US20060171801A1 - Heatsink apparatus - Google Patents

Heatsink apparatus Download PDF

Info

Publication number
US20060171801A1
US20060171801A1 US11/315,276 US31527605A US2006171801A1 US 20060171801 A1 US20060171801 A1 US 20060171801A1 US 31527605 A US31527605 A US 31527605A US 2006171801 A1 US2006171801 A1 US 2006171801A1
Authority
US
United States
Prior art keywords
heat
coolant
casing
heat transfer
transfer chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/315,276
Inventor
Seiji Manabe
Kaoru Sato
Haruhiko Kohno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Assigned to MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. reassignment MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOHNO, HARUHIKO, MANABE, SEIJI, SATO, KAORU
Publication of US20060171801A1 publication Critical patent/US20060171801A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0673Units comprising pumps and their driving means the pump being electrically driven the motor being of the inside-out type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heatsink apparatus that circulates a coolant to cool heat-generating semiconductors, including a micro processing unit (hereinafter referred to as an MPU) used in a personal computer and the like, and other electronic components having heat-generating portions.
  • MPU micro processing unit
  • Recent electronic devices include highly integrated electronic components and generate high operating clock frequencies, thereby producing a larger amount of heat from the electronic components. Due to the heat increase, temperatures at contact points of the electronic components surpass an operating temperature range, resulting in more than a few malfunctions of the electronic components. It is thus a critical issue to maintain the temperatures of the electronic components within the operating temperature range so that the electronic components function properly.
  • FIG. 18 shows a cross-sectional view of a cooling module 301 that uses a centrifugal pump.
  • the heatsink apparatus disclosed in Related Art 1 in which a coolant flows through the center of an impeller 302 toward a heat-generating component 303 , has the following problems: a complex impeller bearing structure declines reliability; low rigidity of the impeller bearing causes noise or declines reliability; and resistance of the coolant running through a small hole at the center of the impeller causes difficulty in ensuring flow rate of the coolant, thus impeding improvement in cooling performance.
  • a compact heatsink apparatus as shown in FIG. 14 for example, is proposed in which a combined heatsink portion and pump circulates a coolant so as to cool a heated electronic component in a highly efficient manner.
  • FIG. 14 is a cross-sectional view of a centrifugal pump of a conventional heatsink apparatus
  • FIG. 15 illustrates a flow direction of the coolant in the centrifugal pump of the conventional heatsink apparatus
  • FIGS. 16 and 17 show structures of an electronic device having a heatsink apparatus.
  • the electronic device includes: body 1 of a laptop computer as the electronic device having the heatsink apparatus; keyboard 2 of the laptop computer; centrifugal pump 3 constituting the heatsink apparatus and contacting a heat-generating component for heat exchange; heat-generating electronic component 4 such as an MPU and the like; board 5 mounted with heat-generating electronic component 4 ; radiator 6 provided on a rear side of a laptop computer display and dissipating heat of the coolant to the exterior, the heat received from heat-generating electronic component 4 ; and closed circulation channel 7 connecting centrifugal pump 3 and radiator 6 and circulating the coolant.
  • FIG. 17 which shows a desktop computer having the heatsink apparatus, is omitted since the structure of the heatsink apparatus is the same as that in the laptop computer.
  • centrifugal pump 3 includes: open-type impeller 211 of centrifugal pump 3 ; open-type blades 211 a of impeller 211 ; magnet rotor 212 provided on an inner peripheral surface of impeller 211 ; stator 213 provided on an inner peripheral side of magnet rotor 212 ; coil 214 wound around stator 213 ; circuit board 215 mounted with electric circuits that provide a current to coil 214 ; upper casing 216 ; discharge channel 216 a formed in upper casing 216 ; suction channel 216 b also formed in upper casing 216 ; heat-receiving lower casing 218 fitted to upper casing 216 and contacting heat-generating electronic component 4 ; thick portion 218 a ; brim 218 b touching upper casing 216 ; recess 218 c ; contact surface 218 d contacting heat-
  • Centrifugal pump 3 further includes: shaft 219 forming a rotating axis of impeller 211 and fixed to upper casing 216 ; ring-shaped sealing member 220 fitted to upper casing 216 so as to form pump chamber 217 , as also shown in FIG. 15 ; cylindrical portion 220 a fitted to a side face of thick portion 218 a of lower casing 218 ; and water channel sealing portion 220 b provided between upper casing 216 and lower casing 218 and covering recess 218 c so as to form a water channel.
  • shaft 219 forming a rotating axis of impeller 211 and fixed to upper casing 216
  • ring-shaped sealing member 220 fitted to upper casing 216 so as to form pump chamber 217 , as also shown in FIG. 15 ; cylindrical portion 220 a fitted to a side face of thick portion 218 a of lower casing 218 ; and water channel sealing portion 220 b provided between upper casing 216 and lower casing 218 and covering recess 218
  • discharge connection 220 c provided on an upper side of ring-shaped sealing member 220 connects pump chamber 217 and discharge channel 216 a ;
  • suction connection 220 d provided on a lower side of ring-shaped sealing member 220 connects pump chamber 217 and suction channel 216 b .
  • Sealing member 221 such as an o-ring seals a portion between upper casing 216 and lower casing 218 .
  • centrifugal pump 3 of the heatsink apparatus Functions of centrifugal pump 3 of the heatsink apparatus are described below.
  • the coolant is drawn into suction channel 216 b and forced through suction connection 220 d .
  • the coolant is then led toward the center of pump chamber 217 by water channel sealing portion 220 b and propelled to an outer periphery of pump chamber 217 by rotation of blades 211 a .
  • the coolant is forced through discharge connection 220 c and discharged from discharge channel 216 a .
  • the heat emitted from heat-generating electronic component 4 is transferred from contact surface 218 d to radiating fins 218 e and thick portion 218 a .
  • FIG. 15 illustrates the flow direction of the coolant in centrifugal pump 3 , wherein the coolant enters in a direction of arrow X, runs along a heavy line and discharges in a direction of arrow Y.
  • the coolant enters from recess 218 c of lower casing 218 and flows on the surface of thick portion 218 a , thereby not required to pass through the center of impeller 211 .
  • the structure thus allows the heatsink apparatus to provide higher reliability and higher cooling performance than the heatsink apparatus disclosed in Related Art 1.
  • the conventional heatsink apparatus having combined centrifugal pump 3 reduces its size and provides high heat transfer performance in a central portion of lower casing 218 .
  • the conventional heatsink apparatus has low heat transfer efficiency on an outer peripheral side away from the central portion, thus falling short of achieving highly efficient heat transfer across the pump.
  • Providing heat-dissipating fins on the surface of thick portion 218 a can increase the heat transfer efficiency on the outer peripheral side, but also increases a gap between the surface of thick portion 218 a and blades 211 a , which causes a leakage flow of the coolant and thereby degrades pumping capability.
  • the present invention is provided to address the above-described problems.
  • a purpose of the present inventor is to provide a heatsink apparatus that has low thermal resistance on a pump side face and thereby improves overall cooling efficiency and maintains a temperature of a heat-generating electronic component low.
  • the present invention relates to a heatsink apparatus having a radiator and a centrifugal pump in a closed circulation channel for circulating a coolant, the centrifugal pump contacting a heat-generating component and releasing heat from the heat-generating component through heat exchange of the coolant thereinside, the radiator dissipating the heat.
  • the centrifugal pump includes: a first casing provided with a contact surface that contacts the heat-generating component; a second casing fitted to the first casing so as to form a space wherein the coolant flows; a partition wall member provided between the first and second casings so as to form a heat transfer chamber between the partition wall member and the first casing and to form a pump chamber that houses an impeller between the partition wall member and the second casing; a coolant inlet connected to the heat transfer chamber; a coolant outlet connected to the pump chamber; and the heat transfer chamber connected to the pump chamber through a through-hole formed in a central portion of the partition wall member.
  • FIG. 1 is a cross-sectional view of a centrifugal pump in a heatsink apparatus according to a first embodiment of the present invention
  • FIG. 2 is an exploded cross-sectional view of the centrifugal pump in the heatsink apparatus according to the first embodiment of the present invention
  • FIG. 3 is a perspective view of a lower casing according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view of the lower casing according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view of the lower casing according to the first embodiment of the present invention.
  • FIG. 6 is a perspective view of a ring-shaped sealing member as a single unit according to the first embodiment of the present invention.
  • FIG. 7 illustrates a flow direction of a coolant in the centrifugal pump according to the first embodiment of the present invention
  • FIG. 8 is a cross-sectional view of a centrifugal pump in a heatsink apparatus according to a second embodiment of the present invention.
  • FIG. 9 is an exploded cross-sectional view of the centrifugal pump in the heatsink apparatus according to the second embodiment of the present invention.
  • FIG. 10 is a perspective view of a lower casing according to the second embodiment of the present invention.
  • FIG. 11 is a perspective view of the lower casing according to the second embodiment of the present invention.
  • FIG. 12 is a perspective view of a ring-shaped sealing member as a single unit according to the second embodiment of the present invention.
  • FIG. 13 illustrates a flow direction of a coolant in the centrifugal pump according to the second embodiment of the present invention
  • FIG. 14 is a cross-sectional view of a centrifugal pump in a conventional heatsink apparatus
  • FIG. 15 illustrates a flow direction of a coolant in the centrifugal pump of the conventional heatsink apparatus
  • FIG. 16 illustrates a structure of an electronic device having a heatsink
  • FIG. 17 illustrates a structure of an electronic device having a heatsink
  • FIG. 18 is a cross-sectional view of a cooling module that uses a centrifugal pump.
  • FIG. 1 is a cross-sectional view of the centrifugal pump in the heatsink apparatus according to the first embodiment of the present invention
  • FIG. 2 is an exploded cross-sectional view of the centrifugal pump in the heatsink apparatus according to the first embodiment of the present invention
  • FIGS. 3 to 5 are perspective views of a lower casing according to the first embodiment of the present invention
  • FIG. 6 is a perspective view of a ring-shaped sealing member as a single unit according to the first embodiment of the present invention
  • FIG. 7 illustrates a flow direction of a coolant in the centrifugal pump according to the first embodiment of the present invention.
  • An overall structure of an electronic device having the heatsink apparatus according to the first embodiment is the same as that in the conventional art, thus FIGS. 16 and 17 are also referred in the first embodiment. Detailed explanations of the figures are as described in the conventional art.
  • Centrifugal pump 3 includes: open-type impeller 11 of centrifugal pump 3 ; open-type blades 11 a ; small holes 11 b formed near the center of impeller 11 ; and magnet rotor 12 attached to an inner peripheral surface of impeller 11 .
  • Impeller 11 and magnet rotor 12 are separately formed in the first embodiment.
  • magnet rotor 12 may be integrally formed by magnetizing a portion of impeller 11 , which is made of magnetic material mixed plastics.
  • Centrifugal pump 3 of the first embodiment has a thickness of 3 mm to 50 mm, a representative radius of 10 mm to 100 mm, a revolution of 1,000 rpm to 8,000 rpm and a head of 0.5 m to 10 m.
  • Centrifugal pump 3 further includes: stator 13 provided on an inner peripheral side of magnet rotor 12 ; coil 14 wound around stator 13 to generate a magnetic field in stator 13 ; and circuit board 15 mounted with electric circuits that provide a current to coil 14 . It is preferable to layer a plurality of silicon sheets when forming stator 13 so as to minimize eddy-current losses. It is further preferable to use an insulation coated copper wire for coil 14 . A wire diameter and wire turns of coil 14 are optimized based on a power voltage and a space factor. Mounted on circuit board 15 are a hole element that detects a rotating position of magnet rotor 12 and a transistor or a diode that switches a current flow.
  • Centrifugal pump 3 further includes: upper casing 16 housing impeller 11 ; discharge channel 16 a formed in upper casing 16 ; suction channel 16 b formed in upper casing 16 ; recess 16 c providing a space to receive magnetic circuits, including stator 13 ; and fitting surface 16 d fitted to a ring-shaped sealing member, which will be described later.
  • upper casing 16 it is preferable to mold plastics such as polyphenylene sulfide (PPS) and polyphenylene ether (PPE), since upper casing 16 has a complex structure and is required to have certain heat resistance. It is not preferable, on the other hand, to form upper casing 16 of metal, since fluctuation in magnetic flux generated by the magnetic circuits such as stator 13 and the like may cause eddy-current losses.
  • PPS polyphenylene sulfide
  • PPE polyphenylene ether
  • Centrifugal pump 3 furthermore includes pump chamber 17 and lower casing 18 that contacts heat-generating electronic component 4 having heat conducting grease and the like (not shown in the figure) therebetween.
  • Lower casing 18 is formed of metallic material having high heat conductance and high heat dissipating performance, such as copper, aluminum and the like, and is processed in casting, forging, machining or a combination of the processing methods.
  • Lower casing 18 fits to upper casing 16 and forms a space wherein the coolant flows, such as pump chamber 17 .
  • lower casing 18 has a structure as shown in FIG. 3 .
  • Lower casing 18 as shown in FIGS. 3 and 7 includes: base 18 f ; ring-shaped thick portion 18 a * formed on base 18 f and having upper side face 18 t slanted at an angle identical to are angle of partition wall 20 e of ring-shaped sealing member 20 , which will be described later; C-shaped cylindrical portion 18 g formed on base 18 f having substantially the same center as impeller 11 and circulating the coolant in the vicinity of through-hole 20 f , which will be described later; cutout 18 h formed in cylindrical portion 18 g ; linear guiding plate 18 i standing perpendicularly to base 18 f and extending from an outer peripheral side to an inner peripheral side of lower casing 18 toward cylindrical portion 18 g ; brim 18 b touching upper casing 16 ; cutout 18 c for taking in the coolant; contact surface 18 d contacting heat-generating electronic component 4
  • Guiding plate 18 i has a height to upper side face 18 u facing ring-shaped sealing member 20 lower on the cylindrical portion 18 g side, slanting at an angle identical to the angle of partition wall 20 e of ring-shaped sealing member 20 .
  • cylindrical portion 18 g and guiding plate 18 i are formed together with lower casing 18 in order to maximize an area that lower casing 18 contacts the coolant. Due to manufacturing limitations, however, cylindrical portion 18 g and guiding plate 18 i may be formed on a rear side of the ring-shaped sealing member, which will be described later, or formed as separate parts.
  • Centrifugal pump 3 of the first embodiment has pin-type heat-dissipating fins 18 e as shown in FIG. 3 .
  • plate- or rib-type fins having a circular arc shape arranged in a concentric pattern may be formed as shown in FIG. 4 .
  • plate- or rib-type fins extending in a radial pattern may be formed as shown in FIG. 5 .
  • Pin-type heat-dissipating fins 18 e as shown in FIG. 3 maximize an area for heat dissipation and thus transfer the heat most efficiently.
  • Plate- or rib-type heat-dissipating fins 18 e having a circular arc shape as shown in FIG. 4 do not only increase the area for heat dissipation, but also reduce flow resistance of the coolant.
  • Plate- or rib-type heat-dissipating fins 18 e extending radially as shown in FIG.
  • Heat-dissipating fins 18 e may have a shape other than the above-described shapes. Heat-dissipating fins 18 e may also have a mix of different shapes. A shape of fins inside and outside of cylindrical portion 18 g needs not to be the same; i.e., pin-type heat-dissipating fins 18 e may be disposed outside cylindrical portion 18 g while rib-type heat-dissipating fins 18 e inside cylindrical portion 18 g . Other combinations of shapes are also possible.
  • shaft 19 provided on upper casing 16 rotatably supports impeller 11 .
  • Shaft 19 made of highly corrosion-resistant material such as stainless, is inserted and molded to upper casing 16 to form one piece.
  • Ring-shaped sealing member 20 fits to upper casing 16 so as to form pump chamber 17 .
  • Sealing member 21 such as an o-ring, seals a portion between upper casing 16 and lower casing 18 in order to keep the coolant from leaking therefrom.
  • Round heat transfer chamber 22 provided between ring-shaped sealing member 20 , which will be described later, and lower casing 18 , forms a circulation channel with cylindrical portion 18 g and ring-shaped thick portion 18 a * of lower casing 18 , and connects to through-hole 20 f , which will be described later, of ring-shaped sealing member 20 .
  • ring-shaped sealing member 20 When forming ring-shaped sealing member 20 having a structure as shown in FIG. 6 , it is preferable to mold plastics such as polyphenylene sulfide (PPS) and polyphenylene ether (PPE), since, similar to upper casing 16 , ring-shaped sealing member 20 has a complex structure and is required to have certain heat resistance. As FIG. 6
  • cylindrical portion 20 a is fitted to a side face of ring-shaped thick portion 18 a * of lower casing 18 ; partition wall 20 e is provided having a narrow gap with blades 11 a ; through-hole 20 f is formed in a central portion of partition wall 20 e ; discharge-connection 20 c , formed on the upper side of ring-shaped sealing member 20 , connects pump chamber 17 and discharge channel 16 a ; and suction connection 20 d , provided on the lower side of ring-shaped sealing member 20 , connects round heat transfer chamber 22 and suction channel 16 b.
  • partition wall 20 e that forms pump chamber 17 is formed together with ring-shaped sealing member 20 to facilitate manufacturing.
  • partition wall 20 e may be formed separately from ring-shaped sealing member 20 .
  • partition wall 20 e has a conic surface in the first embodiment, but may have a flat surface instead.
  • Flat-shaped partition wall 20 e requires blades 11 a to have a flat-shaped end accordingly.
  • conic-shaped partition wall 20 lowers a height of round heat transfer chamber 22 , which is located in a central portion of lower casing 18 and has the highest temperature, and thereby locally accelerates a current speed of the coolant in the portion.
  • a high current speed of the coolant reduces a temperature boundary layer, thus improving heat transfer efficiency. Meanwhile, lowering the entire height of round heat transfer chamber 22 increases the flow resistance and reduces the flow rate of the coolant that runs through the heatsink apparatus, thus adversely increasing the thermal resistance. Conic-shaped partition wall 20 e , however, hardly increases the total flow resistance and thereby improves the heat transfer efficiency.
  • coil 14 is wound around stator 13 , and circuit board 15 mounted with electronic components is attached to stator 13 .
  • the assembled part having stator 13 is then inserted into recess 16 c of upper casing 16 .
  • a filler (not shown in the figure) is injected into recess 16 c and hardened in a temperature-controlled bath and the like.
  • the filler is used to dissipate the heat from the electronic components mounted on circuit board 15 and to keep the coolant from contacting circuit board 15 in case of leakage. It is desirable to use an epoxy potting agent as the filler.
  • impeller 11 is inserted into shaft 19 formed together with upper casing 16 .
  • Ring-shaped sealing member 20 is then inserted into upper casing 16 so that an outer peripheral surface of cylindrical portion 20 a fits to fitting surface 16 d .
  • suction connection 20 d and suction channel 16 b are set to connect, so are discharge connection 20 c and discharge channel 16 a .
  • sealing member 21 is set to an outer peripheral surface of ring-shaped thick portion 18 a *, and lower casing 18 is fitted and screwed (not shown in the figure) to upper casing 16 .
  • Activating circuit board 15 generates an alternating magnetic field in stator 13 .
  • the magnetic field rotates impeller 11 combined with magnet rotor 12 , thereby providing momentum to the coolant and causing a negative-pressure in the central portion.
  • the coolant is drawn in from suction channel 16 b .
  • the coolant is forced through suction connection 20 d then into round heat transfer chamber 22 provided on an outer peripheral side of cylindrical portion 18 g and between base 18 f and partition wall 20 e .
  • the coolant then circulates on base 18 f .
  • FIG. 7 shows the above-described flow direction of the coolant inside centrifugal pump 3 .
  • the coolant enters in a direction of arrow P, runs along a heavy line, then discharges in a direction of arrow Q.
  • substantially C-shaped cylindrical portion 18 g so as to allow round heat transfer chamber 22 to work as the circulation channel prevents the coolant that enters centrifugal pump 3 from being directly drawn in through-hole 20 f , thus allowing the coolant to contact a larger area of lower casing 18 . Further, providing guiding plate 18 i prevents the coolant that enters centrifugal pump 3 from repeatedly circulating on base 18 f , thus smoothly directing the coolant to through-hole 20 f before turning full circle on base 18 f.
  • Lower casing 18 meanwhile receives on contact surface 18 d the heat emitted from heat-generating electronic component 4 .
  • lower casing 18 of the first embodiment has base 18 f having a flat shape even on the outer peripheral side of lower casing 18 .
  • Lower casing 18 of the first embodiment thereby allows the heat to transfer extensively on a short heat transfer path inside lower casing 18 and to reach surfaces of heat-dissipating fins 18 e , base 18 f and cylindrical portion 18 g . Since the heat transfer path is short, the thermal resistance is low during the transfer.
  • surface temperatures of heat-dissipating fins 18 e , base 18 f and cylindrical portion 18 g approach a temperature of heat-generating electronic component 4 .
  • the coolant contacts at a high speed the surfaces of heat-dissipating fins 18 e , base 18 f and cylindrical portion 18 g that have high temperatures after receiving the heat. Thereby, a temperature boundary layer forms thin and the coolant efficiently receives the heat from lower casing 18 .
  • the conventional heatsink apparatus which has blades 211 a proximate to a surface of thick portion 218 a (refer to FIG. 14 ), does not allow forming of fins thereon to expand the surface area, though forming of dimples at best. Unlike lower casing 218 as shown in FIG.
  • lower casing 18 of the first embodiment is able to have large heat-dissipating fins 18 e on the outer peripheral side of lower casing 18 .
  • Lower casing 18 of the first embodiment thereby significantly increases an area contacting the coolant and greatly reduces a weight of centrifugal pump 3 .
  • the surface of thick portion 218 a of lower casing 218 provides two functions as shown in FIG. 14 : a function to transfer the heat to the coolant and a function to form a wall of pump chamber 217 .
  • the function to transfer the heat to the coolant is provided to the surfaces of base 18 f and heat-dissipating fins 18 e of lower casing 18 , and the function to form pump chamber 17 to partition wall 20 e of ring-shaped sealing member 20 .
  • integrating the heatsink portion that receives the heat from heat-generating electronic component 4 and the pump provides high flexibility in placing the heatsink apparatus in a body of a small personal computer and the like.
  • the structure described above allows the coolant to contact lower casing 18 on the short heat transfer path from heat-generating electronic component 4 , on the outer periphery of lower casing 18 as well as in the central portion.
  • the thermal resistance is kept low not only in the central portion, but also on the outer peripheral side. The overall cooling efficiency is thereby increased and the temperature of heat-generating electronic component 4 is maintained low.
  • an antifreeze solution is suitable, including an ethylene glycol solution and a propylene glycol solution. Further, it is desirable to add an anti-corrosion additive since copper or the like is used as lower casing material.
  • Radiator 6 as shown in FIGS. 16 and 17 is made of material having high heat conductance and high heat dissipating performance, such as lamellar material of copper and aluminum, and is integrally provided with a coolant channel and a reserve tank thereinside.
  • the reserve tank may be formed separately from radiator 6 .
  • a fan may be provided to blow air against radiator 6 to accelerate the cooling efficiency.
  • Circulation channel 7 is made of a flexible rubber tube having low gas permeability, such as a butyl rubber tube, so as to ensure flexibility in piping layout.
  • FIG. 8 is a cross-sectional view of the centrifugal pump in the heatsink apparatus according to the second embodiment of the present invention
  • FIG. 9 is an exploded cross-sectional view of the centrifugal pump in the heatsink apparatus according to the second embodiment of the present invention
  • FIGS. 10 and 11 are perspective views of a lower casing according to the second embodiment of the present invention
  • FIG. 12 is a perspective view of a ring-shaped sealing member as a single unit according to the second embodiment of the present invention
  • FIG. 13 illustrates a flow direction of a coolant in the centrifugal pump according to the second embodiment of the present invention.
  • An overall structure of an electronic device having the heatsink apparatus according to the second embodiment is the same as that in the conventional art, thus FIGS. 16 and 17 are also referred in the second embodiment. Detailed explanations of the figures are as given in the conventional art.
  • Centrifugal pump 3 includes: open-type impeller 111 of centrifugal pump 3 ; open-type blades 111 a ; small holes 111 b formed near the center of impeller 111 ; and magnet rotor 112 attached to an inner peripheral surface of impeller 111 .
  • Impeller 111 and magnet rotor 112 are separately formed in the second embodiment.
  • magnet rotor 112 may be integrally formed by magnetizing a portion of impeller 111 , which is made of magnetic material mixed plastics.
  • Centrifugal pump 3 of the second embodiment has a thickness of 3 mm to 50 mm, a representative radius of 10 mm to 100 mm, a revolution of 1,000 rpm to 8,000 rpm and a head of 0.5 m to 10 m.
  • Centrifugal pump 3 further includes: stator 113 provided on an inner peripheral side of magnet rotor 112 ; coil 114 wound around stator 113 to generate a magnetic field in stator 113 ; and circuit board 115 mounted with electric circuits that provide a current to coil 114 . It is preferable to layer a plurality of silicon sheets when forming stator 113 so as to minimize eddy-current losses. It is further preferable to use an insulation coated copper wire for coil 114 . A wire diameter and wire turns of coil 114 are optimized based on a power voltage and a space factor. Mounted on circuit board 115 are a hole element that detects a rotating position of magnet rotor 112 and a transistor or a diode that switches a current flow.
  • Centrifugal pump 3 further includes: upper casing 116 housing impeller 111 ; discharge channel 116 a formed in upper casing 116 ; suction channel 116 b formed in upper casing 116 ; recess 116 c providing a space to receive magnetic circuits, including stator 113 ; and fitting surface 116 d fitted to a ring-shaped sealing member, which will be described later.
  • upper casing 116 it is preferable to mold plastics such as polyphenylene sulfide (PPS) and polyphenylene ether (PPE), since upper casing 116 has a complex structure and is required to have certain heat resistance. It is not preferable, on the other hand, to form upper casing 116 of metal, since fluctuation in magnetic flux generated by the magnetic circuits such as stator 113 and the like may cause eddy-current losses.
  • PPS polyphenylene sulfide
  • PPE polyphenylene ether
  • Centrifugal pump 3 furthermore includes: pump chamber 117 and lower casing 118 that contacts heat-generating electronic component 4 having heat conducting grease and the like (not shown in the figure) therebetween.
  • Lower casing 118 is formed of metallic material having high heat conductance and high heat dissipating performance, such as copper, aluminum and the like, and is processed in casting, forging, machining or a combination of the processing methods.
  • Lower casing 118 fits to upper casing 116 and forms a space wherein the coolant flows, such as pump chamber 117 .
  • lower casing 118 has a structure as shown in FIG. 10 .
  • Lower casing 118 includes: brim 118 b touching upper casing 116 ; recess 118 c for taking in the coolant; contact surface 118 d contacting heat-generating electronic component 4 ; heat-dissipating fins 118 e transferring the heat received from heat-generating electronic component 4 to the coolant, similar to those in the conventional heatsink apparatus, and expanding an area contacting the coolant so as to facilitate heat transfer; base 118 f ; ring-shaped thick portion 118 a * formed on base 118 f and having upper side face 118 t slanted at an angle identical to an angle of partition wall 120 e of ring-shaped sealing member 120 , which will be described later; and guiding portions 118 k provided standing substantially perpendicularly to base 118 f , for directing the coolant entering onto lower casing 118 so that the coolant runs through
  • guiding portions 118 k are formed together with lower casing 118 in order to maximize an area that lower casing 118 contacts the coolant. Due to manufacturing limitations, however, guiding portions 118 k may be formed on a rear side of ring-shaped sealing member 120 , which will be described later, or formed as separate parts. Also in the second embodiment, flow separation wall 118 l is provided on ring-shaped thick portion 118 a * facing an inflow direction, so as to separate an incoming flow from guiding portions 118 k into two directions in round heat transfer chamber 122 , which will be described later.
  • Centrifugal pump 3 of the second embodiment has pin-type heat-dissipating fins 118 e as shown in FIG. 10 .
  • a combination of the pin-type fins and plate- or rib-type fins may be formed as shown in FIG. 11 .
  • One of the plate- and rib-type fins may also be formed.
  • Pin-type heat-dissipating fins 118 e as shown in FIG. 10 maximize an area for heat dissipation and thus transfer the heat most efficiently.
  • Heat-dissipating fins 118 e having the combination of the pin-type and the plate- or rib-type as shown in FIG. 11 do not only increase the area for heat dissipation, but also reduce flow resistance of the coolant.
  • heat-dissipating fins 118 e having the combination of the pin-type and the plate- or rib-type reinforce rigidity of lower casing 118 , thus preventing lower casing 118 from being deformed when centrifugal pump 3 is pushed with strong force against heat-generating electronic component 4 , and preventing a gap from developing between heat-generating electronic component 4 and contact surface 118 d due to deformation. Furthermore, pushing heat-generating electronic component 4 with strong force thinly spreads the heat conducting grease (not shown in the figure) applied between heat-generating electronic component 4 and contact surface 118 d , thereby minimizing thermal resistance of the heat conducting grease and preventing part separation due to vibrations or shocks to a product.
  • Heat-dissipating fins 118 e may have a shape other than the pin-type, the plate-type and the rib-type.
  • Heat-dissipating fins 118 e outside guiding portions 118 k may be the pin-type, the plate-type, the rib-type, other type or a mix of the types.
  • shaft 119 provided on upper casing 116 rotatably supports impeller 111 .
  • Shaft 119 made of highly corrosion-resistant material such as stainless, is inserted and molded to upper casing 16 to form one piece.
  • Ring-shaped sealing member 120 fits to upper casing 116 so as to form pump chamber 117 .
  • Sealing member 121 such as an o-ring, seals a portion between upper casing 116 and lower casing 118 in order to keep the coolant from leaking therefrom.
  • Round heat transfer chamber 122 provided between ring-shaped sealing member 120 and lower casing 118 and formed by guiding portions 118 k and ring-shaped thick portion 118 a * of lower casing 118 , connects to two through-holes 120 f , which will be described later, of ring-shaped sealing member 120 .
  • Heat transfer guiding channel 123 is sandwiched by a pair of guiding portions 118 k and formed between lower casing 118 and top panel 120 g , which will be described later.
  • ring-shaped sealing member 120 When forming ring-shaped sealing member 120 having a structure as shown in FIG. 12 , it is preferable to mold plastics such as polyphenylene sulfide (PPS) and polyphenylene ether (PPE), since, similar to upper casing 116 , ring-shaped sealing member 120 has a complex structure and is required to have certain heat resistance. As FIG. 12
  • FIG. 12 shows, cylindrical portion 120 a is fitted to a side face of ring-shaped thick portion 118 a * of lower casing 118 ; partition wall 120 e is provided having a narrow gap with blades 111 a ; top panel 120 g closes an upper part of guiding portions 118 k and forms heat transfer guiding channel 123 that directs the coolant to round heat transfer chamber 122 ; two half-moon-shaped through-holes 120 f are formed on both sides of top panel 120 g ; thrust receiver 120 h receives the thrust force from impeller 111 ; discharge connection 120 c , formed on the upper side of ring-shaped sealing member 120 , connects pump chamber 117 and discharge channel 116 a ; and suction connection 120 d , provided on the lower side of ring-shaped sealing member 120 , connects round heat transfer chamber 122 and suction channel 116 b .
  • Heat transfer guiding channel 123 and round heat transfer chamber 122 as a whole form the suction heat transfer chamber of the present
  • partition wall 120 e that forms pump chamber 117 is formed together with ring-shaped sealing member 120 to facilitate manufacturing.
  • partition wall 120 e may be formed separately from ring-shaped sealing member 120 .
  • partition wall 120 e has a conic surface in the second embodiment, but may have a flat surface instead.
  • Flat-shaped partition wall 120 e requires blades 111 a to have a flat-shaped end accordingly.
  • conic-shaped partition wall 120 e lowers a height of round heat transfer chamber 122 , which is located in a central portion of lower casing 118 and has the highest temperature, and thereby locally accelerates a current speed of the coolant in the portion.
  • a high current speed of the coolant reduces a temperature boundary layer, thus improving heat transfer efficiency. Meanwhile, lowering the entire height of round heat transfer chamber 122 increases the flow resistance and reduces the flow rate of the coolant that runs through the heatsink apparatus, thus adversely increasing the thermal resistance. Conic-shaped partition wall 120 e , however, hardly increases the total flow resistance and thereby improves the heat transfer efficiency.
  • coil 114 is wound around stator 113 , and circuit board 115 mounted with electronic components is attached to stator 113 .
  • the assembled part having stator 113 is then inserted into recess 116 c of upper casing 116 .
  • a filler (not shown in the figure) is injected into recess 116 c and hardened in a temperature-controlled bath and the like.
  • the filler is used to dissipate the heat from the electronic components mounted on circuit board 115 and to keep the coolant from contacting circuit board 115 in case of leakage. It is desirable to use an epoxy potting agent as the filler.
  • impeller 111 is inserted into shaft 119 formed together with upper casing 116 .
  • Ring-shaped sealing member 120 is then inserted into upper casing 116 so that an outer peripheral surface of cylindrical portion 120 a fits to fitting surface 116 d .
  • suction connection 120 d and suction channel 116 b are set to connect, so are discharge connection 120 c and discharge channel 116 a .
  • sealing member 121 is set to an outer peripheral surface of ring-shaped thick portion 118 a *, and lower casing 118 is fitted and screwed (not shown in the figure) to upper casing 116 .
  • Activating circuit board 115 generates an alternating magnetic field in stator 113 .
  • the magnetic field rotates impeller 111 combined with magnet rotor 112 , thereby providing momentum to the coolant and causing a negative-pressure in the central portion.
  • the coolant is drawn in from suction channel 116 b .
  • the coolant is forced through suction connection 120 d then to heat transfer guiding channel 123 formed between lower casing 118 and top panel 120 g .
  • the entered coolant efficiently dissipates the heat from high-temperature base 118 f located directly above heat-generating electronic component 4 .
  • the coolant reaches an end of base 118 f and is separated into two directions to right and left.
  • the two flows of the separated coolant respectively circulate in round heat transfer chamber 122 provided between guiding portions 118 k and ring-shaped thick portion 118 a *.
  • the negative-pressure in the central portion of impeller 111 draws in the coolant again to the central portion of base 118 f and forces the coolant through two through-holes 120 f .
  • the coolant dissipates the heat that travels a short distance from heat-generating electronic component 4 to base 118 f.
  • FIG. 13 shows the above-described flow direction of the coolant inside centrifugal pump 3 .
  • the coolant enters in a direction of arrow R, runs along a heavy line, then discharges in a direction of arrow S.
  • centrifugal pump 3 of the second embodiment Unlike the conventional heatsink apparatus wherein the coolant is drawn straight into impeller 211 , centrifugal pump 3 of the second embodiment, provided with guiding portions 118 k and top panel 120 g that form heat transfer guiding channel 123 , directs the entered coolant linearly from end to end in the central portion of lower casing 118 with no leakage to other portions. Thereby, the coolant contacts at a high speed a wide surface area of the central portion of lower casing 118 that has the highest temperature. Further, unlike the conventional heatsink apparatus wherein the coolant stagnates in pump chamber 217 , centrifugal pump 3 of the second embodiment has no adverse impact on cooling efficiency.
  • lower casing 118 of the second embodiment unlike lower casing 218 in the conventional heatsink apparatus formed itself of a thick portion, lower casing 118 of the second embodiment, provided with round heat transfer chamber 122 surrounding heat transfer guiding channel 123 , has flat base 118 f .
  • Lower casing 118 of the second embodiment thereby allows the heat to transfer extensively on a short path inside lower casing 118 and to reach surfaces of heat-dissipating fins 118 e and base 118 f . Since the heat transfer path is short, the thermal resistance is low during the transfer. Thus, surface temperatures of heat-dissipating fins 118 e and base 118 f approach a temperature of heat-generating electronic component 4 .
  • the coolant contacts at a high speed the surfaces of heat-dissipating fins 118 e and base 118 f that have high temperatures after receiving the heat. Thereby, a temperature boundary layer forms thin and the coolant efficiently receives the heat from lower casing 118 .
  • the conventional heatsink apparatus which has blades 211 a proximate to a surface of thick portion 218 a (refer to FIG. 14 ), does not allow forming of fins thereon to expand the surface area, though forming of dimples at best. Unlike lower casing 218 as shown in FIG.
  • lower casing 118 of the second embodiment is able to have large heat-dissipating fins 118 e on the outer peripheral side of lower casing 118 , thereby significantly increasing an area contacting the coolant.
  • the surface of thick portion 218 a of lower casing 218 provides two functions as shown in FIG. 15 : a function to transfer the heat to the coolant and a function to form a wall of pump chamber 217 .
  • the function to transfer the heat to the coolant is provided to the surfaces of base 118 f and heat-dissipating fins 118 e of lower casing 118 , and the function to form the wall of pump chamber 117 to partition wall 120 e of ring-shaped sealing member 120 .
  • the heatsink portion that receives the heat from heat-generating electronic component 4 and the pump provides high flexibility in placing the heatsink apparatus in a body of a small personal computer and the like. Further, the structure described above allows the coolant to contact the entire central portion of the lower casing at a high speed and to contact the lower casing on a short heat transfer path from the heat-generating electronic component in the round heat transfer chamber on the outer periphery of the lower casing. Thus, the thermal resistance is kept low both in the central portion and on the outer periphery, thereby maintaining the temperature of the heat-generating electronic component low.
  • an antifreeze solution is suitable, including an ethylene glycol solution and a propylene glycol solution. Further, it is desirable to add an anti-corrosion additive since copper or the like is used as lower casing material.
  • Radiator 6 as shown in FIGS. 16 and 17 is formed of material having high heat conductance and high heat dissipating performance, such as lamellar material of copper and aluminum, and is integrally provided with a coolant channel and a reserve tank thereinside.
  • the reserve tank may be formed separately from radiator 6 .
  • a fan may be provided to blow air against radiator 6 to accelerate the cooling efficiency.
  • Circulation channel 7 is made of a flexible rubber tube having low gas permeability, such as a butyl rubber tube, so as to ensure flexibility in piping layout.

Abstract

A heatsink apparatus has a radiator and a centrifugal pump in a closed circulation channel for circulating a coolant, wherein the centrifugal pump contacting a heat-generating component dissipates heat from the heat-generating component through heat exchange with the coolant. The centrifugal pump includes: a lower casing provided with a contact surface that contacts the heat-generating component; an upper casing; a ring-shaped sealing member provided between the lower and upper casings so as to form a round heat transfer chamber between the ring-shaped sealing member and the lower casing and to form a pump chamber that houses an impeller between the ring-shaped sealing member and the upper casing; a guiding member provided protruding on the lower casing to make the round heat transfer chamber a circulation channel; and the round heat transfer chamber connecting to a through-hole formed in a central portion of the ring-shaped sealing member.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a heatsink apparatus that circulates a coolant to cool heat-generating semiconductors, including a micro processing unit (hereinafter referred to as an MPU) used in a personal computer and the like, and other electronic components having heat-generating portions.
  • 2. Description of Related Art
  • Recent electronic devices include highly integrated electronic components and generate high operating clock frequencies, thereby producing a larger amount of heat from the electronic components. Due to the heat increase, temperatures at contact points of the electronic components surpass an operating temperature range, resulting in more than a few malfunctions of the electronic components. It is thus a critical issue to maintain the temperatures of the electronic components within the operating temperature range so that the electronic components function properly.
  • Conventional air-cooling using a heatsink alone, however, is insufficient to cool the heat-generating electronic components. Thus, a heatsink apparatus having higher performance and higher efficiency as shown in FIG. 18, for instance, is disclosed (Related Art 1). FIG. 18 shows a cross-sectional view of a cooling module 301 that uses a centrifugal pump.
  • [Related Art 1] Japanese Patent Laid-Open Publication 2004-134423
  • However, the heatsink apparatus disclosed in Related Art 1, in which a coolant flows through the center of an impeller 302 toward a heat-generating component 303, has the following problems: a complex impeller bearing structure declines reliability; low rigidity of the impeller bearing causes noise or declines reliability; and resistance of the coolant running through a small hole at the center of the impeller causes difficulty in ensuring flow rate of the coolant, thus impeding improvement in cooling performance.
  • To overcome the above-described problems, a compact heatsink apparatus as shown in FIG. 14, for example, is proposed in which a combined heatsink portion and pump circulates a coolant so as to cool a heated electronic component in a highly efficient manner.
  • FIG. 14 is a cross-sectional view of a centrifugal pump of a conventional heatsink apparatus; FIG. 15 illustrates a flow direction of the coolant in the centrifugal pump of the conventional heatsink apparatus; and FIGS. 16 and 17 show structures of an electronic device having a heatsink apparatus.
  • The structure of the electronic-device having the heatsink apparatus is first described with reference to FIG. 16. As shown in FIG. 16, the electronic device includes: body 1 of a laptop computer as the electronic device having the heatsink apparatus; keyboard 2 of the laptop computer; centrifugal pump 3 constituting the heatsink apparatus and contacting a heat-generating component for heat exchange; heat-generating electronic component 4 such as an MPU and the like; board 5 mounted with heat-generating electronic component 4; radiator 6 provided on a rear side of a laptop computer display and dissipating heat of the coolant to the exterior, the heat received from heat-generating electronic component 4; and closed circulation channel 7 connecting centrifugal pump 3 and radiator 6 and circulating the coolant. A description of FIG. 17, which shows a desktop computer having the heatsink apparatus, is omitted since the structure of the heatsink apparatus is the same as that in the laptop computer.
  • An internal structure of conventional centrifugal pump 3 is described below with reference to FIGS. 14 and 15. As shown in FIGS. 14 and 15, centrifugal pump 3 includes: open-type impeller 211 of centrifugal pump 3; open-type blades 211 a of impeller 211; magnet rotor 212 provided on an inner peripheral surface of impeller 211; stator 213 provided on an inner peripheral side of magnet rotor 212; coil 214 wound around stator 213; circuit board 215 mounted with electric circuits that provide a current to coil 214; upper casing 216; discharge channel 216 a formed in upper casing 216; suction channel 216 b also formed in upper casing 216; heat-receiving lower casing 218 fitted to upper casing 216 and contacting heat-generating electronic component 4; thick portion 218 a; brim 218 b touching upper casing 216; recess 218 c; contact surface 218 d contacting heat-generating electronic component 4; and heat-dissipating fins 218 e transferring heat received from heat-generating electronic component 4 to the coolant.
  • Centrifugal pump 3 further includes: shaft 219 forming a rotating axis of impeller 211 and fixed to upper casing 216; ring-shaped sealing member 220 fitted to upper casing 216 so as to form pump chamber 217, as also shown in FIG. 15; cylindrical portion 220 a fitted to a side face of thick portion 218 a of lower casing 218; and water channel sealing portion 220 b provided between upper casing 216 and lower casing 218 and covering recess 218 c so as to form a water channel. As FIG. 15 shows, discharge connection 220 c provided on an upper side of ring-shaped sealing member 220 connects pump chamber 217 and discharge channel 216 a; suction connection 220 d provided on a lower side of ring-shaped sealing member 220 connects pump chamber 217 and suction channel 216 b. Sealing member 221 such as an o-ring seals a portion between upper casing 216 and lower casing 218.
  • Functions of centrifugal pump 3 of the heatsink apparatus are described below. The coolant is drawn into suction channel 216 b and forced through suction connection 220 d. The coolant is then led toward the center of pump chamber 217 by water channel sealing portion 220 b and propelled to an outer periphery of pump chamber 217 by rotation of blades 211 a. Then, the coolant is forced through discharge connection 220 c and discharged from discharge channel 216 a. Meanwhile, the heat emitted from heat-generating electronic component 4 is transferred from contact surface 218 d to radiating fins 218 e and thick portion 218 a. The coolant dissipates the heat from surfaces of heat-dissipating fins 218 e and thick portion 218 a as flowing inside centrifugal pump 3. FIG. 15 illustrates the flow direction of the coolant in centrifugal pump 3, wherein the coolant enters in a direction of arrow X, runs along a heavy line and discharges in a direction of arrow Y.
  • In the heatsink apparatus shown in FIGS. 14 and 15, the coolant enters from recess 218 c of lower casing 218 and flows on the surface of thick portion 218 a, thereby not required to pass through the center of impeller 211. The structure thus allows the heatsink apparatus to provide higher reliability and higher cooling performance than the heatsink apparatus disclosed in Related Art 1.
  • The conventional heatsink apparatus having combined centrifugal pump 3 reduces its size and provides high heat transfer performance in a central portion of lower casing 218. However, the conventional heatsink apparatus has low heat transfer efficiency on an outer peripheral side away from the central portion, thus falling short of achieving highly efficient heat transfer across the pump. Providing heat-dissipating fins on the surface of thick portion 218 a can increase the heat transfer efficiency on the outer peripheral side, but also increases a gap between the surface of thick portion 218 a and blades 211 a, which causes a leakage flow of the coolant and thereby degrades pumping capability.
  • SUMMARY OF THE INVENTION
  • The present invention is provided to address the above-described problems. A purpose of the present inventor is to provide a heatsink apparatus that has low thermal resistance on a pump side face and thereby improves overall cooling efficiency and maintains a temperature of a heat-generating electronic component low.
  • The present invention relates to a heatsink apparatus having a radiator and a centrifugal pump in a closed circulation channel for circulating a coolant, the centrifugal pump contacting a heat-generating component and releasing heat from the heat-generating component through heat exchange of the coolant thereinside, the radiator dissipating the heat. The centrifugal pump includes: a first casing provided with a contact surface that contacts the heat-generating component; a second casing fitted to the first casing so as to form a space wherein the coolant flows; a partition wall member provided between the first and second casings so as to form a heat transfer chamber between the partition wall member and the first casing and to form a pump chamber that houses an impeller between the partition wall member and the second casing; a coolant inlet connected to the heat transfer chamber; a coolant outlet connected to the pump chamber; and the heat transfer chamber connected to the pump chamber through a through-hole formed in a central portion of the partition wall member.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is further described in the detailed description which follows, with reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
  • FIG. 1 is a cross-sectional view of a centrifugal pump in a heatsink apparatus according to a first embodiment of the present invention;
  • FIG. 2 is an exploded cross-sectional view of the centrifugal pump in the heatsink apparatus according to the first embodiment of the present invention;
  • FIG. 3 is a perspective view of a lower casing according to the first embodiment of the present invention;
  • FIG. 4 is a perspective view of the lower casing according to the first embodiment of the present invention;
  • FIG. 5 is a perspective view of the lower casing according to the first embodiment of the present invention;
  • FIG. 6 is a perspective view of a ring-shaped sealing member as a single unit according to the first embodiment of the present invention;
  • FIG. 7 illustrates a flow direction of a coolant in the centrifugal pump according to the first embodiment of the present invention;
  • FIG. 8 is a cross-sectional view of a centrifugal pump in a heatsink apparatus according to a second embodiment of the present invention;
  • FIG. 9 is an exploded cross-sectional view of the centrifugal pump in the heatsink apparatus according to the second embodiment of the present invention;
  • FIG. 10 is a perspective view of a lower casing according to the second embodiment of the present invention;
  • FIG. 11 is a perspective view of the lower casing according to the second embodiment of the present invention;
  • FIG. 12 is a perspective view of a ring-shaped sealing member as a single unit according to the second embodiment of the present invention;
  • FIG. 13 illustrates a flow direction of a coolant in the centrifugal pump according to the second embodiment of the present invention;
  • FIG. 14 is a cross-sectional view of a centrifugal pump in a conventional heatsink apparatus;
  • FIG. 15 illustrates a flow direction of a coolant in the centrifugal pump of the conventional heatsink apparatus;
  • FIG. 16 illustrates a structure of an electronic device having a heatsink;
  • FIG. 17 illustrates a structure of an electronic device having a heatsink; and
  • FIG. 18 is a cross-sectional view of a cooling module that uses a centrifugal pump.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The embodiments of the present invention are explained in the following, in reference to the above-described drawings.
  • First Embodiment
  • A centrifugal pump in a heatsink apparatus according to a first embodiment of the present invention is described below. FIG. 1 is a cross-sectional view of the centrifugal pump in the heatsink apparatus according to the first embodiment of the present invention; FIG. 2 is an exploded cross-sectional view of the centrifugal pump in the heatsink apparatus according to the first embodiment of the present invention; FIGS. 3 to 5 are perspective views of a lower casing according to the first embodiment of the present invention; FIG. 6 is a perspective view of a ring-shaped sealing member as a single unit according to the first embodiment of the present invention; and FIG. 7 illustrates a flow direction of a coolant in the centrifugal pump according to the first embodiment of the present invention. An overall structure of an electronic device having the heatsink apparatus according to the first embodiment is the same as that in the conventional art, thus FIGS. 16 and 17 are also referred in the first embodiment. Detailed explanations of the figures are as described in the conventional art.
  • An internal structure of centrifugal pump 3 is described below with reference to FIGS. 1 to 7. Centrifugal pump 3 includes: open-type impeller 11 of centrifugal pump 3; open-type blades 11 a; small holes 11 b formed near the center of impeller 11; and magnet rotor 12 attached to an inner peripheral surface of impeller 11. Impeller 11 and magnet rotor 12 are separately formed in the first embodiment. However, magnet rotor 12 may be integrally formed by magnetizing a portion of impeller 11, which is made of magnetic material mixed plastics.
  • When impeller 11 rotates the coolant, a coolant pressure becomes higher on an outer peripheral side of blades 11 a than on an inner peripheral side of blades 11 a (K in FIG. 1). Further, the pressure is substantially the same at an entrance of impeller 11 and on a rear side of impeller 11 connected through small holes 11 b. Therefore, the coolant runs on the rear side of impeller 11 and passes through small holes 11 b, then a small amount of the coolant is refluxed to the entrance. The structure thus reduces a thrust force to impeller 11, compared to a structure where small holes 11 b are not provided, and thereby smoothens the rotation of impeller 11. Centrifugal pump 3 of the first embodiment has a thickness of 3 mm to 50 mm, a representative radius of 10 mm to 100 mm, a revolution of 1,000 rpm to 8,000 rpm and a head of 0.5 m to 10 m.
  • Centrifugal pump 3 further includes: stator 13 provided on an inner peripheral side of magnet rotor 12; coil 14 wound around stator 13 to generate a magnetic field in stator 13; and circuit board 15 mounted with electric circuits that provide a current to coil 14. It is preferable to layer a plurality of silicon sheets when forming stator 13 so as to minimize eddy-current losses. It is further preferable to use an insulation coated copper wire for coil 14. A wire diameter and wire turns of coil 14 are optimized based on a power voltage and a space factor. Mounted on circuit board 15 are a hole element that detects a rotating position of magnet rotor 12 and a transistor or a diode that switches a current flow.
  • Centrifugal pump 3 further includes: upper casing 16 housing impeller 11; discharge channel 16 a formed in upper casing 16; suction channel 16 b formed in upper casing 16; recess 16 c providing a space to receive magnetic circuits, including stator 13; and fitting surface 16 d fitted to a ring-shaped sealing member, which will be described later. When forming upper casing 16, it is preferable to mold plastics such as polyphenylene sulfide (PPS) and polyphenylene ether (PPE), since upper casing 16 has a complex structure and is required to have certain heat resistance. It is not preferable, on the other hand, to form upper casing 16 of metal, since fluctuation in magnetic flux generated by the magnetic circuits such as stator 13 and the like may cause eddy-current losses.
  • Centrifugal pump 3 furthermore includes pump chamber 17 and lower casing 18 that contacts heat-generating electronic component 4 having heat conducting grease and the like (not shown in the figure) therebetween. Lower casing 18 is formed of metallic material having high heat conductance and high heat dissipating performance, such as copper, aluminum and the like, and is processed in casting, forging, machining or a combination of the processing methods. Lower casing 18 fits to upper casing 16 and forms a space wherein the coolant flows, such as pump chamber 17.
  • To efficiently exchange heat received from heat-generating electronic component 4 with the coolant, lower casing 18 has a structure as shown in FIG. 3. Lower casing 18 as shown in FIGS. 3 and 7 includes: base 18 f; ring-shaped thick portion 18 a* formed on base 18 f and having upper side face 18 t slanted at an angle identical to are angle of partition wall 20 e of ring-shaped sealing member 20, which will be described later; C-shaped cylindrical portion 18 g formed on base 18 f having substantially the same center as impeller 11 and circulating the coolant in the vicinity of through-hole 20 f, which will be described later; cutout 18 h formed in cylindrical portion 18 g; linear guiding plate 18 i standing perpendicularly to base 18 f and extending from an outer peripheral side to an inner peripheral side of lower casing 18 toward cylindrical portion 18 g; brim 18 b touching upper casing 16; cutout 18 c for taking in the coolant; contact surface 18 d contacting heat-generating electronic component 4; heat-dissipating fins 18 e having various shapes and transferring the heat received from heat-generating electronic component 4 to the coolant; and thrust receiver 18 j receiving the thrust force from impeller 11. Guiding plate 18 i has a height to upper side face 18 u facing ring-shaped sealing member 20 lower on the cylindrical portion 18 g side, slanting at an angle identical to the angle of partition wall 20 e of ring-shaped sealing member 20. In the first embodiment, cylindrical portion 18 g and guiding plate 18 i are formed together with lower casing 18 in order to maximize an area that lower casing 18 contacts the coolant. Due to manufacturing limitations, however, cylindrical portion 18 g and guiding plate 18 i may be formed on a rear side of the ring-shaped sealing member, which will be described later, or formed as separate parts.
  • Centrifugal pump 3 of the first embodiment has pin-type heat-dissipating fins 18 e as shown in FIG. 3. In lieu of the pin-type fins, plate- or rib-type fins having a circular arc shape arranged in a concentric pattern may be formed as shown in FIG. 4. Further, plate- or rib-type fins extending in a radial pattern may be formed as shown in FIG. 5.
  • Pin-type heat-dissipating fins 18 e as shown in FIG. 3 maximize an area for heat dissipation and thus transfer the heat most efficiently. Plate- or rib-type heat-dissipating fins 18 e having a circular arc shape as shown in FIG. 4 do not only increase the area for heat dissipation, but also reduce flow resistance of the coolant. Plate- or rib-type heat-dissipating fins 18 e extending radially as shown in FIG. 5 reinforce rigidity of lower casing 18, thus preventing lower casing 18 from being deformed when centrifugal pump 3 is pushed with strong force against heat-generating electronic component 4, and preventing a gap from developing between heat-generating electronic component 4 and contact surface 18 d due to deformation. Further, pushing heat-generating electronic component 4 with strong force thinly spreads the heat conducting grease (not shown in the figure) applied between heat-generating electronic component 4 and contact surface 18 d, thereby minimizing thermal resistance of the heat conducting grease and preventing part separation due to vibrations or shocks to a product.
  • Heat-dissipating fins 18 e may have a shape other than the above-described shapes. Heat-dissipating fins 18 e may also have a mix of different shapes. A shape of fins inside and outside of cylindrical portion 18 g needs not to be the same; i.e., pin-type heat-dissipating fins 18 e may be disposed outside cylindrical portion 18 g while rib-type heat-dissipating fins 18 e inside cylindrical portion 18 g. Other combinations of shapes are also possible.
  • Further to the structure of centrifugal pump 3 of the first embodiment with reference to FIG. 1, shaft 19 provided on upper casing 16 rotatably supports impeller 11. Shaft 19, made of highly corrosion-resistant material such as stainless, is inserted and molded to upper casing 16 to form one piece. Ring-shaped sealing member 20 fits to upper casing 16 so as to form pump chamber 17. Sealing member 21, such as an o-ring, seals a portion between upper casing 16 and lower casing 18 in order to keep the coolant from leaking therefrom. Round heat transfer chamber 22, provided between ring-shaped sealing member 20, which will be described later, and lower casing 18, forms a circulation channel with cylindrical portion 18 g and ring-shaped thick portion 18 a* of lower casing 18, and connects to through-hole 20 f, which will be described later, of ring-shaped sealing member 20.
  • When forming ring-shaped sealing member 20 having a structure as shown in FIG. 6, it is preferable to mold plastics such as polyphenylene sulfide (PPS) and polyphenylene ether (PPE), since, similar to upper casing 16, ring-shaped sealing member 20 has a complex structure and is required to have certain heat resistance. As FIG. 6 shows, cylindrical portion 20 a is fitted to a side face of ring-shaped thick portion 18 a* of lower casing 18; partition wall 20 e is provided having a narrow gap with blades 11 a; through-hole 20 f is formed in a central portion of partition wall 20 e; discharge-connection 20 c, formed on the upper side of ring-shaped sealing member 20, connects pump chamber 17 and discharge channel 16 a; and suction connection 20 d, provided on the lower side of ring-shaped sealing member 20, connects round heat transfer chamber 22 and suction channel 16 b.
  • In the first embodiment, partition wall 20 e that forms pump chamber 17 is formed together with ring-shaped sealing member 20 to facilitate manufacturing. For ensuring the rigidity of partition wall 20 e or other purposes, however, partition wall 20 e may be formed separately from ring-shaped sealing member 20. Further, partition wall 20 e has a conic surface in the first embodiment, but may have a flat surface instead. Flat-shaped partition wall 20 e requires blades 11 a to have a flat-shaped end accordingly. However, conic-shaped partition wall 20 lowers a height of round heat transfer chamber 22, which is located in a central portion of lower casing 18 and has the highest temperature, and thereby locally accelerates a current speed of the coolant in the portion. A high current speed of the coolant reduces a temperature boundary layer, thus improving heat transfer efficiency. Meanwhile, lowering the entire height of round heat transfer chamber 22 increases the flow resistance and reduces the flow rate of the coolant that runs through the heatsink apparatus, thus adversely increasing the thermal resistance. Conic-shaped partition wall 20 e, however, hardly increases the total flow resistance and thereby improves the heat transfer efficiency.
  • Assembly procedures of above-described centrifugal pump 3 are explained below with reference to FIG. 2. First, coil 14 is wound around stator 13, and circuit board 15 mounted with electronic components is attached to stator 13. The assembled part having stator 13 is then inserted into recess 16 c of upper casing 16. A filler (not shown in the figure) is injected into recess 16 c and hardened in a temperature-controlled bath and the like. The filler is used to dissipate the heat from the electronic components mounted on circuit board 15 and to keep the coolant from contacting circuit board 15 in case of leakage. It is desirable to use an epoxy potting agent as the filler. Then, impeller 11 is inserted into shaft 19 formed together with upper casing 16. Ring-shaped sealing member 20 is then inserted into upper casing 16 so that an outer peripheral surface of cylindrical portion 20 a fits to fitting surface 16 d. When ring-shaped sealing member 20 is inserted, suction connection 20 d and suction channel 16 b are set to connect, so are discharge connection 20 c and discharge channel 16 a. Finally, sealing member 21 is set to an outer peripheral surface of ring-shaped thick portion 18 a*, and lower casing 18 is fitted and screwed (not shown in the figure) to upper casing 16. When lower casing 18 is fitted to upper casing 16, the outer peripheral surface of ring-shaped thick portion 18 a* and an inner peripheral surface of cylindrical portion 20 a are set to fit- and suction connection 20 d and cutout 18 c are set to connect. As upper casing 16 fits to lower casing 18, a lower surface of partition wall 20 e of ring-shaped sealing member 20 fits to upper side face 18 t of lower casing 18 and upper side face 18 u of guiding plate 18 i. Thereby, ring-shaped sealing member 20 and lower casing 18 form round heat transfer chamber 22.
  • Functions of centrifugal pump 3 in the heatsink apparatus according to the first embodiment are described below. Activating circuit board 15 generates an alternating magnetic field in stator 13. The magnetic field rotates impeller 11 combined with magnet rotor 12, thereby providing momentum to the coolant and causing a negative-pressure in the central portion. Then, the coolant is drawn in from suction channel 16 b. The coolant is forced through suction connection 20 d then into round heat transfer chamber 22 provided on an outer peripheral side of cylindrical portion 18 g and between base 18 f and partition wall 20 e. The coolant then circulates on base 18 f. Led by guiding plate 18 i, the coolant is forced through cutout 18 h to inside cylindrical portion 18 g, then through through-hole 20 f. The rotation of blades 11 a propels the coolant to an outer periphery of pump chamber 17. The coolant is then forced through discharge connection 20 c and discharged from discharge channel 16 a. FIG. 7 shows the above-described flow direction of the coolant inside centrifugal pump 3. The coolant enters in a direction of arrow P, runs along a heavy line, then discharges in a direction of arrow Q.
  • Providing substantially C-shaped cylindrical portion 18 g so as to allow round heat transfer chamber 22 to work as the circulation channel prevents the coolant that enters centrifugal pump 3 from being directly drawn in through-hole 20 f, thus allowing the coolant to contact a larger area of lower casing 18. Further, providing guiding plate 18 i prevents the coolant that enters centrifugal pump 3 from repeatedly circulating on base 18 f, thus smoothly directing the coolant to through-hole 20 f before turning full circle on base 18 f.
  • Lower casing 18 meanwhile receives on contact surface 18 d the heat emitted from heat-generating electronic component 4. Unlike lower casing 218 in the conventional heatsink apparatus formed itself of a thick portion, lower casing 18 of the first embodiment has base 18 f having a flat shape even on the outer peripheral side of lower casing 18. Lower casing 18 of the first embodiment thereby allows the heat to transfer extensively on a short heat transfer path inside lower casing 18 and to reach surfaces of heat-dissipating fins 18 e, base 18 f and cylindrical portion 18 g. Since the heat transfer path is short, the thermal resistance is low during the transfer. Thus, surface temperatures of heat-dissipating fins 18 e, base 18 f and cylindrical portion 18 g approach a temperature of heat-generating electronic component 4.
  • As flowing into, circulating on and flowing out from base 18 f of round heat transfer chamber 22, the coolant contacts at a high speed the surfaces of heat-dissipating fins 18 e, base 18 f and cylindrical portion 18 g that have high temperatures after receiving the heat. Thereby, a temperature boundary layer forms thin and the coolant efficiently receives the heat from lower casing 18. The conventional heatsink apparatus, which has blades 211 a proximate to a surface of thick portion 218 a (refer to FIG. 14), does not allow forming of fins thereon to expand the surface area, though forming of dimples at best. Unlike lower casing 218 as shown in FIG. 14, which has pump chamber 217 on an outer peripheral side of lower casing 218 and substantially the same curved surface as a rotating surface of blades 211 a, lower casing 18 of the first embodiment is able to have large heat-dissipating fins 18 e on the outer peripheral side of lower casing 18. Lower casing 18 of the first embodiment thereby significantly increases an area contacting the coolant and greatly reduces a weight of centrifugal pump 3.
  • In the centrifugal pump of the conventional heatsink apparatus, the surface of thick portion 218 a of lower casing 218 provides two functions as shown in FIG. 14: a function to transfer the heat to the coolant and a function to form a wall of pump chamber 217. In the first embodiment, wherein partition wall 20 e is provided between impeller 11 and lower casing 18, the function to transfer the heat to the coolant is provided to the surfaces of base 18 f and heat-dissipating fins 18 e of lower casing 18, and the function to form pump chamber 17 to partition wall 20 e of ring-shaped sealing member 20. Thereby, the heatsink apparatus of the first embodiment enjoys highly efficient heat transfer performance, without negatively affecting pumping performance.
  • According to the first embodiment of the present invention as described above, integrating the heatsink portion that receives the heat from heat-generating electronic component 4 and the pump provides high flexibility in placing the heatsink apparatus in a body of a small personal computer and the like. Further, the structure described above allows the coolant to contact lower casing 18 on the short heat transfer path from heat-generating electronic component 4, on the outer periphery of lower casing 18 as well as in the central portion. Thus, the thermal resistance is kept low not only in the central portion, but also on the outer peripheral side. The overall cooling efficiency is thereby increased and the temperature of heat-generating electronic component 4 is maintained low.
  • As the coolant, an antifreeze solution is suitable, including an ethylene glycol solution and a propylene glycol solution. Further, it is desirable to add an anti-corrosion additive since copper or the like is used as lower casing material.
  • Radiator 6 as shown in FIGS. 16 and 17 is made of material having high heat conductance and high heat dissipating performance, such as lamellar material of copper and aluminum, and is integrally provided with a coolant channel and a reserve tank thereinside. The reserve tank may be formed separately from radiator 6. Further, a fan may be provided to blow air against radiator 6 to accelerate the cooling efficiency. Circulation channel 7 is made of a flexible rubber tube having low gas permeability, such as a butyl rubber tube, so as to ensure flexibility in piping layout.
  • Second Embodiment
  • A centrifugal pump in a heatsink apparatus according to a second embodiment of the present invention is described below. FIG. 8 is a cross-sectional view of the centrifugal pump in the heatsink apparatus according to the second embodiment of the present invention; FIG. 9 is an exploded cross-sectional view of the centrifugal pump in the heatsink apparatus according to the second embodiment of the present invention; FIGS. 10 and 11 are perspective views of a lower casing according to the second embodiment of the present invention; FIG. 12 is a perspective view of a ring-shaped sealing member as a single unit according to the second embodiment of the present invention; and FIG. 13 illustrates a flow direction of a coolant in the centrifugal pump according to the second embodiment of the present invention. An overall structure of an electronic device having the heatsink apparatus according to the second embodiment is the same as that in the conventional art, thus FIGS. 16 and 17 are also referred in the second embodiment. Detailed explanations of the figures are as given in the conventional art.
  • An internal structure of centrifugal pump 3 is described below with reference to FIGS. 8 to 13. Centrifugal pump 3 includes: open-type impeller 111 of centrifugal pump 3; open-type blades 111 a; small holes 111 b formed near the center of impeller 111; and magnet rotor 112 attached to an inner peripheral surface of impeller 111. Impeller 111 and magnet rotor 112 are separately formed in the second embodiment. However, magnet rotor 112 may be integrally formed by magnetizing a portion of impeller 111, which is made of magnetic material mixed plastics.
  • When impeller 111 rotates the coolant, a coolant pressure becomes higher on an outer peripheral side of blades 111 a than on an inner peripheral side of blades 111 a (L in FIG. 8). Further, the pressure is substantially the same at an entrance of impeller 111 and on a rear side of impeller 111 connected through small holes 111 b. Therefore, the coolant runs on the rear side of impeller 111 and passes through small holes 111 b, then a small amount of the coolant is refluxed to the entrance. The structure thus reduces a thrust force to impeller 111, compared to a structure where small holes 111 b are not provided, and thereby smoothens the rotation of impeller 111. Centrifugal pump 3 of the second embodiment has a thickness of 3 mm to 50 mm, a representative radius of 10 mm to 100 mm, a revolution of 1,000 rpm to 8,000 rpm and a head of 0.5 m to 10 m.
  • Centrifugal pump 3 further includes: stator 113 provided on an inner peripheral side of magnet rotor 112; coil 114 wound around stator 113 to generate a magnetic field in stator 113; and circuit board 115 mounted with electric circuits that provide a current to coil 114. It is preferable to layer a plurality of silicon sheets when forming stator 113 so as to minimize eddy-current losses. It is further preferable to use an insulation coated copper wire for coil 114. A wire diameter and wire turns of coil 114 are optimized based on a power voltage and a space factor. Mounted on circuit board 115 are a hole element that detects a rotating position of magnet rotor 112 and a transistor or a diode that switches a current flow.
  • Centrifugal pump 3 further includes: upper casing 116 housing impeller 111; discharge channel 116 a formed in upper casing 116; suction channel 116 b formed in upper casing 116; recess 116 c providing a space to receive magnetic circuits, including stator 113; and fitting surface 116 d fitted to a ring-shaped sealing member, which will be described later. When forming upper casing 116, it is preferable to mold plastics such as polyphenylene sulfide (PPS) and polyphenylene ether (PPE), since upper casing 116 has a complex structure and is required to have certain heat resistance. It is not preferable, on the other hand, to form upper casing 116 of metal, since fluctuation in magnetic flux generated by the magnetic circuits such as stator 113 and the like may cause eddy-current losses.
  • Centrifugal pump 3 furthermore includes: pump chamber 117 and lower casing 118 that contacts heat-generating electronic component 4 having heat conducting grease and the like (not shown in the figure) therebetween. Lower casing 118 is formed of metallic material having high heat conductance and high heat dissipating performance, such as copper, aluminum and the like, and is processed in casting, forging, machining or a combination of the processing methods. Lower casing 118 fits to upper casing 116 and forms a space wherein the coolant flows, such as pump chamber 117.
  • To efficiently exchange heat received from heat-generating electronic component 4 with the coolant, lower casing 118 has a structure as shown in FIG. 10. Lower casing 118 includes: brim 118 b touching upper casing 116; recess 118 c for taking in the coolant; contact surface 118 d contacting heat-generating electronic component 4; heat-dissipating fins 118 e transferring the heat received from heat-generating electronic component 4 to the coolant, similar to those in the conventional heatsink apparatus, and expanding an area contacting the coolant so as to facilitate heat transfer; base 118 f; ring-shaped thick portion 118 a* formed on base 118 f and having upper side face 118 t slanted at an angle identical to an angle of partition wall 120 e of ring-shaped sealing member 120, which will be described later; and guiding portions 118 k provided standing substantially perpendicularly to base 118 f, for directing the coolant entering onto lower casing 118 so that the coolant runs through a central portion of a suction heat transfer chamber, which will be described later, provided on base 118 f.
  • In the second embodiment, guiding portions 118 k are formed together with lower casing 118 in order to maximize an area that lower casing 118 contacts the coolant. Due to manufacturing limitations, however, guiding portions 118 k may be formed on a rear side of ring-shaped sealing member 120, which will be described later, or formed as separate parts. Also in the second embodiment, flow separation wall 118 l is provided on ring-shaped thick portion 118 a* facing an inflow direction, so as to separate an incoming flow from guiding portions 118 k into two directions in round heat transfer chamber 122, which will be described later.
  • Centrifugal pump 3 of the second embodiment has pin-type heat-dissipating fins 118 e as shown in FIG. 10. In lieu of the pin-type fins, a combination of the pin-type fins and plate- or rib-type fins may be formed as shown in FIG. 11. One of the plate- and rib-type fins may also be formed.
  • Pin-type heat-dissipating fins 118 e as shown in FIG. 10 maximize an area for heat dissipation and thus transfer the heat most efficiently. Heat-dissipating fins 118 e having the combination of the pin-type and the plate- or rib-type as shown in FIG. 11 do not only increase the area for heat dissipation, but also reduce flow resistance of the coolant. Further, heat-dissipating fins 118 e having the combination of the pin-type and the plate- or rib-type reinforce rigidity of lower casing 118, thus preventing lower casing 118 from being deformed when centrifugal pump 3 is pushed with strong force against heat-generating electronic component 4, and preventing a gap from developing between heat-generating electronic component 4 and contact surface 118 d due to deformation. Furthermore, pushing heat-generating electronic component 4 with strong force thinly spreads the heat conducting grease (not shown in the figure) applied between heat-generating electronic component 4 and contact surface 118 d, thereby minimizing thermal resistance of the heat conducting grease and preventing part separation due to vibrations or shocks to a product.
  • Heat-dissipating fins 118 e may have a shape other than the pin-type, the plate-type and the rib-type. The description above, which relates to heat-dissipating fins 118 e provided between guiding portions 118 k, also applies to heat-dissipating fins 118 e provided outside guiding portions 118 k. Heat-dissipating fins 118 e outside guiding portions 118 k may be the pin-type, the plate-type, the rib-type, other type or a mix of the types.
  • Further to the structure of centrifugal pump 3 of the second embodiment with reference to FIG. 8, shaft 119 provided on upper casing 116 rotatably supports impeller 111. Shaft 119, made of highly corrosion-resistant material such as stainless, is inserted and molded to upper casing 16 to form one piece. Ring-shaped sealing member 120 fits to upper casing 116 so as to form pump chamber 117. Sealing member 121, such as an o-ring, seals a portion between upper casing 116 and lower casing 118 in order to keep the coolant from leaking therefrom. Round heat transfer chamber 122, provided between ring-shaped sealing member 120 and lower casing 118 and formed by guiding portions 118 k and ring-shaped thick portion 118 a* of lower casing 118, connects to two through-holes 120 f, which will be described later, of ring-shaped sealing member 120. Heat transfer guiding channel 123 is sandwiched by a pair of guiding portions 118 k and formed between lower casing 118 and top panel 120 g, which will be described later.
  • When forming ring-shaped sealing member 120 having a structure as shown in FIG. 12, it is preferable to mold plastics such as polyphenylene sulfide (PPS) and polyphenylene ether (PPE), since, similar to upper casing 116, ring-shaped sealing member 120 has a complex structure and is required to have certain heat resistance. As FIG. 12 shows, cylindrical portion 120 a is fitted to a side face of ring-shaped thick portion 118 a* of lower casing 118; partition wall 120 e is provided having a narrow gap with blades 111 a; top panel 120 g closes an upper part of guiding portions 118 k and forms heat transfer guiding channel 123 that directs the coolant to round heat transfer chamber 122; two half-moon-shaped through-holes 120 f are formed on both sides of top panel 120 g; thrust receiver 120 h receives the thrust force from impeller 111; discharge connection 120 c, formed on the upper side of ring-shaped sealing member 120, connects pump chamber 117 and discharge channel 116 a; and suction connection 120 d, provided on the lower side of ring-shaped sealing member 120, connects round heat transfer chamber 122 and suction channel 116 b. Heat transfer guiding channel 123 and round heat transfer chamber 122 as a whole form the suction heat transfer chamber of the present invention, and the pair of guiding portions 118 k form a partition member of the present invention.
  • In the second embodiment, partition wall 120 e that forms pump chamber 117 is formed together with ring-shaped sealing member 120 to facilitate manufacturing. For ensuring the rigidity of partition wall 120 e or other purposes, however, partition wall 120 e may be formed separately from ring-shaped sealing member 120. Further, partition wall 120 e has a conic surface in the second embodiment, but may have a flat surface instead. Flat-shaped partition wall 120 e requires blades 111 a to have a flat-shaped end accordingly. However, conic-shaped partition wall 120 e lowers a height of round heat transfer chamber 122, which is located in a central portion of lower casing 118 and has the highest temperature, and thereby locally accelerates a current speed of the coolant in the portion. A high current speed of the coolant reduces a temperature boundary layer, thus improving heat transfer efficiency. Meanwhile, lowering the entire height of round heat transfer chamber 122 increases the flow resistance and reduces the flow rate of the coolant that runs through the heatsink apparatus, thus adversely increasing the thermal resistance. Conic-shaped partition wall 120 e, however, hardly increases the total flow resistance and thereby improves the heat transfer efficiency.
  • Assembly procedures of above-described centrifugal pump 3 are explained below with reference to FIG. 9. First, coil 114 is wound around stator 113, and circuit board 115 mounted with electronic components is attached to stator 113. The assembled part having stator 113 is then inserted into recess 116 c of upper casing 116. A filler (not shown in the figure) is injected into recess 116 c and hardened in a temperature-controlled bath and the like. The filler is used to dissipate the heat from the electronic components mounted on circuit board 115 and to keep the coolant from contacting circuit board 115 in case of leakage. It is desirable to use an epoxy potting agent as the filler. Then, impeller 111 is inserted into shaft 119 formed together with upper casing 116. Ring-shaped sealing member 120 is then inserted into upper casing 116 so that an outer peripheral surface of cylindrical portion 120 a fits to fitting surface 116 d. When ring-shaped sealing member 120 is inserted, suction connection 120 d and suction channel 116 b are set to connect, so are discharge connection 120 c and discharge channel 116 a. Finally, sealing member 121 is set to an outer peripheral surface of ring-shaped thick portion 118 a*, and lower casing 118 is fitted and screwed (not shown in the figure) to upper casing 116. When lower casing 118 is fitted to upper casing 116, the outer peripheral surface of ring-shaped thick portion 118 a* and an inner peripheral surface of cylindrical portion 120 a are set to fit, and suction connection 120 d and recess 118 c are set to connect. As upper casing 116 fits to lower casing 118, a lower surface of partition wall 120 e of ring-shaped sealing member 120 fits to upper side face 118 t of lower casing 118, and a lower surface of top panel 120 g of ring-shaped sealing member 120 fits to upper side face 118 u of guiding portions 118 k. Thereby, ring-shaped sealing member 120 and lower casing 118 form round heat transfer chamber 122.
  • Functions of centrifugal pump 3 in the heatsink apparatus according to the second embodiment are described below. Activating circuit board 115 generates an alternating magnetic field in stator 113. The magnetic field rotates impeller 111 combined with magnet rotor 112, thereby providing momentum to the coolant and causing a negative-pressure in the central portion. Then, the coolant is drawn in from suction channel 116 b. The coolant is forced through suction connection 120 d then to heat transfer guiding channel 123 formed between lower casing 118 and top panel 120 g. The entered coolant efficiently dissipates the heat from high-temperature base 118 f located directly above heat-generating electronic component 4.
  • Then the coolant reaches an end of base 118 f and is separated into two directions to right and left. The two flows of the separated coolant respectively circulate in round heat transfer chamber 122 provided between guiding portions 118 k and ring-shaped thick portion 118 a*. The negative-pressure in the central portion of impeller 111 draws in the coolant again to the central portion of base 118 f and forces the coolant through two through-holes 120 f. During the process, the coolant dissipates the heat that travels a short distance from heat-generating electronic component 4 to base 118 f.
  • Although the coolant is separated into two directions at the flow separation wall as reaching the end of base 118 f in the second embodiment, the coolant may flow in one direction. Separating the coolant into two directions, however, reduces the flow resistance and evenly cools an outer periphery of lower casing 118. Finally, the coolant provided with the momentum by the rotation of impeller 111 is propelled to an outer periphery of pump chamber 117, forced through discharge connection 120 c and then discharged from discharge channel 116 a. FIG. 13 shows the above-described flow direction of the coolant inside centrifugal pump 3. The coolant enters in a direction of arrow R, runs along a heavy line, then discharges in a direction of arrow S.
  • Unlike the conventional heatsink apparatus wherein the coolant is drawn straight into impeller 211, centrifugal pump 3 of the second embodiment, provided with guiding portions 118 k and top panel 120 g that form heat transfer guiding channel 123, directs the entered coolant linearly from end to end in the central portion of lower casing 118 with no leakage to other portions. Thereby, the coolant contacts at a high speed a wide surface area of the central portion of lower casing 118 that has the highest temperature. Further, unlike the conventional heatsink apparatus wherein the coolant stagnates in pump chamber 217, centrifugal pump 3 of the second embodiment has no adverse impact on cooling efficiency.
  • Furthermore, unlike lower casing 218 in the conventional heatsink apparatus formed itself of a thick portion, lower casing 118 of the second embodiment, provided with round heat transfer chamber 122 surrounding heat transfer guiding channel 123, has flat base 118 f. Lower casing 118 of the second embodiment thereby allows the heat to transfer extensively on a short path inside lower casing 118 and to reach surfaces of heat-dissipating fins 118 e and base 118 f. Since the heat transfer path is short, the thermal resistance is low during the transfer. Thus, surface temperatures of heat-dissipating fins 118 e and base 118 f approach a temperature of heat-generating electronic component 4.
  • As flowing into the central portion of lower casing 118 and circulating in and flowing out from round heat transfer chamber 122 of lower casing 118, the coolant contacts at a high speed the surfaces of heat-dissipating fins 118 e and base 118 f that have high temperatures after receiving the heat. Thereby, a temperature boundary layer forms thin and the coolant efficiently receives the heat from lower casing 118. The conventional heatsink apparatus, which has blades 211 a proximate to a surface of thick portion 218 a (refer to FIG. 14), does not allow forming of fins thereon to expand the surface area, though forming of dimples at best. Unlike lower casing 218 as shown in FIG. 14, which has thick portion 218 a, lower casing 118 of the second embodiment is able to have large heat-dissipating fins 118 e on the outer peripheral side of lower casing 118, thereby significantly increasing an area contacting the coolant.
  • In the centrifugal pump of the conventional heatsink apparatus, the surface of thick portion 218 a of lower casing 218 provides two functions as shown in FIG. 15: a function to transfer the heat to the coolant and a function to form a wall of pump chamber 217. In the second embodiment, wherein partition wall 120 e is provided between impeller 111 and lower casing 118, the function to transfer the heat to the coolant is provided to the surfaces of base 118 f and heat-dissipating fins 118 e of lower casing 118, and the function to form the wall of pump chamber 117 to partition wall 120 e of ring-shaped sealing member 120. Thereby, the heatsink apparatus of the second embodiment enjoys highly efficient heat performance, without negatively affecting pumping performance.
  • According to the second embodiment of the present invention as described above, integrating the heatsink portion that receives the heat from heat-generating electronic component 4 and the pump provides high flexibility in placing the heatsink apparatus in a body of a small personal computer and the like. Further, the structure described above allows the coolant to contact the entire central portion of the lower casing at a high speed and to contact the lower casing on a short heat transfer path from the heat-generating electronic component in the round heat transfer chamber on the outer periphery of the lower casing. Thus, the thermal resistance is kept low both in the central portion and on the outer periphery, thereby maintaining the temperature of the heat-generating electronic component low.
  • As the coolant, an antifreeze solution is suitable, including an ethylene glycol solution and a propylene glycol solution. Further, it is desirable to add an anti-corrosion additive since copper or the like is used as lower casing material.
  • Radiator 6 as shown in FIGS. 16 and 17 is formed of material having high heat conductance and high heat dissipating performance, such as lamellar material of copper and aluminum, and is integrally provided with a coolant channel and a reserve tank thereinside. The reserve tank may be formed separately from radiator 6. Further, a fan may be provided to blow air against radiator 6 to accelerate the cooling efficiency. Circulation channel 7 is made of a flexible rubber tube having low gas permeability, such as a butyl rubber tube, so as to ensure flexibility in piping layout.
  • It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to exemplary embodiments, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular structures, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.
  • The present invention is not limited to the above described embodiments, and various variations and modifications may be possible without departing from the scope of the present invention.
  • This application is based on the Japanese Patent Applications No. 2004-376062 and No. 2004-376063 filed on Dec. 27, 2004, entire content of which is expressly incorporated by reference herein.

Claims (11)

1. A heatsink apparatus having a radiator and a centrifugal pump in a closed circulation channel for circulating a coolant, the centrifugal pump contacting a heat-generating component and releasing heat from the heat-generating component through heat exchange of the coolant thereinside, the radiator dissipating the heat, the centrifugal pump comprising:
a first casing provided with a contact surface that contacts the heat-generating component;
a second casing fitted to be first casing so as to form a space wherein the coolant flows;
a partition wall member provided between the first and second casings so as to form a heat transfer chamber between the partition wall member and the first casing and to form a pump chamber that houses an impeller between the partition wall member and the second casing;
a coolant inlet connected to the heat transfer chamber;
a coolant outlet connected to the pump chamber; and
the heat transfer chamber connected to the pump chamber through a through-hole formed in a central portion of the partition wall member.
2. The heatsink apparatus according to claim 1, further comprising a guiding member provided between the first casing and the partition wall member of the heat transfer chamber so as to form a flow channel of the coolant.
3. The heatsink apparatus according to claim 2, wherein the guiding member comprises:
a C-shaped cylindrical portion that circulates the incoming coolant in the vicinity of the through-hole; and
a linear guiding plate that directs the coolant from an outer peripheral side of the first casing to the through-hole located on an inner side of the first casing.
4. The heatsink apparatus according to claim 3, wherein a plurality of heat-dissipating fins are provided in the heat transfer chamber on a surface opposite to the contact surface, protruding from the first casing toward the partition wall member.
5. The heatsink apparatus according to claim 1, wherein the partition wall member is slanted so that a distance between the first casing and the partition wall member in the heat transfer chamber is shorter in a central portion of the heat transfer chamber.
6. A heatsink apparatus having a radiator and a centrifugal pump in a closed circulation channel for circulating a coolant, the centrifugal pump contacting a heat-generating component and releasing heat from the heat-generating component through heat exchange of the coolant thereinside, the radiator dissipating the heat, the centrifugal pump comprising:
a first casing provided with a contact surface that contacts the heat-generating component;
a second casing fitted to the first casing so as to form a space wherein the coolant flows;
a partition wall member provided between the first and second casings so as to form a heat transfer chamber between the partition wall member and the first casing and to form a pump chamber that houses an impeller between partition wall member and the second casing;
a coolant inlet connected to the heat transfer chamber;
a coolant outlet connected to the pump chamber;
through-holes formed in the partition wall member so as to connect the heat transfer chamber and the pump chamber; and
a pair of guiding plates provided in the heat transfer chamber so as to direct the coolant from the inlet to a central portion of the heat transfer chamber.
7. The heatsink apparatus according to claim 6, wherein the though-holes in the partition wall member are disposed outside the pair of guiding plates.
8. The heatsink apparatus according to claim 6, wherein the guiding plates extend from the inlet of the heat transfer chamber beyond the center of the heat transfer chamber.
9. The heatsink apparatus according to claim 6, wherein a flow separation wall is provided in the heat transfer chamber so as to separate the coolant passing through the guiding plates into two directions in the heat transfer chamber.
10. The heatsink apparatus according to claim 6, wherein the though holes in the partition wall member are disposed in two locations outside the pair of guiding plates.
11. The heatsink apparatus according to claim 6, wherein a plurality of heat-dissipating fins are provided in the heat transfer chamber on a surface opposite to the contact surface, protruding from the first casing toward the partition wall member.
US11/315,276 2004-12-27 2005-12-23 Heatsink apparatus Abandoned US20060171801A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004376063 2004-12-27
JP2004376062 2004-12-27
JP2004-376063 2004-12-27
JP2004-376062 2004-12-27

Publications (1)

Publication Number Publication Date
US20060171801A1 true US20060171801A1 (en) 2006-08-03

Family

ID=36756736

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/315,276 Abandoned US20060171801A1 (en) 2004-12-27 2005-12-23 Heatsink apparatus

Country Status (1)

Country Link
US (1) US20060171801A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080190586A1 (en) * 2007-02-08 2008-08-14 Onscreen Technologies, Inc. Carbon-based waterblock with attached heat exchanger for cooling of electronic devices
US20080216991A1 (en) * 2007-03-02 2008-09-11 Hironori Oikawa Cooling device for information equipment
US20090084525A1 (en) * 2007-09-28 2009-04-02 Matsushita Electric Industrial Co., Ltd. Heatsink apparatus and electronic device having the same
US20090114375A1 (en) * 2007-11-01 2009-05-07 Kuei-Fung Chiang Water cooling type heat dissipation module for electronic device
US20090116196A1 (en) * 2007-11-01 2009-05-07 Kuei-Fung Chiang Water cooled heat dissipation module for electronic device
US20100143170A1 (en) * 2007-06-28 2010-06-10 Rodica Peia Fan having a printed circuit board
US20110090685A1 (en) * 2009-10-16 2011-04-21 Dialight Corporation Led illumination device with a highly uniform illumination pattern
WO2011142891A1 (en) * 2010-05-11 2011-11-17 Dialight Corporation A hazardous location lighting fixture with a housing including heatsink fins surrounded by a band
CN102900690A (en) * 2011-07-25 2013-01-30 日本电产三协株式会社 Pump device
CN102900691A (en) * 2011-07-25 2013-01-30 日本电产三协株式会社 Vortex pump device
US20130028764A1 (en) * 2011-07-25 2013-01-31 Nidec Sankyo Corporation Pump device
US20140158326A1 (en) * 2007-08-09 2014-06-12 Coolit Systems Inc. Fluid heat exchange systems
US20140216694A1 (en) * 2013-02-05 2014-08-07 Bor-bin Tsai Water-cooling device
US20140216695A1 (en) * 2013-02-05 2014-08-07 Bor-bin Tsai Water-cooling module
EP3029812A3 (en) * 2014-12-05 2016-06-22 Hangzhou Sanhua Research Institute Co., Ltd. Electronic pump
US9795058B2 (en) * 2015-06-11 2017-10-17 Cooler Master Co., Ltd. Electronic device and liquid cooling heat dissipation device thereof
US20180098383A1 (en) * 2016-09-30 2018-04-05 Hp Scitex Ltd. Light emitting diode heatsink
WO2018091233A1 (en) * 2016-11-15 2018-05-24 Zf Friedrichshafen Ag Electronic module and method for the production thereof
US10015909B1 (en) * 2017-01-04 2018-07-03 Evga Corporation Fixing device for interface card fluid-cooling structure
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US10415597B2 (en) 2014-10-27 2019-09-17 Coolit Systems, Inc. Fluid heat exchange systems
US20200396866A1 (en) * 2019-06-12 2020-12-17 Auras Technology Co., Ltd. Cold plate
WO2021001428A1 (en) * 2019-07-01 2021-01-07 KSB SE & Co. KGaA Pump arrangement with a temperature controllable housing part
US20210015001A1 (en) * 2019-01-31 2021-01-14 Shenzhen APALTEK Co., Ltd. Integrated water cooling heat sink
US20210199391A1 (en) * 2019-01-31 2021-07-01 Shenzhen APALTEK Co., Ltd. Fluid cooling device
US20210307198A1 (en) * 2020-03-27 2021-09-30 Auras Technology Co., Ltd. Liquid cooling module and its liquid cooling head
US20210392779A1 (en) * 2020-06-12 2021-12-16 Auras Technology Co., Ltd. Cold plate
US20220071058A1 (en) * 2020-09-02 2022-03-03 Auras Technology Co., Ltd. Liquid cooling head and liquid cooling device with the same
US11320874B2 (en) * 2016-02-15 2022-05-03 Cooler Master Development Corporation Cooling apparatus
US20220170479A1 (en) * 2020-11-27 2022-06-02 Aac Microtech (Changzhou) Co., Ltd. Micro Water Pump
US20220170480A1 (en) * 2020-11-27 2022-06-02 Aac Microtech (Changzhou) Co., Ltd. Micro Water Pump
CN114673972A (en) * 2022-05-31 2022-06-28 佛山市捷力威金属制品有限公司 Heat abstractor and fishing lamp
US11395443B2 (en) 2020-05-11 2022-07-19 Coolit Systems, Inc. Liquid pumping units, and related systems and methods
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US20220341431A1 (en) * 2021-04-23 2022-10-27 Corsair Memory, Inc. Fluid heat exchanger with pump
US20230067553A1 (en) * 2021-08-26 2023-03-02 Auras Technology Co., Ltd. Liquid cooling head
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods
US11725886B2 (en) 2021-05-20 2023-08-15 Coolit Systems, Inc. Modular fluid heat exchange systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214786A1 (en) * 2002-05-15 2003-11-20 Kyo Niwatsukino Cooling device and an electronic apparatus including the same
US20040240179A1 (en) * 2003-05-26 2004-12-02 Shinya Koga Cooling device and centrifugal pump to be used in the same device
US6839234B2 (en) * 2002-05-15 2005-01-04 Matsushita Electric Industrial Co., Ltd. Cooling device and an electronic apparatus including the same
US20050117298A1 (en) * 2002-05-15 2005-06-02 Matsushita Electric Industrial, Co., Ltd. Cooling device and an electronic apparatus including the same
US20060118278A1 (en) * 2004-05-12 2006-06-08 Matsushita Electric Industrial Co., Ltd. Cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214786A1 (en) * 2002-05-15 2003-11-20 Kyo Niwatsukino Cooling device and an electronic apparatus including the same
US6839234B2 (en) * 2002-05-15 2005-01-04 Matsushita Electric Industrial Co., Ltd. Cooling device and an electronic apparatus including the same
US20050117298A1 (en) * 2002-05-15 2005-06-02 Matsushita Electric Industrial, Co., Ltd. Cooling device and an electronic apparatus including the same
US20040240179A1 (en) * 2003-05-26 2004-12-02 Shinya Koga Cooling device and centrifugal pump to be used in the same device
US20060118278A1 (en) * 2004-05-12 2006-06-08 Matsushita Electric Industrial Co., Ltd. Cooling device

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581309B2 (en) 2005-03-03 2017-02-28 Dialight Corporation LED illumination device with a highly uniform illumination pattern
US8528628B2 (en) * 2007-02-08 2013-09-10 Olantra Fund X L.L.C. Carbon-based apparatus for cooling of electronic devices
US20080190586A1 (en) * 2007-02-08 2008-08-14 Onscreen Technologies, Inc. Carbon-based waterblock with attached heat exchanger for cooling of electronic devices
US20080216991A1 (en) * 2007-03-02 2008-09-11 Hironori Oikawa Cooling device for information equipment
US20100143170A1 (en) * 2007-06-28 2010-06-10 Rodica Peia Fan having a printed circuit board
US8297951B2 (en) * 2007-06-28 2012-10-30 Ebm-Papst St. Georgen Gmbh & Co. Kg Fan having a printed circuit board
US9057567B2 (en) * 2007-08-09 2015-06-16 Coolit Systems, Inc. Fluid heat exchange systems
US10274266B2 (en) 2007-08-09 2019-04-30 CoolIT Systems, Inc Fluid heat exchange sytems
US20140158326A1 (en) * 2007-08-09 2014-06-12 Coolit Systems Inc. Fluid heat exchange systems
US20090084525A1 (en) * 2007-09-28 2009-04-02 Matsushita Electric Industrial Co., Ltd. Heatsink apparatus and electronic device having the same
US9074825B2 (en) 2007-09-28 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Heatsink apparatus and electronic device having the same
US7688589B2 (en) * 2007-11-01 2010-03-30 Asia Vital Components Co., Ltd. Water cooled heat dissipation module for electronic device
US20090116196A1 (en) * 2007-11-01 2009-05-07 Kuei-Fung Chiang Water cooled heat dissipation module for electronic device
US20090114375A1 (en) * 2007-11-01 2009-05-07 Kuei-Fung Chiang Water cooling type heat dissipation module for electronic device
US8051898B2 (en) * 2007-11-01 2011-11-08 Asia Vital Components Co., Ltd. Water cooling type heat dissipation module for electronic device
US20110090685A1 (en) * 2009-10-16 2011-04-21 Dialight Corporation Led illumination device with a highly uniform illumination pattern
US8807789B2 (en) 2009-10-16 2014-08-19 Dialight Corporation LED illumination device for projecting light downward and to the side
US8814382B2 (en) 2009-10-16 2014-08-26 Dialight Corporation LED illumination device with a highly uniform illumination pattern
WO2011142891A1 (en) * 2010-05-11 2011-11-17 Dialight Corporation A hazardous location lighting fixture with a housing including heatsink fins surrounded by a band
US8602599B2 (en) 2010-05-11 2013-12-10 Dialight Corporation Hazardous location lighting fixture with a housing including heatsink fins
US8764243B2 (en) 2010-05-11 2014-07-01 Dialight Corporation Hazardous location lighting fixture with a housing including heatsink fins surrounded by a band
CN102900690A (en) * 2011-07-25 2013-01-30 日本电产三协株式会社 Pump device
US20130028761A1 (en) * 2011-07-25 2013-01-31 Nidec Sankyo Corporation Pump device
US20130028765A1 (en) * 2011-07-25 2013-01-31 Nidec Sankyo Corporation Vortex pump device
US9097256B2 (en) * 2011-07-25 2015-08-04 Nidec Corporation Vortex pump device with wiring outlet part
US9145899B2 (en) * 2011-07-25 2015-09-29 Nidec Corporation Pump device with turning prevention protruded part to prevent turning of a first case relative to a second case
CN102900691A (en) * 2011-07-25 2013-01-30 日本电产三协株式会社 Vortex pump device
US20130028764A1 (en) * 2011-07-25 2013-01-31 Nidec Sankyo Corporation Pump device
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
US11714432B2 (en) 2011-08-11 2023-08-01 Coolit Systems, Inc. Flow-path controllers and related systems
US9689627B2 (en) * 2013-02-05 2017-06-27 Asia Vital Components Co., Ltd. Water-cooling device with waterproof stator and rotor pumping unit
US9772142B2 (en) * 2013-02-05 2017-09-26 Asia Vital Components Co., Ltd. Water-cooling device with stator and rotor pumping unit
US20140216694A1 (en) * 2013-02-05 2014-08-07 Bor-bin Tsai Water-cooling device
US20140216695A1 (en) * 2013-02-05 2014-08-07 Bor-bin Tsai Water-cooling module
US11661936B2 (en) 2013-03-15 2023-05-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US10415597B2 (en) 2014-10-27 2019-09-17 Coolit Systems, Inc. Fluid heat exchange systems
US9893587B2 (en) 2014-12-05 2018-02-13 Zhejiang Sanhua Automotive Components Co., Ltd. Electronic pump
EP3327904A1 (en) * 2014-12-05 2018-05-30 Zhejiang Sanhua Automotive Components Co., Ltd. Electronic pump
EP3029812A3 (en) * 2014-12-05 2016-06-22 Hangzhou Sanhua Research Institute Co., Ltd. Electronic pump
US9795058B2 (en) * 2015-06-11 2017-10-17 Cooler Master Co., Ltd. Electronic device and liquid cooling heat dissipation device thereof
US11320874B2 (en) * 2016-02-15 2022-05-03 Cooler Master Development Corporation Cooling apparatus
US11334126B2 (en) 2016-02-15 2022-05-17 Cooler Master Development Corporation Cooling apparatus
US10201041B2 (en) * 2016-09-30 2019-02-05 Hp Scitex Ltd. Light emitting diode heatsink
US10448459B2 (en) 2016-09-30 2019-10-15 Hp Scitex Ltd. Light emitting diode heat sink
US20180098383A1 (en) * 2016-09-30 2018-04-05 Hp Scitex Ltd. Light emitting diode heatsink
WO2018091233A1 (en) * 2016-11-15 2018-05-24 Zf Friedrichshafen Ag Electronic module and method for the production thereof
US10015909B1 (en) * 2017-01-04 2018-07-03 Evga Corporation Fixing device for interface card fluid-cooling structure
US20180192542A1 (en) * 2017-01-04 2018-07-05 Evga Corporation Fixing device for interface card fluid-cooling structure
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods
US20210199391A1 (en) * 2019-01-31 2021-07-01 Shenzhen APALTEK Co., Ltd. Fluid cooling device
US11802741B2 (en) * 2019-01-31 2023-10-31 Shenzhen APALTEK Co., Ltd. Fluid cooling device
US11800679B2 (en) * 2019-01-31 2023-10-24 Shenzhen APALTEK Co., Ltd. Integrated water cooling heat sink
US20210015001A1 (en) * 2019-01-31 2021-01-14 Shenzhen APALTEK Co., Ltd. Integrated water cooling heat sink
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11725890B2 (en) 2019-04-25 2023-08-15 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11856733B2 (en) * 2019-06-12 2023-12-26 Auras Technology Co., Ltd. Cold plate
US20200396866A1 (en) * 2019-06-12 2020-12-17 Auras Technology Co., Ltd. Cold plate
WO2021001428A1 (en) * 2019-07-01 2021-01-07 KSB SE & Co. KGaA Pump arrangement with a temperature controllable housing part
WO2021001422A3 (en) * 2019-07-01 2021-04-29 KSB SE & Co. KGaA Pump assembly
CN114008327A (en) * 2019-07-01 2022-02-01 Ksb股份有限公司 Pump assembly
US20210307198A1 (en) * 2020-03-27 2021-09-30 Auras Technology Co., Ltd. Liquid cooling module and its liquid cooling head
US11832418B2 (en) * 2020-03-27 2023-11-28 Auras Technology Co., Ltd. Liquid cooling module and its liquid cooling head
US11395443B2 (en) 2020-05-11 2022-07-19 Coolit Systems, Inc. Liquid pumping units, and related systems and methods
US11956919B2 (en) * 2020-06-12 2024-04-09 Auras Technology Co., Ltd. Cold plate
US20210392779A1 (en) * 2020-06-12 2021-12-16 Auras Technology Co., Ltd. Cold plate
US20220071058A1 (en) * 2020-09-02 2022-03-03 Auras Technology Co., Ltd. Liquid cooling head and liquid cooling device with the same
US11930618B2 (en) * 2020-09-02 2024-03-12 Auras Technology Co., Ltd. Liquid cooling head and liquid cooling device with the same
US20220170479A1 (en) * 2020-11-27 2022-06-02 Aac Microtech (Changzhou) Co., Ltd. Micro Water Pump
US20220170480A1 (en) * 2020-11-27 2022-06-02 Aac Microtech (Changzhou) Co., Ltd. Micro Water Pump
US11639725B2 (en) * 2020-11-27 2023-05-02 Aac Microtech (Changzhou) Co., Ltd. Micro water pump
US20220341431A1 (en) * 2021-04-23 2022-10-27 Corsair Memory, Inc. Fluid heat exchanger with pump
US11953274B2 (en) * 2021-04-23 2024-04-09 Corsair Memory, Inc. Fluid heat exchanger with pump
US11725886B2 (en) 2021-05-20 2023-08-15 Coolit Systems, Inc. Modular fluid heat exchange systems
US20230067553A1 (en) * 2021-08-26 2023-03-02 Auras Technology Co., Ltd. Liquid cooling head
CN114673972A (en) * 2022-05-31 2022-06-28 佛山市捷力威金属制品有限公司 Heat abstractor and fishing lamp

Similar Documents

Publication Publication Date Title
US20060171801A1 (en) Heatsink apparatus
JP4244703B2 (en) Cooling system
US6894899B2 (en) Integrated fluid cooling system for electronic components
US7527085B2 (en) Electronic component cooling apparatus
US7209355B2 (en) Cooling device and an electronic apparatus including the same
JP4132680B2 (en) Electronic equipment cooling device
JP3979143B2 (en) Cooling device for information processing equipment
US6839234B2 (en) Cooling device and an electronic apparatus including the same
US20080164011A1 (en) Liquid cooling type heat-dissipating device
US7255154B2 (en) Cooling device
US10068833B2 (en) Heat module
US20080101966A1 (en) High efficient compact radial blower
WO1999007196A2 (en) Heat sink
US20040052048A1 (en) Integrated fluid cooling system for electronic components
US20070110559A1 (en) Integrated liquid cooling system
JP3452059B1 (en) Cooling device and electronic equipment equipped with it
US7217086B2 (en) Cooling fluid pump
JP3431024B1 (en) Cooling system
JP2003161284A (en) Thin vortex pump and cooling system provided therewith
JP5117287B2 (en) Electronic equipment cooling system
CN1809260A (en) Heatsink apparatus
JP2007035901A (en) Heat receiver and cooling device equipped with it
JP2006210885A (en) Cooling device
JP2006249966A (en) Centrifugal pump and cooling device using the same
JP2007103633A (en) Cooling device and electronic apparatus including the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANABE, SEIJI;SATO, KAORU;KOHNO, HARUHIKO;REEL/FRAME:017284/0009

Effective date: 20060228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION