US20060124245A1 - High selective ratio and high and uniform plasma processing method and system - Google Patents

High selective ratio and high and uniform plasma processing method and system Download PDF

Info

Publication number
US20060124245A1
US20060124245A1 US11/347,264 US34726406A US2006124245A1 US 20060124245 A1 US20060124245 A1 US 20060124245A1 US 34726406 A US34726406 A US 34726406A US 2006124245 A1 US2006124245 A1 US 2006124245A1
Authority
US
United States
Prior art keywords
plasma
substrate
power supply
plasma generating
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/347,264
Inventor
Masashi Kikuchi
Hitoshi Ikeda
Kiyoshi Kuwahara
Toshio Hayashi
Noriyuki Harashima
Takaei Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/347,264 priority Critical patent/US20060124245A1/en
Publication of US20060124245A1 publication Critical patent/US20060124245A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/257Refractory metals
    • C03C2217/26Cr, Mo, W
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

A plasma processing method and a plasma processing system provide advantages of a high degree of selectivity, a large area processing capability and an enhanced precision level. A plasma processing method according to the invention is so designed that a pulse modulation power is supplied alternately to the plasma generating power supply and the substrate bias power supply by referring to the time taken by gas to diffuse from the center of electric discharge to the substrate. In a plasma processing system according to the invention, the plasma generating power supply and the substrate bias power supply are provided with modulation means for supplying a pulse modulation power alternately to the plasma generating section and the substrate electrode by referring to the time taken by gas to diffuse from the center of electric discharge to the substrate.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a division of application Ser. No. 10/10/393,283, filed Mar. 21, 2003 (which is hereby incorporated by reference).
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a plasma processing method and a plasma processing system that can be used for etching or CVD in a process of manufacturing an exposure mask, a micro-electronic device, a medical micro-chip or a micro-machine, utilizing electric discharge plasma.
  • 2. Related Background Art
  • Known plasma etching techniques include the use of a CW (continuous wave) plasma reactor that comprises a temporally continuous plasma generating means.
  • Various etching methods and etching systems that utilize pulse modulated plasma have been proposed. For instance, Japanese Patent No. 3042450 discloses an etching method of turning processing gas into plasma by utilizing a radio frequency electric field in a plasma generating chamber and irradiating generated plasma to a substrate, with which the radio frequency electric field is modulated within a specific range and the pulse rising time is specified to suppress any overshooting of electron temperature in plasma and increase the amount of negative ions in plasma in order to reduce the accumulation of electric charge.
  • Japanese Patent No. 3085151 discloses an etching method and an etching system adapted to accelerate electrons by applying a pulse bias voltage to a specimen in order to prevent the positive charge at the bottom surface of a micro-pattern from going up and detect the DC component of the voltage being applied to the specimen in order to control the pulse cycle, the pulse width and the pulse amplitude and eliminate the difference between the detected value and the specified value so that the electron accelerating voltage and the ion accelerating voltage may be held to predetermined respective levels.
  • Japanese Patent No. 3201223 discloses an etching method and an etching system of turning gas into plasma under reduced pressure and applying a pulse bias voltage showing a positive potential to the specimen electrode so as to make the ratio of the pulse width to the pulse cycle (duty ratio) to be found within a predetermined range and also the DC component of the voltage being applied to the specimen to be found within a predetermined range in order to accelerate electrons in plasma before striking on the specimen so as to neutralize at least part of the surface electric charge of the specimen when processing the specimen in the processing chamber using plasma.
  • When a metal film or an Si film is subjected to high precision etching in a system of the above identified type, there can arise a problem of a degraded etching performance that is mostly attributable to the opening ratio of the surface to be etched and/or the CD (critical dimension) loss of the mask. Methods of selectively etching the object to be etched by adding a solid material or a gas seed to the surface of the mask in order to harden the mask or forming a protection film on the mask surface have been proposed. However, such methods are accompanied by drawbacks including complexity of process and a limited area that can be processed by etching.
  • The distance between plasma and the substrate to be utilized for diffusion of etchant is routinely adjusted for the purpose of improving the intra-planar distribution of etching rate on the substrate so as to be able to process a large area. However, this technique by turn gives rise to additional problems including a reduced selectivity and a lowered etching rate.
  • BRIEF SUMMARY OF THE INVENTION
  • In view of the above identified circumstances, it is therefore the object of the present invention to provide a plasma processing method and a plasma processing system that provide advantages of a high degree of selectivity, a large area processing capability and an enhanced precision level.
  • In an aspect of the present invention, the above object is achieved by providing a method of uniformly plasma-processing a substrate on a substrate electrode at a high selectivity ratio and over a large area by generating plasma in the plasma generating section of a vacuum container by means of a radio frequency antenna circuit and a plasma generating power supply connected to the radio frequency antenna circuit and supplying modulated substrate bias power to the substrate electrode in the vacuum container from a substrate bias power supply, wherein a pulse modulation power is supplied alternately to the plasma generating power supply and the substrate bias power supply by referring to the time taken by gas to diffuse from the center of electric discharge to the substrate.
  • With the above defined method according to the present invention, which can be applied to plasma etching, a spatially even or uneven and temporally constant or modulated magnetic field is applied to the plasma generating section of the vacuum container and the rates of applications of various etchants to the substrate surface to be processed and the spatial distributions of the etchants on the substrate surface are controlled independently in terms of the object of etching and the mask as a function of the combination of process parameters including the types of gases to be used for plasma-processing, the mixing ratio of the gases, the gas pressure, the gas flow rate, the distance between plasma and the substrate in terms of the plasma generating section and the substrate surface, the magnetic field distribution, the modulation of plasma generating power as determined on the basis of a repetition frequency between 50 Hz and 1 MHz, a duty ratio between 10 and 90% and an average power supply rate of not more than 3 kW and the modulation of substrate bias power as determined on the basis of a repetition frequency between 50 Hz and 1 MHz, a duty ratio between 10 and 90% and an average power supply rate of not more than 100 W.
  • With the method according to the invention, non-magnetic induction plasma, non-magnetic microwave plasma or magneto-microwave plasma is used.
  • When the method according to the invention is applied to plasma etching, the pulse modulation is conducted according to both the power supplied to the radio frequency antenna circuit and the substrate bias power supplied to the substrate electrode by referring to the diffusion time or the service life of echant.
  • Priority may be given to the fall of echant striking on the substrate for the object of etching to suppress the fall of etchant striking on the substrate for the mask by supplying substrate bias power in synchronism with the generation of pulse plasma.
  • With the method according to the invention, a composite pulse of plasma generating power and substrate bias power may be formed by means of a temporal-change-free rectangular modulation wave for the specified value of the repetition frequency and that of the duty ratio. Alternatively, either or both of plasma generating power modulation or substrate bias power modulation, a combination and/or overlapping of CWs (continuous waves) or various waveforms may be used.
  • With the method according to the invention, the conditions of plasma generating power modulation and those of substrate bias power modulation may be maintained, modified or temporally changed depending on conditions including the types of gases, the mixing ratio of gases, the gas pressure and/or addition or replacement of gas seeds by means of a gas puff.
  • In another aspect of the present invention, there is provided a system for uniformly plasma-processing a substrate on a substrate electrode at a high selectivity ratio and over a large area by applying a spatially even or uneven and temporally constant or modulated magnetic field to the plasma generating section of a vacuum container, generating plasma by means of a radio frequency antenna circuit and a plasma generating power supply connected to the radio frequency antenna circuit and supplying modulated substrate bias power to the substrate electrode in the vacuum container from a substrate bias power supply, the plasma generating power supply and the substrate bias power supply being provided with modulation means for supplying a pulse modulation power alternately to the plasma generating section and the substrate electrode by referring to the time taken by gas to diffuse from the center of electric discharge to the substrate.
  • The plasma-processing of a system according to the present invention is plasma etching, and the modulation means provided at the plasma generating power supply and the substrate bias power supply is so arranged as to conduct the pulse modulation according to both the power supplied to the radio frequency antenna circuit and the substrate bias power supplied to the substrate electrode by referring to the diffusion time or the service life of echant.
  • The radio frequency antenna circuit of a system according to the present invention for generating induction discharge plasma in the plasma generating section of the vacuum container may be provided with a single winding coil or a parallel coil having a plurality of windings and adapted to be able to regulate the inter-gap distance independently in the azimuth direction.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is an embodiment of the present invention applied to a plasma etching system.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Now, the present invention will be described in greater detail by referring to the accompanying drawing that illustrates a preferred embodiment of the invention. The illustrated embodiment is a plasma etching system utilizing magnetic neutral line discharge plasma. Referring to FIG. 1, reference symbol 1 denotes a vacuum container or chamber that is provided with a power introducing dielectric wall 2 to be used for generating radio frequency plasma. Reference symbol 3 denotes a substrate support table on which a substrate 4 is mounted and which is provided with a substrate electrode 5. The substrate electrode 5 is connected to a bias applying power supply 8 for applying bias to the substrate by way of an impedance matching circuit 6 and a modulation circuit 7.
  • The vacuum container 1 is provided outside of the dielectric wall 2 with a radio frequency power supply antenna 9, which radio frequency power supply antenna 9 is connected to a radio frequency power supply 12 by way of an impedance matching circuit 10 and a modulation circuit 11. The modulation circuit 11 modulates the radio frequency power according to various process parameters. Three solenoid coils 13 are arranged outside the radio frequency power supply antenna 9. The solenoid coils 13 are arranged in such a way that they provide positional coordination of magnetic fields adapted to generate magnetic neutral line discharge plasma in the plasma generating region 15 in the inside of the dielectric wall 2 of the vacuum container 1. Thus, an annular magnetic neutral line is formed in the space inside the dielectric wall 2 of the vacuum container 1.
  • An etching gas introduction mechanism 14 is fitted to the top plate of the vacuum container 1 so that etching gas may be introduced into the plasma generating region 15 in the inside of the dielectric wall 2 of the vacuum container 1 by way of the top plate of the vacuum container. The etching gas introduced from the etching gas introducing mechanism 14 is made to pass through the plasma generating region 15, where it is decomposed, and flow to an appropriate exhaust system 17 from the surface region of the etching substrate 4 by way of an exhaust port 16.
  • In the etching system having the above described configuration, etching gas that is made to flow at a controlled rate is introduced from the etching gas introducing mechanism 14 into the plasma generating region 15 in the inside of the vacuum container 1 by way of the top plate of the vacuum container 1 whose internal pressure is controlled. Radio frequency power that is modulated by the modulation circuit 11 according to various process parameters is supplied from the radio frequency power supply antenna 9 by way of the dielectric wall 2 to the plasma generating region 15 in the inside of the vacuum container 1. As a result, modulated discharge plasma is generated in the plasma generating region 15.
  • Meanwhile, since various mechanisms are provided in the vacuum container 1 for generating, diffusing and extinguishing plasma as a function of different decomposition seeds, it is necessary to independently control the rates at which the etchant for the object of etching and the etchant for the mask are made to fall respectively on the substrate 4 in order to efficiently conduct the operation of selective etching and it is important to control the spatial distribution of generated plasma in order to improve the intra-planar distribution of etching characteristic. Thus, the modulation of the application of a magnetic field (e.g., the magnetic field for forming a magnetic neutral line in the case of the illustrated embodiment) and that of the electric power supply to the inside of the vacuum container 1 are controlled according to the invention.
  • This will be described by way of a specific example.
  • In the example, the flow rate of chlorine gas and that of oxygen gas were respectively made equal to 240 sccm and 60 sccm and gas pressure was made equal to 0.67 Pa, while no magnetic field was applied or the magnetic field gradient of the magnetic neutral line was made equal to 1 Gauss/cm. The supply rate of radio frequency power to the antenna 9 was between 1 and 3 kW and the repetition frequency of the rectangular wave and the duty ratio were respectively between 56 and 167 Hz and between 33 and 100%, whereas the supply rate of bias power to the substrate electrode 5 was 20 W and the repetition frequency of the rectangular wave and the duty ratio were respectively between 50 and 250 Hz and between 0 and 100%. The distance between plasma and the substrate 4 was made equal to 220 mm.
  • Under the above conditions, the etching characteristic of the resist and that of the Cr film on the surface of a 6.3 mm thick 6-inch square quartz substrate were checked. As a result, it was found that highly selective etching and large area uniform etching can be combined in a process using an etchant-diffusion-time-synchronized type composite pulse by conducting a pulse modulation on both the power supplied to the antenna 9 and the substrate bias power supplied to the substrate electrode 5 by referring to the diffusion time or the service life of etchant. As a result, it was found that a large area ultra-precision etching operation can be realized.
  • Now, the large area ultra-precision etching method using an etchant-diffusion-time-synchronized type composite pulse will be described in detail.
  • Firstly various physical variables are defined as follows.
  • Tt, τt: production time of etchant from pulse application and diffusion time of etchant to get to the substrate surface in terms of the object of etching.
  • Tm, τm: production time of etchant from pulse application and diffusion time of etchant to get to the substrate surface in terms of the mask.
  • Ton, Toff: on time and off time of pulse.
  • Various etchants are produced in the vacuum container 1 by pulse plasma for the object of etching and the mask in the vacuum container 1. Each of the etchants is diffused and mostly extinguished but partly gets to the surface of the etching substrate 4 in the gas flowing environment. The first point important for selective etching is that it is necessary to consider the conditions of the high repetition frequency for Ton>Tt, Tofft. If the service life is shorter than the diffusion time, the diffusion time may well be replaced by the service life under the above conditions. On the other hand, it is practically desirable to use a low frequency region for the repetition frequency and select a low duty ratio, considering ease of impedance matching and suppression of production of etchants (suppression of production of etchant is effective for the mask when Ton<Tt, Tofft). In the above example, it was confirmed that, as the repetition frequency was raised and the duty ratio was reduced, the selectivity ratio was increased to realize a maximum improvement of 200% under the conditions of Ton>>Tt, Toff=4 to 12 ms and τt=20 ms if compared with a process using unmodulated CWs.
  • The second point important for selective etching is that priority is given to the falls of etchants striking on the substrate for the object of etching to suppress the fall of etchant striking on the substrate for the mask to improve the selectivity by supplying substrate bias power in synchronism with the generation of pulse plasma. For this purpose, the electric power, the repetition frequency and the duty ratio are determined by considering the delay time due to the diffusion of etchant conducted in synchronism with the timing of Ton. In the above example, pulse power was supplied to the substrate for 10 to 50% Ton time to find that the selectivity ratio was improved maximally by 20% as a result of reduction in the duty ratio.
  • While the present invention is described above in terms of high selectivity etching, it is possible to improve the intra-planar distribution of etching rate by means of plasma modulation and substrate bias power modulation without adjusting the distance between plasma and the substrate. In the case of the above example, the intra-planar uniformity was improved by 1% along the edges of the resist film if compared with the use of magnetic neutral line discharge plasma at the time of supplying RF power with unmodulated CWs. Thus, it is possible to realize large area ultra-precision etching as a result of eliminating the drawbacks of conventional processes by means of the above described series of composite pulse processes.
  • Additionally, according to the invention, it is possible to form a composite pulse of plasma generating power and substrate bias power by means of a temporal-change-free rectangular modulation wave for the specified value of the repetition frequency and that of the duty ratio.
  • Still additionally, it is possible to realize large area precision etching by using either or both of plasma generating power modulation or substrate bias power modulation, a combination and/or overlapping of CWs (continuous waves) or various waveforms when the conditions of plasma generating power modulation and those of substrate bias power modulation may be maintained, modified or temporally changed depending on conditions including the types of gases, the mixing ration of gases, the gas pressure and/or addition or replacement of gas seeds by means of a gas puff.
  • Furthermore, in addition to composite pulse modulation as described above, it is also possible to use not only temporal swings of magnetic neutral line produced by solenoid coils or permanent magnets or a combination thereof but also temporal modulation of positional coordination of magnetic fields in the magneto-microwave plasma reactor to improve the intra-planar distribution of etching characteristic.
  • While an etching process in a magnetic neutral line discharge plasma system using a radio frequency power supply is described by referring to the illustrated embodiment, similar effects may be achieved when such a system is applied to a CVD process. Furthermore, similar effects may be achieved when such a system is applied to an etching and CVD process in a microwave plasma or ICP reactor.
  • ADVANTAGES OF THE INVENTION
  • As described above in detail, with a method of plasma-processing a substrate on a substrate electrode by generating plasma in the plasma generating section of a vacuum container by means of a radio frequency antenna circuit and a plasma generating power supply connected to the radio frequency antenna circuit and supplying modulated substrate bias power to the substrate electrode in the vacuum container from a substrate bias power supply according to the invention, it is possible to perform a plasma processing operation uniformly over a large area at a high selectivity ratio without making the process complex because a pulse modulation power is supplied alternately to the plasma generating power supply and the substrate bias power supply by referring to the time taken by gas to diffuse from the center of electric discharge to the substrate.
  • When a plasma processing method according to the invention is applied to an etching operation, the intra-planar uniformity is improved by 1% along the edges of the resist film of a 6-inch square substrate if compared with an etching operation using magnetic neutral line discharge plasma with unmodulated CWs. Additionally, selectivity is improved by not less than 200% if compared with an etching operation using induction discharge plasma with CWs. Thus, large area ultra-precision etching can be realized by the present invention.
  • A plasma processing system according to the invention can uniformly plasma-process a large area at a high selectivity ratio because the plasma generating power supply and the substrate bias power supply are provided with modulation means for supplying a pulse modulation power alternately to the plasma generating section and the substrate electrode by referring to the time taken by gas to diffuse from the center of electric discharge to the substrate.

Claims (3)

1. A system for uniformly plasma-processing a substrate on a substrate electrode at a high selectivity ratio and over a large area by applying a spatially even or uneven and temporally constant or modulated magnetic field to the plasma generating section of a vacuum container, generating a magnetic neutral line discharge plasma by means of a radio frequency antenna circuit and a plasma generating power supply connected to the radio frequency antenna circuit and supplying modulated substrate bias power to the substrate electrode in the vacuum container from a substrate bias power supply, wherein
the plasma generating power supply and the substrate bias power supply are provided with modulation means for supplying a pulse modulation power alternately to the plasma generating section and the substrate electrode by referring to the time taken by gas to diffuse from the center of the generated plasma to the substrate,
the plasma generating radio frequency antenna circuit comprising parallel coils for independently regulating the inter-gap distance in the azimuth direction.
2. A system according to claim 1, wherein
the plasma processing comprises plasma etching using an etchant, and the modulation means provided at the plasma generating power supply and the substrate bias power supply are so arranged as to carry out the pulse modulation according to both the power supplied to the radio frequency antenna circuit and the substrate bias power supplied to the substrate electrode by referring to the etchant diffusion time or the etchant service life.
3. A system according to claim 1, wherein the parallel coils are arranged in such a way they provide positional coordination of the magnetic fields adapted to generate the magnetic neutral line discharge plasma in the plasma generating section of the vacuum container.
US11/347,264 2002-03-26 2006-02-06 High selective ratio and high and uniform plasma processing method and system Abandoned US20060124245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/347,264 US20060124245A1 (en) 2002-03-26 2006-02-06 High selective ratio and high and uniform plasma processing method and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002086352A JP2003282547A (en) 2002-03-26 2002-03-26 Method and apparatus for performing plasma treatment with high selectivity and high uniformity over large area
JP2002-86352 2002-03-26
US10/393,283 US20030183599A1 (en) 2002-03-26 2003-03-21 High selective ratio and high and uniform plasma processing method and system
US11/347,264 US20060124245A1 (en) 2002-03-26 2006-02-06 High selective ratio and high and uniform plasma processing method and system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/393,283 Division US20030183599A1 (en) 2002-03-26 2003-03-21 High selective ratio and high and uniform plasma processing method and system

Publications (1)

Publication Number Publication Date
US20060124245A1 true US20060124245A1 (en) 2006-06-15

Family

ID=28449304

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/393,283 Abandoned US20030183599A1 (en) 2002-03-26 2003-03-21 High selective ratio and high and uniform plasma processing method and system
US11/347,264 Abandoned US20060124245A1 (en) 2002-03-26 2006-02-06 High selective ratio and high and uniform plasma processing method and system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/393,283 Abandoned US20030183599A1 (en) 2002-03-26 2003-03-21 High selective ratio and high and uniform plasma processing method and system

Country Status (4)

Country Link
US (2) US20030183599A1 (en)
JP (1) JP2003282547A (en)
KR (1) KR100949472B1 (en)
TW (1) TWI240324B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120252219A1 (en) * 2011-03-30 2012-10-04 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
US20140144379A1 (en) * 2005-09-01 2014-05-29 Micron Technology, Inc. Systems and methods for plasma doping microfeature workpieces
CN109847580A (en) * 2019-03-21 2019-06-07 青岛大学 Denitration filtrate and preparation method thereof based on plasma pre-treatment and infusion process
CN109847807A (en) * 2019-03-21 2019-06-07 青岛大学 Denitration filtrate and preparation method thereof based on corona treatment and in situ deposition method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455819B1 (en) * 2002-08-13 2004-11-06 어댑티브프라즈마테크놀로지 주식회사 Method for generating plasma using ACP form
JP2005149956A (en) * 2003-11-17 2005-06-09 Ulvac Japan Ltd Method and apparatus for performing plasma processing with high uniformity over large area
US7829243B2 (en) * 2005-01-27 2010-11-09 Applied Materials, Inc. Method for plasma etching a chromium layer suitable for photomask fabrication
JP4497323B2 (en) * 2006-03-29 2010-07-07 三菱電機株式会社 Plasma CVD equipment
KR100775592B1 (en) * 2006-04-06 2007-11-09 세메스 주식회사 Plasma generating system
US20090061544A1 (en) * 2007-08-30 2009-03-05 Applied Materials, Inc. Trajectory based control of plasma processing
US9059116B2 (en) 2007-11-29 2015-06-16 Lam Research Corporation Etch with pulsed bias
CN101952945B (en) 2007-11-29 2013-08-14 朗姆研究公司 Pulsed bias plasma process to control microloading
CN103943448B (en) * 2013-01-17 2016-06-08 中微半导体设备(上海)有限公司 The plasma processing method of a kind of plasma treatment appts

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540824A (en) * 1994-07-18 1996-07-30 Applied Materials Plasma reactor with multi-section RF coil and isolated conducting lid
US5681393A (en) * 1995-01-24 1997-10-28 Anelva Corporation Plasma processing apparatus
US5762750A (en) * 1996-05-15 1998-06-09 Nihon Shinku Gijutsu Kabushiki Kaisha Magnetic neutral line discharged plasma type surface cleaning apparatus
US5810932A (en) * 1995-11-22 1998-09-22 Nec Corporation Plasma generating apparatus used for fabrication of semiconductor device
US6291793B1 (en) * 1994-10-31 2001-09-18 Appplied Materials, Inc. Inductively coupled plasma reactor with symmetrical parallel multiple coils having a common RF terminal
US6469448B2 (en) * 1999-08-04 2002-10-22 Nihon Shinku Gijutsu Kabushiki Kaisha Inductively coupled RF plasma source
US6709546B2 (en) * 2000-10-19 2004-03-23 Robert Bosch Gmbh Device and method for etching a substrate by using an inductively coupled plasma

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3424182B2 (en) * 1994-09-13 2003-07-07 アネルバ株式会社 Surface treatment equipment
JPH0888218A (en) * 1994-09-16 1996-04-02 Kokusai Electric Co Ltd Method and device for plasma etching
US5942042A (en) * 1997-05-23 1999-08-24 Applied Materials, Inc. Apparatus for improved power coupling through a workpiece in a semiconductor wafer processing system
JP3559429B2 (en) * 1997-07-02 2004-09-02 松下電器産業株式会社 Plasma processing method
JP2000091326A (en) * 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd Method for selecting gas-supplying time
JP2002016047A (en) * 2000-06-29 2002-01-18 Nec Corp Wiring etching method for semiconductor device
JP4474026B2 (en) * 2000-07-13 2010-06-02 アルバック成膜株式会社 Method for controlling spatial distribution of inductively coupled plasma, and plasma generating apparatus and etching apparatus for implementing the method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540824A (en) * 1994-07-18 1996-07-30 Applied Materials Plasma reactor with multi-section RF coil and isolated conducting lid
US6291793B1 (en) * 1994-10-31 2001-09-18 Appplied Materials, Inc. Inductively coupled plasma reactor with symmetrical parallel multiple coils having a common RF terminal
US5681393A (en) * 1995-01-24 1997-10-28 Anelva Corporation Plasma processing apparatus
US5810932A (en) * 1995-11-22 1998-09-22 Nec Corporation Plasma generating apparatus used for fabrication of semiconductor device
US5762750A (en) * 1996-05-15 1998-06-09 Nihon Shinku Gijutsu Kabushiki Kaisha Magnetic neutral line discharged plasma type surface cleaning apparatus
US6469448B2 (en) * 1999-08-04 2002-10-22 Nihon Shinku Gijutsu Kabushiki Kaisha Inductively coupled RF plasma source
US6709546B2 (en) * 2000-10-19 2004-03-23 Robert Bosch Gmbh Device and method for etching a substrate by using an inductively coupled plasma

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140144379A1 (en) * 2005-09-01 2014-05-29 Micron Technology, Inc. Systems and methods for plasma doping microfeature workpieces
US8975603B2 (en) * 2005-09-01 2015-03-10 Micron Technology, Inc. Systems and methods for plasma doping microfeature workpieces
US20120252219A1 (en) * 2011-03-30 2012-10-04 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
US9305803B2 (en) * 2011-03-30 2016-04-05 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
US10559481B2 (en) 2011-03-30 2020-02-11 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
CN109847580A (en) * 2019-03-21 2019-06-07 青岛大学 Denitration filtrate and preparation method thereof based on plasma pre-treatment and infusion process
CN109847807A (en) * 2019-03-21 2019-06-07 青岛大学 Denitration filtrate and preparation method thereof based on corona treatment and in situ deposition method

Also Published As

Publication number Publication date
KR20030077420A (en) 2003-10-01
US20030183599A1 (en) 2003-10-02
KR100949472B1 (en) 2010-03-29
TW200305950A (en) 2003-11-01
TWI240324B (en) 2005-09-21
JP2003282547A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
US20060124245A1 (en) High selective ratio and high and uniform plasma processing method and system
US5674321A (en) Method and apparatus for producing plasma uniformity in a magnetic field-enhanced plasma reactor
EP0379828B1 (en) Radio frequency induction/multipole plasma processing tool
US7491649B2 (en) Plasma processing apparatus
US20040219737A1 (en) Method and apparatus for processing a workpiece with a plasma
US6245190B1 (en) Plasma processing system and plasma processing method
US5733405A (en) Plasma processing apparatus
US5304279A (en) Radio frequency induction/multipole plasma processing tool
US5032205A (en) Plasma etching apparatus with surface magnetic fields
US20060144518A1 (en) Plasma processing apparatus and plasma processing method
WO2004015738A1 (en) Etch chamber with dual frequency biasing sources and a single frequency plasma generating source
JPH08107101A (en) Plasma processing device and plasma processing method
JPS6348952B2 (en)
JPH04136177A (en) Microwave plasma treating device
EP1064672A1 (en) Method and apparatus for improving processing and reducing charge damage in an inductively coupled plasma reactor
US20040037971A1 (en) Plasma processing apparatus and processing method
EP1055249A1 (en) Plasma assisted processing chamber with separate control of species density
JPH11135297A (en) Plasma generator
US6926844B1 (en) Plasma etching method having pulsed substrate electrode power
JP4408987B2 (en) Plasma processing equipment for sputter processing
JP3417328B2 (en) Plasma processing method and apparatus
JPS63103088A (en) Plasma treating device
WO2009048294A2 (en) Magnetized inductively coupled plasma processing apparatus and generating method
JPH08203869A (en) Method and system for plasma processing
JPH06267863A (en) Microwave plasma treatment device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION