with a statin and ether
US20050187176A1 (en) 2003-10-10 2005-08-25 Bates Paula J. Method for inhibiting NF-kappa B signaling and use to treat or prevent human diseases
CA2545062A1 (en) 2003-11-06 2005-05-26 Research Development Foundation Selective inhibitors of nuclear factor-kb activation and uses thereof
SE0303397D0 (en) 2003-12-17 2003-12-17 Index Pharmaceuticals Ab Compounds and method for RNA interference
EP1718602A4 (en) 2004-01-30 2007-12-12 Peplin Biolipids Pty Ltd Therapeutic and carrier molecules
US7741273B2 (en) * 2006-04-13 2010-06-22 Warsaw Orthopedic, Inc. Drug depot implant designs
US7993666B2 (en) * 2008-04-18 2011-08-09 Warsaw Orthopedic, Inc. Methods and compositions for treating pain comprising a statin
US8722079B2 (en) * 2008-04-18 2014-05-13 Warsaw Orthopedic, Inc. Methods for treating conditions such as dystonia and post-stroke spasticity with clonidine

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692147A (en) * 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
US6594880B2 (en) * 1995-04-28 2003-07-22 Medtronic, Inc. Intraparenchymal infusion catheter system
US6093180A (en) * 1995-04-28 2000-07-25 Medtronic, Inc. Intraparenchymal infusion catheter system
US5711316A (en) * 1996-04-30 1998-01-27 Medtronic, Inc. Method of treating movement disorders by brain infusion
US5978702A (en) * 1996-05-13 1999-11-02 Medtronic, Inc. Techniques of treating epilepsy by brain stimulation and drug infusion
US5801188A (en) * 1997-01-08 1998-09-01 Medtronic Inc. Clonidine therapy enhancement
US6902910B2 (en) * 1997-01-28 2005-06-07 Human Genome Sciences, Inc. Death domain containing receptor 4
US20030077641A1 (en) * 1998-03-11 2003-04-24 Laskowitz Daniel T. Methods of suppressing microglial activation and systemic inflammatory responses
US6180355B1 (en) * 1998-05-07 2001-01-30 University Of Maryland, Baltimore Method for diagnosing and treating chronic pelvic pain syndrome
US6596747B2 (en) * 1998-10-29 2003-07-22 Bristol-Myers Squibb Company Compounds derived from an amine nucleus and pharmaceutical compositions comprising same
US20030175793A1 (en) * 1998-11-25 2003-09-18 Bennett C. Frank Antisense modulation of NF-kappa-B p65 subunit expression
US20030185826A1 (en) * 1999-02-24 2003-10-02 Tobinick Edward L. Cytokine antagonists for the treatment of localized disorders
US20030049256A1 (en) * 1999-02-24 2003-03-13 Tobinick Edward Lewis Cytokine antagonists for neurological and neuropsychiatric disorders
US20040034357A1 (en) * 1999-08-03 2004-02-19 University Of Massachusetts, A Massachusetts Corporation Controlled release implantable devices
US20020071822A1 (en) * 2000-07-27 2002-06-13 Uhrich Kathryn E. Therapeutic polyesters and polyamides
US20030119017A1 (en) * 2001-04-05 2003-06-26 Mcswiggen James A. Enzymatic nucleic acid treatment of diseases or conditions related to levels of IKK-gamma and PKR
US20050182009A1 (en) * 2001-05-18 2005-08-18 Sirna Therapeutics, Inc. RNA interference mediated inhibition of NF-Kappa B / REL-A gene expression using short interfering nucleic acid (siNA)
US20030157061A1 (en) * 2001-12-05 2003-08-21 Pharmacia Corporation Combinations of a cyclooxygenase-2 selective inhibitor and a TNFalpha antagonist and therapeutic uses therefor
US20040052384A1 (en) * 2002-09-18 2004-03-18 Ashley James Patrick Noise suppression
US20040235364A1 (en) * 2003-05-20 2004-11-25 Yazaki Corporation Electrical connector and terminal holder
US20050058696A1 (en) * 2003-09-12 2005-03-17 Allergan, Inc. Methods and compositions for the treatment of pain and other alpha 2 adrenergic-mediated conditions
US20050075701A1 (en) * 2003-10-01 2005-04-07 Medtronic, Inc. Device and method for attenuating an immune response
US20050090549A1 (en) * 2003-10-23 2005-04-28 Medtronic, Inc. Intrathecal gabapentin for treatment of pain
US20050180974A1 (en) * 2003-10-24 2005-08-18 Medtronic, Inc. Extracellular TNF inhibitors for treating CNS disorders
US20050095246A1 (en) * 2003-10-24 2005-05-05 Medtronic, Inc. Techniques to treat neurological disorders by attenuating the production of pro-inflammatory mediators
US20050129731A1 (en) * 2003-11-03 2005-06-16 Roland Horres Biocompatible, biostable coating of medical surfaces
US20050197312A1 (en) * 2004-03-03 2005-09-08 Kevin Fitzgerald Transcription factor RNA interference reagents and methods of use thereof
US20050209513A1 (en) * 2004-03-16 2005-09-22 Heruth Kenneth T Collecting sleep quality information via a medical device
US20060280797A1 (en) * 2005-04-25 2006-12-14 Shoichet Molly S Blends of temperature sensitive and anionic polymers for drug delivery
US7964585B2 (en) * 2006-03-14 2011-06-21 Case Western Reserve University Composition and method of treating peripheral neuropathy

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070104711A1 (en) * 1998-09-25 2007-05-10 Kjell Olmarker Use of certain drugs for treating nerve root injury
US8057792B2 (en) 1998-09-25 2011-11-15 Sciaticon Ab Use of an antibody that blocks TNF-alpha activity for treating a nerve disorder mediated by nucleus pulposus
US7708995B2 (en) 1998-09-25 2010-05-04 Sciaticon Ab Use of TNF-alpha inhibitors for treating a nerve disorder mediated by nucleus pulposus
US20090196885A1 (en) * 2005-11-21 2009-08-06 National Health Research Institutes Cancer Treatment
US20070116787A1 (en) * 2005-11-21 2007-05-24 Chih-Jung Yao Cancer treatment
US8394423B2 (en) * 2006-03-16 2013-03-12 Nicholas John Larkins Compositions comprising apocynin, ginkgo and ginger and uses thereof
US20090220624A1 (en) * 2006-03-16 2009-09-03 Nicholas John Larkins Compositions comprising apocynin, ginkgo and ginger and uses thereof
US20070287991A1 (en) * 2006-06-08 2007-12-13 Mckay William F Devices and methods for detection of markers of axial pain with or without radiculopathy
US20140336162A1 (en) * 2007-06-19 2014-11-13 Warsaw Orthopedic, Inc. Locally administrated low doses of corticosteroids
US20090239868A1 (en) * 2007-10-23 2009-09-24 Institute Of Medical Molecular Design, Inc. Inhibitor of pai-1 production
US20090112177A1 (en) * 2007-10-31 2009-04-30 Warsaw Orthopedic, Inc. Implantable Device And Method for Delivering Drug Depots To A Site Beneath the Skin
US8029478B2 (en) 2007-10-31 2011-10-04 Warsaw Orthopedic, Inc. Implantable device and method for delivering drug depots to a site beneath the skin
US20090131908A1 (en) * 2007-11-20 2009-05-21 Warsaw Orthopedic, Inc. Devices and methods for delivering drug depots to a site beneath the skin
US8221358B2 (en) 2007-11-20 2012-07-17 Warsaw Orthopedic, Inc. Devices and methods for delivering drug depots to a site beneath the skin
US20090263321A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Compositions and Methods for Treating Post-Operative Pain Using Clonidine and Bupivacaine
USRE48948E1 (en) * 2008-04-18 2022-03-01 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable polymer
WO2009129210A2 (en) * 2008-04-18 2009-10-22 Medtronic, Inc. Compositions and methods for treating post-operative pain using clonidine and bupivacaine
US9132085B2 (en) 2008-04-18 2015-09-15 Warsaw Orthopedic, Inc. Compositions and methods for treating post-operative pain using clonidine and bupivacaine
US9289409B2 (en) * 2008-04-18 2016-03-22 Warsaw Orthopedic, Inc. Sulindac formulations in a biodegradable material
US8591935B2 (en) * 2008-04-18 2013-11-26 Warsaw Orthopedic, Inc. Methods and compositions for treating pain comprising a statin
WO2009129210A3 (en) * 2008-04-18 2010-09-16 Medtronic, Inc. Compositions and methods for treating post-operative pain using clonidine and bupivacaine
US20090263453A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Methods and Compositions for Treating Pain Comprising a Statin
US20090264531A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Sulindac formulations in a biodegradable material
US20090263443A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedics, Inc. Methods for treating post-operative effects such as spasticity and shivering with clondine
US9775800B2 (en) 2008-04-18 2017-10-03 Warsaw Orthopedic, Inc. Compositions and methods for treating post-operative pain using clonidine and bupivacaine
US20110217382A1 (en) * 2008-04-18 2011-09-08 Warsaw Orthopedic, Inc. Methods and Compositions for Treating Pain Comprising a Statin
US7993666B2 (en) * 2008-04-18 2011-08-09 Warsaw Orthopedic, Inc. Methods and compositions for treating pain comprising a statin
US9029508B2 (en) 2008-04-29 2015-05-12 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
EP2296683A2 (en) * 2008-06-03 2011-03-23 University Of Rochester Methods of treating inflammatory intestinal disease and managing symptoms thereof
WO2009149191A3 (en) * 2008-06-03 2010-03-25 University Of Rochester Methods of treating inflammatory intestinal disease and managing symptoms thereof
EP2296683A4 (en) * 2008-06-03 2012-03-07 Univ Rochester Methods of treating inflammatory intestinal disease and managing symptoms thereof
US9035027B2 (en) 2008-06-03 2015-05-19 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
WO2009149191A2 (en) 2008-06-03 2009-12-10 University Of Rochester Methods of treating inflammatory intestinal disease and managing symptoms thereof
US9109026B2 (en) 2008-06-03 2015-08-18 Abbvie, Inc. Dual variable domain immunoglobulins and uses thereof
US20110178030A1 (en) * 2008-06-03 2011-07-21 University Of Rochester Methods of treating inflammatory intestinal disease and managing symptoms thereof
US8703152B2 (en) 2008-06-03 2014-04-22 University Of Rochester Methods of treating inflammatory intestinal disease and managing symptoms thereof
US8822645B2 (en) 2008-07-08 2014-09-02 Abbvie Inc. Prostaglandin E2 dual variable domain immunoglobulins and uses thereof
US20100106132A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug cartridge for delivering a drug depot comprising superior and inferior covers
US9352137B2 (en) 2008-10-29 2016-05-31 Warsaw Orthopedic, Inc. Drug cartridge for delivering a drug depot comprising a bulking agent and/or cover
US20100106136A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug delivery device with sliding cartridge
US20100106133A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug cartridge for delivering a drug depot comprising a bulking agent and/or cover
US20100137369A1 (en) * 2008-12-01 2010-06-03 Medtronic, Inc. Flowable pharmaceutical depot
US8822546B2 (en) 2008-12-01 2014-09-02 Medtronic, Inc. Flowable pharmaceutical depot
US10653619B2 (en) 2009-03-23 2020-05-19 Medtronic, Inc. Drug depots for treatment of pain and inflammation
US20110091372A1 (en) * 2009-09-01 2011-04-21 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
US8586714B2 (en) 2009-09-01 2013-11-19 Abbvie, Inc. Dual variable domain immunoglobulins and uses thereof
US20110091463A1 (en) * 2009-10-15 2011-04-21 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
US8716450B2 (en) 2009-10-15 2014-05-06 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US8722855B2 (en) 2009-10-28 2014-05-13 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
CN101879151A (en) * 2010-07-15 2010-11-10 南昌大学 Application of emodin in preparing medicaments for treating P2X3 mediated neuropathic pains/nerve system diseases
US9493560B2 (en) 2010-08-03 2016-11-15 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US8735546B2 (en) 2010-08-03 2014-05-27 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US9046513B2 (en) 2010-08-26 2015-06-02 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US8877221B2 (en) 2010-10-27 2014-11-04 Warsaw Orthopedic, Inc. Osteoconductive matrices comprising calcium phosphate particles and statins and methods of using the same
US9107983B2 (en) 2010-10-27 2015-08-18 Warsaw Orthopedic, Inc. Osteoconductive matrices comprising statins
US20120148504A1 (en) * 2010-12-09 2012-06-14 Indus Biotech Private Limited Complex of garcinol, cyclodextrin and method thereof
US9956301B2 (en) 2010-12-09 2018-05-01 Indus Biotech Private Limited Complex of garcinol, cyclodextrin and method thereof
US9308190B2 (en) 2011-06-06 2016-04-12 Warsaw Orthopedic, Inc. Methods and compositions to enhance bone growth comprising a statin
US10363238B2 (en) 2011-06-06 2019-07-30 Warsaw Orthopedic, Inc. Methods and compositions to enhance bone growth comprising a statin
US9120870B2 (en) 2011-12-30 2015-09-01 Abbvie Inc. Dual specific binding proteins directed against IL-13 and IL-17
US9033912B2 (en) 2012-03-28 2015-05-19 Warsaw Orthopedic, Inc. Drug delivery system
US9163093B2 (en) 2012-11-01 2015-10-20 Abbvie Inc. Anti-DLL4/VEGF dual variable domain immunoglobulin and uses thereof
US9045551B2 (en) 2012-11-01 2015-06-02 Abbvie Inc. Anti-DLL4/VEGF dual variable domain immunoglobulin and uses thereof
US9944720B2 (en) 2012-11-01 2018-04-17 Abbvie Inc. Anti-DLL4/VEGF dual variable domain immunoglobulin and uses thereof
US9062108B2 (en) 2013-03-15 2015-06-23 Abbvie Inc. Dual specific binding proteins directed against IL-1 and/or IL-17
US8987418B2 (en) 2013-03-15 2015-03-24 Abbvie Inc. Dual specific binding proteins directed against IL-1β and/or IL-17
US11027069B2 (en) 2013-10-17 2021-06-08 Warsaw Orthopedic, Inc. Drug delivery device with retaining member
US9901684B2 (en) 2013-10-17 2018-02-27 Warsaw Orthopedic, Inc. Drug delivery device with retaining member
USD809652S1 (en) 2014-07-25 2018-02-06 Warsaw Orthopedic, Inc. Drug delivery device
US9764122B2 (en) 2014-07-25 2017-09-19 Warsaw Orthopedic, Inc. Drug delivery device and methods having an occluding member
US10080877B2 (en) 2014-07-25 2018-09-25 Warsaw Orthopedic, Inc. Drug delivery device and methods having a drug cartridge
US11464958B2 (en) 2014-07-25 2022-10-11 Warsaw Orthopedic, Inc. Drug delivery methods having an occluding member
US9775978B2 (en) 2014-07-25 2017-10-03 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US10384048B2 (en) 2014-07-25 2019-08-20 Warsaw Orthopedic, Inc. Drug delivery device and methods having an occluding member
US11504513B2 (en) 2014-07-25 2022-11-22 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US10478603B2 (en) 2014-07-25 2019-11-19 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US10093733B2 (en) 2014-12-11 2018-10-09 Abbvie Inc. LRP-8 binding dual variable domain immunoglobulin proteins
US9840554B2 (en) 2015-06-15 2017-12-12 Abbvie Inc. Antibodies against platelet-derived growth factor (PDGF)
US11759614B2 (en) 2015-11-23 2023-09-19 Warsaw Orthopedic, Inc. Enhanced stylet for drug depot injector
US10549081B2 (en) 2016-06-23 2020-02-04 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
USD802755S1 (en) 2016-06-23 2017-11-14 Warsaw Orthopedic, Inc. Drug pellet cartridge
USD802756S1 (en) 2016-06-23 2017-11-14 Warsaw Orthopedic, Inc. Drug pellet cartridge
USD802757S1 (en) 2016-06-23 2017-11-14 Warsaw Orthopedic, Inc. Drug pellet cartridge
US11413442B2 (en) 2016-06-23 2022-08-16 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US10434261B2 (en) 2016-11-08 2019-10-08 Warsaw Orthopedic, Inc. Drug pellet delivery system and method
US11478587B2 (en) 2016-11-08 2022-10-25 Warsaw Orthopedic, Inc. Drug depot delivery system and method
CN111153971A (en) * 2018-11-07 2020-05-15 上海医药集团股份有限公司 Isodon glaucocalyx glycoprotein XPS5-1, and preparation method and application thereof
CN111153972A (en) * 2018-11-07 2020-05-15 上海医药集团股份有限公司 Isodon glaucocalyx glycoprotein XPS10-1, and preparation method and application thereof
CN109589331A (en) * 2019-02-19 2019-04-09 刘晓双 A kind of external drug and application thereof inhibiting Postoperative Intravenous thrombosis
CN114159425A (en) * 2021-12-21 2022-03-11 宁夏医科大学 Application of nobiletin in preparation of medicine for treating neuropathic pain
CN115381953A (en) * 2022-10-14 2022-11-25 天津医科大学总医院 Application of Zip1 in inhibition of remifentanil-induced hyperalgesia

Also Published As

Publication number Publication date
US20210093612A1 (en) 2021-04-01
EP2363122B1 (en) 2014-06-11
CA2658245A1 (en) 2008-01-31
US20150174104A1 (en) 2015-06-25
JP2009544717A (en) 2009-12-17
ES2480424T3 (en) 2014-07-28
US20190083464A1 (en) 2019-03-21
US20190076403A1 (en) 2019-03-14
US20100159015A1 (en) 2010-06-24
EP2043625B1 (en) 2012-08-01
EP2363122A1 (en) 2011-09-07
US8969397B2 (en) 2015-03-03
ES2392197T3 (en) 2012-12-05
WO2008014066A1 (en) 2008-01-31
EP2043625A1 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
US20210093612A1 (en) Systems and methods to treat pain locally
Funk et al. Efficacy and mechanism of action of turmeric supplements in the treatment of experimental arthritis
Pannu et al. Post‐trauma Lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury
Reuter et al. Nuclear factor‐κB as a molecular target for migraine therapy
Célèrier et al. Evidence for opiate-activated NMDA processes masking opiate analgesia in rats
US20040076698A1 (en) Composition and methods for treating Alzheimer's disease and other amyloidoses
Liu et al. Lyophilized powder of catalpol and puerarin protected cerebral vessels from ischemia by its anti-apoptosis on endothelial cells
CN116077548A (en) Compositions and methods for treating lower urinary tract symptoms, benign prostatic hypertrophy, and erectile dysfunction
Melis et al. Antagonism of cannabinoid CB1 receptors in the paraventricular nucleus of male rats induces penile erection
Habibi-Asl et al. Attenuation of morphine-induced dependence and tolerance by ceftriaxone and amitriptyline in mice
Zhang et al. Cognitive-enhancing effects of fibrauretine on Aβ1–42-induced Alzheimer's disease by compatibilization with ginsenosides
Welcome et al. The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses
Hu et al. Effect of kai xin san on learning and memory in a rat model of paradoxical sleep deprivation
Li et al. Coeloglossum viride var. bracteatum extract attenuates Aβ-induced toxicity by inhibiting RIP1–driven inflammation and necroptosis
Nwidu et al. Anti-inflammatory and anti-nociceptive activities of stem-bark extracts and fractions of Carpolobia lutea (Polygalaceae)
WO2001012204A2 (en) Xanthine oxidase inhibitor containing compositions for the treatment of acetaminophen intoxication
US11918617B2 (en) Composition for the treatment of metabolic and mechanical neuropathies
US20190125826A1 (en) Methods and pharmaceutical composition for the treatment of inflammatory skin diseases associated with desmoglein-1 deficiency
CN111202740A (en) Application of trifoliate red sandalwood glycoside and antidepressant drug
Spindola et al. Derivatives of furanditerpenes from Pterodon genus: Pharmacological studies disclose their potential as chronic pain relief in mice
Ji et al. Effects of tegaserod on ileal peristalsis of guinea pig in vitro
CN108743580B (en) Application of the Radix Glycyrrhizae isoflavan first in preparation medicament for treatment of depression
Renno et al. A comparative study of excitatory and inhibitory amino acids in three different brainstem nuclei
Webb et al. Bioavailability following oral administration of a silibinin-phosphatidylcholine complex in cats
EP2710893A1 (en) Methods of treating autism spectrum disorders and compositions for same

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURRIGHT, ERIC N.;SHAFER, LISA L.;MCKAY, BILL;AND OTHERS;REEL/FRAME:018434/0511;SIGNING DATES FROM 20060911 TO 20060915

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION