Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060224078 A1
Publication typeApplication
Application numberUS 11/439,780
Publication date5 Oct 2006
Filing date23 May 2006
Priority date18 May 2000
Also published asEP1289415A1, EP1289415A4, US6760616, US7050848, US8090436, US20020072686, US20040181165, US20100049081, US20110313312, WO2001087154A1
Publication number11439780, 439780, US 2006/0224078 A1, US 2006/224078 A1, US 20060224078 A1, US 20060224078A1, US 2006224078 A1, US 2006224078A1, US-A1-20060224078, US-A1-2006224078, US2006/0224078A1, US2006/224078A1, US20060224078 A1, US20060224078A1, US2006224078 A1, US2006224078A1
InventorsMichael Hoey, Corbett Stone, Kevin Foley
Original AssigneeNuvasive, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Tissue discrimination and applications in medical procedures
US 20060224078 A1
Abstract
A system and method for discriminating tissue types, controlling the level of therapy to tissue, and determining the health or a known tissue by measuring the characteristics an electrical signal applied to conductive element located within or by the tissue. Additionally, the system and method may be used for determining whether the conductive tip of a pedicle probe or pedicle screw is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue, whether the conductive tip of a cannula is located adjacent to one of nerve tissue and annulus tissue, and whether the conductive tip of a cathode is located adjacent to one of nerve tissue and prostate gland tissue.
Images(4)
Previous page
Next page
Claims(14)
1. A system for determining pedicle integrity during spine surgery, comprising:
a controller for generating an electrical signal to be applied to tissue and for measuring the impedance of tissue to which the electrical signal is applied so as to determine pedicle integrity during spine surgery;
a probe having bi-polar electrodes configured to deliver said electrical signal generated by said controller to a portion of a pedicle during spine surgery; and
an output element in electrical communication with said controller adapted to convey information to a user regarding pedicle integrity based on the pedicle integrity determination by said controller.
2. The system of claim 1, wherein said electrical signal is generated by said controller in a digital form and converted to analog form prior to delivery by said probe.
3. The system of claim 2, further comprising a digital-to-analog converter adapted to convert said electrical signal generated by said controller from a digital form to an analog form.
4. The system of claim 1, wherein said probe is equipped with more than one pair of bi-polar electrodes.
5. The system of claim 1, wherein said controller is configured to determine pedicle integrity by monitoring the impedance of the tissue surrounding at least a portion of the probe to determine whether the probe is located in at least one of cortical bone of said pedicle, cancellous bone of said pedicle, and cortical bone near the boundary with soft tissue of said pedicle.
6. The system of claim 1, wherein said electrical signal has at least one of a fixed frequency and a sliding frequency.
7. A method for determining pedicle integrity during spine surgery, comprising the steps of:
(a) advancing a probe having bi-polar electrodes into a portion of a pedicle during spine surgery while delivering an electrical signal to said bi-polar electrodes of said probe; and
(b) measuring the impedance of the tissue adjacent to said probe during step (a) to determine pedicle integrity during spine surgery.
8. The method of claim 7, further comprising the step (c) of communicating to a user feedback regarding pedicle integrity determined in step (b).
9. The method of claim 7, wherein the delivery of said electrical signal and the measuring of tissue impedance is performed by a controller in electrical communication with said probe.
10. The method of claim 8, wherein the communication of feedback regarding pedicle integrity is performed by an output element.
11. An article of manufacture for use in determining pedicle integrity during spine surgery, the article of manufacture comprising a probe having bi-polar electrodes, said probe configured to allow a user to perform the steps:
(a) advancing said probe into a portion of a pedicle during spine surgery while delivering an electrical signal to said bi-polar electrodes of said probe; and
(b) measuring the impedance of the tissue adjacent to said probe during step (a) to determine pedicle integrity during spine surgery.
12. The article of manufacture of claim 11, wherein said probe is further configured to allow said user to perform the step (c) of examining feedback communicated to said user regarding pedicle integrity determined in step (b).
13. The method of claim 11, wherein the delivery of said electrical signal and the measuring of tissue impedance is performed by a controller in electrical communication with said probe.
14. The method of claim 12, wherein the communication of feedback regarding pedicle integrity is performed by an output element.
Description
    CROSS-REFERENCES TO RELATED APPLICATIONS
  • [0001]
    The present application is a divisional of commonly owned and co-pending U.S. patent application Ser. No. 10/812,038, entitled “Tissue Discrimination and Applications in Medical Procedures,” filed Mar. 29, 2004 and issued as U.S. Pat. No. 7,050,848 on May 23, 2006, which itself is a divisional of commonly owned and co-pending U.S. patent application Ser. No. 09/860,648, entitled “Tissue Discrimination and Applications in Medical Procedures, filed May 18, 2001 and issued as U.S. Pat. No. 6,760,616 on Jul. 6, 2004, the complete disclosure of which is hereby incorporated herein by reference in its entirety for all purposes. Additionally, the present application claims benefit under 35 U.S.C. 119(e) from U.S. Provisional Application Ser. No. 60/205,634 filed May 18, 2000; and U.S. Provisional Application Ser. No. 60/243,465 filed Oct. 25, 2000; the entire contents of which are hereby expressly incorporated by reference into this disclosure as if set forth fully herein.
  • BACKGROUND OF THE INVENTION
  • [0002]
    I. Field of the Invention
  • [0003]
    The present invention is related to tissue surveillance systems.
  • [0004]
    II. Discussion of the Prior Art
  • [0005]
    Systems and methods exist for determining when a probe, needle, catheter or other devices make contact with a particular tissue, e.g. U.S. Pat. No. 5,836,990 to Li entitled “Method and Apparatus for Determining Electrode/Tissue Contact.” The Li patent teaches a method for determining when a catheter makes contact with tissue covered with an ionic liquid. The system measures the electrical impedance at a distal end of the catheter and determines tissue contact has been made when the impedance increases. The system does not identify the type of tissue contacted and presumes the tissue is covered in an ionic liquid. Accordingly, a need exists for a system and method that identifies tissue and uses this information in medical procedures.
  • [0006]
    Systems and methods also exist for controlling the level of ablation of tissue. These systems monitor the impedance of tissue being ablated to determine if the ablation energy is optimal. The systems generally measure impedance to within approximately 20 ohms. These systems do not determine when sufficient therapy has been applied to the tissue or employ impedance measurement with low tolerance levels. Accordingly, a need exists for a system that may control any form of therapy by monitoring characteristics of an electrical signal applied to the tissue.
  • SUMMARY OF THE INVENTION
  • [0007]
    The present invention provides a system in which an electrical signal is applied to a tissue via electrodes disposed on a tissue probe. The electrical signal applied to the tissue preferably comprises a frequency variable current or voltage that is preferably applied to the tissue using a sliding frequency scale.
  • [0008]
    In accordance with the present invention, the response to the applied signal is measured as the signal passes through tissue disposed at, around, or adjacent to the probe. The inventors have found that different tissue types display different electrical transmission properties, including different capacitance and impedance properties. Accordingly, by measuring the electrical characteristics of the response signal, it is possible to determine the type of tissue through which the signal is passing. Preferably, this is accomplished by comparison to known exemplary signal characteristics for various tissue types. Furthermore, when the probe is known to be disposed within, around, or adjacent to a first tissue, the system and method may determine when the probe is advanced into a second tissue based on the changed electrical characteristics of the signal applied by the probe.
  • [0009]
    In accordance with the present invention, the electrical signal characteristics that are monitored may include the phase shift between the voltage and current passing through a selected tissue, and the impedance of the selected tissue. The inventors have experimentally determined that these properties vary from one tissue type to another. In a preferred aspect of the present invention, the electrical signal applied to the tissue may be a sliding frequency signal such that a frequency spectrum of phase shift and impedance of a tissue is determined. However, any electrical, magnetic, or optical signal with a measurable phase relationship and impedance to passage through the tissue can be used.
  • [0010]
    In a preferred method, a probe is advanced to a position in, at, or adjacent to a selected tissue and an electrical signal is applied to the tissue by an electrode on the probe. The response to this signal is then measured and compared against known electrical, magnetic, or optical transmission characteristics for the various tissue types. For example, the present invention provides a method and system for determining whether the conductive tip of a pedicle probe or pedicle screw is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue, whether the conductive tip of a cannula is located adjacent to one of nerve tissue and annulus tissue, and whether the conductive tip of a cathode is located adjacent to one of nerve tissue and prostate gland tissue.
  • [0011]
    Furthermore, the inventors have discovered that the signal transmission characteristics of various tissues vary as a function of the tissue's health. Accordingly, the present system can also be used to determine tissue health (for various tissue types) by comparing the signal responses of tissue in response to stimulation by the probe to responses for healthy tissue.
  • [0012]
    The inventors have also determined that different cell/tissue types exhibit different capacitive effects. In addition, these capacitive effects vary considerably between living and dead cells. Accordingly, in another aspect of the invention, the present system discriminates between living and dead tissues. This feature of the invention is particularly useful when the present system is used in conjunction with a tissue ablation system. For instance, the tissue ablation system may be prevented from providing unnecessary energy to ablate tissue and thereby protect surrounding tissue.
  • [0013]
    Moreover, the present system can be adapted to sense the presence of a particular type(s) of tissue as the probe is advanced through the patient's body. Such a feature is particularly advantageous when sensing for the presence of nerve tissue. Specifically, the probe can be advanced through the patient's body while the response to the electrical stimulation emitted by the probe is continuously monitored such that as nerve tissue is approached, the response signal will begin to exhibit characteristics indicative of nerve tissue.
  • [0014]
    Such nerve sensing features of the present invention can be used, for example, to sense for the presence of spinal nerves when advancing surgical equipment (which by way of example only may include cutting, drilling, screw insertion, implant, and tissue ablation systems) towards the patient's intervertebral space.
  • [0015]
    In an optional aspect of the present invention, a probe having an electrode positioned thereon is replaced with a probe that is itself electrified. For example, an electrified needle or an electrified trocar or cannula can be used as the probe. An advantage of having the entire probe emit the signal (rather than just an electrode disposed thereon) is that the probe itself can be made to smaller dimensions, particularly in the case of an electrified needle.
  • [0016]
    In optional aspects of the present invention, the probe is mono-polar. Specifically, only a first electrode is disposed on the probe. A second electrode is then positioned some distance away from the first electrode at another location on the body. Alternately, the probe may be bi-polar with both the first and second electrodes positioned on the probe itself. Additionally, the probe may include a plurality of bi-polar electrodes placed along the probe (such as around the tip and the length of the probe) to determine tissue types around the probe.
  • [0017]
    In a preferred aspect of the present invention, the measurement of the phase angle relationship between the voltage and current of the signal and impedance of the signal may be used to determine: (1) the type of tissue in which the probe is located; (2) the health of the tissue; (3) the relative location of the tip of the probe (e.g. in cases where the electrode is disposed in the tip of the probe); or (4) any combination of (1), (2) and (3). As such, by gathering data mapped by analyzing the response signal, measured characteristics can be used to correlate: (1) tissue identity, (2) tissue health, and (3) tissue location.
  • [0018]
    In addition, the present invention can be adapted to: (5) locate specific tissue within a body; (6) control application of therapy to tissue; (7) detect the state of health of a tissue; (8) navigate to tissue; and (9) any combination of the above-mentioned applications.
  • [0019]
    In one embodiment, the invention is a tissue system including a computer system having an analog-to-digital (A/D) converter and a digital-to-analog (D/A) converter interface (PCI board), that may be used to generate the control signal which is applied to the electrode or conductive tip of the probe. The computer generates the signal via the D/A converter. Then the A/D converter converts the signal received from the conductive tip into digital samples by sampling the signal at a predetermined rate where the digital samples may have a fixed or variable number of bits and have linear, logarithmic or other scaling. The computer system determines characteristics of the received signal from the digital samples, in particular the phase angle and impedance at the conductive tip or other location of the probe where the electrode(s) may be located. Based on the determined characteristics taken over time (which is then stored in a knowledge base or tabulated form), the present invention may determine tissue identity and tissue location. In a preferred aspect, the electrode disposed on the probe comprises a bipolar electrode conductive tip probe.
  • [0020]
    In an optional aspect of the present invention, the application of therapy to the tissue in which the probe is located may be precisely controlled, based on the characteristics of the tissue where the probe is located. For example, the application of heating or cooling therapy may be used to ablate or cool tissue. In one exemplary aspect, the same electrode(s) used for tissue discrimination (e.g. determining tissue type for tissue disposed adjacent to the electrode on the probe) may also be used for tissue ablation by heating.
  • [0021]
    In various aspects, the level of heating or cooling of the tissue may be modulated as a function of the measured characteristics of the tissue. In particular, the phase angle and impedance of the tissue change as the tissue is heated or cooled to a certain level. Accordingly, the application of therapy may be regulated by the present computer system. In particular, the computer system may communicate with a device applying therapy so as to automatically control the level of therapy.
  • [0022]
    Given that the present system can determine the type and location of various tissues within a patient, the present system may be used to determine the relative health of the tissue. In particular, the measured characteristics of the signal will vary for diseased or unhealthy tissue, as compared to normal healthy tissue. Thus, the present system may be used not only to determine the type and health of tissue, but also to control therapy for tissue based on the same. Furthermore, the probe may optionally be coupled with an automated navigation system that navigates within the patient based on the measured characteristics of the received signal. Such a navigation system may use the tissue identity and location data to navigate to a particular location within an organ. The computer system may then determine the health of the tissue at the location within the organ and control the application of therapy as appropriate.
  • [0023]
    As can be envisioned by one of ordinary skill in the art, many different combinations of the above features of the present invention may be used. Accordingly, the present invention is not limited by the scope of the appended claims.
  • [0024]
    In optional aspects of the invention, the characteristic electrical properties of the various tissue types are determined for different tissues at different RF frequencies. By way of example only, the signal may be emitted from the probe (into the surrounding tissue) at frequencies in the range of 400 kHz to 100 MHz. Determining the electrical properties of various tissues at various signal frequencies may be advantageous in that different cell (e.g. tissue) types may exhibit different harmonics. As such, tissues may be further characterized by measuring phase shift or impedance at various frequencies, or along a sliding frequency.
  • BRIEF DISCRIPTION OF THE DRAWINGS
  • [0025]
    Many advantages of the present invention will be apparent to those skilled in the art with a reading of this specification in conjunction with the attached drawings, wherein like reference numerals are applied to like elements and wherein:
  • [0026]
    FIG. 1 is a block diagram of a tissue discrimination system in accordance with the present invention;
  • [0027]
    FIG. 2 illustrates a method of controlling the application therapy to tissue according to the present invention; and
  • [0028]
    FIG. 3 illustrates a method of determining tissue health according to the present invention.
  • DISCRIPTION OF THE PREFERRED EMBODIMENT
  • [0029]
    Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The tissue discrimination system and related methods disclosed herein boasts a variety of inventive features and components that warrant patent protection, both individually and in combination.
  • [0030]
    FIG. 1 is a diagram of a tissue identification system 10 in accordance with the present invention. The system 10 includes a user-readable output device 12, a user input device 16, a processor 20, and a probe 22. The processor 20 includes a central processing unit (“CPU”) 14 and Digital-to-Analog Converter (“D/A”) and Analog-to-Digital (“A/D”) Converter 18. The CPU 14 may comprise any microprocessor having sufficient processing power to control the operation of the D/A & A/D 18 and output device 12. The D/A & A/D 18 may comprise any such device having a sufficient operating cycle to generate signals with the frequencies described herein and sufficient sampling rate to generate the digital samples described herein. The probe 22 may comprise any medical device that may be used to hold one or more electrode thereon where the electrodes transmit and receive electrical signals. By way of example only, the probe 22 may consist of any such suitable medical instrument including but not limited to a cannula, needle, catheter, FR ablation device, or laser. The probe 22 may have a single electrode (mono-polar), two electrodes (bipolar), or a plurality of electrodes (multi-polar) configuration. Throughout the remainder of the discussion, a probe 22 with a conductive tip is discussed as one exemplary embodiment. It is understood that the electrodes could be placed anywhere along the circumference or width and length of the probe 22. A probe 22 having multiple electrodes ideally includes groups of bipolar electrodes so the system or method of the present invention may map the response of the electrode pairs.
  • [0031]
    The CPU 14 controls the operation of the D/A & A/D 18 and output device 12 based upon user selection received via the user input device 16. The user input device 16 may comprise any input device including but not limited to a keyboard, mouse, or touch-sensitive screen. The output device 12 may consist of any output device controllable by the CPU 14 including but not limited to a computer monitor, printer, or other computer controlled display device. The system 10 generates an electrical signal that is transmitted to tissue near or about the probe 22. When the probe 22 has an omni-directional conductive tip, the electrical signal may be propagated to a wide area of tissue about the conductive tip. The conductive tip may include an electrode pair (bipolar) so that the electrical signal is directed primarily to tissue directly in the path of the probe's 22 conductive tip (electrode pair). The system 10 provides an electrical signal at the electrode(s) on the probe 22 via the D/A 18. In particular, the CPU 14 generates a digital representation of a signal to be transmitted by the probe 22. The D/A 18 converts the digital signal to an analog signal that is transmitted through tissue by the probe 22.
  • [0032]
    The probe 22 also receives signals conducted by tissue surrounding the conductive tip of the probe 22. The A/D 18 converts the analog signal received by the electrode(s) of probe 22 into a digital signal that may be processed by the CPU 14.
  • [0033]
    In one embodiment, the system 10 applies a fixed frequency signal to the electrodes located on probe 22. In an exemplary embodiment, the applied signal may have a frequency ranging from 400 KHz to 100 MHz. The system 10 may further apply a signal having a range or sliding frequency. The system 10 applies this signal to the electrode(s) via the CPU 14 and D/A 18.
  • [0034]
    The repeatable pattern of the applied signal may be any pattern where the phase of the signal may be determined, e.g. any signal having a measurable phase relationship (voltage to current). In one embodiment, the applied signal may be sinusoidal in nature. In an alternative embodiment, the signal may be a square wave signal where the phase of the signal is measured at a leading or a trailing edge of each square wave. As previously stated, any signal with a measurable phase relationship (voltage to current) may be used.
  • [0035]
    The A/D 18 converts signals received at the electrode(s) of the probe 22 to a digital signal for processing by the CPU 14. The CPU 14 determines characteristics of the tissue surrounding the probe's 22 electrodes by comparing the signal applied to the electrode(s) and the signal received from the same. In one embodiment the phase angle between voltage and current of the applied signal (effective capacitance) and impedance of the tissue surrounding the conductive element (electrode(s)) of the probe 22 is determined. It has been found that the measurement of the phase angle relationship and impedance may be used to determine the identity or type of tissue in which the probe electrode(s) is located, the relative health of the tissue, the relative location of the electrodes to other surrounding tissue, and to control the application of therapy to the tissue surrounding the probe's 22 electrode(s). In one embodiment, the measured characteristics may be used to determine the identity or type of tissue in which the probe electrode(s) is located, the relative health of the tissue, the relative location of the tip to other surrounding tissue, and to control the application of therapy to the tissue surrounding the probe's 22 electrode(s).
  • [0036]
    For example, the probe 22 may be placed in the kidney of a patient. Then, system 10 may apply a signal to the probe's 22 electrode(s) having a varying or fixed frequency. Then the system 10 determines the phase angle and impedance of the signal applied to the probe 22 for each frequency of the signal. In one embodiment, the system 10 may use the combination of characteristics and frequency of the applied signal to determine 1) that the electrode(s) of the probe is located within kidney tissue (identification of tissue) and 2) the specific location within the kidney tissue is the probe located, e.g., near the outer cordial or inner medulla of the kidney (specific identification of the tissue).
  • [0037]
    The system 10 may also determine whether the kidney tissue about the electrode(s) of the probe 22 is healthy, e.g., ischemic, or has tumors. By first knowing that the electrode(s) is in kidney tissue (a first tissue type), the system 10 can look for changes in the signal characteristics to determine that unhealthy tissue (a second tissue type) is present within the kidney. When the system 10 determines that the tissue about the probe's 22 electrode(s) is not healthy, the system 10 may apply therapy to the tissue. The therapy may include the application of heat energy (ablation) or removal of heat energy (cryogenic cooling) of the tissue. The system 10 may continue to monitor characteristics of the tissue about the electrode(s) to determine when sufficient therapy has been applied. Then, when sufficient therapy has been applied, the system 10 may stop the application of therapy. In one embodiment, sufficient therapy has been applied when the tissue dies. The system 10 may then monitor the phase angle and impedance of the applied signal to determine when cell or tissue necrosis has occurred. The system 10 may also consider the frequency of the applied signal relative to the phase angle and impedance.
  • [0038]
    The A/D converter 18 converts the signal received from the electrode(s) into digital samples by sampling the signal at a predetermined rate where the digital samples may have a fixed or variable number of bits and have linear, logarithmic or other forms of scaling. The system 10 determines characteristics of the received signal from the digital samples, in particular the phase angle and impedance at the electrode(s). The system 10 may also include a knowledge base coupled to the CPU 14. The knowledge base may be stored characteristics about a large variety of known tissues. The base may also be correlated or indexed on the frequency of the applied signal. The knowledge base may be a database stored in a fixed electronic medium (not shown) coupled to the CPU 14. In this embodiment, the CPU 14 compares the determined characteristics to characteristics stored in the database to determine tissue identity, location, health, and control the application of therapy. It is noted that the invention may also know the current position of the electrode(s), e.g. in which tissue the electrode(s) is currently disposed. The knowledge base may further include information that correlates to known current position of electrode(s) (within a first tissue) with measured characteristics so the system 10 may determine a second tissue type. Accordingly, the system 10 or method of the invention may determine the tissue type of a second tissue based on knowledge of the position of the electrode(s) in a previous first tissue and measured characteristics of the signal applied to the electrode(s).
  • [0039]
    It is noted that in another embodiment, the present invention may be used with a device that automatically navigates through tissue. By way of example only, the present invention may be coupled to an automated catheter system. The system 10 would provide tissue identity and location to the navigation system so the navigation system may navigate to a desired location. Once at the desired location, the system 10 may determine the health of the tissue. Then, the system 10 may control the application of therapy to the tissue based on the determined health of the tissue.
  • [0040]
    For example, a navigation system used in conjunction with system 10 may direct the probe 22 to a specific location within kidney tissue. Based on the known characteristics of the tissue, the health of the tissue may be determined and the application of therapy may be applied when needed. A method 30 of applying therapy is shown in FIG. 2. In step 32, the method 30 first determines the initial characteristics of the tissue. Then therapy is applied to the tissue (step 34). Therapy for the kidney tissue may include the application of heat or cooling therapy to ablate or cool the tissue. The level of heating or cooling of the tissue may be modulated as a function of the measured characteristics of the tissue. In particular, the phase angle and impedance of the tissue will change as the tissue is heated or cooled to a certain level. The method 30 applies a signal to electrode(s) in the tissue receiving therapy (step 36). The method 30 then determines the current tissue characteristics based on the applied signal (step 38). When the desired tissue characteristics (sufficient therapy applied) (step 40), the method 30 stops the application of therapy to the tissue (step 42). If, on the other hand, the desired tissue characteristics are not achieved, the method 30 returns to the step of applying a signal to the electrode(s) in tissue (step 36) and again progresses through the remaining steps. Accordingly, the application of therapy may be regulated by the system 10. In one embodiment, the system 10 communicates with a device applying therapy and automatically controls the level of therapy.
  • [0041]
    As noted, the system 10 may be used to determine the relative health of a tissue. The measured characteristics of the signal will vary for diseased or unhealthy tissue. For example, it has been found that cancerous cells have measurably different impedance from that of healthy tissue. FIG. 3 illustrates a method 50 of determining tissue health according to the present invention. The method 50 places the electrode(s) in known tissue (step 52). The tissue may be known by first determining the location of the electrode(s) using techniques described above. Then the method 50 applies a signal to the electrode(s) in the tissue of interest (step 54). The signal may be a signal of varying frequency, e.g. a sliding frequency signal in one embodiment. The method 50 then determines the tissue characteristics based on the applied signal (step 56). The determined characteristics are compared to normal or expected characteristics for health or normal known tissue (step 58). When the determined characteristics are different from the expected characteristics for the known tissue (when healthy) (by some tolerance amount), the method 50 indicates that the tissue at the electrode(s) is unhealthy (step 62). The method 50 may also indicate what type of disease the tissue may have based on known characteristics of diseased tissue e.g. tissue appears to be cancerous or ischemic. Otherwise, the system may report that the tissue near the electrode(s) appears to be healthy (step 64).
  • [0042]
    In another embodiment, the probe 22 may be a pedicle screw or pedicle probe. During the insertion of a pedicle screw, it is critical that the pedicle wall is not violated. Surgeons use image intensifiers and other equipment to prevent such a violation. The tissue discrimination system 10 of the present invention may be used to monitor the position of the pedicle probe or pedicle screw. In particular, the system 10 monitors the impedance and capacitance or phase shift at the tip of the pedicle probe or screw to determine whether the tip is in cortical bone, cancellous bone, or cortical bone near a boundary with soft tissue.
  • [0043]
    In this embodiment, the outer surface of the pedicle screw may be non-conductive except for the surface of the head and tip of the pedicle screw. Likewise, the outer surface of the pedicle probe is non-conductive except for the distal and proximal ends of the probe. A conductive lead is then applied to the head of the pedicle screw or proximal end of the pedicle probe to conduct a signal to the tip of the screw or probe. In one embodiment, the signal may have a fixed or varying frequency. The system 10 then determines the phase angle and impedance of the signal applied to the tip for each frequency of the signal. To accomplish this, the system 10 may use the combination of characteristics and frequency of the applied signal to determine whether the tip is located in cortical bone, cancellous bone, or cortical bone near the boundary with soft tissue. Depending on this determination, the surgeon may continue the insertion of the pedicle probe or screw.
  • [0044]
    In another embodiment, the probe 22 may be a cannula to be inserted adjacent to an annulus of a patient's spinal disc prior to performing an annulotomy. During the insertion of the cannula towards the annulus, it is critical that the cannula not rest against a nerve along side the annulus wall. Surgeons use electromyography (EMG) equipment and other equipment to prevent such a situation. The tissue discrimination system 10 of the present invention may be used to monitor the position of the cannula as it is advanced to the annulus wall. In particular, the system 10 monitors the impedance and capacitance or phase shift at the tip of the cannula to determine whether the distal tip is adjacent to nerve tissue or annulus tissue.
  • [0045]
    In this embodiment, the outer surface of the cannula is non-conductive except for the distal and proximal ends of the cannula. A conductive lead is then applied to the proximal end of the cannula to conduct a signal to the tip of the cannula, the signal having a fixed or varying frequency. The system 10 then determines the phase angle and impedance of the signal applied to the tip for each frequency of the signal. To accomplish this, the system 10 may use the combination of characteristics and frequency of the applied signal to determine whether the tip is located adjacent to nerve tissue or annulus tissue. Depending on this determination, the surgeon may continue the insertion of the cannula.
  • [0046]
    In another embodiment, the probe 22 may be an ablation cathode to be inserted into a patient's prostate gland prior to performing prostate gland ablation. During the insertion of the cathode into the prostate gland, it is critical that the cathode is not near or adjacent to nerve tissue along side or within the prostate gland. Surgeons use image intensifier equipment and other equipment to prevent such a situation. The tissue discrimination system 10 of the present invention may be used to monitor the position of the cathode as it is advanced into the prostate gland. In particular, the system 10 monitors the impedance and capacitance or phase shift at the tip of the cathode to determine whether the distal tip is adjacent to nerve tissue or prostate gland tissue.
  • [0047]
    In this embodiment, a signal is applied to the ablation cathode tip, the signal having a fixed or varying frequency. The system 10 then determines the phase angle and impedance of the signal applied to the tip for each frequency of the signal. To accomplish this, the system 10 may use the combination of characteristics and frequency of the applied signal to determine whether the tip is located adjacent to nerve tissue or prostate gland tissue. Depending on this determination, the surgeon may continue the insertion of the cathode.
  • [0048]
    While this invention has been described in terms of the best mode for achieving this invention's objections, it will be appreciated by those skilled in the art that variations may be accomplished in view of these teachings without deviating from the spirit or scope of the present invention. For example, the present invention may be implemented using any combination of computer programming software, firmware, or hardware. As a preparatory step to practicing the invention or constructing an apparatus according to the invention, the computer programming code (whether software or firmware) according to the present invention will typically be stored in one or more machine readable storage mediums such as fixed (hard) drives, diskettes, optical disks, magnetic tape, semiconductor memories such as ROMs, PROMs, etc., thereby making an article of manufacture in accordance with the invention. The article of manufacture containing the computer programming code is used by either executing the code directly from the storage device, by copying the code from the storage device into another storage device such as a hard disk, RAM, etc. or by transmitting the code on a network for remote execution.
  • [0049]
    As can be envisioned by one of skill in the art, many different combinations of the above may be used and accordingly the present invention is not limited by the scope of the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1548184 *11 Apr 19234 Aug 1925Cameron Will JHolder and control for pulp testers
US2704064 *10 Sep 195215 Mar 1955Meditron CompanyNeurosurgical stimulator
US2736002 *2 Sep 195221 Feb 1956 oriel
US3364929 *21 Dec 196423 Jan 1968Burroughs Wellcome CoMethod for administering muscle relaxant drug
US3664329 *9 Mar 197023 May 1972ConceptNerve locator/stimulator
US3682162 *4 Dec 19698 Aug 1972Wellcome FoundCombined electrode and hypodermic syringe needle
US3785368 *23 Aug 197115 Jan 1974Lumb DAbnormal nerve pressure locus detector and method
US3830226 *15 Jun 197320 Aug 1974ConceptVariable output nerve locator
US3957036 *3 Feb 197518 May 1976Baylor College Of MedicineMethod and apparatus for recording activity in intact nerves
US4099519 *14 Jan 197711 Jul 1978Warren Fred EDiagnostic device
US4164214 *25 Jul 197714 Aug 1979The Regents Of The University Of CaliforniaMethod and apparatus for measuring the sensitivity of teeth
US4207897 *13 Jul 197717 Jun 1980Spembly LimitedCryosurgical probe
US4224949 *17 Nov 197730 Sep 1980Cornell Research Foundation, Inc.Method and electrical resistance probe for detection of estrus in bovine
US4285347 *25 Jul 197925 Aug 1981Cordis CorporationStabilized directional neural electrode lead
US4291705 *10 Sep 197929 Sep 1981The Regents Of The University Of CaliforniaNeuromuscular block monitor
US4461300 *18 Jan 198224 Jul 1984Sutter Biomedical, Inc.Bone and tissue healing device including a special electrode assembly and method
US4515168 *22 Jul 19837 May 1985Chester Martin HClamp-on nerve stimulator and locator
US4519403 *29 Apr 198328 May 1985Medtronic, Inc.Balloon lead and inflator
US4562832 *21 Jan 19847 Jan 1986Wilder Joseph RMedical instrument and light pipe illumination assembly
US4573448 *5 Oct 19834 Mar 1986Pilling Co.Method for decompressing herniated intervertebral discs
US4592369 *8 Jul 19833 Jun 1986National Research Development Corp.Method and apparatus for use in temporal analysis of waveforms
US4595018 *6 Jun 198417 Jun 1986Instrumentarium Corp.Method of further developing the measuring of a neuro-muscular junction
US4633889 *12 Dec 19846 Jan 1987Andrew TalallaStimulation of cauda-equina spinal nerves
US4658835 *25 Jul 198521 Apr 1987Cordis CorporationNeural stimulating lead with fixation canopy formation
US4744371 *27 Apr 198717 May 1988Cordis Leads, Inc.Multi-conductor lead assembly for temporary use
US4759377 *26 Nov 198626 Jul 1988Regents Of The University Of MinnesotaApparatus and method for mechanical stimulation of nerves
US4807642 *18 Aug 198628 Feb 1989Brown David AElectromyographic repetitive strain injury monitor
US4892105 *11 Jan 19889 Jan 1990The Cleveland Clinic FoundationElectrical stimulus probe
US4926865 *17 Jan 198922 May 1990Oman Paul SMicrocomputer-based nerve and muscle stimulator
US5007902 *22 Feb 198916 Apr 1991B. Braun Melsungen AgCatheter set for plexus anesthesia
US5081990 *11 May 199021 Jan 1992New York UniversityCatheter for spinal epidural injection of drugs and measurement of evoked potentials
US5092344 *19 Nov 19903 Mar 1992Lee Tzium ShouRemote indicator for stimulator
US5127403 *21 Aug 19907 Jul 1992Cardiac Control Systems, Inc.Pacemaker catheter utilizing bipolar electrodes spaced in accordance to the length of a heart depolarization signal
US5196015 *30 Apr 199223 Mar 1993Neubardt Seth LProcedure for spinal pedicle screw insertion
US5282468 *8 Jan 19921 Feb 1994Medtronic, Inc.Implantable neural electrode
US5284153 *14 Apr 19928 Feb 1994Brigham And Women's HospitalMethod for locating a nerve and for protecting nerves from injury during surgery
US5284154 *23 Oct 19928 Feb 1994Brigham And Women's HospitalApparatus for locating a nerve and for protecting nerves from injury during surgery
US5299563 *31 Jul 19925 Apr 1994Seton Joseph ZMethod of using a surgical retractor
US5312417 *29 Jul 199217 May 1994Wilk Peter JLaparoscopic cannula assembly and associated method
US5313956 *3 Dec 199124 May 1994Dorsograf AbApparatus for measuring the transport time of nerve signals
US5327902 *14 May 199312 Jul 1994Lemmen Roger DApparatus for use in nerve conduction studies
US5333618 *30 Jun 19932 Aug 1994Gregory LekhtmanPortable self-contained instrument for the measurement of nerve resistance of a patient
US5383876 *22 Mar 199424 Jan 1995American Cardiac Ablation Co., Inc.Fluid cooled electrosurgical probe for cutting and cauterizing tissue
US5480440 *7 Jul 19932 Jan 1996Smith & Nephew Richards, Inc.Open surgical technique for vertebral fixation with subcutaneous fixators positioned between the skin and the lumbar fascia of a patient
US5482038 *28 Jun 19949 Jan 1996Cadwell Industries, Inc.Needle electrode assembly
US5484437 *10 Jun 199316 Jan 1996Michelson; Gary K.Apparatus and method of inserting spinal implants
US5540235 *30 Jun 199430 Jul 1996Wilson; John R.Adaptor for neurophysiological monitoring with a personal computer
US5549656 *15 May 199527 Aug 1996Med Serve Group, Inc.Combination neuromuscular stimulator and electromyograph system
US5593429 *28 Jun 199414 Jan 1997Cadwell Industries, Inc.Needle electrode with depth of penetration limiter
US5599279 *29 Jan 19964 Feb 1997Gus J. SlotmanSurgical instruments and method useful for endoscopic spinal procedures
US5630813 *8 Dec 199420 May 1997Kieturakis; Maciej J.Electro-cauterizing dissector and method for facilitating breast implant procedure
US5707359 *14 Nov 199513 Jan 1998Bufalini; BrunoExpanding trocar assembly
US5711307 *13 Apr 199527 Jan 1998Liberty Mutual Insurance CompanyMethod and apparatus for detecting myoelectric activity from the surface of the skin
US5728046 *18 Mar 199617 Mar 1998Aesculap AgSurgical retractor
US5741253 *29 Oct 199221 Apr 1998Michelson; Gary KarlinMethod for inserting spinal implants
US5759159 *25 Sep 19962 Jun 1998Ormco CorporationMethod and apparatus for apical detection with complex impedance measurement
US5772661 *27 Feb 199530 Jun 1998Michelson; Gary KarlinMethods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5775331 *7 Jun 19957 Jul 1998Uromed CorporationApparatus and method for locating a nerve
US5779642 *18 Feb 199714 Jul 1998Nightengale; ChristopherInterrogation device and method
US5785658 *7 Jun 199528 Jul 1998Sexant Medical CorporationIn vivo tissue analysis methods and apparatus
US5797854 *1 Aug 199525 Aug 1998Hedgecock; James L.Method and apparatus for testing and measuring current perception threshold and motor nerve junction performance
US5860973 *30 Oct 199619 Jan 1999Michelson; Gary KarlinTranslateral spinal implant
US5862314 *1 Nov 199619 Jan 1999Micron Electronics, Inc.System and method for remapping defective memory locations
US5872314 *25 Jul 199716 Feb 1999Clinton; Robert P.Method and apparatus for measuring characteristics of meat
US5885219 *21 Oct 199723 Mar 1999Nightengale; ChristopherInterrogation device and method
US5888196 *5 Jun 199530 Mar 1999General Surgical Innovations, Inc.Mechanically expandable arthroscopic retractors
US5902231 *24 Oct 199611 May 1999Sdgi Holdings, Inc.Devices and methods for percutaneous surgery
US5928139 *8 Jul 199827 Jul 1999Koros; Tibor B.Retractor with adjustable length blades and light pipe guides
US5928158 *25 Mar 199727 Jul 1999Aristides; ArellanoMedical instrument with nerve sensor
US6027456 *10 Jul 199822 Feb 2000Advanced Neuromodulation Systems, Inc.Apparatus and method for positioning spinal cord stimulation leads
US6038477 *23 Dec 199814 Mar 2000Axon Engineering, Inc.Multiple channel nerve stimulator with channel isolation
US6050992 *19 May 199718 Apr 2000Radiotherapeutics CorporationApparatus and method for treating tissue with multiple electrodes
US6074343 *16 Apr 199913 Jun 2000Nathanson; MichaelSurgical tissue retractor
US6104957 *21 Aug 199815 Aug 2000Alo; Kenneth M.Epidural nerve root stimulation with lead placement method
US6181961 *16 Dec 199830 Jan 2001Richard L. PrassMethod and apparatus for an automatic setup of a multi-channel nerve integrity monitoring system
US6206826 *18 Jun 199927 Mar 2001Sdgi Holdings, Inc.Devices and methods for percutaneous surgery
US6224549 *20 Apr 19991 May 2001Nicolet Biomedical, Inc.Medical signal monitoring and display
US6259945 *30 Apr 199910 Jul 2001Uromed CorporationMethod and device for locating a nerve
US6266558 *1 Dec 199824 Jul 2001Neurometrix, Inc.Apparatus and method for nerve conduction measurements with automatic setting of stimulus intensity
US6337994 *27 Apr 19998 Jan 2002Johns Hopkins UniversitySurgical needle probe for electrical impedance measurements
US6425901 *4 Dec 199730 Jul 2002Loma Linda University Medical CenterVascular wound closure system
US6564078 *4 Jun 199913 May 2003Nuvasive, Inc.Nerve surveillance cannula systems
US6579244 *24 Oct 200217 Jun 2003Cutting Edge Surgical, Inc.Intraosteal ultrasound during surgical implantation
US6719692 *23 Oct 200113 Apr 2004Aesculap Ag & Co. KgRotating surgical tool
US6760616 *18 May 20016 Jul 2004Nu Vasive, Inc.Tissue discrimination and applications in medical procedures
US6849047 *28 Mar 20031 Feb 2005Cutting Edge Surgical, Inc.Intraosteal ultrasound during surgical implantation
US6855105 *11 Jul 200215 Feb 2005Jackson, Iii Avery M.Endoscopic pedicle probe
US6902569 *17 Aug 20017 Jun 2005Image-Guided Neurologics, Inc.Trajectory guide with instrument immobilizer
US6929606 *13 May 200316 Aug 2005Depuy Spine, Inc.Retractor and method for spinal pedicle screw placement
US7050848 *29 Mar 200423 May 2006Nuvasive, Inc.Tissue discrimination and applications in medical procedures
US7079883 *7 May 200318 Jul 2006Nuvaslve, Inc.Nerve surveillance cannulae systems
US20020007129 *8 Jun 200117 Jan 2002Marino James F.Nerve movement and status detection system and method
US20020072686 *18 May 200113 Jun 2002Nuvasive, Inc.Tissue discrimination and applications in medical procedures
US20050004593 *26 Jul 20046 Jan 2005Depuy Spine, Inc.Non cannulated dilators
US20050004623 *30 Apr 20046 Jan 2005Patrick MilesSystem and methods for performing percutaneous pedicle integrity assessments
US20050075578 *25 Mar 20047 Apr 2005James GharibSystem and methods for performing surgical procedures and assessments
US20050182454 *9 Jan 200418 Aug 2005Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US20060025703 *18 Feb 20052 Feb 2006Nuvasive, Inc.System and methods for performing dynamic pedicle integrity assessments
US20060069315 *25 May 200530 Mar 2006Patrick MilesSurgical access system and related methods
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US765730818 Feb 20052 Feb 2010Nuvasive, Inc.System and methods for performing dynamic pedicle integrity assessments
US766454430 Apr 200416 Feb 2010Nuvasive, Inc.System and methods for performing percutaneous pedicle integrity assessments
US769105716 Jan 20046 Apr 2010Nuvasive, Inc.Surgical access system and related methods
US773896815 Oct 200515 Jun 2010Baxano, Inc.Devices and methods for selective surgical removal of tissue
US773896921 Jan 200915 Jun 2010Baxano, Inc.Devices and methods for selective surgical removal of tissue
US774063115 Oct 200522 Jun 2010Baxano, Inc.Devices and methods for tissue modification
US778525331 Jan 200631 Aug 2010Nuvasive, Inc.Surgical access system and related methods
US781980127 Feb 200426 Oct 2010Nuvasive, Inc.Surgical access system and related methods
US785781329 Aug 200628 Dec 2010Baxano, Inc.Tissue access guidewire system and method
US788753813 Mar 200615 Feb 2011Baxano, Inc.Methods and apparatus for tissue modification
US78921737 Dec 200922 Feb 2011Nuvasive, Inc.Surgical access system and related methods
US790584018 Oct 200415 Mar 2011Nuvasive, Inc.Surgical access system and related methods
US791884915 Oct 20055 Apr 2011Baxano, Inc.Devices and methods for tissue access
US792092224 Feb 20105 Apr 2011Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US793505122 Apr 20093 May 2011Nuvasive, Inc.Surgical access system and related methods
US793883017 Apr 200610 May 2011Baxano, Inc.Powered tissue modification devices and methods
US795957731 Mar 200814 Jun 2011Baxano, Inc.Method, system, and apparatus for neural localization
US796219131 Oct 200714 Jun 2011Nuvasive, Inc.Nerve surveillance cannulae systems
US796391515 Oct 200521 Jun 2011Baxano, Inc.Devices and methods for tissue access
US796392721 Apr 200421 Jun 2011Nuvasive, Inc.Electromyography system
US798700125 Jan 200726 Jul 2011Warsaw Orthopedic, Inc.Surgical navigational and neuromonitoring instrument
US80007821 Dec 200916 Aug 2011Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US800553514 Apr 200923 Aug 2011Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US801676723 Apr 200713 Sep 2011Nuvasive, Inc.Surgical access system and related methods
US802771620 Apr 200927 Sep 2011Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US80480804 May 20061 Nov 2011Baxano, Inc.Flexible tissue rasp
US80507691 May 20091 Nov 2011Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US806229816 Mar 200722 Nov 2011Baxano, Inc.Flexible tissue removal devices and methods
US806230016 Mar 200722 Nov 2011Baxano, Inc.Tissue removal with at least partially flexible devices
US80689129 Jan 200429 Nov 2011Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US809043629 Oct 20093 Jan 2012Nuvasive, Inc.Tissue discrimination and applications in medical procedures
US809245613 Jan 200910 Jan 2012Baxano, Inc.Multiple pathways for spinal nerve root decompression from a single access point
US811401930 Dec 200914 Feb 2012Nuvasive, Inc.Surgical access system and related methods
US813317330 Dec 200913 Mar 2012Nuvasive, Inc.Surgical access system and related methods
US81372848 Oct 200320 Mar 2012Nuvasive, Inc.Surgical access system and related methods
US814742115 Jul 20053 Apr 2012Nuvasive, Inc.System and methods for determining nerve direction to a surgical instrument
US816565314 Jun 201124 Apr 2012Nuvasive, Inc.Surgical access and nerve surveillance
US817275017 Mar 20108 May 2012Nuvasive, Inc.Surgical access system and related methods
US818242330 Dec 200922 May 2012Nuvasive, Inc.Surgical access system and related methods
US818717930 Dec 200929 May 2012Nuvasive, Inc.Surgical access system and related methods
US819235610 Dec 20095 Jun 2012Nuvasive, Inc.Surgical access system and related methods
US819235730 Dec 20095 Jun 2012Nuvasive, Inc.Surgical access system and related methods
US819243515 Oct 20055 Jun 2012Baxano, Inc.Devices and methods for tissue modification
US819243626 Nov 20085 Jun 2012Baxano, Inc.Tissue modification devices
US820631222 Sep 200626 Jun 2012Nuvasive, Inc.Multi-channel stimulation threshold detection algorithm for use in neurophysiology monitoring
US822139722 Apr 200917 Jul 2012Baxano, Inc.Devices and methods for tissue modification
US824434323 Aug 201114 Aug 2012Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US82550442 Feb 201028 Aug 2012Nuvasive, Inc.System and methods for performing dynamic pedicle integrity assessments
US8255045 *3 Apr 200828 Aug 2012Nuvasive, Inc.Neurophysiologic monitoring system
US825735627 May 20084 Sep 2012Baxano, Inc.Guidewire exchange systems to treat spinal stenosis
US826574416 Aug 201111 Sep 2012Nuvasive, Inc.Systems and methods for performing surgical procedures and assessments
US828759716 Apr 201016 Oct 2012Nuvasive, Inc.Method and apparatus for performing spine surgery
US830349818 Feb 20116 Nov 2012Nuvasive, Inc.Surgical access system and related methods
US830351511 Dec 20096 Nov 2012Nuvasive, Inc.Surgical access system and related methods
US830351620 Apr 20116 Nov 2012Baxano, Inc.Method, system and apparatus for neural localization
US831343011 Jan 200720 Nov 2012Nuvasive, Inc.Surgical access system and related methods
US832885128 Jul 200611 Dec 2012Nuvasive, Inc.Total disc replacement system and related methods
US834304612 Mar 20121 Jan 2013Nuvasive, Inc.Surgical access system and related methods
US835578020 Nov 200915 Jan 2013Nuvasive, Inc.Surgical access system and related methods
US83667126 Dec 20115 Feb 2013Baxano, Inc.Multiple pathways for spinal nerve root decompression from a single access point
US837467325 Jan 200712 Feb 2013Warsaw Orthopedic, Inc.Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
US838852731 Dec 20095 Mar 2013Nuvasive, Inc.Surgical access system and related method
US839410225 Jun 201012 Mar 2013Baxano, Inc.Surgical tools for treatment of spinal stenosis
US839864127 Dec 201119 Mar 2013Baxano, Inc.Tissue modification devices and methods
US840384114 Dec 200926 Mar 2013Nuvasive, Inc.Surgical access system and related methods
US84092064 May 20102 Apr 2013Baxano, Inc.Tissue modification devices and methods
US841965316 Jul 200916 Apr 2013Baxano, Inc.Spinal access and neural localization
US843088117 Apr 200630 Apr 2013Baxano, Inc.Mechanical tissue modification devices and methods
US84398324 Jan 201114 May 2013Nuvasive, Inc.Surgical access system and related methods
US850063417 Jan 20136 Aug 2013Nuvasive, Inc.Surgical access system and related methods
US850065326 Jun 20126 Aug 2013Nuvasive, Inc.Neurophysiology monitoring system configured for rapid stimulation threshold acquisition
US85122351 Jun 201220 Aug 2013Nuvasive, Inc.Surgical access system and related methods
US85237688 May 20123 Sep 2013Nuvasive, Inc.Surgical access system and related methods
US85485797 Aug 20121 Oct 2013Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US85509945 Nov 20128 Oct 2013Nuvasive, Inc.Surgical access system and related methods
US85510971 Nov 20108 Oct 2013Baxano Surgical, Inc.Tissue access guidewire system and method
US855680815 Jan 201315 Oct 2013Nuvasive, Inc.Surgical access system and related methods
US85625211 Feb 201322 Oct 2013Nuvasive, Inc.Surgical access system and related methods
US856831727 Sep 200629 Oct 2013Nuvasive, Inc.System and methods for nerve monitoring
US85683312 Feb 200629 Oct 2013Nuvasive, Inc.System and methods for monitoring during anterior surgery
US856841617 Aug 201229 Oct 2013Baxano Surgical, Inc.Access and tissue modification systems and methods
US857990226 Mar 201212 Nov 2013Baxano Signal, Inc.Devices and methods for tissue modification
US85857046 Oct 201119 Nov 2013Baxano Surgical, Inc.Flexible tissue removal devices and methods
US85914323 Jan 201126 Nov 2013Nuvasive, Inc.Surgical access system and related methods
US86029824 Apr 201310 Dec 2013Nuvasive, Inc.Surgical access system and related methods
US861374520 May 201124 Dec 2013Baxano Surgical, Inc.Methods, systems and devices for carpal tunnel release
US861716320 May 201131 Dec 2013Baxano Surgical, Inc.Methods, systems and devices for carpal tunnel release
US862846930 Jul 201314 Jan 2014Nuvasive, Inc.Surgical access system and related methods
US86349048 Nov 201121 Jan 2014Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US864734631 May 201211 Feb 2014Baxano Surgical, Inc.Devices and methods for tissue modification
US865213823 Sep 201118 Feb 2014Baxano Surgical, Inc.Flexible tissue rasp
US86631004 Sep 20134 Mar 2014Nuvasive, Inc.Surgical access system and related methods
US866322814 Sep 20114 Mar 2014Baxano Surgical, Inc.Tissue modification devices
US86728408 May 201218 Mar 2014Nuvasive, Inc.Surgical access system and related methods
US86790061 Feb 201325 Mar 2014Nuvasive, Inc.Surgical access system and related methods
US86965591 Feb 201315 Apr 2014Nuvasive, Inc.Surgical access system and related methods
US87088991 Feb 201329 Apr 2014Nuvasive, Inc.Surgical access system and related methods
US873812311 Feb 201327 May 2014Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US874078320 Jul 20063 Jun 2014Nuvasive, Inc.System and methods for performing neurophysiologic assessments with pressure monitoring
US87473074 Sep 201310 Jun 2014Nuvasive, Inc.Surgical access system and related methods
US875327031 Jul 201317 Jun 2014Nuvasive, Inc.Surgical access system and related methods
US875327113 Jan 201417 Jun 2014Nuvasive, Inc.Surgical access system and related methods
US876464911 Oct 20131 Jul 2014Nuvasive, Inc.Surgical access system and related methods
US87684508 Feb 20131 Jul 2014Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US8774911 *4 Jan 20118 Jul 2014Lee M. BuonoPedicle locator instrument
US87904062 Apr 201229 Jul 2014William D. SmithSystems and methods for performing spine surgery
US880162629 Dec 201112 Aug 2014Baxano Surgical, Inc.Flexible neural localization devices and methods
US88121167 May 201219 Aug 2014Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US88213969 Jun 20142 Sep 2014Nuvasive, Inc.Surgical access system and related methods
US882790020 Nov 20129 Sep 2014Nuvasive, Inc.Surgical access system and related methods
US884563711 Sep 201330 Sep 2014Baxano Surgical, Inc.Tissue access guidewire system and method
US884563914 Jan 201130 Sep 2014Baxano Surgical, Inc.Tissue modification devices
US887096011 Dec 201228 Oct 2014Nuvasive, Inc.Total disc replacement system and related methods
US887690429 Sep 20064 Nov 2014Nuvasive, Inc.Surgical access system and related methods
US891584618 Apr 201323 Dec 2014Nuvasive, Inc.Surgical access system and related methods
US892050016 Oct 201230 Dec 2014Nuvasive, Inc.Methods and apparatus for performing spine surgery
US89428019 Jun 201427 Jan 2015Nuvasive, Inc.Surgical access system and related methods
US89450041 Aug 20143 Feb 2015Nuvasive, Inc.Surgical access system and related methods
US89562833 Mar 201417 Feb 2015Nuvasive, Inc.Surgical access system and related methods
US897735215 May 201410 Mar 2015Nuvasive, Inc.Systems and methods for performing surgical procedures and assessments
US901477616 Jul 201321 Apr 2015Nuvasive, Inc.Surgical access and nerve surveillance
US903725014 Feb 201319 May 2015Nuvasive, Inc.System and methods for determining nerve proximity, direction and pathology during surgery
US910138625 Oct 201011 Aug 2015Amendia, Inc.Devices and methods for treating tissue
US91256821 Feb 20138 Sep 2015Amendia, Inc.Multiple pathways for spinal nerve root decompression from a single access point
US913194723 Jan 200915 Sep 2015Nuvasive, Inc.Neurophysiological apparatus and procedures
US916814928 Oct 201427 Oct 2015NaVasive, Inc.Total disc replacement system and related methods
US919248219 Dec 201424 Nov 2015Nuvasive, Inc.Methods and apparatus for performing spine surgery
US919876531 Oct 20121 Dec 2015Nuvasive, Inc.Expandable spinal fusion implants and related methods
US920487116 Jan 20158 Dec 2015Nuvasive, Inc.Surgical access system and related methods
US92479524 Jan 20112 Feb 2016Amendia, Inc.Devices and methods for tissue access
US926549316 Jan 201523 Feb 2016Nuvasive, Inc.Surgical access system and related methods
US929539628 Aug 201229 Mar 2016Nuvasive, Inc.Neurophysiologic monitoring system
US930174327 May 20145 Apr 2016Nuvasive, Inc.Surgical access system and related methods
US931415229 Oct 201319 Apr 2016Nuvasive, Inc.Surgical access system and related methods
US93142531 Feb 201319 Apr 2016Amendia, Inc.Tissue modification devices and methods
US932061825 Oct 201326 Apr 2016Amendia, Inc.Access and tissue modification systems and methods
US934549113 Feb 201424 May 2016Amendia, Inc.Flexible tissue rasp
US935174115 Nov 201331 May 2016Amendia, Inc.Flexible tissue removal devices and methods
US935184531 Mar 201131 May 2016Nuvasive, Inc.Method and apparatus for performing spine surgery
US939295319 Sep 201119 Jul 2016Nuvasive, Inc.Neurophysiologic monitoring
US945678315 Apr 20154 Oct 2016Nuvasive, Inc.System and methods for determining nerve proximity, direction and pathology during surgery
US945682910 Jun 20134 Oct 2016Amendia, Inc.Powered tissue modification devices and methods
US94630293 Mar 201411 Oct 2016Amendia, Inc.Tissue modification devices
US946304115 Dec 201511 Oct 2016Amendia, Inc.Devices and methods for tissue access
US94684053 Feb 201418 Oct 2016Nuvasive, Inc.Surgical access system and related methods
US948619928 Oct 20148 Nov 2016Nuvasive, Inc.Surgical access system and related methods
US94921513 Aug 201515 Nov 2016Amendia, Inc.Multiple pathways for spinal nerve root decompression from a single access point
US95725624 Dec 201521 Feb 2017Nuvasive, Inc.Surgical access system and related methods
US961007115 Jan 20154 Apr 2017Nuvasive, Inc.Surgical access system and related methods
US961017127 Oct 20154 Apr 2017Nuvasive, Inc.Total disc replacement system and related methods
US962273211 Oct 200518 Apr 2017Nuvasive, Inc.Surgical access system and related methods
US965574420 Oct 201523 May 2017Nuvasive, Inc.Expandable spinal fusion implants and related methods
US974385313 Feb 201529 Aug 2017Nuvasive, Inc.Electromyography system
US975049028 Apr 20145 Sep 2017Nuvasive, Inc.Surgical access system and related methods
US975706714 Mar 201312 Sep 2017Nuvasive, Inc.Systems and methods for performing neurophysiologic monitoring during spine surgery
US975707211 Feb 201412 Sep 2017Nuvasive, Inc.Waveform marker placement algorithm for use in neurophysiologic monitoring
US975724620 Oct 201512 Sep 2017Nuvasive, Inc.Methods and apparatus for performing spine surgery
US978882213 Jan 201617 Oct 2017Nuvasive, Inc.Surgical access system and related methods
US97953711 Mar 201624 Oct 2017Nuvasive, Inc.Surgical access system and related methods
US20050004623 *30 Apr 20046 Jan 2005Patrick MilesSystem and methods for performing percutaneous pedicle integrity assessments
US20070100212 *29 Sep 20063 May 2007Nuvasive, Inc.Surgical access system and related methods
US20070198062 *23 Apr 200723 Aug 2007Nuvasive, Inc.Surgical access system and related methods
US20100071626 *20 Jul 200925 Mar 2010Michael HoeySystem and method of detecting disease in mammal
US20120172937 *4 Jan 20115 Jul 2012Buono Lee MPedicle locator instrument
Classifications
U.S. Classification600/546, 600/547
International ClassificationA61B5/053, A61B18/14, A61B5/05, A61B5/04
Cooperative ClassificationA61B5/4893, A61B18/02, A61B17/7001, A61B5/4869, A61B5/0538, A61B18/04, A61B2017/00022, A61B5/0537
European ClassificationA61B5/48W, A61B5/053N, A61B5/48Y4, A61B5/053J